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The leptonic unitarity triangle (LUT) provides a geometric description of CP violations in the lepton-
neutrino sector and is directly measurable in principle. In this paper, we reveal that the angles in the LUT
have definite physical meaning, and demonstrate the exact connection of the LUT to neutrino oscillations.
For the first time, we prove that these leptonic angles act as phase shifts in neutrino oscillations, by shifting
Δm2L=2E to Δm2L=2Eþ α, where ðL; E; αÞ denote the baseline length, neutrino energy and correspond-
ing angle of the LUT. Each LUT has three independent parameters and contains only partial information of
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. We demonstrate that the partial information in
each LUT can describe the corresponding neutrino oscillation. Hence, for the first time, we uncover that any
given kind of neutrino oscillations contains at most three (rather than four) independent degrees of freedom
from the PMNS matrix, and this may provide a cleaner way for fitting the corresponding oscillation data.
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I. INTRODUCTION

Discovering leptonic CP violation has vital importance
for neutrino physics, as it may provide the origin of the
observed matter-antimatter asymmetry in the Universe. For
the quark sector, the Cabibbo-Kobayashi-Maskawa (CKM)
mixing matrix [1,2] generates six unitarity triangles (UT)
[3]. The angles of each triangle have clear physical
meaning, and their nonzero values directly prove the CP
violation. For instance, the most commonly used d − b
triangle is given by the relation,

V�
udVub þ V�

cdVcb þ V�
tdVtb ¼ 0. (1)

Its three angles ðα; β; γÞ can be directly measured in CP
violation experiments such as B meson decays.
In parallel, the lepton-neutrino sector has the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing
matrix [4] in charged currents. The neutrino oscillations
are crucial for testing the PMNS matrix, including its Dirac
CP angle. Measuring the CP asymmetry of neutrino
oscillations, P½νl → νl0 � − P½ν̄l → ν̄l0 � (l ≠ l0), is a direct
probe of Dirac CP violation [5,6], and poses a major
challenge to particle physics today. An alternative and
complementary method is to measure the leptonic unitarity
triangles (LUT) from neutrino oscillations.
Hence, our natural question is: in the leptonic sector,

what is the physical meaning of those angles in the LUT
and how do they exactly connect to neutrino oscillations?
In this paper, we reveal that the angles of the LUT have

definite physical meaning, and demonstrate the exact

connection of LUT to neutrino oscillations. We note that
the LUT has only three independent parameters and does
not contain the full information of the PMNS matrix; but
we will demonstrate that the three parameters of each LUT
are enough to describe the corresponding neutrino oscil-
lations. Especially, we will prove that the angles of the LUT
act as the phase shifts in the corresponding neutrino
oscillation probabilities. Thus, for the long baseline oscil-
lation experiments with enough precision to measure the
distortion of energy spectrum, the angles in the LUT may
be directly extracted from the shift of the maximal
appearance point in the spectrum. We also note that some
other nice features of the LUT and their tests were studied
in the recent literature [7].

II. CONNECTING LUT TO NEUTRINO
OSCILLATION

Neutrinos are normally produced and detected in their
flavor eigenstates jνli with l ¼ e; μ; τ, which are mixtures
of their mass eigenstates jνji with j ¼ 1; 2; 3. The jνli and
jνji are connected by the PMNS matrix U [4], jνli ¼P

3
j¼1Uljjνji: Thus, a flavor state jνli can oscillate into

jνl0 i after flying a distance L. The vacuum transition
probability is [5,6],

Pl→l0 ¼
X3
j¼1

jUl0jUljj2

þ 2
X
j<k

jUl0jUljUlkUl0kj cosð2Δjk ∓ ϕl0l;jkÞ; (2)

where Δjk ≡ LΔm2
jk=ð4EÞ, Δm2

jk is the mass-squared
difference between jνji and jνki, E denotes neutrino
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energy, and the “∓” signs correspond to νl=ν̄l oscillations.
The phase angle ϕl0l;jk is defined as [3,5]

ϕl0l;jk ≡ arg ðUl0jU�
ljUlkU�

l0kÞ: (3)

