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A search for the rare decays of J=ψ → D−
s ρ

þ þ c:c: and J=ψ → D̄0K̄�0 þ c:c: is performed with a data
sample of 225.3-million J=ψ events collected with the Beijing Spectrometer III detector. No evident signal
is observed. Upper limits on the branching fractions are determined to be BðJ=ψ → D−

s ρ
þ þ c:c:Þ <

1.3 × 10−5 and BðJ=ψ → D̄0K̄�0 þ c:c:Þ < 2.5 × 10−6 at the 90% confidence level.

DOI: 10.1103/PhysRevD.89.071101 PACS numbers: 13.25.Gv, 12.60.-i, 14.40.Lb

I. INTRODUCTION

The decays of the low-lying charmonium state J=ψ ,
which is below the open-charm threshold, are dominated
by strong interactions through intermediate gluons and
electromagnetic interactions through virtual photons,
where both the intermediate gluons and photons are
produced by cc̄ annihilation. However, flavor-changing
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weak decays of J=ψ through virtual intermediate bosons
are also possible in the standard model (SM) framework,
and the branching fractions of J=ψ inclusive weak decays
are estimated to be on the order of 10−8 [1]. Several models
addressing new physics, including the top-color model, the
minimal supersymmetric standard model (MSSM) with
R-parity violation and a general two-Higgs doublet model
(2HDM), allow J=ψ flavor-changing processes to occur
with branching fractions around 10−5, which may be
measurable in experiments [2,3]. Searches for rare J=ψ
decays to a single charmed meson provide an experimental
test of the SM and a way to look for possible new physics
beyond the SM.
The BESII experiment has searched for semileptonic

decays and hadronic decays of J=ψ → D−
s π

þ, J=ψ →
D−πþ, and J=ψ → D̄0K̄0 [4] and set upper limits on the
order of 10−4 ∼ 10−5 using a sample of 5.8 × 107 J=ψ
events [5,6]. With the prospect of high-statistics J=ψ
samples, theoretical calculations of the branching fractions
of two-body hadronic weak decays of J=ψ → DP=DV,
where D represents a charmed meson and P and V the
pseudoscalar and vector mesons, respectively, have been
performed [7–12]. The branching fractions of J=ψ →
D−

s ρ
þ and J=ψ → D̄0K̄�0 are predicted to be higher than

those of J=ψ → D−
s π

þ and J=ψ → D̄0K̄0, e.g., the relative
ratio BðJ=ψ → D−

s ρ
þÞ=BðJ=ψ → D−

s π
þÞ ¼ 4.2 [12].

In this analysis, we search for two Cabibbo-favored
decay modes J=ψ → D−

s ρ
þ [Fig. 1(a)] and J=ψ → D̄0K̄�0

[Fig. 1(b)] based on ð225.3� 2.8Þ × 106 J=ψ events [13]
accumulated with the Beijing Spectrometer III (BESIII)
detector [14], located at the Beijing Electron-Positron
Collider (BEPCII) [15].

II. THE BESIII EXPERIMENT AND
MONTE CARLO SIMULATION

The BESIII detector with a geometrical acceptance of
93% of 4π, consists of a small-celled, helium-based main
drift chamber (MDC), an electromagnetic calorimeter
(EMC) made of CsI(Tl) crystals, a plastic scintillator
time-of-flight system (TOF), a superconducting solenoid
magnet, and a muon chamber system (MUC) made of
resistive plate chambers. The detector has been described in
detail elsewhere [14].
The optimization of the event selection and the

estimation of physics backgrounds are performed using

Monte Carlo (MC)-simulated data samples. The GEANT4-
based simulation software BOOST [16] includes the geo-
metric and material description of the BESIII detectors
and the detector response and digitization models, as well
as the tracking of the detector running conditions and
performance. The production of the J=ψ resonance is
simulated by the MC event generator KKMC [17]; the
known decay modes are generated by EVTGEN [18] with
branching fractions set at world average values [19], while
the remaining unknown decay modes are modeled by
LUNDCHARM [20].

