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We introduce the exceptional field theory for the group E7ð7Þ, based on a ð4þ 56Þ-dimensional
spacetime subject to a covariant section condition. The “internal” generalized diffeomorphisms of the
coordinates in the fundamental representation of E7ð7Þ are governed by a covariant “E-bracket,” which is
gauged by 56 vector fields. We construct the complete and unique set of field equations that is gauge
invariant under generalized diffeomorphisms in the internal and external coordinates. Among them are
featured the non-Abelian twisted self-duality equations for the 56 gauge vectors. We discuss the explicit
solutions of the section condition describing the embedding of the full, untruncated 11-dimensional and
type IIB supergravity, respectively. As a new feature compared to the previously constructed E6ð6Þ
formulation, some components among the 56 gauge vectors descend from the 11-dimensional dual graviton
but nevertheless allow for a consistent coupling by virtue of a covariantly constrained compensating 2-form
gauge field.
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I. INTRODUCTION

In this paper we present the details of the recently
announced “exceptional field theory” (EFT) [1] for the
group E7ð7Þ, complementing the E6ð6Þ covariant construc-
tion given in Ref. [2]. The approach is a generalization of
double field theory (DFT) [3–8],1 with the goal being to
render the dynamics of the complete D ¼ 11 supergravity
[10] covariant under the exceptional groups that are known
to appear under dimensional reduction [11]. We refer to the
Introduction of Ref. [2] for a more detailed outline of the
general ideas, previous attempts, and extensive references.
Here we will mainly present and discuss the novel aspects
relevant for the larger group E7ð7Þ.
The E7ð7Þ EFT is based on a generalized 4þ 56-

dimensional spacetime, with the “external” spacetime
coordinates xμ and “internal” coordinates YM in the
fundamental representation 56 of E7ð7Þ, with dual deriv-
atives ∂M.

2 Correspondingly, the field content incorporates
an external frame field (“vierbein”) eμa and an internal
generalized metric MMN , parametrizing the coset space
E7ð7Þ=SUð8Þ. Crucially, the theory also requires the pres-
ence of generalized gauge connections Aμ

M and a set of
2-forms fBμνα; BμνMg, in order to consistently describe the
complete degrees of freedom of D ¼ 11 supergravity (and

necessarily including also some of their duals). The 2-
forms Bμνα in the adjoint representation of E7ð7Þ are known
from the dimensionally reduced theory where they show up
as the on-shell duals of the four-dimensional scalar fields.
The significance of the additional 2-forms BμνM in the
fundamental representation will become apparent shortly.
The presence of these fields that go beyond the field content
of the dimensionally reduced theory, is required for gauge
invariance (under generalized diffeomorphisms) and at the
same time are crucial in order to reproduce the full
dynamics of D ¼ 11 supergravity. All fields are subject
to a covariant section constraint which implies that only a
subset of the 56 internal coordinates is physical. The
constraint can be written in terms of the E7ð7Þ generators
ðtαÞMN in the fundamental representation, and the invariant
symplectic form ΩMN of E7ð7Þ ⊂ Spð56Þ, as

ðtαÞMN∂M∂NA ¼ 0;

ðtαÞMN∂MA∂NB ¼ 0;

ΩMN∂MA∂NB ¼ 0 (1.1)

for any fields or gauge parameters A, B.
Our main result is the construction of the gauge-invariant

E7ð7Þ EFT with the field content described above,

feμa;MMN; Aμ
M; Bμνα; BμνMg: (1.2)

The 56 gauge fields Aμ
M are subject to the first-order

twisted self-duality equations
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F μν
M ¼ − 1

2
eεμνρσΩMNMNKF ρσK; (1.3)

with properly covariantized non-Abelian field strengths
F μν

M that we will introduce below. In the Abelian limit and
upon dropping the dependence on all internal coordinates
YM, these duality equations are known from the dimen-
sional reduction of D ¼ 11 supergravity to four spacetime
dimensions [11]. In that case, they provide a duality
covariant description of the dynamics of the gauge field
sector. In particular, after the choice of a symplectic frame,
these equations readily encode the standard second-order
field equations for the 28 electric vector fields. On the other
hand, the full non-Abelian self-duality equations (1.3) that
we present in this paper reproduce the dynamics of the full
(untruncated) 11-dimensional supergravity for these fields.
In addition to Eq. (1.3), the dynamics of the remaining

fields is described by second-order field equations, which
are most conveniently derived from an action,

SEFT ¼
Z

d4xd56Ye

�
R̂þ 1

48
gμνDμMMNDνMMN

− 1

8
MMNF μνMF μν

N þ e−1Ltop − VðMMN; gμνÞ
�
:

(1.4)

The theory takes the same structural form as gaugedN ¼ 8
supergravity in D ¼ 4 [13,14], with a (covariantized)
Einstein-Hilbert term for the vierbein eμa, a kinetic term
for M given by a nonlinear (gauged) sigma model with
target space E7ð7Þ=SUð8Þ, a Yang-Mills-type kinetic term
for the gauge vectors and a “potential” VðM; gÞ that is a
manifestly E7ð7Þ-covariant expression based only on inter-
nal derivatives ∂M. In addition, there is a topological Chern-
Simons-like term, which is required for consistency with
the duality relations (1.3). We stress that here all fields
depend on the 4þ 56 coordinates, with the internal
derivatives entering the non-Abelian gauge structure of
covariant derivatives and field strengths, and that the theory
encodes in particular D ¼ 11 supergravity for a particular
solution of the constraints (1.1). The detailed construction
of all terms in the action will be given below.
The EFT is uniquely determined by its bosonic gauge

symmetries, which are the generalized diffeomorphisms in
the external and internal coordinates. In the rest of the
Introduction we will briefly explain the novel features of its
gauge structure. As in DFT, the generalized internal
diffeomorphisms take the form of generalized Lie deriv-
atives LΛ with respect to a vector parameter ΛM, e.g.,
δΛMMN ¼ LΛMMN . These generalized Lie derivatives,
which preserve the E7ð7Þ group properties ofMMN , form an
algebra according to

½LΛ1
;LΛ2

� ¼ L½Λ1;Λ2�E ; (1.5)

modulo the constraints (1.1), and with the E7ð7Þ E-bracket
½Λ1;Λ2�E defined by

½Λ1;Λ2�ME ¼ 2ΛK
½1∂KΛM

2� þ 12ðtαÞMNðtαÞKLΛK
½1∂NΛL

2�

− 1

4
ΩMNΩKL∂NðΛK

1 Λ
L
2 Þ: (1.6)

This is the E7ð7Þ-covariant extension of the usual Lie
bracket in differential geometry. However, it does not
define a proper Lie algebra in that the Jacobi identity is
violated. In order to resolve the apparent contradiction with
the fact that the Lie derivatives define symmetry variations
δΛ of the theory (which do satisfy the Jacobi identities), the
usual explanation is common to DFT and the higher-
dimensional versions of EFT: the section constraints
(1.1) imply the existence of gauge parameters that are
trivial in the sense that their action on an arbitrary field
vanishes on the “constraint surface” of Eq. (1.1).
Specifically, this is the case for gauge parameters given
by total (internal) derivatives according to

ΛM ≡ ðtαÞMN∂Nχα or ΛM ≡ΩMN∂Nχ; (1.7)

with arbitrary χα and χ. As will become important shortly,
however, for the E7ð7Þ generalized Lie derivative there is
actually a more general class of trivial parameters, for
which there is no direct analogue in DFT or the E6ð6Þ EFT.
These are of the form

ΛM ≡ΩMNχN; with χN covariantly constrained;

(1.8)

where by “covariantly constrained” we denote a field χM
that satisfies the same covariant constraints (1.1) as the
internal derivative ∂M, i.e.,

ðtαÞMNχM∂N ¼ ðtαÞMNχMχN ¼ 0;

ΩMNχM∂N ¼ 0; etc:; (1.9)

in arbitrary combinations and acting on arbitrary functions.
It is straightforward to see that with χM ¼ ∂Mχ the class of
trivial gauge parameters (1.8) contains the last term in
Eq. (1.7) as a special case, but in general this constitutes a
larger class which will prove important in the following. In
particular, the Jacobiator associated with Eq. (1.6) can be
shown to be of the form