Thus we have, ϕl0l;jk ¼ −ϕll0;jk ¼ −ϕl0l;kj and Δjk ¼
−Δkj. Equation (2) is a precise oscillation formula without
approximations [3,5]. It also holds for l ¼ l0, which gives
the survival probability of νl → νl (ν̄l → ν̄l) with phase
angle ϕll;jk ¼ 0. This survival probability (l ¼ l0)
depends only on three parameters ð ~al; ~bl; ~clÞ≡
ðjUl1j2; jUl2j2; jUl3j2Þ, which obey the unitarity constraint
of the matrix U, ~al þ ~bl þ ~cl ¼ 1. Hence, under l ¼ l0,
Eq. (2) actually contains only two independent degrees of
freedom among all four parameters in the PMNS matrix.
For instance, we can express the disappearance probability
in terms of ð ~al; ~blÞ, apart from Δjk,

Pdis ¼ 1 − Pl→l ¼ 2 Σ
j<k

jUljj2jUlkj2½1 − cosð2ΔjkÞ�

¼ 4~al ~blsin2Δ12 þ 4ð1 − ~al − ~blÞ
× ð ~alsin2Δ31 þ ~blsin2Δ23Þ:

(4)

This clearly shows that the disappearance oscillations do
not directly measure the LUT parameters (cf. Fig. 1),
especially the LUT angles for CP violation. Hence, we will
focus on the appearance oscillations (l ≠ l0), which con-
tain nontrivial phase shift ϕl0l;jk ≠ 0. Our key finding is to
quantitatively connect the appearance oscillations
to LUT’s.
We note that the oscillation formulas [(2) and (3)] mainly

depend on the absolute values such as jUljj, and ϕl0l;jk is
the only place where complex phases of Ulj enter and
generate observable CP violation in ν oscillations. We
stress that, in contrast to the Dirac CP phase δ in the
conventional PMNS matrix [6], the phase angle ϕl0l;jk has
the advantage of being parametrization independent.
Furthermore, ϕl0l;jk explicitly appears as the phase angle
shift in Eq. (2), and may be directly read out from the shift
of the maximal transition point in the ν energy spectrum
once the measurements become precise enough.
Then, we wish to ask: what is the physical meaning of

the phase-angle-shift ϕl0l;jk and how is it connected to the
LUT? Strikingly, we find that the phase angle shift ϕl0l;jk
in neutrino oscillations is just one of the exterior angles in
the LUT. This will be proven as follows.
The unitarity conditions of the PMNS matrix,

U†U ¼ UU† ¼ 1, will result in two sets of LUT’s,P
jUljU�

l0j ¼ 0 with l ≠ l0 (row triangles or “Dirac
triangles”) and

P
lU

�
ljUlj0 ¼ 0 with j ≠ j0 (column tri-

angles or “Majorana triangles”). For studying the flavor
neutrino oscillations, we consider the Dirac triangles,

Ul1U�
l01 þUl2U�

l02 þ Ul3U�
l03 ¼ 0; ðl ≠ l0Þ: (5)

This forms a triangle in the complex plane, as shown in
Fig. 1. Its three sides have lengths

ða; b; cÞ≡ ðjUl1Ul01j; jUl2Ul02j; jUl3Ul03jÞ: (6)

The three angles are expressed as

α ¼ arg

�
−
Ul2U�

l02
Ul3U�

l03

�

β ¼ arg

�
−
Ul3U�

l03

Ul1U�
l01

�

γ ¼ arg

�
−
Ul1U�

l01

Ul2U�
l02

�
.