III. DATA ANALYSIS

In order to avoid large background contamination from
conventional J=ψ hadronic decays, the D−

s and D̄0 mesons
are identified by their semileptonic decays D−

s → ϕe−ν̄e
with ϕ → KþK− and D̄0 → Kþe−ν̄e, where the electron is
used to tag the events and the missing energy due to the
escaping neutrino is also used to suppress backgrounds.
Since the neutrinos are undetectable, the D−

s and D̄0

mesons cannot be directly identified by their invariant
mass of the decay products. However, because of the two-
body final states, they can be identified in the distribution of
mass recoiling against the ρþ and K̄�0 in ρþ → πþπ0ðπ0 →
γγÞ and K̄�0 → K−πþ decays, respectively.
Charged tracks in BESIII are reconstructed from MDC

hits. For each charged track, the polar angle must satisfy
j cos θj < 0.93, and it must pass within �20 cm from the
interaction point in the beam direction and within�2 cm of
the beam line in the plane perpendicular to the beam. The
number of charged tracks is required to be four with zero net
charge. The TOF and the specific energy loss dE=dx of a
particle measured in the MDC are combined to calculate
particle identification (ID) probabilities ProbðiÞ, where
iði ¼ e=π=K=pÞ is the particle type. ProbðKÞ > ProbðπÞ
and ProbðKÞ > ProbðpÞ are required for kaon candidates,
while ProbðπÞ>ProbðeÞ, ProbðπÞ>ProbðKÞ and ProbðπÞ>
ProbðpÞ are required for pion candidates. For electron
candidates, besides the particle identification requirement
of ProbðeÞ > ProbðπÞ and ProbðeÞ > ProbðKÞ, E=cP >
0.8 is also required, where E=cP is the ratio of the energy
deposited in the EMC to the momentum reconstructed
from the MDC. In addition, j cos θj < 0.8 is required for
electron candidates since the particle ID efficiencies
between data and MC agree better in the barrel.
Photon candidates are reconstructed by clustering EMC

crystal energies. Efficiency and energy resolution are
improved by including energy deposits in nearby TOF
counters. A photon candidate has to be more than 20° away
from any charged track, and theminimum energy is 25MeV
for barrel showers ðj cos θj < 0.80Þ and 50MeV for end cap
showers ð0.86 < j cos θj < 0.92Þ. An EMC timing require-
ment, i.e., 0 ≤ t ≤ 700 ns, is used to suppress electronic
noise and energy deposits in the EMC unrelated to the

(a) (b)

FIG. 1. Leading-order Feynman diagrams for (a) J=ψ → D−
s ρ

þ
and (b) J=ψ → D̄0K̄�0.
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events. Kinematic fits of pairs of photon candidates to
the π0 mass are performed. When there are more than two
photons, all possible γγ combinations are considered, and
the one yielding the smallest χ2γγ is retained.
In the selection of J=ψ → D−

s ρ
þ → ϕe−ν̄eπþπ0 →

γγKþK−πþe−ν̄e, four charged track candidates and
at least two photons are required. The invariant mass
of KþK− for a ϕ candidate is required to satisfy
MKþK− ∈ð1.01;1.03ÞGeV=c2. The invariant mass distribu-
tion of ρþðπ0πþÞ candidates is shown in Fig. 2(a) [21], and
the requirement 0.62 GeV=c2 < Mπ0πþ < 0.95 GeV=c2 is
used to select ρ candidates. The χ2γγ of the kinematic fit
should be less than 200 for the π0 candidates in this
selection.
The missing four-momentum ðEmiss; ~PmissÞ, which rep-

resents the four-momentum of the missing neutrino, is
determined from the difference between the net four-
momentum of the J=ψ particle and the sum of the four-
momenta of all detected particles in the event. The missing
momentum (Pmiss) distribution is shown in Fig. 3(a). Pmiss
is required to be larger than 0.1 GeV=c to reduce the
backgrounds from J=ψ decays to final states with four

charged particles and no missing particles but with e=π
misidentification. Figure 4(a) shows the distribution of
Umiss ¼ Emiss − cPmiss, and jUmissj is required to be less
than 0.05 GeV to reduce backgrounds such as KþK−πþπ−
with multiple π0 or γ in the final state, which were not
rejected by prior criteria. After all selection criteria are
applied, 11 events survive in the ð1.85; 2.10Þ GeV=c2 mass
region in the distribution of mass recoiling against the ρþ,
which is shown in Fig. 5(a). No accumulation of events in
the signal region is found.
In the selection of J=ψ → D̄0K̄�0 → KþK−πþe−ν̄e,