JMðΛ1;Λ2;Λ3Þ≡ 3½½Λ½1;Λ2�E;Λ3��ME
¼ ðtαÞMN∂NχαðΛÞ þΩMNχNðΛÞ; (1.10)

where
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χαðΛÞ ¼−1

2
ðtαÞPQΛP

1 ½Λ2;Λ3�QE þ cycl;

χNðΛÞ ¼
1

12
ΩPQðΛP

1 ∂N ½Λ2;Λ3�QE þ ½Λ2;Λ3�PE∂NΛ
Q
1 þ cyclÞ

(1.11)

constitute trivial gauge parameters of the type (1.7) and
(1.8). Thus the Jacobiator has trivial action on all fields and
becomes consistent with the Jacobi identity for the sym-
metry variations. Let us stress that the general class (1.8) of
trivial gauge parameters is crucial in order to establish the
consistency of the gauge transformations with the Jacobi
identity. This seemingly innocent generalization of
Eq. (1.7) has direct consequences for the required field
content and couplings of the theory.
In EFT the gauge transformations, given by generalized

Lie derivatives [Eq. (1.5)], are local both with respect to the
internal and external space, i.e., the gauge parameters are
functions of x and Y, ΛM ¼ ΛMðx; YÞ. All external deriv-
atives ∂μ thus require covariantization by the introduction
of an associated gauge connection Aμ

M. We are then faced
with the need to construct a gauge-covariant field strength
associated to symmetry transformations with nonvanishing
Jacobiator [Eq. (1.10)]. This is a standard scenario in the
tensor hierarchy of gauged supergravity [15,16] and it is
solved by introducing as compensator fields an appropriate
set of 2-form potentials with their associated tensor gauge
transformations. Applied to our case, the full covariant field
strength reads

F μν
M ≡ Fμν

M − 12ðtαÞMN∂NBμνα − 1

2
ΩMNBμνN; (1.12)

where Fμν
M denotes the standard non-Abelian Yang-Mills

field strength associated with Eq. (1.6), and the 2-forms
Bμνα, BμνM enter in correspondence with the two terms in
the Jacobiator (1.10). The novelty in this field strength, as
compared to the corresponding field strength of DFT [17]
and the E6ð6Þ EFT [2], is the last term which carries a 2-form
BμνM that itself is a covariantly constrained field in the
sense of Eq. (1.9). The form of the Jacobiator (1.11) shows
that gauge covariance of the field strength requires this type
of coupling, whereas a (more conventional but weaker)
compensating term of the form ΩMN∂NBμν with an uncon-
strained singlet 2-form Bμν would not be sufficient to
absorb all noncovariant terms in the variation.
While the notion of such a constrained compensator field

may appear somewhat outlandish, the above discussion
shows that its presence is a direct consequence of the
properties of the E-bracket Jacobiator for E7ð7Þ. In turn, this
compensator field will play a crucial role in identifying the
dynamics of Eqs. (1.3) and (1.4), with the one of the full
D ¼ 11 supergravity. It ensures the correct and duality-
covariant description of those degrees of freedom that
are on-shell dual to the 11-dimensional graviton. More

specifically, after finding an explicit solution of the section
constraint (1.1) and upon matching the field content (1.2)
with that of D ¼ 11 supergravity, seven components
among the 56 gauge fields Aμ

M find their origin in the
Kaluza-Klein vectors descending from the D ¼ 11 metric.
The twisted self-duality equations (1.3) thus seem to
provide a first-order description of (at least a part of) the
higher-dimensional gravitational dynamics by relating the
seven Kaluza-Klein vectors to seven vector fields descend-
ing from what should be considered the D ¼ 11 dual
graviton [18–21]. Such a duality is commonly recognized
to be restricted to the linearized level on the grounds of the
no-go results of Refs. [22,23]. The nonlinear equations (1.3)
circumvent this problem precisely by virtue of the cova-
riantly constrained compensator fields BμνM, which can be
viewed as a covariantization of the formulation of Ref. [24].
As a result, the E7ð7Þ-covariant model (1.3) and (1.4), upon
the appropriate solution of the section constraint (1.1),
precisely reproduces the complete set of untruncated
D ¼ 11 field equations while featuring components of
the dual graviton. The very same pattern has been observed
in the three-dimensional duality-covariant formulation of
D ¼ 4 Einstein gravity in Ref. [25] where the constrained
compensator gauge fields appear among the gauge vectors.
In contrast, in the E6ð6Þ-covariant construction of Ref. [2],
the degrees of freedom from the higher-dimensional dual
graviton do not figure among the fields in the EFT action
and the constrained compensator fields only enter the
p-form hierarchy at the level of the 3-forms.
We finally note that while the above action (1.4) is

manifestly invariant under the internal generalized diffeo-
morphisms with gauge parameterΛM (in the sense that each
term is separately invariant), it also features a nonmanifest
gauge invariance under diffeomorphisms in the external
coordinates xμ (with the parameter ξμ depending on
coordinates x and Y). In fact, it is this symmetry, to be
discussed below in more detail, that determines all relative
coefficients in Eq. (1.4).
This paper is organized as follows. In Sec. II we

introduce the details of the E7ð7Þ generalized Lie derivatives
and their E-bracket algebra, together with the associated
covariant derivatives, field strengths and the tensor hier-
archy. With these ingredients at hand, we define in Sec. III
the full E7ð7Þ EFT, including a discussion of the non-
manifest invariance under the ð3þ 1Þ-dimensional diffeo-
morphism of the xμ. In Sec. IV we discuss the embedding
of 11-dimensional supergravity and IIB supergravity upon
choosing particular solutions of the section constraint. We
conclude in Sec. V, while we collect some important E7ð7Þ
relations in the Appendix.

II. E7ð7Þ GENERALIZED DIFFEOMORPHISMS
AND THE TENSOR HIERARCHY

In this section, we introduce the E7ð7Þ generalized
Lie derivatives that generate the internal (generalized)
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diffeomorphisms and the E-bracket and work out the
associated tensor hierarchy. Vector fields Aμ

M in the
fundamental 56-dimensional representation of E7ð7Þ act
as gauge fields in order to covariantize the theory under
x-dependent internal (generalized) diffeomorphisms.
The nontrivial Jacobiator of the E-bracket further requires
the introduction of the 2-form Bμνα in the adjoint of E7ð7Þ in
accordance with the general tensor hierarchy of non-
Abelian p-forms [15,16]. Up to this point, the construction
is completely parallel to the construction of the E6ð6Þ-
covariant tensor hierarchy, presented in detail in Ref. [2].
We will thus keep the presentation brief and compact. The
new ingredient with respect to the E6ð6Þ-covariant con-
struction is the appearance of a covariantly constrained
compensating gauge field BμνM among the 2-forms, whose
presence is required by closure of the tensor hierarchy. This
field takes values in the fundamental representation of
E7ð7Þ, however, restricted by covariant constraints; see
Eq. (2.34) below.

A. Generalized Lie derivative and E-bracket

Let us start by collecting the relevant ingredients of the
exceptional Lie group E7ð7Þ. Its Lie algebra is of dimension
133, with generators that we denote by tα with the adjoint
index α ¼ 1;…; 133. The fundamental representation of
E7ð7Þ is of dimension 56 and denoted by indices
M;N ¼ 1;…; 56. The symplectic embedding E7ð7Þ ⊂
Spð56Þ implies the existence of an invariant antisymmetric
tensor ΩMN which we will use to raise and lower funda-
mental indices, adopting north-west south-east conventions:
VM ¼ ΩMNVN , VM ¼ VNΩNM, with ΩMKΩNK ¼ δN

M.
In contrast, adjoint indices are raised and lowered
by the (rescaled) symmetric Cartan-Killing form
καβ ≡ ðtαÞMNðtβÞNM. Due to the invariance of ΩMN , the
gauge group generator in the fundamental representation
with one index lowered, ðtαÞMN , is symmetric in its two
fundamental indices. Below we will need the projector
onto the adjoint representation,

PK
M
L
N ≡ ðtαÞMKðtαÞNL

¼ 1

24
δKMδ

L
N þ 1

12
δLMδ

K
N þ ðtαÞMNðtαÞKL

− 1

24
ΩMNΩKL; (2.1)

which satisfies

PM
N
N
M ¼ 133: (2.2)