(7)

In order to make exact connections to the phase angle (3),
we compute a generic arc angle of Eq. (7),

arg

�
−
UljU�

l0j

UlkU�
l0k

�
¼ argðUljU�

l0jÞ − argð−UlkU�
l0kÞ

¼ argðUljU�
l0jÞ þ argð−U�

lkUl0kÞ
¼ argðUljU�

l0jÞ þ argðU�
lkUl0kÞ þ π

¼ argðU�
l0jUljU�

lkUl0kÞ þ π

¼ π − ϕl0l;jk; (8)

where we have used the identities, argðz1=z2Þ¼
argðz1Þ−argðz2Þ, −argðzÞ¼argðz�Þ, argð−zÞ¼argðzÞþπ,
argðz1z2Þ ¼ argðz1Þ þ argðz2Þ. Note that all these
equalities hold modulo 2nπðn ∈ ZÞ. Hence, we conclude
that ϕl0l;jky just equals one of the exterior angles in the
LUT,

α¼π−ϕl0l;23; β¼π−ϕl0l;31; γ¼π−ϕl0l;12: (9)

We further present a geometrical proof of the identities
(9). Let us first consider the β angle. From Fig. 1, we have

S
▵
¼ 1

2
ah; sin β ¼ h

c
¼ 2S

▵

ac
; (10)

where S
▵

is the area of the triangle and h denotes
the height. The Jarlskog invariant J [8] is the

FIG. 1 (color online). The leptonic unitarity triangle (LUT),
where l ≠ l0, ða; b; cÞ denote lengths of the three sides, ðα; β; γÞ
denote the three angles, and h denotes the height.
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rephasing-invariant measure of CP violation and equals
J ¼ ImðUl0jU�

ljUlkU�
l0kÞ, where l ≠ l0 and j ≠ k.

Hence, we can derive the phase angle from (3),

sinϕl0l;31 ¼
J

jUl03U�
l3Ul1U�

l01j
¼ J

ac
: (11)

Because each UT has its area equal half of the Jarlskog
invariant, S

▵
¼ J=2 [9], the right-hand sides of (11) and

the second relation of (10) are equal. Hence, we deduce

sin β ¼ sinϕl0l;31: (12)

Similarly, we derive

sin α ¼ sinϕl0l;23; sin γ ¼ sinϕl0l;12: (13)

These elegantly reprove our result (9) in a geometrical
way. It invokes the Jarlskog invariant, and also reveals a
clear picture for the relation between ðα; β; γÞ and J.
We present this in Fig. 2, which demonstrates that
the productions of any two sides of the triangle in the
complex plane share the same imaginary part, i.e., the
same height in Fig. 2,

bc sin α ¼ ca sin β ¼ ab sin γ ¼ J: (14)

Using (6) and (9), we can express (2) fully in terms of the
geometrical parameters in the corresponding LUT,

Pl→l0 ¼ a2 þ b2 þ c2 − 2ab cos ð2Δ12 � γÞ
− 2bc cos ð2Δ23 � αÞ − 2ca cos ð2Δ31 � βÞ: (15)

Note that Pl→l0 ðL ¼ 0Þ ¼ 0 holds as expected, since the
source neutrinos have no time to oscillate. Thus, we can
simplify the form of (15) by subtracting Pl→l0 ðL ¼ 0Þ,

Pl→l0 ¼ 4ab sinðΔ12 � γÞ sinΔ12

þ 4bc sinðΔ23 � αÞ sinΔ23

þ 4ac sinðΔ31 � βÞ sinΔ31: (16)

Equations (15) and (16) demonstrate the quantitative
connection between ðα; β; γÞ of the LUT and the oscillation
probabilities. Hence, we have explicitly proven that the
physical meanings of ðα; β; γÞ are just the phase angle
shifts in the neutrino oscillations. It is striking to see that a
flavor-changing oscillation (l ≠ l0) is fully determined by
the geometrical parameters of the LUT, for the given Δm2

jk
and experimental setup ðE;LÞ [10].
This has an important implication. Apart from two possible