there are only four charged tracks in the final state. To
suppress backgrounds containing π0s, kinematic fits to the
π0 mass are also performed if there are at least two photons
in addition to the charged tracks. If there is a π0 candidate
with χ2γγ < 20, the event is vetoed. The K−πþ invariant
mass distribution is shown in Fig. 2(b). To select K̄�0
candidates, the K−πþ invariant mass is required to satisfy
MK−πþ ∈ ð0.82; 0.98Þ GeV=c2. The Pmiss > 0.1 GeV=c
and jUmissj < 0.02 GeV requirements are also used to
suppress the backgrounds with e=π misidentification or
multiphotons in the final states, and their distributions are
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FIG. 2 (color online). The invariant mass distributions of resonance candidates for (a) ρþ from J=ψ → D−
s ρ

þ, ρþ → πþπ0ðπ0 → γγÞ
and (b) K̄�0 from J=ψ → D̄0K̄�0, K̄�0 → K−πþ. The requirements ofMπ0πþ ∈ ð0.62; 0.95Þ GeV=c2 andMK−πþ ∈ ð0.82; 0.98Þ GeV=c2
are shown in the figures by vertical arrows. The dots with error bars are data, while the histograms represent distributions of the
arbitrarily normalized exclusive signal MC events.
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FIG. 3 (color online). Pmiss distributions for the decay of (a) J=ψ → D−
s ρ

þ and (b) J=ψ → D̄0K̄�0. The requirement Pmiss >
0.1 GeV=c is shown in the figures by vertical arrows. The dots with error bars are data, while the histograms represent distributions of
the arbitrarily normalized exclusive signal MC events.

M. ABLIKIM et al. PHYSICAL REVIEW D 89, 071101(R) (2014)

071101-4

RAPID COMMUNICATIONS



shown in Figs. 3(b) and 4(b), respectively. After all
selection criteria are applied, 11 events survive in the
ð1.82; 1.90Þ GeV=c2 mass region in the distribution of
mass recoiling against the K̄�0, which is shown in Fig. 5(b).
No accumulation of events in the signal region is found.
MC simulations are used to determine mass resolutions

and selection efficiencies and to study possible back-
grounds. Six hundred thousand exclusive signal MC events
are generated, and the selection efficiencies are determined
to be (7.79� 0.04)% and (21.83� 0.06)% for J=ψ →
D−

s ρ
þ and J=ψ → D̄0K̄�0, respectively. Two-hundred mil-

lion inclusive J=ψ MC events are used to investigate
possible backgrounds from J=ψ decays. For the decay
J=ψ → D−

s ρ
þ, 11 MC events pass the final selection

criteria, and eight of them are due to e=π misidentification,
where a pion is identified as an electron. For the remaining
three events, two events are π0 → γeþe−, where an electron
is identified as a pion, and the other is πþ → μþνμ,
μþ → eþνeν̄μ. For the decay J=ψ → D̄0K̄�0, ten MC events
pass the final selection criteria. Seven events are due to e=π
misidentification. Two events are from π0 → γeþe−, and
the other event is from πþ → μþνμ, μþ → eþνeν̄μ. From the

inclusive MC study, both the number of surviving back-
ground events and their distributions shown as the dashed
histogram in Fig. 5 are consistent with data.
Sideband events are also used to estimate the

background. Here, the backgrounds contributions are esti-
mated using Umiss sidebands, defined as jUmissj ∈
ð0.05; 0.10Þ GeV and jUmissj ∈ ð0.08; 0.10Þ GeV for
J=ψ → D−

s ρ
þ and J=ψ → D̄0K̄�0, respectively. There are

15 and 9 sideband events surviving in the D−
s and D̄0 mass

region. The number of surviving background events and their
distributions from sidebanddata are also consistentwith data.