Next, we introduce the generalized Lie derivative with
respect to the vector parameter ΛM. Its action on a vector
VM of weight λ is defined as [26,27]

δVM ¼ LΛVM ≡ ΛK∂KVM − 12PM
N
K
L∂KΛLVN

þ λ∂PΛPVM; (2.3)

with an appropriate generalization for its action on an E7ð7Þ
tensor with an arbitrary number of fundamental indices.
Because of the projector in Eq. (2.3), the generalized Lie
derivative is compatible with the E7ð7Þ algebra structure:
e.g. the Ω-tensor is an invariant tensor of weight 0,

LΛΩMN ¼ 0; (2.4)

implying that the definition (2.3) also induces the proper
covariant transformation behavior for the covariant vector
VM ≡ΩNMVN . Explicitly, writing out the projector (2.1),
the Lie derivative (2.3) reads

δΛVM ¼ ΛK∂KVM −∂NΛMVN þ
�
λ− 1

2

�
∂PΛPVM

− 12ðtαÞMNðtαÞKL∂NΛKVL − 1

2
ΩMNΩKL∂NΛKVL:

(2.5)

We now discuss some properties of the generalized Lie
derivative. As mentioned in the introduction, there are
trivial gauge parameters that do not generate a gauge
transformation. They are of the form

ΛM ≡ ðtαÞMN∂Nχα; ΛM ¼ ΩMNχN; (2.6)

with a covariantly constrained co-vector χM in the sense of
satisfying Eq. (1.9). In order to state the constraints in a
more compact form, let us introduce the projector P1þ133

onto the 1⊕ 133 subrepresentation in the tensor pro-
duct 56 ⊗ 56. In terms of this projector the constraints
(1.9) take the compact form

ðP1þ133ÞMNχM∂N ¼ 0 ¼ ðP1þ133ÞMNχMχN: (2.7)

The triviality of ΛM ¼ ΩMNχN follows by a straightforward
explicit calculation, using the identity (A1) and making
repeated use of the constraints. The triviality of the first
parameter in Eq. (2.6) follows similarly by a straightfor-
ward but somewhat more involved computation, using the
identities in the Appendix.
Let us now discuss the algebra of gauge transformations

(2.3). A direct computation making use of the algebraic
identities collected in the Appendix shows that modulo the
section constraints (1.1), these gauge transformations close
[26,27],

½δΛ1
; δΛ2

� ¼ δ½Λ2;Λ1�E ; (2.8)

according to the “E-bracket”
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½Λ2;Λ1�ME ¼ 2ΛK
½2∂KΛM

1� þ 12ðtαÞMNðtαÞKLΛK
½2∂NΛL

1�

− 1

4
ΩMKΩNL∂KðΛN

2 Λ
L
1 Þ: (2.9)

Note that the last term in here is actually of the trivial form
(2.6) and so does not generate a gauge transformation. This
term is therefore ambiguous, and the reason we added it
here (with this particular coefficient) is that the associated
Jacobiator, i.e. the failure of the E-bracket to satisfy the
Jacobi identity, takes a simple form. The appearance of this
term is novel compared to the E6ð6Þ case and therefore we
go in some detail through the proof of the triviality of
the Jacobiator. We first need some notation and define the
Dorfman-type product between vectors of weight 1

2
as

ðV∘WÞM ≡ ðLVWÞM ¼ VK∂KWM −WK∂KVM

− 12ðtαÞMNðtαÞKL∂NVKWL

− 1

2
ΩMNΩKL∂NVKWL: (2.10)

Comparing this with the E-bracket we conclude

ðV∘WÞM ¼ ½V;W�ME − 6ðtαÞMN∂NððtαÞKLWKVLÞ

þ 1

4
ΩMKΩNLðVN∂KWL þWN∂KVLÞ

≡ ½V;W�ME þ fV;WgM; (2.11)

introducing for later convenience the short-hand notation in
the third line defined by the symmetric pairing in the first
equation. In contrast to the situation in DFT and the E6ð6Þ
E-bracket, the final term in the first line cannot be written as
a total derivative. Rather, it is of a trivial form in the
stronger sense of Eq. (2.7). Therefore, both terms generate
a trivial action, and we have

L½V;W�E ¼ LðV∘WÞ: (2.12)

Another important property is that the antisymmetrized
Dorfman product coincides with the E-bracket as defined
in Eq. (2.9),

1

2
ðV∘W −W∘VÞ ¼ ½V;W�E: (2.13)

It is this property that determines the a priori ambiguous
coefficient of the ΩΩ term in the E-bracket. Finally, the
Dorfman product satisfies the Jacobi-like (or Leibniz-type)
identity

U∘ðV∘WÞ ¼ ðU∘VÞ∘W þ V∘ðU∘WÞ: (2.14)

This follows from the algebra and the property (2.12) in
complete analogy to the discussion in Ref. [2]. It is now
straightforward to compute the Jacobiator,

JðV1; V2; V3Þ≡ 3½½V ½1; V2�E; V3��E ¼ −3½V ½1; ½V2; V3��E�E:
(2.15)

In the following computation we will assume total
antisymmetrization in the three arguments 1,2,3, but not
display it explicitly. Keeping this in mind we compute
for the term on the right-hand side with Eqs. (2.13)
and (2.14),

½V1; ½V2; V3�E�E ¼ ½V1; V2∘V3�E ¼ 1

2
ðV1∘ðV2∘V3Þ

− ðV2∘V3Þ∘V1Þ

¼ 1

2
ððV1∘V2Þ∘V3 þ V2∘ðV1∘V3Þ

− ðV2∘V3Þ∘V1Þ

¼ − 1

2
V1∘ðV2∘V3Þ; (2.16)

where we recalled the total antisymmetry in the last
step. Thus, the E-bracket Jacobiator is proportional to
the “Dorfman-Jacobiator.” On the other hand, from
Eq. (2.11) we also have

½V1; ½V2; V3�E�E ¼ ½V1; V2∘V3�E
¼ V1∘ðV2∘V3Þ − fV1; ½V2; V3�Eg:

(2.17)

Using the fact that this equals Eq. (2.16) we can determine
the Dorfman-Jacobiator and, via Eq. (2.16) again, the
E-bracket Jacobiator (2.15),

JðV1; V2; V3Þ ¼
1

3
ðfV1; ½V2; V3�Eg þ fV2; ½V3; V1�Eg

þ fV3; ½V1; V2�EgÞ; (2.18)

writing out the total antisymmetrization. This shows
that the Jacobiator is of a trivial form that does not
generate a gauge transformation. More explicitly, using
the notation introduced in Eq. (2.11), the Jacobiator is
given by

JMðV1;V2;V3Þ¼−1

2
ðtαÞMK∂KððtαÞPLðVP

1 ½V2;V3�LEþcyclÞÞ

þ 1

12
ΩMKΩNLðVN

1 ∂K½V2;V3�LE
þ½V1;V2�NE ∂KVL

3 þcyclÞ: (2.19)

So far, we have discussed the action of the generalized
Lie derivative on vectors in the fundamental representation
of E7ð7Þ. From Eq. (2.3), we likewise obtain the action of the
Lie derivative on a tensor in the adjoint representation (of
weight λ0)
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δWα ¼ ΛK∂KWα þ 12fαβγðtβÞLK∂KΛLWγ þ λ0∂KΛKWα;

(2.20)

with the E7ð7Þ structure constants fαβγ . By construction, the
E7ð7Þ generators ðtαÞMN then are invariant tensors of weight
0 with respect to the generalized Lie derivative. In the
following we will be led to consider such adjoint tensors
under internal derivatives, more specifically combinations
of the type

TM ≡ ðtαÞMN∂NWα: (2.21)

Some straightforward computation (and the use of some of
the algebraic relations collected in the Appendix) shows
that under the generalized Lie derivative, the combination
(2.21) transforms as

δΛTM ¼ ΛK∂KTM − 12PM
N
K
L∂KΛLTN

þ
�
λ0 − 1

2

�
∂KΛKTM

þ ðλ0 − 1ÞðtαÞMNWα∂N∂KΛK

þ ΩMNðtαÞLKWα∂N∂KΛL: (2.22)

The first line amounts to the covariant transformation of a
vector of weight λ ¼ λ0 − 1

2
, while the second line represents

noncovariant terms. The full result (2.22) then shows that for
λ0 ¼ 1, TM transforms like a contravariant vector of weight
λ ¼ 1

2
up to a term proportional toΩMN∂N . To correct for the

latter, we may introduce a compensating fieldWM subject to
the same constraints as those discussed in Eq. (2.7), i.e.

