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We present the details of the recently constructed Eg)-covariant extension of 11-dimensional
supergravity. This theory requires a 5 + 27-dimensional spacetime in which the “internal” coordinates
transform in the 27 of Eg(6)- All fields are Eq(6) tensors and transform under (gauged) internal generalized
diffeomorphisms. The “Kaluza-Klein” vector field acts as a gauge field for the Eg)-covariant “E-bracket”
rather than a Lie bracket, requiring the presence of 2-forms akin to the tensor hierarchy of gauged
supergravity. We construct the complete and unique action that is gauge invariant under generalized
diffeomorphisms in the internal and external coordinates. The theory is subject to covariant section
constraints on the derivatives, implying that only a subset of the extra 27 coordinates is physical. We give
two solutions of the section constraints: the first preserves GL(6) and embeds the action of the complete
(i.e. untruncated) 11-dimensional supergravity; the second preserves GL(5) x SL(2) and embeds complete
type 1IB supergravity. As a byproduct, we thus obtain an off-shell action for type IIB supergravity.
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I. INTRODUCTION

For more than three decades, since the seminal work of
Cremmer and Julia [1], it has been known that the toroidal
compatification of 11-dimensional supergravity [2] gives
rise to the exceptional symmetries En(n)(R), n==6,7,8,in
dimensions D = 11 — n. Later, in the middle 1990s, the
discrete subgroups E,,,, (Z) were interpreted as part of the
U-duality symmetries of M-theory [3], but ever since it has
remained a mystery why 11-dimensional supergravity
knows about the exceptional groups and to what extent
they are already present in the full theory. This fact has
inspired various authors to speculate about a hidden new
geometry in higher dimensions that transcends the
Riemannian geometry underlying Einstein’s theory
[4-32], but it is fair to say that so far there is no scheme
that casts the full 11-dimensional supergravity into a truly
E, (»)-covariant form. In this paper, we present in detail the
construction announced recently in Ref. [33], which gives
an extension of 11-dimensional supergravity that makes the
exceptional group Eg) manifest prior to any toroidal
compactification, while also hosting the type IIB theory
[34,35]. The details for the remaining finite-dimensional
groups E;7) and Egg) will be presented in separate
publications [36].

Our construction is a continuation and generalization of
“double field theory” (DFT), which is an approach to make
the O(d, d) T-duality group of string theory manifest by
introducing a generalized spacetime with doubled
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coordinates, subject to a ‘“section constraint” or ‘“‘strong
constraint,” and by reorganizing the fields into O(d,d)
tensors [37-41]. (For earlier results see Refs. [42-45].)
Remarkably, DFT is applicable not only to (the low-energy
spacetime action of) bosonic string theory, but also to the
heterotic string [46], including their supersymmetric for-
mulations [47—49], as well as massless and massive type 11
theories [50-53]. DFT also yields an intriguing generali-
zation of Riemannian geometry [37,54-59], which in turn
extends results in the “generalized geometry” developed in
pure mathematics [60-62]. Moreover, it provides a natural
framework for nongeometric fluxes [63—-67]. Finally, an
extension of DFT to higher-derivative o« corrections has
recently been given [68]. (For a more exhaustive list of
references see the recent reviews [69-71].)

In contrast to D = 10 string theory and DFT, where the
fields naturally combine into tensors under O(10, 10), the
fields of D = 11 supergravity do not organize directly into
tensors under any of the exceptional groups. For instance,
in order to realize the E,) symmetry in dimensional
reduction, some field components have to be dualized into
forms of lower rank. As such transformations are specific to
a given dimension, it is not obvious how to build complete
E,(,) multiplets in D = 11 prior to any reduction. We have
recently shown how to overcome these obstacles by gauge
fixing the local Lorentz group and decomposing the fields
and coordinates as in Kaluza-Klein compactifications, but
without truncation [72]. The resulting formulation therefore
captures all of the original 11-dimensional supergravity, at
the cost of abandoning some of the Lorentz gauge freedom.
The various field components, necessarily including some
of their duals, can then be reorganized into E,,) tensors.
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Extending the “internal” derivatives to transform in some
fundamental representation of E,,,), subject to a generali-
zation of the DFT section constraint proposed in
Refs. [27,29], we arrive at a manifestly E,(,)-covariant
extension of 11-dimensional supergravity. The resulting
theory, which we refer to in the following as “exceptional
field theory” (EFT), closely resembles DFT when subjected
to an analogous Kaluza-Klein-type gauge fixing of the local
Lorentz group [73].

Already the early work of de Wit and Nicolai [5,6] has
identified directly in 11 dimensions some of the structures
found in dimensional reduction, following a Kaluza-Klein
decomposition without truncation similar to the present
construction. Manifest 11-dimensional covariance is aban-
doned, in favor of an enhanced local Lorentz symmetry in
accordance with the (composite) gauge symmetries appear-
ing in the D =4 or D = 3 coset models. However, these
constructions do not yet manifest the exceptional groups,
and further work in Ref. [8] suggested that additional
coordinates should be introduced in order to achieve this,
an idea that also features prominently in the proposal of
Ref. [14]. Later work [19,20] gave a manifestly E;q)-
invariant action functional for a certain seven-dimensional
truncation of D = 11 supergravity by introducing coordi-
nates in the 56 of E;7). Recently, other subsectors of
D = 11 supergravity have been reformulated in terms of a
generalized metric (see e.g., Refs. [23-25]), together with a
duality-covariant formulation of part of the gauge sym-
metries in the form of generalized Lie derivatives. These
constructions are also related to extensions of generalized
geometry to the exceptional groups [16,26]. In all these
truncations the match to 11-dimensional supergravity
requires a Kaluza-Klein-type decomposition of the latter
in which one sets to zero all off-diagonal components of the
metric and the 3-form, sets to zero the external components
of the 3-form and freezes the external metric to the
Minkowski metric, possibly up to a warp factor. Finally,
one truncates the coordinate dependence of all fields to the
internal coordinates. We will explain in the Appendix the
embedding of these theories into the full EFT formulation,
constructed in this paper.

This formulation to be constructed requires various new
mathematical tools [72], analogous to the Lorentz gauge-
fixed DFT [73]. Most importantly, the off-diagonal vector
field components of the Kaluza-Klein-like decomposition
yield a generalization of a Yang-Mills gauge field. More
precisely, these fields transform in the same way as a Yang-
Mills connection, but with a bracket, in the following
referred to as the “E-bracket,” that does not satisfy all
axioms of a Lie bracket. This, in turn, requires the
introduction of forms of higher rank in order to maintain
gauge covariance of the field strengths, in precise analogy
to the “tensor hierarchy” of gauged supergravity [74,75].
Moreover, these higher forms play a vital role as the duals
of some physical fields, which is implemented at the level
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of an off-shell action by means of topological Chern-
Simons-like terms, as in gauged supergravity [76,77].
Finally, the “internal” field components organize into a
“generalized metric” M,y that is a covariant tensor under
E,(n), while the “external” metric g, is an E,,,,) singlet that,
however, transforms as a scalar density under the (internal)
generalized Lie derivatives.

In this paper, we present in detail the construction of the
Eg(6) EFT. Dimensional reduction from 11 dimensions on a
torus 7° is known to give rise to maximal D = 5 super-
gravity with global Egg) symmetry [78]. It becomes
manifest in five dimensions after the proper dualization
of all p-form tensors to the lowest possible degree. In
particular, the 3-form descending from 11 dimensions is
dualized into a scalar and joins the coordinates of the scalar
target space described by the coset space Egq(s)/USp(8).
The Eq() EFT keeps the field and multiplet structure of the
five-dimensional theory, but elevates all fields to functions
of 5+ 27 coordinates (x*, YM), where the Y™, with dual
derivatives 0y, live in the fundamental representation 27 of
Eg(6)- The theory is subject to covariant section constraints,
which can be written in terms of the Eg)-invariant d-
symbols d¥NK and d;nx as follows [26,29]:

dMNKaNaKA - 0, dMNKaNAaKB - O, (11)
where A, B denote any fields or gauge parameters. This
constraint is the analogue of the “strong constraint” in DFT
and implies that only a subset of the 27 coordinates is
physical. While in DFT the strong constraint is motivated
from string theory, as implementing a strong version of the
level-matching constraint, Eq. (1.1) has been postulated by
analogy. However, we will discuss below that for the SO
(5,5) T-duality subgroup of Eg it actually reduces to the
strong constraint of DFT. The Eg)-covariant field content
is given by

{e, . Myn.AM, By}, (1.2)
where e, denotes the fiinfbein corresponding to the
external metric, while AﬂM and B, j are the tensor gauge
fields relevant for the Eg) EFT. The symmetric matrix
My parametrizes the coset space Eg(s)/USp(8) whose 42
coordinates describe the “scalar” fields of the theory. The
full action is given by

L1
SEFI‘ = / dxd”’Ye <R + ﬁg}wDMMMNDDMMN

1
- ZMMNJTWMme + e_lﬁtop - V(MMN» g;w)) .
(1.3)

This action takes the same structural form as D = 5 gauged
supergravity [77], with a (covariantized) Einstein-Hilbert

066016-2



EXCEPTIONAL FIELD ... . L. Eg5) COVARIANT ...

term for e,%, a “scalar” kinetic term for M,y and a Yang-

Mills term based on the field strength F WM , the latter also
depending on the 2-form B, in accordance with the
tensor hierarchy. All fields depend on the “internal”
coordinates, corresponding to the non-Abelian structure
of covariant derivatives and field strengths involving the
derivatives 0y,. In addition, the “potential” V(M,g) is
the manifestly Eg g -covariant expression (built using only

the J,, derivatives) given by

1 1
V= —ﬂMMNaMMKLaNMKL +§MMN6MMKL8LMNK
1 1
_Eg_laMgaNMMN —ZMMN 9 Omgg™ " Ong

1
—ZMMNaMg””aNgﬂU. (1.4)

All terms in the action (1.3) are separately gauge invariant
under the internal (generalized) diffeomorphisms of the
Y™, generated by a parameter AM(x,Y), with the A,M
taking the role of a gauge connection for this symmetry.
The action is further gauge invariant under (A,-covarian-
tized) “external” diffeomorphisms generated by & (x,Y),
but this symmetry is not manifest for the Y-dependent
parameter &*. In fact, it is this symmetry that relates the
various terms in Eq. (1.3) and fixes all relative coefficients.
Apart from the construction of the action (1.3), a central
result of this paper is to show that this action after putting
an appropriate solution of the section condition (1.1)
reduces to full (i.e. untruncated) 11-dimensional super-
gravity after a rearrangement of the fields accordinga 5 + 6
Kaluza-Klein split but keeping the dependence on all 11
coordinates. We work this out in full detail and reproduce
from Eq. (1.3) the action of 11-dimensional supergravity.
Moreover, it has been noted in Ref. [33] that the section
condition (1.1) allows for (at least) two inequivalent
solutions, the second of which reduces the theory (1.3)
to the full ten-dimensional IIB theory. To this end we first
break Egs) under SL(6) x SL(2) such that the fundamental
representation decomposes as
27 - (15,1) + (6,2). (1.5)
If we let the fields depend on six coordinates from the SL
(2) doublet, the section constraints are satisfied. We are left
with an unbroken GL(6) symmetry and fields depending on
5 + 6 coordinates. For this choice, the action (1.3) reduces
to an action that is on-shell equivalent to 11-dimensional
supergravity. Alternatively, the section constraint is solved
by letting fields depend on five coordinates from the 15 in
Eq. (1.5), which in turn breaks the symmetry to
GL(5) x SL(2). For this choice, Eq. (1.3) reduces to a
ten-dimensional action with a global SL(2) symmetry and
we obtain an on-shell equivalent formulation of type IIB
supergravity. As a byproduct, this yields an off-shell action
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FIG. 1 (color online). Eg) EFT embedding of D = 11 super-
gravity, IIB supergravity, and D = 5 supergravity.

for type IIB supergravity, at the cost of sacrificing manifest
ten-dimensional spacetime covariance. In the sense just
explained, the EFT defined by Eq. (1.3) unifies type IIB
and M-theory (and thus type IIA), a feature shared with the
type I DFT constructed in Refs. [50,51]. Instead, dropping
all derivatives with respect to the extra internal coordinates,
i.e. setting 0y, = 0, the theory (1.3) directly reduces to
D =5 maximal supergravity in the form in which the
exceptional symmetry Ege) is manifest without further
dualization [78]. The various links are depicted in Fig. 1,
which can be thought of as a commutative diagram that
explains the emergence of Eg(g) from M-theory or type 1IB.

This paper is organized as follows. In Sec. II we
introduce the required Ege) structures: the generalized
Lie derivatives, the E-bracket, and the associated tensor
hierarchy. Employing these techniques, we define in
Sec. III the various terms of the Eg4) EFT action and
discuss the (nonmanifest) gauge invariance under the
external, five-dimensional diffeomorphisms. In Sec. IV
we prove that I11-dimensional supergravity can be
embedded in EFT, upon solving the section constraint as
above and rewriting 11-dimensional supergravity appro-
priately for the Kaluza-Klein-inspired gauge fixing of the
Lorentz group. In Sec. V we discuss the embedding and
decomposition of type IIB supergravity along the same
lines. We close with a summary and outlook in Sec. VI. In
the Appendix we discuss truncations of our theory, in order
to relate it to some of the duality-covariant truncations
previously obtained in the literature.