IV. SYSTEMATIC ERRORS

In this analysis, the systematic errors in the determi-
nation of the branching fraction upper limits mainly come
from the following sources:

(i) MDC tracking: The MDC tracking efficiency is
studied in clean channels like J=ψ→ρπ→πþπ−π0,
J=ψ → pp̄πþπ−, and J=ψ → K0

SK
þπ− samples

[22]. It is found that the MC simulation agrees with
data within 1.0% for each charged track. Therefore,
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FIG. 4 (color online). Umiss distributions for the decay of (a) J=ψ → D−
s ρ

þ and (b) J=ψ → D̄0K̄�0. The requirements jUmissj <
0.05 GeV and jUmissj < 0.02 GeV are shown in the figures by vertical arrows. The dots with error bars are data, while the histograms
represent distributions of the arbitrarily normalized exclusive signal MC events.
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FIG. 5 (color online). Mass distributions recoiling against (a) ρþ from J=ψ → D−
s ρ

þ and (b) K̄�0 from J=ψ → D̄0K̄�0. Data are shown
by dots with error bars. The solid histograms are the unnormalized MC-simulated signal events, while the dashed histograms are
background distributions from selected inclusive MC events.
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4.0% is taken as the systematic error on the tracking
efficiency for the two channels analyzed with four
charged tracks in the final states.

(ii) Photon detection: The photon detection efficiency is
studied from J=ψ → ρ0π0 and photon conversion via
eþe− → γγ [23]. The difference between the detec-
tion efficiencies of data and MC simulation is 1.0%
for each photon.

(iii) Particle ID: The particle ID efficiencies of electrons,
pions, and kaons are studied with samples of
radiative Bhabha events, J=ψ→pp̄πþπ−, and
J=ψ → K0

SK
þπ−, respectively [22]. The kaon, pion,

and electron particle ID efficiencies for data agree
with MC simulation within 1% for each charged
particle, and 4% is taken as the systematic error from
this source.

(iv) π0 kinematic fit: To estimate the systematic error
from the π0 kinematic fit in the analysis of
J=ψ → D−

s ρ
þ, a clean π0 sample is selected from

J=ψ → ρþπ−ðρþ → π0πþÞ without the kinematic
fit. Events with two oppositely charged tracks
identified as pions and two photons are selected.
Further, the π− momentum is required to be in the
range of Pπ− ∈ ð1.4; 1.5Þ GeV=c, and the πþπ−π0

invariant mass is required to be in the J=ψ mass
region jMπþπ−π0 −MJ=ψ j < 0.05 GeV=c2. In addi-
tion, E=cP is required to be less than 0.8 to remove
Bhabha events.
After the above selection, a same π0 kinematic fit as
the one in the selection of J=ψ → D−

s ρ
þ is done on

the candidates. The same analysis is also performed

with MC events. The efficiency difference between
data and MC simulation due to the π0 kinematic fit
with χ2 < 200 is 0.2%, which is regarded as the
systematic error.
Applying a similar method, the efficiency difference
of the π0 kinematic fit used for vetoing events in the
decay J=ψ → D̄0K̄�0 is determined to be 1.0% using
a sample of J=ψ → K̄�0K0

SðK̄�0 → K−πþ; K0
S →

πþπ−Þ events.
(v) Mass window requirements: The systematic errors

of the mass window requirements are due to the
difference in mass resolution between MC simula-
tion and data and are estimated from some control
samples, which are selected without the mass
window requirements. The uncertainty is obtained
by comparing the efficiencies of mass window
requirements between data and MC events. The
uncertainties of ϕ, ρþ, and K̄�0 mass window
requirements are 1.0%, 1.0%, 0.5% using samples
of J=ψ → γϕϕðϕ → KþK−Þ, J=ψ → ρþπ−, and
J=ψ → K̄�0K0

S, respectively.
(vi) Umiss requirement: The systematic error of the Umiss

window requirement is due to the mass resolution
difference between MC simulation and data. Using a
similar method as that used for the mass window
requirement, the uncertainties of the Umiss require-
ments are 1.0% for J=ψ → D−

s ρ
þ and 4.0% for

J=ψ → D̄0K̄�0, which are different for the two
channels since the Umiss requirements are different
in these two channels.