ðP1þ133ÞMNWM∂N ¼ 0 ¼ ðP1þ133ÞMNWMWN; (2.23)

and consider the combination

T̂M ≡ ðtαÞMN∂NWα þ
1

24
ΩMNWN: (2.24)

This combination then transforms as a covariant vector of
weight λ ¼ 1

2
,

δΛT̂
M ¼ ΛK∂KT̂

M − 12PM
N
K
L∂KΛLT̂N þ 1

2
∂KΛKT̂M;

(2.25)

provided the compensating field WM transforms as

δΛWM ¼ ΛK∂KWM þ 12PN
M
K
L∂KΛLWN þ 1

2
∂KΛKWM

− 24ðtαÞLKWα∂M∂KΛL: (2.26)

A short calculation confirms that the transformation (2.26)
indeed preserves the constraints (2.23) onWM. The tensorial

nature of Eq. (2.24) will prove crucial below for the structure
of the tensor hierarchy of non-Abelian p-forms. We note that
this crucially hinges on the introduction of the compensating
field WM.

B. Covariant derivatives and tensor hierarchy

We will now introduce gauge connections Aμ
M which

manifestly render the model invariant under generalized Lie
derivatives [Eq. (2.3)] with x-dependent gauge parameters
ΛM, covariantizing the derivatives in the usual fashion,

∂μ → Dμ ≡ ∂μ − LAμ
: (2.27)

Explicitly, from Eq. (2.5) we infer the form of the covariant
derivative of a vector of weight λ,

DμVM ≡DμVM − λ∂KAμ
KVM

≡ ∂μVM − Aμ
K∂KVM

þ VK∂KAμ
M þ 1 − 2λ

2
∂KAμ

KVM

þ 12ðtαÞMNðtαÞKL∂NAμ
KVL

þ 1

2
ΩMNΩKL∂NAμ

KVL: (2.28)

The gauge variation of the vector field Aμ
M is obtained

by requiring that the covariant derivative transforms
covariantly, which imposes

δAμ
M ¼ ∂μΛM − Aμ

K∂KΛM þ ΛK∂KAμ
M

þ 12ðtαÞMNðtαÞKLΛL∂NAμ
K

þ 1

2
ΩMNΩKLΛL∂NAμ

K

¼ DμΛM − 1

2
ð∂KAμ

KÞΛM ≡DμΛM; (2.29)

showing that the gauge parameter ΛM is a tensor of weight
λ ¼ 1

2
. The associated Yang-Mills field strength,

Fμν
M ≡ 2∂ ½μAν�M − ½Aμ; Aν�ME
¼ 2∂ ½μAν�M − 2A½μK∂KAν�M

− 1

2
ð24ðtαÞMKðtαÞNL −ΩMKΩNLÞA½μN∂KAν�L;

(2.30)

has a general variation given by

δFμν
M ¼ 2D½μδAν�M − ∂KA½μKδAν�M

− 12ðtαÞMKðtαÞNL∂KðA½μNδAν�LÞ

− 1

2
ΩMKΩLNðA½μN∂KδAν�L − ∂KA½μNδAν�LÞ;

(2.31)
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and is not covariant with respect to the vector gauge
transformations (2.29). This is a consequence of the non-
vanishing Jacobiator (2.19). In order to define a covariant
field strength, it is natural in the spirit of the tensor
hierarchy [15,16] to extend the field strength (2.31) by
further Stückelberg-type couplings according to

F ∘
μν

M ≡ Fμν
M − 12ðtαÞMN∂NBμνα; (2.32)

to 2-form tensors Bμνα in the adjoint representation of E7ð7Þ,
whose transformations may absorb some of the noncovar-
iant terms in Eq. (2.31). However, unlike the E6ð6Þ-covariant
construction of Ref. [2], this modification is not sufficient
in order to obtain fully gauge-covariant field strengths. In
particular, the last line of Eq. (2.31) continues to spoil the
proper transformation behavior of the field strength and
cannot be absorbed into a transformation of Bμνα. This
indicates that in the E7ð7Þ-covariant construction new fields
are required at the level of the 2-form tensors, as discussed
in the Introduction. We recall that with five external
dimensions, these additional fields only enter at the level
of the 3-forms and remain invisible in the action [2],
whereas in the three-dimensional case they are already
present among the vector fields [25]. The fully covarian-
tized field strength is given by the expression

F μν
M ≡ Fμν

M − 12ðtαÞMN∂NBμνα − 1

2
ΩMKBμνK; (2.33)

where the 2-form BμνK is a covariantly constrained com-
pensating gauge field, i.e. a field subject to the same section
constraints as the internal derivatives,

ðP1þ133ÞMNBM∂N ¼ 0; ðP1þ133ÞMNBMBN ¼ 0: (2.34)

The general variation of F μν
M is given by

δF μν
M ¼ 2D½μδAν�M − 12ðtαÞMN∂NΔBμνα − 1

2
ΩMKΔBμνK;

(2.35)

with the E7ð7Þ tensor δAμ
M of weight λ ¼ 1

2
, and

ΔBμνα ≡ δBμνα þ ðtαÞKLA½μKδAν�L;

ΔBμνK ≡ δBμνK þ ΩLNðA½μN∂KδAν�L − ∂KA½μNδAν�LÞ:
(2.36)

In particular, we may define vector gauge variations,

δΛAμ
M ¼ DμΛM;

ΔΛBμνα ¼ ðtαÞKLΛKF μν
L;

ΔΛBμνM ¼ −ΩKLðF μν
K∂MΛL − ΛL∂MF μν

KÞ; (2.37)

under which the field strengthF μν
M transforms covariantly,

δΛF μν
M ¼ ΛK∂KF μν

M − 12PM
N
K
L∂KΛLF μν

N

þ 1

2
∂KΛKF μν

M; (2.38)

i.e., as an E7ð7Þ vector of weight λ ¼ 1
2
. As part of this

calculation, we have used the fact that

LFμν
ΛM ¼ LF μν

ΛM; (2.39)

which states that Fμν and F μν differ by terms that are trivial
and so do not generate a generalized Lie derivative, cf.
Eq. (2.6). Let us also note that the form of the gauge
transformations (2.36) and (2.37) manifestly preserves the
constraints (2.34) on the compensating gauge field as a
consequence of Eq. (1.1).
The 2-form tensors Bμνα and BμνM carry their own gauge

symmetries which act as

δAμ
M ¼ 12ðtαÞMN∂NΞμα þ

1

2
ΩMNΞμN;

ΔBμνα ¼ 2D½μΞν�α;

ΔBμνM ¼ 2D½μΞν�M þ 48ðtαÞLKð∂K∂MA½μLÞΞν�α; (2.40)

and leave the field strength (2.33) invariant. The tensor
gauge parameters Ξμα and ΞμM are of weight λ0 ¼ 1 and
λ ¼ 1

2
, respectively, with their covariant derivatives defined

according to Eqs. (2.5) and (2.20), respectively. Note that
the seemingly noncovariant term in ΔBμνM has its origin in
the final term in Eq. (2.26), which reflects the fact that the
constrained field BM does not have a separate tensor
character, but only in combinations of the type (2.24). In
particular, the computation of the invariance of the field
strength F μν

M under Eq. (2.40) crucially depends on the
observation that a tensor combination according to
Eq. (2.24) is again of tensorial nature.
We close this presentation of the tensor fields by stating

the Bianchi identities,

3D½μF νρ�M ¼ −12ðtαÞMN∂NHμνρα − 1

2
ΩMNHμνρN;

(2.41)

with the 3-form field strengthsHμνρα andHμνρN defined by
this equation up to terms that vanish under the projection
with ðtαÞMN∂N . This identity again is a nice illustration of
tensorial structures of the type (2.24), with the field strength
HμνρM transforming according to Eq. (2.26) under gener-
alized Lie derivatives.

III. COVARIANT E7ð7Þ THEORY

With the tensor hierarchy associated to generalized
diffeomorphisms set up, we are now in the position to
define the various terms in the action (1.4) and the duality
equation (1.3). We then verify that the complete set of
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equations of motion is invariant under generalized internal
and external diffeomorphisms, which in turn fixes all the
couplings.