IL. Eg GENERALIZED DIFFEOMORPHISMS
AND THE TENSOR HIERARCHY

We start by introducing the mathematical background
needed for the definition of the theory (1.3), including the
Eg(6) generalized Lie derivatives that generate the internal
(generalized) diffeomorphisms and the “E-bracket.” Then
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we introduce the gauge fields AMM which gauge this
symmetry in the sense of making it local with respect to
the “external” x space. Due to the nontrivial Jacobiator of
the E-bracket, gauge covariance requires the introduction
of the 2-form B, ), in accordance with the general tensor
hierarchy of non-Abelian p-forms [74,75].

A. Generalized Lie derivatives and the E-bracket

We begin by collecting the relevant facts about the
exceptional Lie group Eg ). Its Lie algebra is of dimension
78, with generators that we denote by ¢, with the adjoint
index a = 1, ..., 78. In addition, E4() has two inequivalent
fundamental representations of dimension 27, which we
denote by 27, and 27 for its contragredient. These repre-
sentations will be indicated by lower indices M,N =
1, ..., 27 for 27 and upper indices for 27. Note, in particular,
that there is no invariant metric to raise and lower
fundamental indices. In contrast, we raise and lower
adjoint indices by the (rescaled) Cartan-Killing form

— N M
Kop = (ta)M (I/J)N .

In the fundamental representation, there are two
cubic Eg-invariant tensors, the fully symmetric d-
symbols d”VK and dyyg, which we normalize as
dypod""? = 8. Below we will need the projector onto
the adjoint representation

1 1

PY KL = (t)f M (1), * = 185%65 + 65116524
=2y, @.1)
which satisfies
PM N, =1T8. (2.2)

We note the useful cubic relations for the d-symbols,

2
dS(MNdPQ)TdSTR = E 5f (MdNPQ) )

2
T _ =5 (MdNPQ)'
15°%

dgrrdS™MN gPQ) (2.3)

Next, we introduce the generalized Lie derivative with
respect to the vector parameter A acting on Eg ) tensors
in the fundamental representation with an arbitrary number
of upper and lower indices. Moreover, the tensors can carry
an arbitrary density weight 1. On a vector VM of weight A it
acts as [26,29]

5VM = U_AVM = AKaKVM — 6|]:DMNKL8KALVN

+ A0pAPVM. 2.4)

Similarly, it acts on a co-vector W, of weight A’ as
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5WM = l]—AWM = AKGKWM + 6[|:DNMKL6KALWN

+ X OpAPWy,, (2.5
and accordingly on an Eg ) tensor with an arbitrary number
of covariant and contravariant fundamental indices.
Because of the projector in Eq. (2.4), the generalized
Lie derivative is compatible with the E¢ ) algebra structure:
the d-symbols are invariant tensors of weight 1 = 0,

Ladunk = 0. (2.6)
and its action on the Eq)-valued generalized metric My
to be introduced below (carrying weight A = 0) preserves
the group property. Moreover, the above definition is such
that the Eg)-invariant contraction between a vector and a
co-vector transforms as

2.7)

In particular, the contraction transforms as a genuine scalar
if the vectors have opposite weights, A = —1’'. Writing out
the projector (2.1), the Lie derivative on, say, a vector reads
explicitly

S\VM = ARG VM — 9 AMVE + (A - %) OpAPVM

+ 10dy; gd"KROL ALV, 2.8)

We observe that the projector contributes an additional
density-type term, leading to an ‘effective weight” of
(A—1) in the action (2.8), which singles out the value
A= % In fact, we will see below that the vector gauge
parameter itself has to be thought of as a vector of weight
A= %, such that Eq. (2.8) carries no explicit weight term.
We stress that by referring to the weight 1 of a tensor V,
sometimes denoted by A(V), we always denote the weight
in Eq. (2.4), as opposed to the effective weight of Eq. (2.8).
In the following, a careful treatment of the emerging
weights will be crucial. A remarkable observation is the
following: if V, is a covariant vector of weight (V) =3,
then the combination

WM = gMNKg vy, (2.9)
is a contravariant vector of weight A(W) = 1. This can be
viewed as an Eg) analogue of the fact that for standard
diffeomorphisms the exterior derivative ), le...m,,] of an
antisymmetric p-form is a covariant tensor. [Note, however,
that the tensor VX in Eq. (2.9) is totally symmetric.]
Indeed, embedding the structures of ten- and 11-dimensional
spacetime diffeomorphisms, the tensor structure of Eq. (2.9)
precisely encodes those exterior derivatives, as we will find
from the explicit decompositions of the d-symbol in
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Egs. (4.42) and (5.5) below. The tensorial nature of Eq. (2.9)
will prove crucial for the structure of the tensor hierarchy of
non-Abelian p-forms. For a general study of connections
and connection-free covariant derivatives in such ‘“excep-
tional geometries” see Refs. [26,31,79].

Let us now discuss a few properties of the generalized
Lie derivatives, which all require the section constraints
(1.1). First, we note that there are “trivial” gauge param-
eters, i.e., gauge parameters that do not generate a gauge
transformation via Eq. (2.4). These are of the form

AM = aMNKQ vk, (2.10)
for an arbitrary covariant vector yg. To prove this claim we
compute from Eq. (2.8)

S VM = (—dMPQaNapﬂfg + 1OdNLRdA/IKRdLPQaKaP)(Q) V.
(2.11)

Here we have set to zero the transport term and the density
term, since for the above parameter they vanish by the
section constraints (1.1). Next we apply the cubic identity
(2.3), noticing that

drond® MK APOL Oy Dpy 0

1
— ngLN(zdRMKdPQL + 2dRQKa’PML)8K8p;(Q

2

= 3 dRLNdRMKdPQLaKaplg, (2.12)

where we used the symmetry in K, P and the section
constraint. The cubic identity thus implies

IOdRLNdRMKdPQL 8K8P)(Q

=25y MakPA P 0pyy = d™M0N0pyp.,  (2.13)
where, in the last equality, we used again the section
constraint. Inserting this in Eq. (2.11) we observe that this
cancels the first term, thus proving 6, VM = 0 and so the
triviality of the action of this gauge parameter. In the above
proof we have given the detailed steps that will recur in
similar form in many of the computations below, making
repeated use of the section constraints (1.1) and the cubic
identity (2.3). As such, in the following derivations we will
not repeat all intermediate steps in similar detail.

Next, we turn to the gauge algebra. A direct computation
as above shows that, modulo the section constraints (1.1),
the gauge transformations close

[0A,200,) = Oay0 )0 (2.14)
according to the “E-bracket”

PHYSICAL REVIEW D 89, 066016 (2014)

Put differently, the generalized Lie derivatives satisfy the
algebra [26,29]"

[La,» L] = Lia, Ay, (2.16)
The E-bracket is the M-theory or EFT analogue of the
C-bracket in DFT. Like the C-bracket, the E-bracket does

not define a Lie algebra in that it has a nontrivial
“Jacobiator,”

JU, VW)= [[U,V]g, W]g + [[V, W]g, Ulg

+ [[W,Ulg, Vig. (2.17)
As in DFT, however, the Jacobiator takes the form of a
trivial parameter [Eq. (2.10)] and is therefore consistent
with the Jacobi identity for the symmetry variations,
[[64,64,] 8a,] + cycl = 0. The proof is formally identical
to that for the Courant bracket in generalized geometry [61]
or for the C-bracket in DFT [39] and proceeds as follows.”
First, we define the Dorfman-type product (or bracket)
between vectors of weight %,

(VoW)M = (L, W)M = VNoyWM — WN9, VM
+ 10dMKR w0 VEWE. (2.18)

A comparison with Eq. (2.15) then shows that the product
differs from the E-bracket by a term symmetric in the two
arguments,

(VOW)M = [V, W]g + SdMKRaK(dRPLVPWL). (219)
Note that the symmetric contribution takes the trivial form
(2.10) and so (VoW) and [V,W]; generate the same
generalized Lie derivative. Using this and the algebra
(2.16) it is straightforward to verify that the product
satisfies the Jacobi-like identity

Uo(VoW) — Vo(UoW) — (UoV)oW = 0. (2.20)
In fact, with Eq. (2.18) we compute
Uo(VoW) — Vo(UoW) = Uo(LyW) — Vo(Ly W)
— H_Ul]_vw - [Lv[l_Uw
=LyvW
= LenyW = (UoV)oW, (2.21)

'Note that the seeming sign difference between Eqs. (2.14) and
(2.16) originates from the difference between a field variation,
acting on fields first, and an abstract operator like the Lie
derivative.

See also the analysis in the context of exceptional generalized
geometry [26], to which our discussion reduces for one solution
of the section constraint.
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thus proving Eq. (2.20). Next we use Eq. (2.19) to compute

(U, V]g. Wig
= ([U, V}EOW)M - SdMKRaK(dRPL[U’ V]EWL)

= ((UOV)OW)M - SdMKRaK(dRPL [U, V]gWL) (222)
Using the fact that as a consequence of Eq. (2.19) the E-
bracket Jacobiator is proportional to the “Jacobiator” for
the Dorfman product, one computes with the identity (2.20)

5
JMU,V, W) = ngKRaK(dRPL([U’ VIEwr

+ [W, U EVE + [V, WIEUL)).  (2.23)
This completes the proof that the Jacobiator is of the trivial
form Eq. (2.11).

B. E() tensor hierarchy

We now turn to a discussion of external covariant
derivatives, gauge connections, and covariant curvatures.
These are necessary because in the above gauge trans-
formations we will take the gauge parameters AY to be
functions of the (internal) Eq ) coordinates Y M but also of
the (external) five-dimensional coordinates x*. Thus, the
gauge transformations are local with respect to the x space
and the corresponding partial derivatives 0, need to be
covariantized. We thus introduce a gauge connection A”M
and define the covariant derivative

D,=0,-Ly,. (2.24)
For instance, the covariant derivative of a vector (of weight
A) is given by

DﬂVM - aMVM —AMKaKVM + 6|]:DMNKL8KA/4LVN

- A@PAMPVM. (2.25)

Sometimes, we will explicitly split off the density term and
write

D,VM = D,VM — 29,A,P VM (2.26)

for a vector VM of weight 1. The transformation of the
gauge connection is obtained by requiring gauge covari-
ance of the covariant derivatives. An explicit computation
shows that with

5AMM = @,AM - A”K(?KAM + AKakA”M
— 10d"NP dy; p ALONA,K
1
= DAY — 2 (9, S )AM

=D,A", (2.27)

PHYSICAL REVIEW D 89, 066016 (2014)

the covariant derivatives are indeed covariant. This con-
firms that the gauge parameter AY is a contravariant tensor
of weight 1 = 1.

Next, we introduce a non-Abelian field strength for the
above gauge connection. The naive non-Abelian Yang-

Mills field strength reads

F, M = 20,4, —[A, A Y
= 20,A,M = 24, K 9xA M

+ IOdMKRdNLRA[ﬂNﬁKAU]L. (2.28)
Since the E-bracket does not satisfy the Jacobi identity,
however, this field strength does not transform fully
covariantly. We first compute its variation with respect
to an arbitrary 6A M which is a contravariant vector of
weight 4 = %,

6FWM = 2DD45A,,]M + 1OdMKRdNLR6K(AD,N5AD]L). (2.29)

The final term here is noncovariant, but of the “trivial” form
(2.10). In the spirit of the tensor hierarchy [74,75], this
suggests introducing 2-form potentials B, ), and defining
the full covariant field strength by

FuM=F,M+ 104" 0B, v, (2.30)
such that its general variation is given by
6F M = 2D, 6A,M +10d"VK 0k AB,, . (2.31)
with
AB,,y = 6B,y + dyg A 6A" (2.32)

The covariant field strength also appears in the commutator
of covariant derivatives,

[D,.D,] = -Lp, =-Lz,. (2.33)
where the last equality uses the triviality of Eq. (2.10). With
these results at hand we can now verify the gauge
covariance of the curvature. In addition to the gauge
symmetry parametrized by AM, the newly introduced
gauge potential B, y, comes with its own tensor gauge
symmetry, whose parameter we denote by =, Explicitly,
the complete gauge variations are given by

1 -
8A,M = DA = 2 (O A S )AY = 104" EOKE . By

- 4 =
=2Dy=)my — 3 (OkARS)Zgm + dug ANH,*

(2.34)

up to yet unspecified terms O, satisfying
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dMNKaKOWN =0, (2.35)
which do not contribute to Eq. (2.31). It is a straightforward
calculation to show that under Eq. (2.34), the field strength
(2.30) transforms as a contravariant vector [Eq. (2.8)] of
weight 4 = % Moreover, the form of Eq. (2.34) shows that

the 2-form %auge parameter =, is a covariant vector of

weight 4 = .