Majorana phases, the PMNS matrix has four independent
parameters (three mixing angles and one Dirac CP angle),
which would all appear in the standard oscillation formula
(2). But, a LUT has only three independent geometrical
parameters and thus only contains partial information in the
PMNS matrix. Impressively, we have proven that this partial
information of the PMNS matrix, as contained in a given
LUT (5), is enough to determine the corresponding oscil-
lation probability, for the inputs Δm2

jk and ðE;LÞ.
This feature is important for fitting an oscillation experi-

ment when higher experimental precision is reached such
that all four parameters of the PMNSmatrix have observable
effects. In this case, we may suggest a three-parameter fit
based on each given LUT, rather than the conventional four-
parameter fit in terms of ðθ12; θ13; θ23; δÞ which contain a
redundant degree of freedom that cannot be determined
independently in a given kind of appearance experiments.
This has two advantages: (i) the simplicity of (16) in terms of
the geometric parameters of LUT; (ii) the extra redundant
degree of freedom in the conventional four-parameter fit of
the PMNS matrix is automatically removed for a given kind
of oscillation experiments (l ≠ l0).
Finally, since combining two different LUT’s will provide

the full information of the PMNS matrix [11], making two
kinds of oscillation experiments can fit the two corresponding
LUT’s, and thusgive a full reconstructionof thePMNSmatrix.

III. PROBING THE LUT VIA
NEUTRINO OSCILLATIONS

We further study how to test the LUT parameters via
neutrino oscillations. To determine a LUT, we can choose
two sides plus one angle, say ða; b; γÞ, as the three
independent geometrical parameters. Then, all other param-
eters in this LUT can be expressed in terms of ðα; β; γÞ,

c2 ¼ a2 þ b2 − 2ab cos γ

tan α ¼ a sin γ
b − a cos γ

tan β ¼ b sin γ
b − a cos γ

.

(17)

FIG. 2 (color online). Relation between ðα; β; γÞ and Jarlskog
invariant J. The productions of any two sides of the triangle in the
complex plane share the same imaginary part.
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Hence, we can reexpress (15) or (16) fully in termsof ða; b; γÞ.
From the current oscillation data [12,13], Δm2 ≡ jΔm2

13j≃
2.4 × 10−3 eV2 and δm2 ≡ jΔm2

12j≃ 7.5 × 10−5 eV2, and
considering the case ofE=L ∼ δm2, we find,Δ12 ¼ Oð1Þ and
jΔ23j; jΔ31j ≫ 1. Thus, the last two terms in (15) will be
averaged out due to integration over the neutrino production
region and the energy resolution function, etc. [3]. So,we have

Pl→l0 ≃ a2 þ b2 þ c2 − 2ab cosð2Δ12 � γÞ
¼ 2ða2 þ b2Þ − 4ab cosðΔ12 � γÞ cosΔ12: (18)

In Eq. (18), if γ ¼ 0, the νl0 maximal appearance point is
Δ12 ¼ π

2
. For a nonzero γ, the maximal appearance point is

shifted to

Δ⋆
12 ¼

π

2
∓
γ

2
; (19)

and its corresponding appearance probability is

Pmax
l→l0 ≃ 2ða2 þ b2Þ þ 4absin2

γ

2
: (20)

This phase-shift effect is shown in Fig. 3 for ν̄l → ν̄l0
oscillations, where we use (18) with sample inputs

ða; bÞ ¼ ð0.29; 0.36Þ. The three curves in Fig. 3 correspond
to γ ¼ ð0; π

4
; π
2
Þ, and have their first maximal appearance

points located at Δ⋆
12 ¼ ðπ

2
; 5π
8
; 3π
4
Þ, in accord with (19).

Figure 3 also shows that the curves move upward with the
increase of γ. This can be understood from (20) which
monotonously rises with the increase of γ ∈ ð0; πÞ. We
have made similar analyses for choosing other input
parameters of the LUT.
In addition, using Eq. (18), we can derive the prob-

ability difference between the neutrino and antineutrino
oscillations,

Pl→l0 − Pl̄→l̄0 ≃ 4ab sin γ sinð2Δ12Þ
¼ 8SΔ sinð2Δ12Þ
¼ 4J sinð2Δ12Þ.