A. Kinetic terms

The metric, the scalar fields and the vector gauge fields
comewith second-order kinetic terms in the action (1.4). As
in Refs. [2,17], the Einstein-Hilbert term is built from the
improved Riemann tensor,

R̂μν
ab ≡ Rμν

ab½ω� þ F μν
Meaρ∂Meρb; (3.1)

where Rμν
ab½ω� denotes the curvature of the spin connec-

tion which in turn is given by the standard expression in
terms of the vierbein with all derivatives covariantized
according to

Dμeνa ≡ ∂μeνa − Aμ
M∂Meνa − 1

2
∂MAμ

Meνa: (3.2)

I.e., the vierbein is an E7ð7Þ scalar of weight λ ¼ 1
2
. The

covariantized Einstein-Hilbert term

LEH ¼ eR̂ ¼ eeaμebνR̂μν
ab (3.3)

then is invariant under Lorentz transformations and cor-
rectly transforms as a density under internal generalized
diffeomorphisms with the weight 2 of the vierbein deter-
minant and the weights − 1

2
of the inverse vierbeins adding

up to 1. The 70 scalar fields of the theory parametrize the
coset space E7ð7Þ=SUð8Þ, which is conveniently described
by the symmetric 56 × 56 matrix MMN , with the kinetic
term given by

Lsc ¼
1

48
egμνDμMMNDνMMN; (3.4)

with the inverse matrix MMN related by

MMN ¼ ΩMKΩNLMKL; (3.5)

as a consequence of the symplectic embedding of E7ð7Þ. All
derivatives in Eq. (3.4) are covariantized as Eq. (2.28) with
MMN transforming as an E7ð7Þ tensor of weight λ ¼ 0. This
is compatible with the group property detMMN ¼ 1. As for
the Einstein-Hilbert term, the total weight of Eq. (3.4) is 1
as required for ΛM gauge invariance. Finally, also the Yang-
Mills kinetic term

LYM ¼ − 1

8
eMMNF μνMF μν

N (3.6)

carries the correct weight of 1, since the field strengths
transform as tensors of weight λ ¼ 1

2
, cf. Eq. (2.38). As

discussed above, this term gives rise to second-order field
equations for all 56 vector fields Aμ

M whereas the
Lagrangian (1.4) is amended by the covariant first-order
duality equations,

Eμν
M ≡ F μν

M þ 1

2
eεμνρσΩMNMNKF ρσK ¼ 0; (3.7)

which ensures that only 28 of them correspond to inde-
pendent propagating degrees of freedom. Both terms in this
duality equation are E7ð7Þ tensors of weight λ ¼ 1

2
.

B. Topological term

The topological term is required in order to ensure that
the variation of the 2-form tensors in Eq. (3.6) does not give
rise to inconsistent field equations. This term is most
conveniently constructed as the boundary term of a
manifestly gauge-invariant exact form in five dimensions as

Stop ¼ − 1

24

Z
Σ5

d5x
Z

d56YεμνρστF μν
MDρF στM

≡
Z
∂Σ5

d4x
Z

d56YLtop: (3.8)

The explicit form of the four-dimensional Lagrangian
density is not particularly illuminating, since it is not
manifestly gauge invariant. What we will need in the
following is its variation,

δLtop ¼ − 1

4
εμνρσ

�
δAμ

MDνF ρσM þ F μνM

�
6ðtαÞMN∂NΔBρσα þ

1

4
ΩMNΔBρσN

��
; (3.9)

which takes a covariant form in terms of the general
variations introduced in Eq. (2.36). From this expres-
sion it is straightforward to explicitly verify gauge
invariance under the Λ and Ξ transformations (2.37)
and (2.40).
Variation of the combined Lagrangian LYM þ Ltop with

respect to the 2-forms consistently reproduces parts of the

duality equation (3.7). More precisely, variation with
respect to Bμνα yields the duality equation under internal
derivatives ðtαÞMN∂N whereas variation with respect to
BμνM formally seems to give all of Eq. (3.7); however, one
must take into account that this field itself is constrained by
Eq. (2.34), such that the variation of its components is not
independent.
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Concerning the Lagrangian of the gauge field sector, the
sum LYM þ Ltop constitutes an incomplete (or “pseudo”-)
action that must be amended by the additional first-order
duality equation (3.7). This is in the spirit of the “demo-
cratic formulation” of supergravities [28]. In reality we are
thus working on the level of the field equations and simply
introduce this Lagrangian as a convenient tool to verify
symmetries of the field equations in a compact way.
Alternatively, one may switch to a true Lagrangian for-
mulation in the standard fashion [11,29] by choosing a
symplectic frame that selects 28 electric vector fields Aμ

Λ,
breaking the matrix MMN into

MMN ¼
�
MΛΣ MΛ

Σ

MΛ
Σ MΛΣ

�

≡
� ðI þRI−1RÞΛΣ −ðRI−1ÞΛΣ

−ðI−1RÞΛΣ ðI−1ÞΛΣ
�
; (3.10)

and replacing the kinetic term (3.6) by

LYM ¼ − 1

4
eIMNF μνMF μν

N − 1

8
εμνρσRMNF μν

MF ρσ
N:

(3.11)

The topological term then is modified similar to the
structure given in Ref. [14] that treats asymmetrically
the electric and magnetic vector fields. The resulting
Lagrangian carries 28 electric vectors with proper kinetic
term (3.11) and 28 magnetic duals that only appear in
covariant derivatives and the topological term. Its field
equations are equivalent to those we have been discussing
above. For this paper, we prefer to work on the level of the
field equations [or equivalently with the “pseudo”-action
(3.6)] since that formulation retains the manifest E7ð7Þ
covariance.
Let us discuss the field equations of the vector/tensor

system. Taking the exterior derivative of Eq. (3.7) and using
the Bianchi identity (2.41), one obtains second-order field
equations for the vector fields,

DνðeMMNF μνNÞ ¼ −2εμνρσðtαÞMN∂NHνρσα

þ 1

12
εμνρσHνρσM: (3.12)

We may compare this equation to the field equations
obtained from variation of the Lagrangian (3.6) and (3.8),

DνðeMMNF μνNÞ ¼ 2eðĴμM þ J μ
MÞ − 1

2
εμνρσDνF ρσM;

(3.13)

with the gravitational and matter currents defined by
general variation with respect to the vector fields,

δALEH ≡ eĴμMδAμ
M; δALsc ≡ eJ μ

MδAμ
M; (3.14)

e.g. explicitly

J μ
M ¼ e−1∂NðeDμMNPMMPÞ − 1

24
DμMKL∂MMKL:

(3.15)

Combining Eqs. (3.12) and (3.13), we obtain the duality
equations between scalar and tensor fields,

eĴμM þ eJ μ
M ¼ −2εμνρσðtαÞMN∂NHνρσα þ

1

12
εμνρσHνρσM:

(3.16)

Inserting Eq. (3.15), we can project this equation onto its
irreducible parts and obtain

eĴμM − 1

24
eDμMKL∂MMKL ¼ 1

12
εμνρσHνρσM;

− 1

2
ðtαÞKLðeDμMKPMLPÞ ¼ εμνρσHνρσα: (3.17)

More precisely, the second equation only arises under
projection with the derivatives ðtαÞMN∂N .