After having introduced a gauge-covariant field strength,
we will now discuss the Bianchi identities, which is also a
convenient trick in order to define the covariant field
strength of the 2-form B,, ). To this end we note the
following useful relation, which follows from the obser-
vation in Eq. (2.9):

Dﬂ(dMNKaKVN) - dMNKaKDMVN, (236)
which is valid for any covariant vector V of weight A = %
An explicit computation shows that the field strength (2.30)
satisfies the Bianchi identities

3DyF

M = 10d"NK 9 Hyy (2.37)

vp|

with the 3-form field strength H,,y defined by the
following equation (up to terms that vanish under the
projection with d¥¥K9):

Howp v = 3DMBD/)]M — 3dMKLA[,4Ka,,A/,]L
+ ZdMKLA[#KAUP(?PAP]L
- 1OdMKLdLPRdRNQA[”KAUNaPA/,]Q R

(2.38)

HUp

With respect to the generalized Lie derivative, this is a
covariant vector of weight A = % Next, we determine the
Bianchi identity for H,,. From the derivative of Eq. (2.37),

20d"NK D Dy Hypoy = 6D D, F pg”

= _ISdMNKaK(dNPQwaprU]Q)y
(2.39)
we conclude the Bianchi identity
4D[/4Hupa]M = _3dMPQ]:DwPFp0']Q +- (2.40)

again up to terms

with dMNKQ,.

annihilated by the projection

III. COVARIANT Eg THEORY

We are now in the position to define all terms in the Eg )
EFT action (1.3), specifically the kinetic terms for the
propagating fields e,“, M,y and AﬂM . The dynamics of
the 2-form tensors B, is governed by a topological
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Chern-Simons-type term that implies the required duality
relations between AMM and B,,,;. We define the “potential”
term as a function of the generalized metric M,y and the
external metric g,,, and prove its gauge invariance under
the internal generalized diffeomorphisms. Finally, we
discuss the nonmanifest invariance of the action under
the (covariantized) five-dimensional external diffeomor-
phisms, which in turn fixes all relative coefficients of the

action.

A. Kinetic and topological terms

Let us start by recalling the field content as given in
Eq. (1.2) above,

{eﬂa7MMN7AﬂM7B/wM}' (31)

In the following we define the kinetic terms for the first

three fields. The five-dimensional vielbein (“fiinfbein”) e,

is a scalar density under AM gauge transformations, with
1

weight 4 = 3. In order to write a gauge-invariant action we

thus have to employ the covariant derivatives

1
Dye,* =0, —AMOye, — gaMAﬂMe,f‘ (3.2)

in the usual definition of the spin connection coefficients
a)ﬂ“”, which then become AM scalars (i.e. carry weight
A = 0). The correspondingly covariantized Riemann tensor
Rm,“” defined in the usual fashion then also transforms as a
AM scalar. However, because of the noncommutativity of
the covariant derivatives D,, the covariantized Riemann
tensor does not transform tensorially under local Lorentz
transformations 6,w,*” = —D,A*”. This can be repaired by
defining the improved Riemann tensor [73]

R,"=R,™+F, Me®Oye,b, 3.3)
which transforms covariantly under internal generalized
diffeomorphisms and local Lorentz transformations.” The
covariantized Einstein-Hilbert term

Spy = / dxd”YeR = / dxd”Yee e, R, (3.4)

then is gauge invariant under these symmetries. In particu-
lar, the weight 4 = % carried by the fiinfbein determinant e
according to Eq. (3.2), combines with the weights of the
inverse fiinfbeins to a total weight of 1, as required in order
for the Lagrangian to vary under AM transformations into a
total derivative.

30ne could also write an A-covariantized Einstein-Hilbert term
in terms of the metric g,,, in which case there is no such extra
term present, with Lorentz symmetry being already manifest.
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Next, we turn to the kinetic term for M ,y. This matrix
parametrizes the scalar coset space Eg )/ USp(8) whose 42
coordinates describe the scalar fields of the theory. Under
the generalized diffeomorphisms (2.5) it transforms as a
symmetric 2-tensor of weight // = 0. Note in particular,
that this transformation is compatible with the group
property det M = 1. Introducing its covariant derivative
according to Eq. (2.24), we can define the gauge-invariant
kinetic term

1
4 eg'“DDﬂMMNDVMMN,

Lo=n; (335)

with the inverse matrix MMV In particular, with the
inverse metric ¢ carrying weight A= —% and the
fiinfbein determinant the carrying weight A = % the total
weight of this term in the Lagrangian is 1, as required for
AM gauge invariance. Similarly, the Yang-Mills kinetic
term — 3 e My F*MF,N in Eq. (1.3) carries the correct
weight of 1 and is hence gauge invariant. Indeed, we saw

above that the field strengths F WM are gauge covariant and
|

Stop = / BxdY Ly,

:K/d27Y/ (dynk FYAFNAFE — 40dM"NEH  AONHK ),
Me

PHYSICAL REVIEW D 89, 066016 (2014)

carry a weight of A = % which is precisely the correct

weight given the presence of two inverse metrics g**.
After having discussed the kinetic terms, we now turn to
the topological Chern-Simons-like term. By this we mean a
term that is written without use of the metric (i.e., only
through exterior products of forms) and that contains bare
gauge potentials such that it is only gauge invariant up to
boundary terms. Its structure is analogous to the topological
term in general D = 5 gauged supergravity [77], such that
its field equations yield the desired first-order duality
equations relating AMM and B, y. Such a term may be
written more conveniently as a total derivative in one higher
dimension, which has the advantage of making the gauge
invariance manifest. Using form notation for the invariant
curvatures introduced in Egs. (2.30) and (2.38),

1 1
FM = EFWde”/\dx”, Hy = yHWpde”/\dx”/\dx/’,
(3.6)

the topological term can be written as an integral of an exact
6-form over a six-dimensional space M,

3.7

whose overall constant x will be determined below. From this we may determine the nonmanifestly gauge-invariant five-
dimensional form, but it is not very illuminating and will also not be needed in the following. What will be needed in the
following is the general variation of the topological term, which is derived from Eq. (3.7) and takes the form

3
5£t0p = gehrer <Z dMNKf”DMFpaN(sATK + SdMNKdKPQaNHm,p MA6P5ATQ + SdMNKaNHpr M5367K> . (38)

In terms of the covariant variation (2.32) it takes the even simpler form

3
5'610}) = gehvrot (Z dMNKJ:W,M]:po-NéATK + SdMNKaNHMyp MABO'T K> .

With this form it is straightforward to explicitly
verify gauge invariance under the A and = transformations
(2.34), integrating by parts and using the Bianchi identities
(2.37) and (2.40). Note that due to Eq. (2.36) in this
computation we can exchange the relevant dy, and D,
derivatives.

We close this subsection by giving the field equations of
the topological fields B,,,,, which enter the topological
term and the Yang-Mills term via the covariant field
strength 7, ™. The field equations obtained by varying
B,,p in these terms read

(3.9)

dPMLO; (e MynFHN + ke H ppopg) = 0. (3.10)
We will see in the following sections that upon taking
appropriate solutions of the constraints (1.1), these relations
reduce to the required first-order duality relations of either
11-dimensional supergravity or type 1IB supergravity.

B. The potential

We now discuss the final term in the EFT action, namely
the potential, which is a function of g,, and M,y given by
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1 1
V:—ﬁMMNaMMKLaNMKL ‘I’EMMNaMMKLaLMNK

1 1
—59_] O gy MMN —ZMMNQ_l Om9g™ ' Ong

1
——MMNaMgwaNgﬂu-

i (3.11)

The relative coefficients in here are determined by AM
gauge invariance, and in the following we will verify this
gauge symmetry. As the potential is an Eg singlet, with
all indices being properly contracted, it is sufficient to
verify the cancellation of all terms that are “noncovariant”
in the following sense. For a generic object with an
arbitrary number of upper and lower Eg) fundamental
indices, we define

AAE(sA_l]—A' (312)
Put differently, by A we denote all terms in its variation that
differ from the covariant ones (in turn given by the generalized
Lie derivative). As the covariant generalized Lie derivative
terms automatically combine into the Lie derivative of a
scalar, it is sufficient to verify the cancellation of the non-
covariant terms. The only terms that lead to a nontrivial A are
those involving a partial derivative, so we have to compute
those terms for OM and Jg. First, we compare

S0 (Dy MELY = 9y, (APOp MEL = 12P(K 1P 5, AQI MLIR),

3.13)
with the covariant
Ly (O MKE)
- Apap(aMMkL) - 12[FD(KR‘PQ8;>AQ|8MML)R
+ 6PR P 0 OpACORMEE + 20p AP O MEE. (3.14)

Here we introduced 4 in order to allow for a possible weight of
OM. In fact, we will show momentarily that although M has
weight zero, its derivative has a nontrivial weight. To see this
we note that the first term in the second line of Eq. (3.14)
simplifies by the section constraint, so that by writing out the
projector according to Eq. (2.1) we obtain

LA(OuM*E)
= APOp (9 MEL) — 12PK L IP L9, A0 MR
+ %apAPaMMKL + Oy AP Op MEL + 00 AP0y MKL.
(3.15)

In Eq. (3.13) there are no density-type terms, so in order to
match this as closely as possible with Eq. (3.15) we have to
cancel the density term by setting 1 = — % We then infer that
Eq. (3.13) agrees with Eq. (3.15), up to terms that involve
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second derivatives of the gauge parameter. In total, we have
shown that 0 M comes with weight 4 = —% while its non-
covariant variation is given by

Ap (O MEE) = —12PK LI 10,0, A2 MPR. (3.16)
Similarly, we have
Ap(OyMir) = +12PR (" L0y 0p AP M e, (B.17)

again taking O M to have weight 1 = — % Taking the trace of
Eq. (3.16) we obtain in particular

Ap (O MMN) = _gaNaPAPMMN —ONOpAMMPN ...
(3.13)

up to terms that vanish upon contraction with 9,, by the
section constraint. Finally we need to determine A for 0g. By
an exactly analogous computation we find that g~'9g has
weight 1 = — % Moreover, derivatives 0, acting on ¢"* and
9y induce additional weights of — % such that we find the total
weights to be

1
Mg 'ong) = —3
AMOug"”) = -1,

l(aMg;w) = (319)

W =

with the noncovariant gauge variations given by

10
Ax(g7'Ong) = ?8M8PAP7

2
Ap(Oug™) = - gaMaPAPgW,

2
Ar(Ongw) = gaMaPAPg;w- (3.20)

Let us now verify the gauge invariance of the potential.
First, we note that the weights of the partial derivatives of
the fields are as required in order to combine to a total
weight of 1 with the weight 1 =3 of the fiinfbein
determinant e multiplying the potential term in the action.
Thus, the complete A invariance of the action is proven
once we check that all A, variations above cancel, which
we will now show. We compute for the first term of

Eq. (3.11)
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1
51\ <— ﬂ €MMN8MMKL6NMKL>

1
= 8 e@MapAKMMNMPLaNMKL

5
— § edRQdepsaMapAQMMNMRLaNMKL

- eaMapAKMMNMPLaNMKL. (321)
Here, in the second equality, we used the fact that M is Eg )
valued with determinant 1, which allows for simplifications.
In order to explain this we first note that the current

(In) L = M OyMpy (3.22)
lives in the adjoint representation and is traceless. Therefore
it satisfies

PMNKL(JP)LK - (JP)MN. (323)

Spelling out the projector with Eq. (2.1), this condition implies

1
dNLdeKSJLK - —EJMN (324)
Using this in the second term on the right-hand side of the first
equality in Eq. (3.21) then reproduces the final equality. For
the second term in the potential (3.11) we compute

1
5A (E EMMNaMMKLaLMNK)

2
= geaMapApaNMMN — eaMapAKMMNMPLaNMLK

+ €0y 0pALO, MMP (3.25)
Here we used again that the current J is Lie algebra valued, so
that the invariance of the d symbol implies

0 = 3gKSP M) — gKPM gS 1 2gSK(P M) . (3.26)
The last term in here appears in the above variation, and by this
relation it has been rewritten in terms of the first term, which
then in turn gives zero by the section constraint. We observe
that the cubic term in M in Eq. (3.25) precisely cancels the
same term in Eq. (3.21), which in turn determined the relative
coefficient between these terms. By using Eq. (3.20) it is
straightforward to verify that the remaining terms linear in
OM are cancelled by the A, variation of the terms in the
second line of Eq. (3.11). This proves the full AM gauge
invariance of the potential.