(21)

This CP asymmetry provides the net measure of CP
violation in terms of the area of the LUT, SΔ ¼ J=2, as
expected.
From Eqs. (18)–(20), we see that the angle γ plays the

physical role of phase shift in neutrino oscillations with
E=L ∼ δm2. In principle, we can change either L or E to
detect how the maximal appearance point is shifted, and
thus directly measure γ. In practice, it is much easier to vary
E since moving around a large detector would be hard.
Actually, a more realistic method is to measure the

distortion of neutrino energy spectrum. For instance, we
may produce many νμ with different energies which can be
measured or are already known. Then, at the far detector
with L ∼ E=δm2, we will measure the νe appearance with a
different energy spectrum. Then, we may use (18) to fit the
distortion of the spectrum and infer ða; b; γÞ in the e − μ
LUT. The current νμ → νe experiments cannot reach such a
small E=L ∼ δm2. For instance, the MINOS experiment
[14] has E=L about 3 GeV=735 km≃ 8 × 10−4 eV2 which
is insensitive to the oscillations via Δ12. The situation
of the NOνA experiment [15] is similar, which has
E=L≃ 2 GeV=810 km≃ 5 × 10−4 eV2. The Super Beam
Project [16] creates 300 MeV muon neutrinos and has a
130 km baseline, with E=L≃ 4.5 × 10−4 eV2 also at the
same order as MINOS. The future Neutrino Factory [17]
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FIG. 3 (color online). Phase-shift effects of γ on neutrino
oscillation probability P½ν̄l → ν̄l0 �. For illustration, we plot three
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FIG. 4 (color online). Probability distributions of the geometric parameters in the e − μ LUT, γ [plot (a)], a [plot (b)], and b [plot (c)],
based on the current neutrino global fit [12]. We have simulated 30000 samples in each plot.
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will have L ¼ 2000 − 7500 km and E ¼ Oð1 − 10Þ GeV,
which is possible to realize E=L ∼ δm2.
The νμ → νe oscillation experiments measure the prob-

ability Pμ→eðEÞ in (18) as a function of E in a long baseline
L ∼ E=δm2. To inspect the sensitivity of Pμ→eðEÞ to γ, we
first evaluate the ranges of ðγ; a; bÞ in the e − μ LUT from
the present oscillation data. The new global fit of the PMNS
matrix gives [12]

s212 ¼ ð3.08� 0.17Þ × 10−1;

s223 ¼ ð4.25� 0.28Þ × 10−1;

s213 ¼ ð2.34� 0.20Þ × 10−2;

δ ¼ ð1.39� 0.30Þπ; (22)

where s2ij ≡ sin2 θij and �1σ errors are included. The
PMNS matrix can be expressed as U ¼ U0U0, with

U0 ¼

0
BB@

c31c12 c31s12 s31e−iδ

−s12c23 − c12s23s31eiδ c12c23 − s12s23s31eiδ s23c31
s12s23 − c12c23s31eiδ −c12s23 − s12c23s31eiδ c23c31

1
CCA: (23)

The Majorana phase matrix U0 ¼ diagð1; eiφ2 ; eiφ3Þ does
not affect the Dirac triangles (5) and is irrelevant to the
oscillation analyses. Using Eqs. (6) and (7) and the mixing
matrix (23), we can reconstruct the LUT parameters
ðγ; a; bÞ from the neutrino data (22).
We present the probability distributions of ðγ; a; bÞ in

Fig. 4. We have simulated 30000 samples in each plot and
normalized the total area of each histogram as a unit. We
find that γ falls into a narrow range,

−20° ≲ γ ≲ 20°; (24)

with a most probable value γ ≃ 15:5°. Figure 4 further
constrains,

0.25≲ a ≲ 0.45; 0.29≲ b≲ 0.42 (25)

with the most probable values ða; bÞ≃ ð0.29; 0.36Þ.
In Fig. 5, we plot the oscillation probability Pμ→eðEÞ as a

function of E=L, based upon (18), where we vary γ values
in the range ½−20°; 20°� with steps by 2°. We also set the
sample inputs ða; bÞ ¼ ð0.29; 0.36Þ from their most prob-
able values in Fig. 4. Figure 5 shows that with γ changing
from −20° to 20°, the maximum point of Pμ→e shifts from
left to right, and its tail on the right-hand side lifts up.
Figure 5 clearly illustrates how γ plays the physical role of
phase shift.
We note that observing the phase-shift effects is based on