C. The potential

Finally, we discuss the last term in the EFT action (1.4).
The potential V is a function of the external metric gμν and
the internal metric MMN given by

V ¼ −
1

48
MMN∂MMKL∂NMKL

þ 1

2
MMN∂MMKL∂LMNK

− 1

2
g−1∂Mg∂NMMN − 1

4
MMNg−1∂Mgg−1∂Ng

− 1

4
MMN∂Mgμν∂Ngμν: (3.18)

The relative coefficients in here are determined by ΛM

gauge invariance, in a computation that is analogous to the
E6ð6Þ case presented in Ref. [2] and that we briefly sketch in
the following. We first note that acting with ∂M on an E7ð7Þ
scalar S adds a density weight of − 1

2
. Consider its variation

δΛS ¼ ΛN∂NS. It can then be easily checked by writing out
the projector (2.1) that its partial derivative transforms
covariantly as

δΛð∂MSÞ ¼ LΛð∂MSÞ; where λð∂MSÞ ¼ − 1

2
; (3.19)

i.e., as a co-vector density of weight λ ¼ − 1
2
. Similarly,

while M is a tensor of weight zero, its partial derivatives
∂M carry a weight of − 1

2
, which is precisely the right
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weight to combine with the weight 2 of the vierbein
determinant e to a total weight of 1 for the potential term,
as needed for gauge invariance of the action. In contrast to a
scalar however, the partial derivative ∂M receives also
various noncovariant terms whose cancellation needs to be
verified explicitly. A direct computation gives for the first
term in Eq. (3.18), up to boundary terms,

δΛ

�
− 1

48
eMMN∂MMKL∂NMKL

�

¼ e∂M∂RΛPMMNMLR∂NMPL: (3.20)

For this computation one has to use the fact that M−1∂M
takes values in the Lie algebra of E7ð7Þ so that the adjoint
projector acts as the identity,

PR
S
K
QMQL∂NMKL ¼ MRL∂NMSL: (3.21)

For the second term in Eq. (3.18) one finds after a
straightforward calculation

δΛ

�
1

2
eMMN∂MMKL∂LMNK

�

¼ −e∂M∂RΛPMMNMLR∂NMPL

þ e∂M∂PΛL∂LMMP þ e∂M∂PΛP∂LMML

− 12e∂M∂RΛPðtαÞKRðtαÞPQMQLMMN∂LMNK

− 1

2
e∂M∂RΛPΩKRΩPQMQLMMN∂LMNK

¼ −e∂M∂RΛPMMNMLR∂NMPL

þ e∂M∂PΛL∂LMMP þ e∂M∂PΛP∂LMML: (3.22)

In the second equality we used again the fact that the
current ðJLÞMK ≡MMN∂LMNK is Lie-algebra valued,
which implies that the terms in the third and fourth line
are zero. In order to see this we note that

2ðJLÞðMKðtαÞRÞK
¼ 2ðJLÞβðtβÞðMKðtαÞRÞK ¼ ðJLÞβfβαγðtγÞMR; (3.23)

where we expanded the current into the basis tα and used
the invariance of ðtαÞMN in the final step. This is precisely
the structure in the third line of Eq. (3.22), where this term
is contracted with ∂M∂RΛP and hence is zero by the section
constraint. Similarly, in the fourth line in Eq. (3.22) the
symplectic form ΩKR raises an index on the current, whose
free indices are then contracted with ∂M∂RΛP, giving zero
by the section constraint. With the final result in Eq. (3.22)
we see that the cubic term in M cancels the term in
Eq. (3.20). It is straightforward to verify that the remaining
two terms cancel against the variations coming from the
second line in the potential (3.18), up to total derivatives,
thus proving full gauge invariance of the potential term.

For comparison of the full result with the truncations that
have been given in the literature [26,30,31],3 we finally
note that after the truncation that sets gμν ¼ e2Δημν, the
potential term reduces to

Lpot ¼ −eV ¼ e4Δ
�
1

48
MMN∂MMKL∂NMKL

− 1

2
MMN∂MMKL∂LMNK

þ 4∂MΔ∂NMMN þ 12MMN∂MΔ∂NΔ
�
; (3.24)

and it can be rewritten in terms of the rescaled matrix
M̂MN ≡ eγΔMMN . It is important to note that Eq. (3.24)
remains E7ð7Þ invariant only upon keeping Δ as an
independent degree of freedom.

D. External diffeomorphisms

The various terms of the EFT action (1.4) have been
determined by invariance under generalized internal ΛM

diffeomorphisms. In contrast, the relative coefficients
between these terms are determined by invariance of the
full action (or equations of motion) under the remaining
gauge symmetries, which are a covariantized version of the
external (3þ 1)-dimensional diffeomorphisms with param-
eters ξμðx; YÞ. For a Y-independent parameter, external
diffeomorphism invariance is manifest. On the other hand,
gauge invariance for general ξμðx; YÞ determines all equa-
tions of motion with no free parameter left. The gauge
variations of vielbeins, scalars and the vector fields are
given by

δξeμa ¼ ξνDνeμa þDμξ
νeνa;

δξMMN ¼ ξμDμMMN;

δξAμ
M ¼ ξνF νμ

M þMMNgμν∂Nξ
ν; (3.25)

i.e. take the form of covariantized diffeomorphisms
together with an additional M-dependent contribution in
δA, that has likewise appeared in Refs. [2,25]. The
invariance of Eq. (1.4) can be shown in close analogy to
the calculation for the E6ð6Þ case of Ref. [2]. Instead of
repeating this discussion, let us say a few words on the
particularities of the E7ð7Þ case, i.e. the generalized diffeo-
morphism invariance of the first-order duality relations
(3.7) and the transformation laws for the 2-form tensors.
The latter fields transform as

ΔξBμνα ¼ ξρHμνρα;

ΔξBμνM ¼ ξρHμνρM þ 2eεμνρσgστDρðgτλ∂Mξ
λÞ (3.26)

3See also Refs. [32,33] for the geometric interpretation of these
terms.
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in terms of the covariant variations (2.36). In particular, the
variation of the constrained compensating tensor gauge
field BμνM carries an additional noncovariant term that is
required for gauge invariance of the equations of motion.
We note that a similar term has appeared in the trans-
formation laws of the constrained compensating (vector)
gauge fields in the three-dimensional formulation [25].
Moreover, the structure of the transformation rule is
manifestly consistent with the constraints (2.34) on this
field. From Eqs. (3.25) and (3.26), we find the trans-
formation law of the field strengths,

δξF μν
M ¼LξF μν

Mþ2ðD½μMMNgν�ρ−6ðtαÞMNHμνραÞ∂Nξ
ρ

þ2MMND½μðgν�ρ∂Nξ
ρÞ

−eεμνλσgστΩMNDλðgτρ∂Nξ
ρÞ; (3.27)

where the first term describes the standard transformation
under (covariantized) diffeomorphisms. On-shell, upon
using the duality equation (3.17), this transformation
may be rewritten in the compact form

δξF μν
M ¼ LξF μν

M þ Zμν
M

− 1

2
eεμνρσΩMNMNKZρσK;

with Zμν
M ≡ 2D½μðMMNgν�ρ∂Nξ

ρÞ: (3.28)

From this expression it is evident that the noncovariant
terms in the variation of F μν

M drop out when calculating
the variation of the duality equation (3.7),

δξEμν
M ¼ LξEμν

M; (3.29)

and thus the duality equation is duality covariant. More
precisely, since we used Eq. (3.17), it follows that the first-
order duality relations transform into each other. The
discussion shows that the extra terms in the variation of
Eq. (3.26) are crucial for this covariance. Moreover, the
calculation requires the precise form (3.17) of the duality
equation between scalars and tensors and thereby fixes the
corresponding relative coefficients in the action (1.4).
Eventually, external diffeomorphism invariance of the
complete set of equations of motion fixes all the coef-
ficients in Eq. (1.4) and the equations of motion.

IV. EMBEDDING D ¼ 11 AND TYPE IIB
SUPERGRAVITY

In the previous sections, we have constructed the unique
set of E7ð7Þ-covariant equations of motion for the fields
(1.2), which is invariant under generalized internal and
external diffeomorphisms. It remains to explicitly embed
D ¼ 11 supergravity. Evaluating the above field equations
with an explicit appropriate solution of the section con-
straints (1.1), one may recover the full dynamics ofD ¼ 11

supergravity after rearranging the 11-dimensional fields
according to a 4þ 7 Kaluza-Klein split of the coordinates,
but retaining the full dependence on all 11 coordinates.
The relevant solution of the section condition is related to

the splitting of coordinates according to the decomposition
of the fundamental representation of E7ð7Þ under its maxi-
mal GL(7) subgroup,

56⟶ 7þ3 þ 210þ1 þ 21−1 þ 70−3;
fYMg⟶ fym; ymn; ymn; ymg: (4.1)

Here subscripts refer to the GL(1) weight, indices m; n;…
label the vector representation of GL(7), and the coordi-
nates ymn ¼ y½mn�, ymn ¼ y½mn� are antisymmetric in their
indices. The adjoint representation breaks according to

GLð7Þ⊂E7ð7Þ∶133→ 70þ4þ35þ2þ10þ480þ350−2þ7−4:
(4.2)