C. (4 + 1)-dimensional diffeomorphisms

In the previous subsections, we have determined the
various terms of the EFT action (1.3) by invariance under
generalized internal AM diffeomorphisms. While this has
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uniquely fixed the form of the five different terms in
Eq. (1.3), they could in principle have appeared with
arbitrary relative coefficients. In this section we show that
all relative factors are determined by invariance of the full
action under the remaining gauge symmetries, which are a
covariantized version of the (4 + 1)-dimensional diffeo-
morphisms with parameters & (x, Y). If & is independent of
Y these are manifest symmetries for each term in the action
separately. For general &, however, this gauge invariance is
far from manifest and in particular it relates all terms in the
action. As a result, the action (1.3) is the unique action
(with no free parameter left up to an overall rescaling)
that is not only invariant under generalized internal
diffeomorphisms AY(x, Y) but also under the appropriate
version of the external diffeomorphisms & (x,Y). The
actions of these diffeomorphisms on the various fields
are given by

oe,* =&Dye," +D,L%,°,
OMuyn = fﬂpyMMN,
5AMM — éyf’WM +MMN£]W6N§D,

1
AB;JI/M = 1—6K_§pegﬂlzpa‘rfUTNMMN7 (327)

written for B, in terms of the covariant variation (2.32).
They take the form of conventional diffeomorphisms, but
they are “covariantized” with respect to the connection A of
the separate A gauge symmetry, except for an additional
M-dependent term in 5A”M and an on-shell modification in
AB,, y. More precisely, the naive covariant variation of
B,, y would take the form A:B,,\ = &H,,, y, With the
covariant field strength defined in Eq. (2.38), but it turns
out that off-shell gauge invariance of the action requires one
to replace this field strength according to the duality
relation (3.10). Thus, the gauge variations (3.27) are only
on-shell equivalent to the conventional form of the (cova-
riantized) diffeomorphisms.

Next, we discuss the gauge invariance of the action under
Eq. (3.27) in some detail. The explicit verification of this
gauge invariance is quite tedious and so we focus on a
subset of terms that provide a very strong consistency check
and that are sufficient in order to determine all relative
coefficients in the action. Specifically, for various structures
the cancellation proceeds completely parallel to the calcu-
lation that ensures standard diffeomorphism invariance in
11-dimensional supergravity in a 5 + 6 splitting of fields
and coordinates. They can therefore be omitted. In par-
ticular, as explained in Ref. [72], terms linear in M that are
of the structural form MMN3y,(---)9y(...) have to cancel
separately, and this computation is formally identical to the
corresponding one for standard diffeomorphisms. In the
following we focus on those terms for which cancellation
involves the novel features of the EFT action.
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We start by computing the variation of the sum of Yang-Mills and the topological term, denoted in the following

by Lyr,

Using Eq. (3.9) one easily sees that its general variation is given by

8Lyl ppr = k€ dyng F o, F o N MM g, 008 +

1
Ly = — 1 eF MFN My + kLs. (3.28)
4
0Lyt = (KewpmdMNK]:vij:mN — D, (e My F* N))éAuM + 5dMKNaK (ey:”y NMMN + ?K ”WMH/mM> AB#D N
(3.29)
Next, we insert the gauge variations (3.27) and first focus on the FAF terms in the variation,
B dMKN8 f’;wQM 7 f‘aTPM
ﬁ K(e MQ)é ee;w/m‘r NP
5
= ke dy g MMEF K F N g0 8 - ﬁgﬂwdeKNMMQMNP ' F o2 9,10k & (3.30)

We can simplify this variation by using that M is Eg;) valued, so that the invariance of the d symbol implies
d"KN Mo Myp = dpoy MMV . Using this in Eq. (3.30) we infer that this variation vanishes for

==, (3.31)

Let us now return to Eq. (3.29) and focus on the variation coming from the second term in the first line, restricted to the
covariant, M-independent term of 54, in Eq. (3.27). Integrating by parts we compute

1
eFH NMMNDD(gpf/mM) =eF" NMMNDygpfpyM - Eeflw NMMNél)DﬂfyUM + SedMPQgp‘/'T;w NMMNaPH;wp [ok)

where we rewrote the DF term as a total curl and then
used the Bianchi identity (2.37) in the last term in the
second line. Let us note that the first two terms of Eq. (3.32)
occur already in a completely analogous form in the
usual diffeomorphism variation, and so their cancellation
against the variation of g,, and M,y from Eq. (3.29) is
standard. The term in the last line originating from the
novel Bianchi identity, however, needs to be cancelled
separately. This is achieved by the variation originating
from the second term in the second line of Eq. (3.29).
In fact, by inserting AB from Eq. (3.27) we compute for
this term

5 Iy
E eeﬂu/lrr’r’eﬂyﬂo—rdMKNaKHpo’T M&jf” ! QMNQ

= —SedMKNaKH/m Mépf’o’r QMNQ,

which cancels precisely the final term in Eq. (3.32).

(3.32)

Let us next inspect the variation of the second term
in the first line of Eq. (3.29), but now under the non-
covariant, M-dependent term of 5AﬂM in Eq. (3.27). Upon
integration by parts we obtain

=D, (eMynF" N)MMKgﬂ,)aKétp
= efﬂVMMMNDDMNKaK§M - F MDﬂ(gypapr)-
(3.33)

The second term precisely cancels against the main con-
tribution from the variation of the Einstein-Hilbert term.
This computation is formally identical to that presented in
Ref. [72], cf. Eq. (4.16) in that paper. The first term in
Eq. (3.33) will cancel against the variation of the scalar
kinetic term. In order to show this, let us first compute the
variation of the “scalar current,”
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55(DﬂMMN) = Dﬂ(fypyMMN) - ﬂ—&AMMMN

PHYSICAL REVIEW D 89, 066016 (2014)

=Le(DyMun) =ELr, Muyn+Ler, My —Laexg, 0,8 Mun
=L:(DyMyn)+ 12PPQK(MMN)K~7:,WQ8P§” — MXLO My 9, Ok E + 12PPQK(MMN)K8P (M"Cg,,0,&)

2
=L:(D,Mpyy) +§MMN~7:WP3P§” + 2fypKMK(MaN)§D - 2OdPKLdQL(MMN)Kf;wQaP§y

2
- MKL@LMMN.Q#U@K'):D +§MMN3P(MLP9W8L§”) + 2MK(M8N) (MKLgﬂyaLfy)

- ZOdPKLdQL(MMN)KaP (MRQg;wang)‘

After some tedious algebra, using in particular the fact that
(DML M)M ) is an egq) algebra-valued matrix on which
the projector P¥ ,", - acts as the identity, one then computes
for the variation of the scalar kinetic term

8Ly = DFMMN My F 15 0 & + DFMMN O, (g,,0nE")
1
+ <MNL8MMLK - 12MKL8LMMN)

X D, MMN 1. (3.35)
The first term in here precisely cancels the first term in
Eq. (3.33). The second term is of the form MMN9,,0y,
which we consistently omitted, cf. the discussion above and
Ref. [72]. Finally, the last line will be cancelled against part
of the variation of the potential (thereby determining the
overall coefficient of the potential). In fact, it is not difficult
to see, using the analogue of the first of the equations in
Eq. (4.22) in Ref. [72], that the variation of the leading
terms in the potential read

1 1
5V_6<§MNL8MMLK—ﬁMKL8LMMN> aKMMN+ et

1
~ (M D= Lm0, My

XD, MMNOp &t 4. (3.36)
As claimed, in the combination L;, — V they cancel the
terms in Eq. (3.35). We have thus succeeded in determining
all relative coefficients in the action (1.3) from & gauge
invariance and have shown how the nonstandard diffeo-
morphism symmetry is realized in the EFT action. This
concludes our discussion of the (4 + 1)-dimensional dif-
feomorphisms.

IV. EMBEDDING OF D = 11 SUPERGRAVITY

In this section we show explicitly how to embed 11-
dimensional supergravity into the EFT constructed above.
To this end, in the first subsection we rewrite D = 11
supergravity in a Lorentz gauge-fixed form that would be
appropriate for Kaluza-Klein compactification to D =5,
but keeping the dependence on all 11 coordinates. In the

(3.34)

[

second subsection we reduce the EFT (1.3) by choosing a
specific solution for the section constraint (1.1) that breaks
Eg(6) to GL(6), with all fields depending on 5+ 6 coor-
dinates. After the explicit dualization of some fields, we
establish complete equivalence with D = 11 supergravity.

A. Decomposition of D = 11 supergravity

We start by briefly recalling the bosonic sector of D =
11 supergravity [2], whose fields consist of the elfbein Eﬁ&
anq the 3-form potential C;;,, where ji,0 =0, ..., 10, and
a,b=20,...,10, denote D = 11 curved and flat indices,
respectively. The action reads

pavpé

| BTN
Sy = [ d"xE(R—-—F'PoF,
11 / X < 12

E-lehPuf,

1
+ 12.216 Hl"'ﬁ4Fﬁ5"'ﬁsCﬁ9ﬁ10ﬁ11) NCNY

with the Abelian field strength

4.2)

This theory is invariant under 3-form gauge transformations
6C;5p = 30 Ay and under 11-dimensional diffeomor-
phisms as well as local Lorentz transformations. Next we
reduce the Lorentz gauge symmetry from SO(1,10) to
SO(1,4) x SO(6), choosing an upper-triangular gauge for
the elfbein, and accordingly split the indices and field
components in the above three terms of the action.

1. Einstein-Hilbert term

First we consider the decomposition of the Einstein-
Hilbert term, following Refs. [80,81]. For future applica-
tion it is convenient to keep the decomposition general, so
for the moment we consider a D-dimensional Einstein-
Hilbert term and split the indices as D = n + d,

p=um), a=(aa), .3)
where y = 1,...n, and m = 1, ..., d, and similarly for the
flat indices. The Lorentz gauge symmetry is partially
fixed by choosing the upper-triangular form of the
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D-dimensional vielbein as follows:

a ¢yeﬂa Aym¢m(l
E;i = < 0 ) (4.4)
where ¢ = det(¢,,%). The inverse is then given by
i ¢_yeaﬂ _¢_yeayAvm
/\’l pu—
E, ( 0 pm . 4.5)

The constant parameter y depends on the “external”
dimension n and is determined as

1
n—2

y=- (4.6)
by requiring an Einstein-frame metric in the n-dimensional
theory.

Before we compute the form of the Einstein-Hilbert term
in the gauge (4.4) it is convenient to investigate the form of
the gauge symmetries after this splitting. The original
Einstein-Hilbert term is invariant under D-dimensional
diffeomorphisms x# — x — & and local Lorentz trans-
formations parametrized by yE j» Which act on the elfbein as

5Eﬁa - 5’73;,E,f‘ + aﬁsz’E;,& + A&EEﬂl; (47)
After the splitting of indices, the diffeomorphisms give rise
to two types of gauge symmetries according to
&= (&, A™). (4.8)
We will refer to the gauge transformations parametrized by
A™ as “internal” diffeomorphisms. From Eq. (4.7) we
compute
ope,* = N"0,e,4 —y0,,AN"e,“,

m€u
5A¢ma = An8n¢ma + amAngbnav
5A¢ = An8n¢ + 8nAn¢v

SAA = B A" — A DA + AD,AM. (49)

We infer that ¢ and ¢ transform as tensors (or tensor
densities) under the symmetry of A™ transformations, for
which A, provides a gauge connection. In fact, we can
define covariant derivatives and field strengths as follows:

D,ef=0,e,"—A,"0,e, +y0,A,"e,*,

Dﬂ¢ma = ay¢m(l _Aﬂnan(ﬁma - 8mA;4n¢na’
F,"=0,A"-0,A"—A0,A +A,0,A,", (4.10)
and it is straightforward to verify that they transform

covariantly under Eq. (4.9). In order to compute the form
of the gauge transformations parametrized by &, which we
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refer to as “external” diffeomorphisms in the following, we
have to add a compensating local Lorentz transformation in
order to preserve the gauge choice in Eq. (4.4). The Lorentz
parameter is found to be
Mp=—@'pg"0, &, . (4.11)
Moreover, it turns out to be convenient to present these
“external” diffeomorphisms in the form of covariant or
“improved” diffeomorphisms, for which we add a field-
dependent gauge transformation with  parameter
A" = —EA,™. The full transformation rules can then be

written directly in terms of the covariant objects from
Eq. (4.10),

oce,* =& Dye, + D&,
5§¢ma = §DDu¢ma’
0:A,M =E'F," + ¢2”¢’””g”y8n§”, 4.12)

Wlth ¢mn — ¢am¢(m‘

After having discussed the form of the gauge sym-
metries, we are now ready to decompose the Einstein-
Hilbert term. To this end it is convenient to use the
following formula:

SEH—/dDXEE&ﬂEi)DRﬁDaI;
d 1 nabegs
= [ d"xd°yE _ZQ Q0+

+Q, Bﬁfzfaﬁ>, (4.13)

where we introduced the coefficients of anholonomy,

Qpe = EE (0,Ey: — 0,E,). 4.14)

Inserting the elfbein (4.4) and its inverse in here we find for
the various components

Qabc = ¢_yQahc + 2y¢_y_le[a”’1h]cl)ll¢’

A ) v m
Qaby - ¢ yeaﬂeb F/u/ ¢myﬂ

Qaﬁy = ¢_y¢ﬂmea”D/¢¢mw

Qabc = eby¢amDmevc’
Qaﬂc =0,

A

Qs = Q (4.15)

afy>

where we introduced the “external” and “internal” coef-
ficients of anholonomy,
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Qpe = 2e[a#eb]yDﬂeuca
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that in Eq. (4.15) all the components are organized already
into the covariant objects (4.10), so that the A gauge