a premise that L=E is variable in the experiments. Hence,
to probe the phase-shift effects requires experiments to

reach a relatively high resolution on the neutrino energy
and the energy spectrum, so the shape of the distribution in
Fig. 5 (by varying energy E) can be measured. Thus, the
LUT parameters ðγ; a; bÞ can be inferred from fitting the
measured energy spectrum.
In passing, we note that determining CP violation in an

experiment with fixed L=E also involves the well-known
parameter degeneracy problem [18], such as the ðθ13; δÞ
degeneracy, implying that the oscillation probability for
one pair of inputs ðθ13; δÞ may equal that for another pair
ðθ013; δ0Þ. This problem is inherent in the three-neutrino
oscillations and cannot be removed by simply enhancing
the accuracy. It may be resolved by varying L=E, e.g.,
combining data from experiments with different baselines
and channels, or making use of the energy spectrum.
Finally, we comment on the matter effects [3,19]. To

effectively measure the phase-shift effects, we should check
the required size of E=L. According to the above dis-
cussions, a relatively small E=L ∼ δm2 is needed, which is
beyond the current experimental setup. For instance, the
735 km baseline of MINOS [14] would need a neutrino
beam energy E ∼ 100 MeV for a sensitive probe. In
such a case, the matter effect is only about 1=30 of that
involved in the current MINOS setup (with E≃ 3 GeV),
and thus negligible. The case of NOνA [15] (with
E=L≃ 2 GeV=810 km) is similar. Besides, the Super
Beam Project [16] has E=L≃ 300 MeV=130 km, whose
neutrino energy is about a factor 1=10 lower than the
current MINOS setup, so its matter effect will be insig-
nificant. This means that our formula (18) would give a fine

20°

20°

50 100 150 200
0.0

0.1

0.2

0.3

0.4

E L MeV 1000km

P

FIG. 5 (color online). The νμ → νe oscillation probability
versus E=L, for illustration of long baseline oscillations with
E=L ∼ δm2. Different curves (from bottom to top) correspond to
varying γ within ½−20°; 20°� and with steps of 2°.
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approximation for δm2 dominated oscillations with
L < 1000 km. Only for experiments with very long base-
lines (well above 1000 km) and high precision, the matter
effect would become sizable for probing the LUT’s; but this
is fully beyond our current scope and we will pursue such
elaborated applications elsewhere.

IV. CONCLUSIONS

Probing the leptonic CP violation poses a major chal-
lenge to particle physics today. It may provide the origin of
the observed matter-antimatter asymmetry in the Universe
[20]. The leptonic unitarity triangle (LUT) gives a geo-
metric description of CP violations in the lepton-neutrino
sector and is directly measurable. Finding any nonzero
angle of the LUT will be a direct proof of the leptonic CP
violation [9].
In this paper, we revealed that the angles in the LUT have

definite physical meaning, and they act as the phase shifts
of neutrino oscillations. For the first time, we proved that
the oscillation phases ϕl0l;jk in the conventional formula
(2) exactly equal the corresponding exterior angles of the
LUT, as in (9). Our proof uncovers that a given kind of
appearance oscillations can be described by the corre-
sponding LUT with only three independent geometric

parameters. This may provide a cleaner way for fitting
oscillation data, since each kind of long baseline oscillation
(2) is traditionally described by four independent param-
eters in the PMNS matrix (23).
Without losing generality, we considered the νμ → νe

oscillations with a long baseline L ¼ E=δm2, and studied
one of the LUT angles γ for illustration. We demonstrated
that the oscillation formula takes a simple form (18),
depending only on the three independent geometric param-
eters ðγ; a; bÞ of the unitarity triangle.We explicitly analyzed
how the maximal appearance point of νμ → νe oscillations
gets shifted when γ changes, as shown in Eq. (19) and
Figs. 3,5. We will apply this LUT method to study concrete
long baseline oscillation experiments elsewhere.
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