(vii) Intermediate decays: The errors on the intermedi-
ate-decay branching fractions of D−

s → ϕe−ν̄e,
ϕ→KþK−, ρþ→πþπ0, π0→γγ, and D̄0→Kþe−ν̄e,
K̄�0 → K−πþ are taken from world average values
[19], and by adding them in quadrature, 5.7% and
1.1% are the errors for J=ψ → D−

s ρ
þ and

J=ψ → D̄0K̄�0, respectively.
The systematic error contributions studied above, the error
due to the uncertainty on the number of J=ψ events [13],
and MC statistics are all summarized in Table I. The total
systematic errors are obtained by summing them in quad-
rature, assuming that they are independent.

V. RESULTS

No excess of J=ψ → D−
s ρ

þ or J=ψ → D̄0K̄�0 events
above background is observed. The upper limits on the

TABLE I. Summary of systematic errors (%).

Sources J=ψ → D−
s ρ

þ J=ψ → D̄0K̄�0

MDC tracking 4.0 4.0
Photon detection 2.0 2.0
Particle ID 4.0 4.0
π0 kinematic fit 0.2 1.0
ϕ mass window 1.0 � � �
ρþ mass window 1.0 � � �
K̄�0 mass window � � � 0.5
Umiss window 1.0 4.0
Intermediate decays 5.7 1.1
MC statistics 0.5 0.3
Number of J=ψ events 1.2 1.2
Total 8.6 7.5

TABLE II. Numbers used in the calculation of upper limits on the branching fractions of J=ψ → D−
s ρ

þ and J=ψ → D̄0K̄�0. ε is the
detection efficiency. Binter is the intermediate branching fraction. σsys is the systematic error. NUL is the upper limit of the number of
observed events at the 90% C.L. B is the upper limit at the 90% C.L. on the branching fraction.

Decay mode Intermediate decay ε Binter σsys NUL B (90% C.L.)

J=ψ → D−
s ρ

þ D−
s → ϕe−ν̄e, ϕ → KþK−, ρþ → πþπ0, π0 → γγ 7.79% 1.20% 8.6% 2.5 < 1.3 × 10−5

J=ψ → D̄0K̄�0 D̄0 → Kþe−ν̄e, K̄�0 → K−πþ 21.83% 2.37% 7.5% 2.7 < 2.5 × 10−6
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branching fractions of these decay modes are calculated
using

B <
NUL

NJ=ψεBinterð1 − σsysÞ ; (1)

where NUL is the upper limit of the number of observed
events at the 90% C.L.,NJ=ψ is the number of J=ψ events, ε
is the detection efficiency, Binter is the intermediate branch-
ing fraction, and σsys is the systematic error.
The upper limits for the observed number of events at the

90% C.L. are 2.5 for J=ψ → D−
s ρ

þ and 2.7 for J=ψ →
D̄0K̄�0 using a series of unbinned extended maximum
likelihood fits. In the fit, the recoil mass distributions of
data, shown in Fig. 5, are fitted with a probability density
function (p.d.f.) signal shape determined from MC simu-
lations, and the background is represented by a second-
order Chebychev polynomial. The likelihood distribution,
determined by varying the number of signal events from
zero to a large number, is taken as the p.d.f. NUL is the
number of events corresponding to 90% of the integral of
the p.d.f. The fit-related uncertainties are estimated by using
different fit ranges and different orders of the background
polynomial, and NUL is taken as maximum value among the
variations. All numbers used in the calculations of the upper
limits on the branching fractions are shown in Table II.
In summary, a search for the weak decays of J=ψ →

D−
s ρ

þ and J=ψ → D̄0K̄�0 has been performed using a
sample of ð225.3� 2.8Þ × 106 J=ψ events collected at the
BESIII detector. No evident signal is observed, and upper
limits at the 90% C.L. are set on the branching fractions,
BðJ=ψ → D−

s ρ
þÞ < 1.3 × 10−5 and BðJ=ψ → D̄0K̄�0Þ <

2.5 × 10−6, for the first time. These upper limits exclude

new physics predictions which allow flavor-changing
processes to occur with branching fractions around 10−5

but are still consistent with the predictions of the SM.
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