Qepy = 201" by Onbny (4.16) i variance of the action will be manifest.
d defined Next we determine the form of the Einstein-Hilbert term
and detne by inserting the components (4.15) into Eq. (4.13) and
Dyese = Opese + 17" Opes. @17) e
This latter derivative is covariant under the internal diffeo- E= detE,z& = ¢ tle. (4.18)
morphisms (4.9) in that D,e,. transforms as a vector
density (with the same weight —y as e,.). Moreover, we see ~ We find
|
S _ 4t dd 1 Qach 1 Qabcg Q0 au bzzF m )
EH — xarye _Z abc +§ bea + a— €7 )% (eb mepa)
1 1 1
- §¢mngm/D;4¢maDu¢na - 7/2 (n - 2>¢_29”DD;:¢D1/¢ - Egm/(cﬁamD”d)my) (¢yan¢na) - Z ¢_2y¢mnFﬂDmF/wn
1 1 . _ - Ly
+ ¢27 (_ §¢mng#DDmeyaDneua - §¢mn(ebﬂDmeyc)(ecyDnesz) + ¢mn(€ lee)(e ane) - ZQ /}ygaﬁ}’
1
+ EQ"’/’}’Qﬂm + Q*Q, + 2¢“’”Qae‘1Dme>} . 4.19)

Let us now write the various terms more geometrically. The
terms in the first line combine into the n-dimensional
Einstein-Hilbert term for ¢, but with the additional
covariantization that all derivatives are covariant according
to Eq. (4.10) and the Ricci scalar is based on the

“improved” Riemann tensor

R, =R,™®+F,"e%0,e,,, (4.20)

which is necessary in order to preserve local SO(1,4)
Lorentz invariance, as discussed above for the full EFT.
Next, the terms in the last line in the potential can also be
written more geometrically, using

1 1
e¢2yR(¢m“) = e (_ ZQaﬂyQaﬂy + EQaﬂygﬁya
+QQ, +2¢,"e71D,,eQ*
+2(2r - 1)¢am¢_18m¢£2“> + total der.,

(4.21)

which for y as determined in Eq. (4.6) reproduces the last
line of Eq. (4.19). Finally, we can reorganize the De terms
into Dg terms in order to make the local Lorentz invariance
manifest. In total we obtain

[
A1
Sg = /d”xddye [R —Zg{)_zy(ﬁmnF"”’”FW”
1
_§¢mng#DDﬂ¢maDu¢na - y2 (I’l - 2>¢_29”DD;4¢D1/¢

1
_Eg;ty(¢amDy¢my)(¢yan¢na) - V(¢? e):| s (422)

with the “Einstein-Hilbert potential”

Ven(g.e)

1
=—¢% <R(f/>) R (D¢ DGy +9'Dygg™' D, )) :

(4.23)

Below we will also need the form of the potential in terms
of the symmetric tensor ¢,,, = ¢,,“P,. as opposed to the
vielbein. Integrating by parts, and setting y = — % the term
involving the internal Ricci scalar can be written as

2 2 (1
e¢_§R(¢) = 6(15_5 §¢mn¢kl¢pqak¢mqap¢nl
1
_Z¢mn¢kl¢pqap¢mkaq¢nl
2 21
- §8m¢m11¢—1 an¢ - ?qﬁmn (¢_18m¢) (¢_18n¢)

+0,¢"" e 0,0 +2¢"" (€7 0,,e) (971 0,) |
(4.24)
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which is the form that is convenient for the comparison
with the Eg()-covariant theory.

2. 3-form kinetic and topological terms

We now turn to the decomposition of the kinetic term for
the 3-form. First, we have to perform field redefinitions of
the various components of Cj;, in terms of the Kaluza-
Klein vector in order to obtain forms that transform
covariantly under the gauge symmetries. The general
prescription for Kaluza-Klein reductions is to “flatten”
all D = 11 curved indices with E,# and then to “unflatten”
with the external n-bein components E,“. For instance,
the vectors originating from the 3-form are redefined

according to

A[l mn = EﬂaEaﬁCﬁmn' (425)

Performing the analogous field redefinition for the other
components we obtain the following field variables
originating from the 3-form C;;,, denoted by A:

Amnk = Counks Aﬂmn = Cﬂmn - A/Akckmn’
A/wm = C;wm - 2Awncu]mn + AﬂnAukank’

Aup = Cup = 3AY" Copjp + 34" A Cplinn

— AMAAKC (4.26)

This definition is such that the fields transform covariantly
under internal diffeomorphisms, i.e., simply according to
their “internal” index structure. In order to display the
transformation under the components of the 3-form gauge
parameter A ;, we also have to perform redefinitions of the
parameters with the Kaluza-Klein vector, following exactly
the same prescription as for the fields. Thus, we define the
new parameters

Ay = Ny — A

W N ete.

(4.27)

Dropping the prime on the parameters in the following, we
obtain the gauge transformations under (A, A,,.A,,)
which act on the fields as

5Amnk = 38[mAnk]’
A yumn = Dy = 200 My
5A”Dm = 2D[#Ay]m - F;wnAmn +0,A

Hv
A,y = 3Dy = 3F " A - (4.28)

vp)

As usual, all derivatives are covariant with respect to
the internal diffeomorphisms. We observe that after the

PHYSICAL REVIEW D 89, 066016 (2014)

decomposition the formerly Abelian 3-form gauge trans-
formations of D = 11 supergravity take a nontrivial form
with noncommuting covariant derivatives and extra
Stiickelberg-type transformations, reminiscent of the tensor
hierarchy introduced above. Moreover, the Kaluza-Klein
Yang-Mills field strength F,," explicitly appears in the
transformation rules.

Let us now turn to the form of the field strength
components. As for the fields, redefinitions are required,
in order to arrive at field strengths that are covariant under
internal diffeomorphisms and invariant under Eq. (4.28).
We define

F/

ok = Eu Ed” Fomnes  €tc., (4.29)

which are manifestly invariant under the 3-form gauge
transformations as a consequence of the invariance of the
original field strength F ;. Dropping the primes in the
following, one finds for the redefined field strength in terms

of the redefined fields

Fonki = 48[mAnkl]7

Fynkl = D;lAnkl - 38[nA|/4\kl]’

F;wmn = ZD[MAy]mn + Fﬂvakmn + Za[mA\;Mn]v
F;w/}m = 3D[;4Ay/)]m + 3F[ﬂynAp]mn - 0,A
= 4D[MAV/15] + 6F[/wmApa]m.

uvp»

F

wpo (4.30)
These field strengths are manifestly covariant with respect
to internal diffeomorphisms. Moreover, one may verify by
an explicit computation that the field strengths are gauge
invariant under Eq. (4.28). Due to the non-Abelian gauge
connections entering the fields strengths, the latter satisfy
nonstandard Bianchi identities,

Dy Fynit = A0 F jujni)
2D F g = =300 F i) — Fu™ Fynkis
3D Fypmn = 20 Fjupin) + 3F s Fpliomn:
ADYF poim = =OnF s + 6F 1" F polnn;

SDyFpos) = 10F )" F poim- (4.31)

As for the tensor hierarchy, the Bianchi identities relate the
exterior derivatives of a field strength to the “next higher”
field strength in the hierarchy.

We are now in a position to give the decomposition of the
kinetic term for the 3-form. Due to the form of the
redefinition (4.29) of the field strengths, it is straightfor-
ward to rewrite the F? term, by simply going to flattened
indices,
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__ L ppuosep
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1
= _E¢ny+le(¢_8yFMupaF;tupa + 4¢_67¢mnFﬂyme/wpn + 6¢_4y¢mn¢k1FMDmkF/wnl
+ 4¢_2y¢mn¢kl¢quﬂmka;mlq + ¢mn¢k1¢pq¢rskaernqu)

1
== E e(¢2Fﬂyng;wpo' + 4¢§¢mnFﬂvmeﬂypn + 6¢%¢mn¢k1FﬂymkFﬂunl

_2
+ 4¢mn¢kl¢quﬂmkaﬂnlq +¢ 3¢mn¢k1¢lﬂl¢rs kaernqu) .

Here we left the raising of spacetime indices with g** implicit,
and we inserted the value for y [see Eq. (4.6)] for n = 5.
Next we have to decompose the topological Chern-
Simons-like term in Eq. (4.1) and write it in terms of the
invariant field strengths defined in Eq. (4.30). One finds

1
— vpol mnkl
'Ctop - = 108 etrote ra Aﬂumemlanlpq

1
+ 6A;mep(mkF/llpq - EA/,w/)lemanlpq

1

+ gAﬂupFomnkFlllpq - ZAymanlquL/po/l
9

+ 4AﬂmnFuklpF/)m1q - EAﬂmnFy/)lerfﬁpq

1
+ gAmnkFﬂlquvpo% + 2AmnkFﬂulpr0/1q> . (433)

The validity of this expression can be checked explicitly by
verifying gauge invariance under Eq. (4.28). As the field
strengths are already gauge invariant by construction, we
only have to vary the bare gauge potentials A. After this we
may integrate by parts and show the cancellation by use of
the Bianchi identities (4.31). This computation requires
|

f,uum = (Fuvmvf;wmn) =
by introducing the scalar-dependent kinetic metric
MmVn = ¢%(¢mn + 2¢k1¢PqukpA"l‘1)’ Mm~

(F

U= 23t P,

4.32)

|
repeated use of Schouten identities according to which terms
with total antisymmetrization over seven internal indices
m,n, ... vanish identically. Let us note that up to total
derivatives, the form of Eq. (4.33) is uniquely determined by
gauge invariance under Eq. (4.28), up to the overall
coefficient that is determined by D = 11 supergravity.
Finally, we can give the complete action of D =11
supergravity under the 5 4+ 6 decomposition and the cor-
responding gauge fixing of the local Lorentz group,

A~ 1~ 1
S = / dxdye {R —Zan}""”m}"m,“ —E(ﬁzF’“’f’”me
1 1
_§¢%¢mnFﬂyme/wpn _§¢mnDﬂ¢maDﬂ¢na

1 1
_§¢_2D}J¢Dﬂ¢ _5 (¢amDM¢m}/) (¢ynD;4¢na)

1
_§¢mn¢kl¢quﬂmkaﬂnlq - V(e’ ¢) + e_lﬁtop .

(4.34)

Here we fixedy = — % according to Eq. (4.6). Moreover, we
combined the 2-form field strengths of the Kaluza-Klein
gauge vector and the vector originating from the 3-form,

ym’ F;wmn - F;kakmn)9 (435)

u

an.kl _ 2¢%¢m[k¢l]’l’ (436)

with the index , = (,,, [’"”]). The topological term is given by Eq. (4.33) and the full potential reads

2|1 1 2 1
eV = —€¢_§ §¢mn¢kl¢pq8k¢mqap¢nl - Z¢m’1¢kl¢pqap¢mkaq¢nl - §8m¢’""¢‘18n(/) - §¢mn (¢_lam¢) (¢_lan¢)

2 1 1 ,
+ am¢mne_lane - §¢mn(e_lame)(¢_lan¢) + qumn (amglwang;w + g_lamgg_lang) - ﬁ¢mn¢k1¢pq¢”kaernlqs .

(4.37)

It is obtained by combining Eq. (4.23) with the purely internal F? term from Eq. (4.32). Moreover, we used Eq. (4.24) and
expanded the Dg terms according to Eq. (4.17). This is the final form of the action, and it is still equivalent to the full
D = 11 supergravity. In the following, we will compare and match this result with the action obtained by evaluating the
EFT (1.3) for a particular solution of the section constraints.
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B. GL(6)-invariant reduction of EFT

In this subsection, we will consider the Eg g -covariant
EFT (1.3) upon specifying an explicit solution of the
section condition, that breaks Eg) down to GL(6). We
will show that the resulting theory upon further dualization
precisely coincides with 11-dimensional supergravity in the
form presented in the previous subsection.