The GL(1) grading of these decompositions shows immedi-
ately that

ðtαÞmn ¼ 0; (4.3)

since there is no generator of charge þ6 in the adjoint
representation. Consequently, the section constraints (1.1)
are solved by truncating the coordinate dependence of all
fields and gauge parameters to the coordinates in the 7þ3,

Φðxμ; YMÞ⟶Φðxμ; ymÞ; i:e: ∂mn → 0;

∂mn → 0; ∂m → 0: (4.4)

Accordingly, for the compensating gauge field constrained
by Eq. (2.34) we set all but the associated seven compo-
nents Bμνm to zero,

Bμν
mn → 0; Bμνmn → 0; Bμν

m → 0: (4.5)

The various fields of D ¼ 11 supergravity are recovered
by splitting the vector fields Aμ

M and the 2-forms Bμνα,
BμνM according to Eqs. (4.1) and (4.2), and parametrizing
the scalar matrix MMN ¼ ðVVTÞMN in terms of a group-
valued vielbein V, defined in triangular gauge according to
Ref. [34] as

V ≡ exp½ϕtð0Þ�V7 exp½ckmntkmn
ðþ2Þ�exp½ϵklmnpqrcklmnpqtðþ4Þr�:

(4.6)

Here, tð0Þ is the E7ð7Þ generator associated to the GL(1)
grading, and V7 denotes a general element of the SL(7)
subgroup, whereas the tðþnÞ refer to the E7ð7Þ generators of
positive grading in Eq. (4.2). All generators are evaluated in
the fundamental 56 representation (4.1). Upon choosing an
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explicit representation of the generators ðtαÞMN in terms of
SL(7)-invariant tensors, splitting all tensors according to
Eqs. (4.1) and (4.2), and explicitly imposing Eq. (4.4), the
above E7ð7Þ-covariant field equations can be mapped into
those ofD ¼ 11 supergravity. This requires redefinitions of
all the form fields originating from the 11-dimensional 3-
form and 6-form in the usual Kaluza-Klein manner, i.e.,
flattening the world indices with the elfbein and then
“unflattening” with the vierbein eμa, as well as subsequent
further nonlinear field redefinitions and the appropriate
dualization of some field components. We have gone
through this exercise in detail in the E6ð6Þ-covariant con-
struction [2] and reproduced the full and untruncated action
of 11-dimensional supergravity. Here, we will restrict the
discussion to illustrating the novel features of the E7ð7Þ case.
The scalar fields cmnk ¼ c½mnk� and cmnklpq ¼ c½mnklpq�

parametrizing the matrixMMN according to Eq. (4.6) have
an obvious origin in the internal components of the 11-
dimensional 3-form and 6-form. Let us consider the 56
vector fields, which split according to Eq. (4.1) above into

fAμ
Mg⟶ fAμ

m; Aμmn; Aμ
mn; Aμmg: (4.7)

The first seven vector fields Aμ
m correspond to the D ¼ 11

Kaluza-Klein vectors, whereas the 21þ 21 components
Aμmn and Aμ

mn are related to the corresponding components
of the 11-dimensional 3-form and 6-form, respectively. The
last seven vector fields Aμm have no direct appearance in
D ¼ 11 supergravity, but capture some of the degrees of
freedom of its dual graviton. Let us consider their role in
some more detail. Evaluating a generic covariant derivative
[Eq. (2.28)], upon taking the above solution of the section
constraint and using the split (4.7), shows that most of the
vector fields only appear under internal derivatives ∂m;
more precisely, out of the 56 vectors Aμ

M, the full
connection only carries the following combinations of
gauge fields:

DðfAMgÞ ¼ DðfAm; ∂ ½kAmn�; ∂kAkmgÞ: (4.8)

In particular, the seven vectors Aμm drop out from all
covariant derivatives. Moreover, a quick counting of the
independent vector field components in this connection
yields

Am∶7; ∂ ½kAmn�∶15; ∂kAkm∶6: (4.9)

E.g. the 21 components Amn enter the connection (4.8) in a
way that is invariant under transformations Amn → Amn þ∂ ½man� which can be used to set six of these components
(say the Am7) to zero, etc. This counting shows that in total
7þ 15þ 6 ¼ 28 out of the 56 vector fields participate in
the connections, a counting that is also consistent with
Ref. [27]. This is in precise agreement with the general
structure of maximal gauged supergravities [14], in which

at most 28 vector fields participate in the gauging of some
non-Abelian symmetry. We may perform an analogous
counting of the number of 2-form components from Bμνα

that actually appear in the covariant field strengths (2.33)
and find

∂ ½mBn�∶6; ∂kBkmn∶15: (4.10)

Together with the seven components surviving in BμνM
after imposing Eq. (4.5), this makes a total of 28 2-forms
entering the covariant field strengths F μν

M and thereby the
twisted first-order self-duality equation (3.7) and the action
(1.4). Again, this counting is in precise agreement with the
general structure of maximal gauged supergravities [14]:
the existence of non-Abelian self-duality equations requires
a compensating 2-form per vector field participating in
the gauging.
In order to reproduce the field equations of D ¼ 11

supergravity, second-order field equations for the vector
fields can be read off from Eq. (3.11), upon first decom-
posing the matrix MMN obtained from Eq. (4.6) according
to Eq. (3.10), with a specific choice of symplectic frame.
Alternatively, 21 of the first-order self-duality equation (3.7)
can be mapped directly to the corresponding components of
the D ¼ 11 duality equations between a 3-form and a
6-form. The seven remaining self-duality equations are
those featuring the vector field Aμm which has no origin in
the standard formulation ofD ¼ 11 supergravity and rather
corresponds to components of the D ¼ 11 dual graviton.
Only their derivatives (such that Aμm drops from the
equations) can be matched to the D ¼ 11 second-order
field equations. In the E7ð7Þ-covariant formulation, these
equations exist as first-order duality equations by virtue of
the surviving components Bμνm of the covariantly con-
strained fields BμνM (4.5), which play the role of compen-
sating tensor gauge fields.
Let us finally briefly discuss the embedding of IIB

supergravity. Just as for the E6ð6Þ EFT [1,2], there is another
inequivalent solution to the section conditions (1.1) that
describes the embedding of the full ten-dimensional IIB
theory [35,36] into the E7ð7Þ EFT.

4 In this case, the relevant
maximal subgroup of E7ð7Þ is GLð6Þ × SLð2Þ, under which
the fundamental and adjoint representation decompose
according to

56 → ð6; 1Þþ2 þ ð60; 2Þþ1 þ ð20; 1Þ0 þ ð6; 2Þ−1
þ ð60; 1Þ−2;

133 → ð1; 2Þþ3 þ ð150; 1Þþ2 þ ð15; 2Þþ1 þ ð35þ 1; 1Þ0
þ ð150; 2Þ−1 þ ð15; 1Þ−2 þ ð1; 2Þ−3; (4.11)

4An analogous solution of the SLð5Þ-covariant section con-
dition, corresponding to some three-dimensional truncation of
type IIB, was discussed recently in the truncation of the theory to
its potential term [37].

OLAF HOHM AND HENNING SAMTLEBEN PHYSICAL REVIEW D 89, 066017 (2014)

066017-12



with the subscript denoting the GLð1Þ charge. With the
corresponding split of coordinates and vector fields5

fYMg → fym; yma; ykmn; yma; ymg;
fAμ

Mg → fAμ
m; Aμma; Aμkmn; Aμ

ma; Aμmg; (4.12)

it follows as above that the constraints (1.1) and (2.34) are
solved by restricting the coordinate dependence of all
fields to the six coordinates ym [of highest GLð1Þ charge],
and setting all but the associated six components of BμνM
to zero,

∂ma → 0; ∂kmn → 0; ∂ma → 0; ∂m → 0;

Bma → 0; Bkmn → 0; Bma → 0; Bm → 0: (4.13)

The set of IIB fields and equations of motion is recovered
upon choosing an explicit representation of the generators
ðtαÞMN in terms of SLð6Þ × SLð2Þ-invariant tensors, split-
ting all fields and tensors according to Eq. (4.11), and
explicitly imposing Eq. (4.13). As above, this requires
the standard Kaluza-Klein redefinitions together with
additional nonlinear redefinitions of all the form fields
and the appropriate dualization of some field components.
The scalar matrix MMN ¼ ðVVTÞMN in this case is most
conveniently parametrized in terms of a group-valued
vielbein V, defined in triangular gauge as