1. GL(6)-invariant solution of the section condition
The relevant embedding of GL(6) into Eg) is given by
GL(6) =SL(6) x GL(1) CSL(6) x SL(2) CEg), (4.38)

with the fundamental representation of Eg breaking as

27 - 6, + 15, +6_,, (4.39)
and the adjoint breaking into
78 > 15, +20_; + (1 4+35)y+20,; + 1,5, (4.40)

with the subscripts referring to the GL(1) charges. An
explicit solution to the section condition (1.1) is given by
restricting the Y™ dependence of all fields to the six
coordinates in the 6, . Explicitly, by splitting the coor-
dinates Y™ according to Eq. (4.39) into

(M} = " Youns Y} (4.41)

with indices m,n = 1, ..., 6, the nonvanishing components
of the d symbol are given by4

mn 1 m S 1
dMNK: d kl = \/36[1(6”5 dmnklpq :4\/§€mnk1pq:
1
d : dmﬁkl: 5k 5[ , dmnklpq: emnklpq7 4.42
MK NG ) 4+/5 ( )

and all those related by symmetry, d¥NK = gMNK) Tn

particular, the GL(1) grading guarantees that all compo-
nents d"™ vanish, such that the section condition (1.1)
indeed is solved by restricting the coordinate dependence of
all fields according to

{0;A =0,0"A =0} & A(x*, YM) - A(x*,y™). (4.43)

Let us first revisit the resulting field content of the model.
The Eg)-covariant formulation presented above carries all
27 vector fields A, ™, now breaking according to Eq. (4.39),
whereas the 2-forms appear only under the projection
d"NKO\B, k. With Eq. (4.42) we find that only the

“We use _the summation conventions XMy, = X"Y,,+
X Y™ + X"Y .
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components B,,; and B, "™ enter the Lagrangian;
moreover, they enter under d,, derivatives according to
OnBuin — 0,Bm, and  0,B,,"". (4.44)
In other words, with this parametrization the Lagrangian
comes with an additional local shift symmetry
6B uvi — 8,,9

8B, = 0, &, lmn], (4.45)

v

s 2, In total, the full p-form field
content of the E¢(¢) Lagrangian in this basis is thus given by

for arbitrary Q

{Aﬂm’ Aymn’ A#rh}’ {Bm/ﬁz’ Byzxmn}’ (446)
modulo Eq. (4.45). Comparing Eq. (4.46) to the field content
of the Kaluza-Klein reduction of D = 11 supergravity in
the split of Sec. IVA suggests identifying the A,™
with the Kaluza-Klein vector fields sitting in the
11-dimensional vielbein (4.4), and to relate the fields
{Auun- B} to the different components of the 11-
dimensional 3-form (4.26). The index structure of the
remaining fields {B,,"",A,”} suggests relating them to
the corresponding components of the 11-dimensional 6-
form, i.e. to describe degrees of freedom on-shell dual to
{A,n+ By }- Finally the six 2-form tensors B,,,, that are
absentin Eq. (4.46) represent the degrees of freedom that are
on-shell dual to the Kaluza-Klein vector fields, i.e. descend-
ing from the 11-dimensional dual graviton. They do not
figure in the action (1.3) and we comment on their role in the
conclusions. We recall that in the EFT formulation, all vector
fields appear with a Yang-Mills kinetic term whereas the 2-
forms couple via a topological term. The latter do not
represent additional degrees of freedom but are on-shell dual
to the vector fields. In order to match the structure of D = 11
supergravity, we will thus have to trade the Yang-Mills
vector field A, for a propagating 2-form B,,; as we shall
describe in detail in Sec. IV B 3 below.

Let us now work out the details of this identification by
evaluating the general EFT formulas in the basis (4.39) and
imposing the explicit solution of the section condition
(4.43) on all fields. We first consider the six vector fields
A, transforming in the same representation as the
surviving coordinates (4.43). Under the general gauge
transformations (2.27) they transform according to

opA" = 0,A" = A0, N + ND,A,", (4.47)
while they remain invariant under all higher tensor gauge
transformations from Eq. (2.34). The associated gauge
transformations close into the Lie algebra

ATy = NSO AT — AFOL AL

[6a,.64,] =6, (4.48)

of standard six-dimensional diffeomorphisms, embedded
into the E-bracket (2.15). The six vector fields A,™ thus
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ensure that the theory is invariant under internal diffeo-
morphisms with the parameters A”. As anticipated above,
we will identify them with the Kaluza-Klein vector fields
from the 11-dimensional vielbein (4.4). For the following
and just as in the previous section, cf. Eq. (4.10), we thus
define the covariant derivatives

D, =0,~ L. (4.49)

corresponding to the action of six-dimensional internal
diffeomorphisms. Accordingly, the covariant field strength
as evaluated from the corresponding components of the
Eg) object F, WM coincides with the non-Abelian field
strength for the Kaluza-Klein vector field in Eq. (4.10),

F " =20,,A," = A 0,A," +A,0,A," =F,,".  (4.50)

Evaluating the remaining components of the covariant field
strengths (2.30) yields the field strengths for the other
gauge fields as

fﬂumn = 2D[;4Av]mn + amé/dvﬁ - anéﬂvﬁu

] ] g
Fu™ = 2Dy A" = 2(0Ap A" = €™ A OnA sy

+20,B,,"", (4.51)
where we have redefined the 2-form tensors as
B;wrh = \/gB;wm + A[ynAu]nmv
n mn mn 1 m i n m
B, = V5B, + 5 (A" A - A"AYT). (452)

In turn, we obtain the field strengths for these 2-form
tensors by evaluating the corresponding components of the
E6(6) ObjCCt HuupM’

Foupin = V5Hyupi = 00 Opup = 3D} By + 3Apgmnl Fop"
Hﬂwmn = \/gH;w/)mn _ ak Oﬂzx/} [kmn]
—3D,,B,,"" —30,A,B,,"

3 _ -
+5 (A Fup =AY F ")

3 mn B
=€ P (A Doyl pg + 241110051 Buig):

(4.53)

where we have split off the additional contributions
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Oﬂl/p = —A[”kAl/lAp]kl,
O/wp[kmn] EAkaymAp]i' —|—AwnAykAp]m +A[,umApnAp]k
L etonning 3A,, B 241,14, A
+ 5P B AL Buply = 2Api AL Aprg)
(4.54)

that are projected out from the Lagrangian, since—just as
with the tensor fields—their field strengths also appear only
under the projection d¥NXoyH,, k. cf. Eq. (4.44).

For completeness, let us also give the vector and tensor
gauge transformations of the various components as
obtained from evaluating the general formulas (2.34),

5Aﬂmn = D,uAmn + ‘CAAﬂmn - za[mEMn]’
BA = D AT = 9,A AT 4 LA™ = 20,5,
5Bﬂwh = 2D[/IED]m + EAB/wm + AkmF;wk - am(AkB;wl_c)’

(4.55)

with the tensor gauge parameters redefined in accordance
with Eq. (4.52),

= — = n
S = V5 + AA,

= mn

= mn 1 maA n nA m
S =VEE M4 S (NTAS - AT (456)

2. Scalar sector

Let us now discuss the scalar field content of the theory.
In the Ege)-covariant formulation they parametrize the
coset space Eg )/ USp(8) in terms of the symmetric matrix
My Torelate to D = 11 supergravity, we need to choose
a parametrization of this matrix in accordance with the
decomposition (4.40). Following Ref. [82], we build the
matrix as M = VYT from a “vielbein” V in triangular
gauge,

V= exp[(I)t(o)]Vﬁexp[ck,,mt’(“jr”]”)]exp[(pt(ﬂ)}. 4.57)

Here, 1(g) is the Eq) generator associated to the GL(1)
grading, Vg denotes a general matrix in the SL(6) subgroup,
whereas the 7, refer to the Eq) generators of positive
grading in Eq. (4.40). All generators are evaluated in
the fundamental 27 representation (4.39), such that the
symmetric matrix M,y takes the block form
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M M M
My = | MM, MK ME (4.58)
M ME™ - M

An explicit evaluation of Eq. (4.57) determines the various
blocks in Eq. (4.58). E.g. its last line is given by

1
_ > kipgrs o
M —24e My € P9 Cap, C s — €M, @,

1
kl nklpqr ,®
M =— My, € P4 e%c

62

— ,®
Mﬁzft = € Ny,

(4.59)

parametrized by ®, ¢, cy,,,- The symmetric matrix m,,, =
(w'T),,, is built from the SL(6) vielbein v that parametrizes
the standard embedding of this subgroup via Vg in
Eq. (4.57) as

Uy 0 0
V=1 0 @Hr ", o (4.60)
0 0 vzt

The remaining blocks of Eq. (4.58) yield more lengthy
expressions, but can be expressed in compact form via the
corresponding blocks of the matrix

MMN = Muyy — My (M) "My, (4.61)

which take the form

. — =® ki
an =e "My, + Ecmkpcnlqm mP4,
ookl 1
Mm = _7§Cmpq

mpkmql, Mklsm'l — mmlkp,ln

(4.62)

The matrix (4.61) will play a central role in the following
after redualizing some of the vector fields. From the inverse
matrix MM we will need only the particular block
M = e®mmn, (4.63)
Now, that we have specified the field content according
to the explicit solution (4.43), we can work out the Eg)-
covariant Lagrangian in this parametrization. Let us start
with the scalar kinetic term. First, we should evaluate the
covariant derivatives D, M,y in the split (4.39). With

Eq. (4.42) we find for the covariant derivatives of the
components of a general vector V¥
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1
D,V" =D,V +§(akAﬂk)v,

1
D[l vmn = Dﬂ an + g (8kA;4k)an + VkakAﬂmn

+ VR0, A i + VEO,A jon,

_ ) o1
D,V" = D,V" =3 (ORNYV™ + 2090, A,V g

+ (A )V, (4.64)
where as above the derivatives D, are only covariantized
with respect to the Kaluza-Klein gauge transformations, i.e.
D,=0,- L,,. Comparing this to the parametrization
(4.59) of the matrix M,,y, we derive the covariant
derivatives on the parameters of this matrix as

DMy, = D,ym,, + % (OkA,F )M,
D,®=D,®+ (8,,A””),

Dycrim = Dycim + 3\/58[kA|;4|lm]7
D,p =D,p— (0,A,")p + 0,A,"

(4.65)

\/E klmn
+ ﬁe chklmﬁnAﬂpq.

From the first two lines we infer that the combination

Gn = " m,,, (4.66)

transforms as a genuine tensor (of vanishing weight)
under six-dimensional diffeomorphisms. As anticipated
by the notation, we will identify it with the internal part
Gin = Pma®,” of the metric of 11-dimensional super-
gravity (4.4).

Putting all this together, we obtain after some
calculation the explicit form of the scalar kinetic term
from Eq. (1.3),

1
e Lyno = ﬁD”MMND”MMN
1 1
= ZDﬂd’mnDﬂqsmn - §¢_2Dﬂ¢DM¢
1

- ﬁ¢_2/3¢k"¢[p¢mqpyckzmp”c

npq
L2 (D Letmmacy,pye,)
) ;4(:0 7 kim = pu“npq ’

4.67)
with ¢ = e~® = (det¢h,,,)"/*> as above. Next, we can

evaluate the Eg-covariant potential (3.11) in the
parametrization (4.59) and (4.62) and obtain
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1 1
V=- g ¢_2/3am¢nkal¢pq¢mn¢k1¢pq + %¢_2/3am¢nkal¢pq¢’nl¢nk¢pq

1 1
+ Z45_2/3arn¢r1kal¢pq¢ml¢np¢kq - 5¢_2/3am¢nkal¢pq¢mp¢nq¢kl

2

1
_ ¢_2/3¢mn€_18m€€_18n€ _ Z¢_2/3¢m"3m9’wan9ﬂv'

In particular, the second line of the potential (3.11) is
straightforwardly evaluated with Eq. (4.63).

3. Dualization

Before explicitly evaluating the remaining parts of the
Egg)-covariant Lagrangian, let us recall the field content.
From Eq. (4.46) and the subsequent discussion, we have
vectors and 2-forms given by

{Aum’Aﬂmn’Aﬂm}v {B/wrh’ Eﬂymn}’ (469)
of which only the vectors represent propagating degrees of
freedom. In the previous subsection we introduced the

parametrization of the scalar fields of the model as

{¢mn’ Clkmn s €0} (470)
Comparing this to the form of 11-dimensional supergravity
in the 5 + 6 split presented in Sec. IV A, we see that we will
have to dualize the singlet scalar field ¢ into a 3-form tensor
field and eliminate the fields A,” and B,,"". In particular,
the latter step should introduce a kinetic term for the 2-form
tensor fields B,,;, promoting these fields to propagating
degrees of freedom.

For the dimensionally reduced theory this is precisely the
pattern of dualizations of p-forms into (3 — p)-forms that is
required to make the Eq) symmetry apparent [82]. In the
following, we give a version of that dualization which
applies even for the fully y-dependent fields despite the
non-Abelian structure of the internal diffeomorphisms that
may pose an obstacle for the possibility of dualization. It is
rather similar to the mechanisms of non-Abelian dual-
izations appearing in gauged supergravity [83,84] empow-
ered by the compensating fields of the tensor hierarchy. As
a result, we will show in this section that upon this
dualization, the Lagrangian evaluated from Eq. (1.3) pre-
cisely coincides with D = 11 supergravity.

We start by dualizing the singlet scalar field ¢ into a
3-form. To this end, we first note that the Lagrangian (1.3)
after the resolution of the section condition according to
Eq. (4.43) has a global symmetry that acts by a shift on ¢.
Its origin is the Egg) generator 7, in the basis of
Eq. (4.57) with action

o = 4,

SA,™ = A, @.71)

1 ‘
+ §¢_5/3¢mn€_lamean¢ - e_l¢_2/38mean¢mn + 5¢_2/3a[kclmn]a[pcqrs]¢kp¢lq¢mr¢m

(4.68)

|
on scalar and vector fields. This symmetry is compatible
with the solution of the section constraint (4.43) due to
6,05 =0, 6,0 =0, 4.72)
as an immediate consequence of the grading (4.39) and
(4.40). As a result, this symmetry survives after imposing
the explicit solution of the section constraint. Moreover,
due to our field redefinitions (4.52), the same generator has
a nontrivial action on the 2-forms as
8B, = AA,"A,". (4.73)
For dualizing the scalar fields ¢ we will now follow a
standard routine: we gauge the shift symmetry (4.71) by the
introduction of an auxiliary vector field and eliminate the
latter by its field equations. Specifically, in the scalar sector
we introduce covariant derivatives
D, — D, =D, —a,t(,y. (4.74)
such that the kinetic term (4.67) remains invariant under the
local form of Eq. (4.71) provided the auxiliary vector a,
transforms as
Sa, = 0,4, Spa, = Lya, + (ON)a,.  (475)
In the vector sector, the gauging of Eq. (4.71) is more
intricate, since the new gauge symmetry interferes with the
existing non-Abelian structure (4.55) of the vector fields.
As a result, this further deformation necessitates the
introduction of additional Stiickelberg-type couplings on
the level of the field strengths according to

Fu™ = Fu " =2D, A" = 2(0:A,N)A,"
1
- Ee klA[ﬂ\rsan|Av]kl
+20,B,,"" + by, (4.76)
with the new auxiliary 2-form b, transforming as
0;b," =0,
onby, = Lyb," + (6,(/\")19”/" +2a, 0, A", (4.77)
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in order to guarantee the covariant transformation behavior
of the field strength. With these extra fields and modified
transformations, the kinetic part of the Lagrangian is thus
invariant under 4 and AM transformations. Moreover, the
auxiliary 2-form b,,™ comes with its own tensor gauge
invariance,

oeb,," = 2(9@54%,
5§Aﬂﬁ1 — _gﬂr‘n’

55(1/4 = —anfﬂﬁ,
5§B/wmn — _A[”mgy]ﬁ +A[,,"fy]ﬁ',
(4.78)

which separately leaves the kinetic part of the Lagrangian
invariant.

Let us now turn to the topological term (3.7) in order to
render it invariant under the new gauge symmetries (4.71),
(4.73), and (4.78). After evaluating this term with the
solution of the section condition (4.43), it is invariant
under the global symmetry (4.71) and (4.73) but acquires
a nontrivial variation for a local gauge parameter A
according to

01 Lopo = —% HPoT 0 A(F " A A" + 8ml~3w,—,Aa’"A,").
(4.79)

In view of Eq. (4.75), this variation can be cancelled by

adding the additional topological term

Liop,1 = %6"”” 7, (F " Agun A" + 0 BynA" A,
(4.80)

such that the sum Ly, + Lyp,; is invariant under local 1
transformations. In turn, the variation of this combined
topological term under the local tensor gauge symmetry
(4.78) is given by

1 - N
0¢Liopo+1 = _ﬁeﬂ 7 (20,4, OB poin) = 24,0, 0 B o

- a;t (AymnFZG))frm
1 - ~ _
N ﬁgﬂyﬂﬂ(?—[#upm +30, (AM”B Uﬂﬁ))aﬂ &M

(4.81)

and thus it can be cancelled by the introduction of a second
addition to the topological term,

1 ~ ~
top,2 = "5 28”””‘"(7'{,,,4),,—1 +30,,(A,"B,,7))bs.".  (4.82)

Finally, we have to ensure that the combined topological
term Lo 041+ Temains invariant under the original AM and
E.m gauge transformations of Eq. (2.34). After some
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lengthy but straightforward calculations, we find for this
variation

" Akn

vp

1 =
5£lop,0+1+2 = ﬁeﬂw (2AﬂkAv ak‘:‘pn - AﬂkF
— A"0,B,,)(20,a; + 0,,bs")
1 = np m
- mgﬂ p am<2A#k:yk - A Bm/;l)apbo.r .
(4.83)

This variation is cancelled by adding to the topological
Lagrangian the final contribution

e (2a,0,A 50 + 0 by, Assr ) (4.84)

1
Liops =
top.,3 4\/5

with the new field A, transforming as

6 Aup = LaAup + 20" 0By + 241" F )" Ay
= 40, Eal A" Ay " + 20,24, Z = N Byj5).
(4.85)

A short calculation also shows that the terms in the
variation of Eq. (4.84) proportional to A,,, cancel.
Moreover, the term (4.84) is separately invariant under
the new gauge symmetries (4.71) and (4.78), so no further
compensation is required. To clean up the construction, we
may eventually combine all new contributions with the
topological term, which can be put into the more compact
form

1 ~ -
‘C‘OP»1+2+3 = mgﬂupor <2a/4 (Du‘Aﬂa‘r - Bl/pthofm)

1~ - -
-3 b (2H poei + 38m,4pm)) . (4.86)
with the auxiliary fields redefined as
E’wm = blwm - Za[MAU]m,
Ay = Ay +2A,"B, 5. (4.87)

After these redefinitions, the gauge transformations of A,,,,
in Eq. (4.85) take the fully covariant and more compact
form

8 Ay = LaAy, +2F),"S,),. (4.88)
In the course of our construction, something interesting has
happened. We recall that the original Lagrangian carried the
2-form B, ; exclusively under 0,, derivative a la Eq. (4.44).
This is still true for its variation (4.81) (although not

manifest in the final expression), but no longer for the
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compensating term (4.82). Consequently, the new topo-
logical term (4.86) carries the longitudinal part of EW-I asa
new field. Nevertheless, the shift symmetry (4.45) of the
original Lagrangian can be preserved, if the field A,,,
simultaneously transforms as

0A ., = —2Dy, ., OB = 0. (4.89)
Le. this symmetry is identified with the tensor gauge
symmetry of the new 3-form A,,,.

Let us pause and summarize what we have achieved.
Upon introducing the new covariant derivatives and field
strengths (4.74) and (4.76) in the Lagrangian, as well as
extending its topological term Ly, t0 Ligp 0414243 from
Eq. (4.86) we have modified the original Lagrangian such
that in addition to the former gauge symmetries it is also
invariant under the new local gauge symmetries (4.71),
(4.78), and (4.89). The modification has introduced the
auxiliary vector and tensor gauge fields a,, b,,”, and A,,,.
The resulting Lagrangian provides an efficient tool to
perform the dualization of the original theory. We can
show that depending on how we treat the auxiliary fields,
the Lagrangian either reduces to the original one or takes a
different form, in which the former fields ¢ and Aﬂ’ﬂ
disappear. Thereby we arrive at the dual version of the
original Lagrangian.

Let us first show that the new Lagrangian is equivalent to
the original theory obtained from the Eq)-covariant EFT
after solving the section condition. We recall that the only
term in which Bﬂm appears without derivative, is
Eq. (4.82). It thus gives separate equations of motion
[by a variation of the type (4.45) under which all other
terms are invariant] implying that

OpOyby,™ = 0. (4.90)

With the local gauge symmetry (4.78) we can thus set

Onby =0= b, =09,7,", 4.91)
for some locally defined TW[’”"]. Upon making use of yet
another local symmetry of the full Lagrangian,5

b, = =0, "™,

D mn 1 mn
5B;w :EY/UI[ ]’ nv n+uv

(4.92)
we can then completely eliminate the field b,,". The field
equations following from the variation of A,,,, in Eq. (4.84)
imply that

28[}4(11,] = —8mb,w'" = U (493)

>This is not a novel gauge symmetry but simply illustrates
some redundancy in the introduction of the auxiliary field b, in
Eq. (4.76).
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Thus, a, is also pure gauge and can be set to zero with the
local symmetry (4.75). As a result, all auxiliary fields a,,
b,,",and A, , disappear from the equations of motion and
we are back to the theory obtained from the Eg)-covariant
formulation.

Alternatively, we may integrate out the auxiliary gauge
fields a,, b,, upon using their algebraic field equations.
The local symmetries (4.71), (4.78), and (4.92) which
formally remain present in this procedure, show that after
integrating out a, and b,,, the resulting Lagrangian no
longer depends on the fields ¢, A,”, and B,,”". Instead, the
fields A,,, and B,,” are promoted to propagating fields
with proper kinetic terms. We thus obtain a dual version of
the original Lagrangian with precisely the field content of
D = 11 supergravity. To conclude this discussion, we will
now show in detail that the result indeed coincides with the
D =11 supergravity Lagrangian after Kaluza-Klein
decomposition.

With the kinetic terms from Eq. (1.3) evaluated accord-
ing to Egs. (4.58) and (4.67), and covariantized according
to Egs. (4.74) and (4.76), the equations of motion for the

auxiliary fields a,, b,," read

eklmnpq CklmDﬂC

1
a, =D,p+ ) npq

+ 2€yupm'¢2 (DU;lpm’ - By/mﬁF{f‘rm)’
l;llvm = —(Mz) " My FreM

2 ~ ~
- geuupm’(Mm Fl)_l (2Hpm'r'l + 3an“4par)' (494)

Inserting this into the Lagrangian produces the new kinetic
terms

1 . .
e_l'/:'kin,2+3 = _ﬁ¢4/3¢mn (2Hﬂl//)}’7’l + 3am-’4/wp)
x (2H™; + 30, A"
3 ~ -
- §¢2(D[}4Av/)(f] - B[ﬂy\r’n\F/)o‘]m)

x (DM A" — B, From), (4.95)
for the 2-forms me and 3-form ;1,,,,/,, while the vector
kinetic term turns into
1 ~

e Ly = _ZFWM'FWNMMN’ (4.96)
with the matrix M,y from Eqgs. (4.61) and (4.62). In
particular, the form of this matrix shows that the vector
fields A, have disappeared from the kinetic term (4.96) as
expected. In order to calculate the topological term after the
elimination of the auxiliary fields, let us first consider
the original topological term (3.7). After explicitly solving
the section condition (4.43) we can give a fairly compact
expression for this term upon integrating up Eq. (3.8) as
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1 1 -
‘CtopA,O = m /lu/?afgmnklpq <§Aﬂmn‘7:upklapBo'Tq

1
=+ g DﬂAumnDpAo-klA

Lo, + 0(3,,”'"")).

AvklApanarr

g

1
+ g 8mAﬂpq

(4.97)

1

Liop. dual =
top, dual 4\/§ 3

1 ~ -
+ 5 (F;wrcrlpcqmn - 12AyklanAupq)(2Hparl_< + 3816-’4/){71) -

72

Comparing the resulting parts of the Lagrangian
(4.95)-(4.98) to the Kaluza-Klein decomposition of 11-
dimensional supergravity presented in Sec. [V A, we are led
to the following redefinition of fields:

- 22 -
A/w/) - TAMW” B,uy mn \/EA/JV m»

A/.t mn \/EAM mn» Connk = _2Amnk' (499)

With this translation, the above combinations of field
strengths become

2Hﬂvprh + 38111-/4;41//) - 2\/§F/wpm7

2
—\/—Fy ,
6« mwo

-7:;41/ mn \/Ef;w mn»

Dﬂcklm - _2F;4klm’

Dy Aspe) = Buwp Fpo)™ —

(4.100)

i.e. translated directly into the field strengths (4.30) and
(4.35) introduced in the discussion of the Kaluza-Klein
decomposition of 11-dimensional supergravity. It is then
straightforward to verify that the combination of kinetic
terms (4.67), (4.95), and (4.96), indeed precisely coincides
with the corresponding terms of Eq. (4.34), from 11-
dimensional supergravity. Likewise, the combination of
the topological terms (4.86), (4.97), and (4.98), and using
the dictionary (4.99) reproduces the 11-dimensional result
(4.33) up to total derivatives. Although this comparison is
not straightforward since there is no canonical form in
which to give these nonmanifestly gauge covariant terms,
they can be systematically matched by comparing their
general variation with respect to the various gauge fields.
Similarly, agreement is found between the potential terms
(4.68) and (4.37). Finally, the Einstein-Hilbert terms from
11 dimensions and from EFT are based on the improved
Riemann tensors (3.3) and (4.20), that are readily identified
since
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Eventually, we are only interested in this term at vanishing
A”'h, B,,™", since we know from the general symmetry
argument above that these fields will no longer enter the
Lagrangian after the elimination of the auxiliary fields.
Moreover, plugging Eq. (4.94) into the original Lagrangian
gives the following additional contributions to the
topological term:

1 1
vpot amnkl r
ghwpot gmnklpg [—12 Connk (\/ia,A,,pq + —Dﬂclpq> (DA, = ByyiF o)

(2H/)0'7:rh + 38}11-’4/)0'1) . (498)

1
Wz Cpqnfﬂykl

FuMOy — F "0, (4.101)
on the solution of the section constraint (4.43). Thus we
have shown total agreement between the EFT evaluated for
Eq. (4.43) and the full 11-dimensional supergravity cast
into the (5 + 6)-dimensional Kaluza-Klein form.