V ≡ exp½ϕtð0Þ�V6V2 exp ½cmnatmna
ðþ1Þ�

× exp ½ϵklmnpqcklmntðþ2Þpq� exp ½cataðþ3Þ�: (4.14)

Here, tð0Þ is the E7ð7Þ generator associated to the GL(1)
grading, V6 and V2 denote general elements of the SLð6Þ
and SLð2Þ subgroups, respectively, and the tðþnÞ refer to the
E7ð7Þ generators of positive grading in Eq. (4.11). All
generators are evaluated in the fundamental 56 repre-
sentation. The scalar fields cmna ¼ c½mn�a and ca in
Eq. (4.14) descend from the internal components of the
ten-dimensional 2-form doublet and its dual 6-form doublet.
In turn, cklmn has its origin in the internal components of the
(self-dual) 4-form. From the 56 vector fields, split according
to Eq. (4.12), the first six vector fields Aμ

m correspond to
the D ¼ 10 Kaluza-Klein vectors, whereas the 44 compo-
nents Aμma, Aμkmn, and Aμ

ma are related to the correspond-
ing components of the ten-dimensional p-forms. Again, the
last six vector fields Aμm have no direct appearance in IIB
supergravity, but capture some of the degrees of freedom of
its dual graviton. Evaluating a generic covariant derivative
[Eq. (2.28)] with Eqs. (4.13) and (4.12) shows that these six
vectors drop out from all covariant derivatives. More

precisely, the full connection only carries the following
combinations of gauge fields:

DðfAMgÞ ¼ DðfAm; ∂ ½mAn�a; ∂ ½kAlmn�; ∂mAmagÞ: (4.15)

A counting of the independent components similar to
Eq. (4.9),

Am∶6; ∂ ½mAn�a∶2 · 5; ∂ ½kAlmn�∶10; ∂mAma∶2;

(4.16)

shows that for IIB there are also precisely 28 out of the 56
vector field components which appear in the connections
(4.15). Similarly, an evaluation of the expressions (2.33)
shows that in this case from the 133 Bμνα, only the
combinations

∂mBa∶2; ∂ ½kBmn�∶10; ∂kBkma∶2 · 5 (4.17)

appear in the covariant field strengths (2.33) and the action
(1.4). Together with the six components surviving in BμνM
after imposing Eq. (4.13) this again makes a total of 28
2-forms entering the twisted first-order self-duality equa-
tion (3.7) as compensating tensor gauge fields.
The first- and second-order field equations of type IIB

supergravity are obtained from Eqs. (1.3) and (1.4) with the
above split of fields, the constraints (4.13), the field
redefinitions and an appropriate dualization. Again, we
note that the six self-duality equations from Eq. (1.3)
featuring the vector fields Aμm have no direct origin in IIB,
as these vector fields correspond to components of the
D ¼ 10 dual graviton. Only their derivatives (such that Aμm
drops out from the equations) can be matched to the
standard IIB field equations.

V. SUMMARY AND OUTLOOK

In this paper we have spelled out the details of the E7ð7Þ
exceptional field theory. The main conceptual novelty
of this case as compared to E6ð6Þ is that, from the 11-
dimensional perspective, the seven Kaluza-Klein vectors
are introduced together with their on-shell duals, satisfying
an electric-magnetic twisted self-duality relation. These on-
shell duals thus correspond, again from the 11-dimensional
perspective, to components of the dual graviton. Despite
the no-go theorems of Refs. [22,23], it is possible to
consistently include those fields in a nonlinear theory by
virtue of the simultaneous inclusion of compensating
(2-form) gauge fields. This naturally follows from the
structure of the tensor hierarchy, and also gives a duality-
covariant form of the mechanism introduced in Ref. [24]. A
crucial aspect of this mechanism is that the compensating
gauge field itself is covariantly constrained in that it needs
to satisfy E7ð7Þ-covariant constraints that are of the same
structural form as the section constraints.

5Indices m; n ¼ 1;…; 6 and a ¼ 1; 2, label the fundamental
representations of SLð6Þ and SLð2Þ, respectively. The coordi-
nates ykmn ¼ y½kmn� and vector fields Aμkmn ¼ Aμ are antisym-
metric in all their internal indices.
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Although a deeper conceptual understanding of these
constrained fields is certainly desirable, we have seen in the
above construction of a fully E7ð7Þ-covariant formulation
that their presence appears unavoidable. Recall that the
need for such constrained 2-forms was an immediate
consequence of the algebraic structure of the E7ð7Þ
E-bracket Jacobiator. Equivalently, these fields were found
indispensable for the definition of a gauge-covariant field
strength [Eq. (2.33)] for the vector fields. As we have
discussed, this nicely fits into a more general pattern of the
tensor hierarchy of exceptional field theories: for the E6ð6Þ
theory of Ref. [2] the necessity of introducing additional
constrained compensating fields appears at the level of
3-forms (which, however, do not appear explicitly in the
action). Similarly, in E8ð8Þ EFT the compensating gauge
field appears among the vector fields and can be viewed as
an E8ð8Þ gauge potential, again subject to E8ð8Þ-covariant
constraints as found for the Ehlers SLð2;RÞ subgroup in
Ref. [25]. Its presence also cures the seeming obstacle of
nonclosure of the algebra of generalized diffeomorphisms
[27].6 It is intriguing to observe that this purely group-
theoretical origin of the constrained compensator fields in
the tensor hierarchy precisely matches (and in fact enables)
the appearance of components of the 11-dimensional dual
graviton field among the physical fields of the exceptional
field theories. E.g. we have seen in Eq. (4.5) that in the
embedding of 11-dimensional supergravity the constraint
(2.34) implies that all but seven components of the
compensating 2-form are identically zero. These nonvan-
ishing components are precisely those that couple via
Eq. (2.33) to the field strengths associated to the seven
vector fields originating from the 11-dimensional dual
graviton. One may speculate that eventually the constraints,
both the section constraint involving the coordinates and
the constraints on the compensator fields, may be relaxed
so that in particular the physical significance of the dual
graviton may become more transparent.
11-dimensional and type IIB supergravity naturally

embed into the E7ð7Þ EFT, as discussed in Sec. 4. We
leave a more detailed description of this embedding at the
level of the action or the field equations to future work. This
should include the formulation of the fermionic sector and
the supersymmetry transformations, which in turn will also
clarify the relation to the reformulation of de Wit and
Nicolai [38]. A natural question, among many, then is
which gauged N ¼ 8 supergravities can be embedded, via
the E7ð7Þ EFT, into 11-dimensional supergravity and which

may require the extended 56 E7ð7Þ coordinates in a non-
trivial fashion (perhaps after a suitable relaxation of the
constraints). We leave these and other questions for
future work.
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APPENDIX: ALGEBRAIC RELATIONS

In this appendix we collect a few important E7ð7Þ
relations. First, contracting the adjoint indices of two
generators, we have the relation

ðtαÞMKðtαÞNL ¼ 1

24
δKMδ

L
N þ 1

12
δLMδ

K
N þ ðtαÞMNðtαÞKL

− 1

24
ΩMNΩKL (A1)

for the projector onto the adjoint representation.
Contracting two of the fundamental indices, the relation
(a1) gives

ðtαÞMKðtαÞKN ¼ 19

8
δNM: (A2)

There are also various higher-order relations among the
generators, which we list as

0 ¼ 9ðtαÞMKðtβÞKNðtαÞðPQðtβÞRSÞ þ 2ðtαÞ½MðPðtαÞQRδSÞN�

− 1

8
ΩMNðtαÞðPQðtαÞRSÞ;

0 ¼ ðtαÞNLðtαÞMðKðtβÞQÞL þ 1

12
ðtβÞMðKδQÞ

N

− 1

24
ðtβÞN ðKΩQÞM þ 1

24
ðtβÞKQδMN

þ 1

2
ðtαÞNLðtαÞKQðtβÞML − 1

2
ðtαÞMLðtαÞKQðtβÞNL;

(A3)

and their contraction

ðtαÞMLðtαÞNQðtβÞNL ¼ − 7

8
ðtβÞMQ: (A4)

6The details for the E8ð8Þ EFT will be presented in a separate
publication.
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