V. EMBEDDING OF TYPE IIB SUPERGRAVITY

In the previous section, we have shown that upon
imposing the explicit GL(6)-invariant solution (4.43) of
the section condition and subsequent dualization of some of
the fields, the Eq(g)-covariant EFT precisely reproduces the
full 11-dimensional supergravity in the 5 + 6 Kaluza-Klein
split. In this section, we discuss an inequivalent solution
[33] to the section condition upon which the EFT
reproduces the full ten-dimensional IIB theory [34,35].°

A. GL(5) x SL(2)-invariant solution
of the section condition

The corresponding solution of the section condition
preserves the group GL(5) x SL(2) embedded according to

GL(5) x SL(2) € SL(6) x SL(2) C Egy  (5.1)

into Eg). In this case, the fundamental and the adjoint
representation of Eg ) break as

27— (5.1) 4+ (5.2), +(10,1) 5+ (1,2) 5, (5.2)

78 — (5.1)_ + (10,2)_5 + (1 + 15+ 20), + (10,2) 5
+ (5 1) 16 (5.3)

®An analogous IIB solution of the SL(5)-covariant section
condition, corresponding to some three-dimensional truncation of
type IIB supergravity, has been studied recently [85] in the
truncation of the theory to its potential term.
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with the subscripts referring to the charges under
GL(1) c GL(5). An explicit solution to the section con-
dition (1.1) is given by restricting the Y dependence of all
fields to the five coordinates in the (5, 1)_,. Explicitly, by
splitting the coordinates Y and the fundamental indices
according to Eq. (5.2) into

Y = {0, Yo Y™ Ve ) (5.4)

with internal indices m,n =1,...,5 and SL(2) indices
a = 1,2, the nonvanishing components of the d symbol
are given by

1 1
d"NE A"y = 716 1 €ap A" vaip = %52"1"6(1/;,
dmn.kl.p — €mnklp’
V40

1 1
dMNK: dmna.ﬂ - ,—1_0 621€aﬂ, dmnka’lﬂ = ﬁélr(nlneaﬂy

1
dmn.kl.p = \/_4—0 €mnklp>

and all those related by symmetry, n
particular, the GL(1) grading guarantees that all compo-
nents d"" vanish, such that the section condition (1.1)
indeed is solved by restricting the coordinate dependence of
all fields according to

(5.5)

AMNK — d(MNK). I

{0mA=0,0,,A=0,0°A=0} & A(x*,YM) > A(x*,y™).
(5.6)

Moreover, the form of the d symbol (5.5) shows that
any further coordinate dependence of a field A on combi-
nations of the remaining coordinates violates the section
condition. This explicitly shows that Eq. (5.6) is not a
subcase of Eq. (4.43), but rather a different inequivalent
solution.

B. GL(5) x SL(2)-invariant reduction of EFT

In this subsection, we evaluate the EFT Lagrangian
(1.3) upon splitting fields and tensors according to
Egs. (5.2)-(5.5) and assuming the explicit solution
(5.6) of the section condition. Having gone through this
analysis in great detail for the case of D = 11 super-
gravity in Sec. IV, we will keep the discussion much
shorter here, and restrict it to the essential new ingre-
dients. In particular, in this case, due to the presence of
the self-dual 4-form in IIB, there is no known ten-
dimensional Lagrangian to which the result can immedi-
ately be compared. Rather, the procedure will produce an
action, in which only an SO(1,4) x SO(5) subgroup of
the ten-dimensional Lorentz group is realized, much in
the spirit of Refs. [86,87] in which Lorentz symmetry
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appears broken to SO(9) but is recovered on the level of
the equations of motion.’

In analogy to the discussion in Sec. IV B above, let us
first revisit the resulting field content of the model. With the
split (5.2) and (5.3), the full p-form field content of the
Eg(e) Lagrangian in this basis is thus given by

{Aﬂm’ Aﬂma? A/tkmnﬂ A/m}? {B/wa’ B;wmm B/Abma}’ (57)

where we have defined A, = %ekmnqu””q . More pre-
cisely, the Lagrangian depends on the 2-forms only under
derivatives,
{amB/u/av 8[kB\/u/|mn] ’ amBﬂuma}' (5.8)

Similar to the case of D = 11 supergravity, the vector fields
A,/ will be identified with the TIB Kaluza-Klein vector
fields. Indeed, they transform under the general gauge
transformations (2.27) according to

Op\A," = 0,N" — A, 0,N" + AN"0,A,",  (5.9)
with the associated gauge transformations closing into the
algebra
[6A,+0A,] = Oa,,» AT = NSO AT — Ao AL (5.10)
of five-dimensional diffeomorphisms, embedded into the
E-bracket (2.15). Comparing the remaining fields of
Eq. (5.7) to the field content of the Kaluza-Klein reduction
of IIB supergravity suggests relating the fields {A,,,,. B,,,*}
in Eq. (5.7) to the different components of the doublet
of ten-dimensional 2-forms, and the fields A, Bumn
with the components of the (self-dual) IIB f4-form. The
remaining fields A,,, B, descend from components
of the doublet of dual 6-forms. Again, the 2-form tensors
B, that do not figure in the Eq)-covariant Lagrangian
represent the degrees of freedom on-shell dual to the Kaluza-
Klein vector fields, i.e. descending from the ten-dimensional
dual graviton. We recall that in the EFT formulation, all
vector fields appear with a Yang-Mills kinetic term whereas
the 2-forms couple via a topological term and are on-shell
dual to the vector fields. In order to match the structure of [IB
supergravity, we will thus have to trade the Yang-Mills vector
fields A, for a propagating 2-form B, “.

The details of this identification can be worked out by
evaluating the general formulas of the Eg)-covariant
formulation with Eq. (5.5) and imposing the explicit
solution of the section condition (5.6) on all fields.
Without repeating the details of the derivation which goes
in close analogy to the analysis of Sec. IV B, we summarize
the covariant field strengths for the different vector fields
from Eq. (5.7),

"Covariant Pasti-Sorokin-Tonin-type formulations of IIB
supergravity have been constructed in Refs. [88,89].
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Foum = 20,A" — AO,AM + AD,A,M,
Frma = 2D A e + €450nBu"
F sk = 2D iomn = 3V 26 Ao DAy
+ 304B
F e = 2Dy Ay — 2(0AL) A

- \/_AblmnanAu]ma - fAMma\ anAy]mn

. L Eg(q) COVARIANT ...

— €qpOi B, (5.11)

with the modified 2-forms
B, =V10B,,* — e”‘ﬁAM”A Inp>
B;wmn Vv B/wmn + A[]A A vlkmn >
B, = V10B,** + ePA KA, . (5.12)

All covariant derivatives D, = 0, — L, correspond to the
action of five-dimensional internal diffeomorphisms. The
corresponding vector gauge transformations are given by

5A,™ = D, A",
SAma = Dyl + LAA e — €apOn =L
8Aytmn = DyNignn + LAAonn — 3V 26PORA i M
= 304Z ] (5.13)
with
=V10E,%— €PN Ay Epn = V10, + A A
(5.14)

As for the vector fields A, it will be sufficient to observe
that its gauge variation is given by
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Sy =+ + €gpOiZ,7, (5.15)

implying that it can entirely be gauged away by the tensor
gauge symmetry associated with the 2-forms B,
Consequently, it will automatically disappear from the
Lagrangian upon integrating out GkBm,kﬂ . The remaining
2-form field strengths in turn come with the gauge
transformations

— € /}An/}F;w s

- =~ 1 = a
5B;wmn = Dﬂ <':‘vmn \/E €” AvnmAnﬂ) =+ \/—8 A/ma:‘v

~ 1
+ L:AB/wmn - 7§A[)n|(1\a B *+ Amnk

(5.16)

and field strengths

ﬂuvﬂa = \/EHWPG =3D WE wl + 3¢ F " Aping:
Hyspmn = V10
= 3D,B,pmn = 3F 1 A pinn — 3V26A 110D A 5
+3V24,,,40,B,,", (5.17)

up to terms that are projected out from the Lagrangian
under y derivatives. The expressions on the rhs in
Egs. (5.16) and (5.17) are understood to be projected onto
the corresponding antisymmetrizations in their parameters,
i.e. [mn], [uv], [pvp), ete.

Finally, we note that the topological term (3.7) in this
parametrization is given by

1 V2 V2
‘Clop = Sé.,ul//)o'r klmnp( 6 € fﬂvm(lf)ﬁn/}ATpkl+ ]:;wman/m’ A‘rklp _7€{lﬂA,umaanAbp/}F/m A1k1q+ a]7Bm/mnF'/m' A‘r klg

~ ~ ~ 2 ~
+ \/EeaﬁAﬂmaDuApnﬁame’kl - \/EAy maanBupaapBarkl + geaﬁAymaanAukﬁAplyapBary - eaﬁeyéAumoc8 AvkﬁAplyDﬂArpﬁ

V2

Let us now move to the scalar field content of the theory. In
the EFT formulation, they parametrize the symmetric matrix
My To relate to IIB supergravity, we need to choose a
parametrization of this matrix in accordance with the decom-
position (5.3). In standard fashion, we build the matrix as
M =VVT from a “vielbein” V in triangular gauge,

V = exp|Pt(g) |V, Vsexp[byun“1(13) 2" Jexple"™"P ¢ punt (+6),)-
(5.19)

~ ~ ~ 2 ~ ~
+ TamHyupaA(maArklp - Dy Bupmname’kl - geaﬁHMw)ﬁakBarka + O(A;m)> .

(5.18)

|

Here, #(g) is the Eg) generator associated to the GL(1)
grading of Eq. (5.3), V5, V5 denote matrices in the SL(2) and
SL(5) subgroup, respectively, parametrized by the vielbeins
vy, vs in analogy to Eq. (4.60). The 7, refer to the Eq )
generators of positive grading in Eq. (5.3), with the nontrivial
commutator

mn

klmnp
l(+3)/j t

[t | = eape (+6)p- (5.20)
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All generators are evaluated in the fundamental 27 repre-
sentation (5.2), such that the symmetric matrix M,y takes
the block form

M M My MP
Mkam Mka,mﬂ Mkamn Mka,/i
M](M - mp B (52 1)
Mkl,m Mkl Mkl,mn Mkl
Mam Ma.mﬂ Mam” Ma/i

An explicit evaluation of Eq. (5.19) determines the various
blocks in Eq. (5.21). For instance, its last line is given by

M(l[)’ — eS‘I)/3m(1ﬁ’ Mamn — \/EeSQ/f'vbmna’

1
amf _ _ ,50/3 ay mklpqp, B S
MNP = e mTeyse bil'b,,
_ eS@/Smaﬁemklpqcklpq,
1

a — _ ,50/3 af kpqrs
M, = ze imTege

1
X <€5|52 bmk§] bpqézbrsy + Z bmkycpqrs) s (522)

with the symmetric matrix m® = (,)*,(v,)* build from
the SL(2) vielbein from Eq. (5.19). Later, after integrating out
some of the fields, we will need the components of (cf. the
discussion in the previous section)

My = My = MyS(MP)" I MP. (5.23)
for which we find
Mkl e22/3 pmlkplin
~ 1
M, = ﬁem/%qurmkpmaﬂbqrﬁ,
~ 1
an,k — _262<I>/3€mnpqr€aﬂmklblpabqrﬂ
1 2®/3 .mnpqr,,,kl
- WE e € m Clpqr’
Mma,nﬁ = e—@/Bmmnmaﬂ + 262(D/3maymﬂ5mk1’
X (Myym'by’b 0 = 2mkPb,, 7b, %), (5.24)

etc., with m,,, = (vs),,“(v5),?. From the inverse matrix
MMN we will in particular need the components

Mmn = A3 pymn, (5.25)

With Eq. (5.5) we find for the covariant derivatives of the
matrix parameters from Eq. (5.21)
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4
D”(I) — D'u¢ + gakA k,

D,m,,, = D,m,,, + gakAﬂkmm,,,

Db = Dy = €00 Ay

D, Chimn = DyCitmn + 4V203 A1y + 12631%0,A,10
(5.26)

which will build the kinetic term of the Lagrangian.

As discussed above and similar to the analysis for the
embedding of D = 11 supergravity, the precise map with
type 1IB supergravity requires some dualizations of the
fields. To this end, we observe that in the Lagrangian the
2-form tensors Bm,kﬂ appear only under a divergence, i.e.
contracted with 0y, cf. Eq. (5.8), and with the algebraic
field equations

~ 1 ~
Ga/)’akByukﬂ — (M(l/})—lMﬂMf/,wM _ ggﬂw)m:(M”ﬂ)_al(nﬁ'
(5.27)

By means of these equations, the fields Eﬂ,,kﬁ can be
eliminated from the Lagrangian. The gauge symmetry
(5.15) shows that in the process, the vector fields A, also
disappear. We infer from Eq. (5.27) that the kinetic term for
the remaining vector fields changes into the form (4.96)
with M,y from Eq. (5.24). Moreover, the 2-forms Bﬂya are
promoted into propagating fields with the kinetic term

—e™ 3% m H,,, H (5.28)
and we note that the cross terms from Eq. (5.27) give
rise to additional contributions to the topological term
in Eq. (5.18).

Let us conclude by commenting on some of the proper-
ties of the resulting Lagrangian. At first sight, it may appear
surprising that we can obtain a ten-dimensional Lagrangian
describing the field equations of the full IIB supergravity,
whereas it is known that the presence of a self-dual 4-form
poses a severe obstruction to the construction of a Lorentz-
covariant Lagrangian. It is the latter property which justifies
the existence of our Lagrangian: what we have constructed
is a ten-dimensional Lagrangian in which however only an
SO(1,4) x SO(5) subgroup of the SO(1,9) Lorentz sym-
metry is realized. In this respect, its existence is no more
surprising than the corresponding constructions of
Refs. [86,87] in which Lorentz symmetry appears broken
to SO(9) but is recovered on the level of the equations of
motion. The self-dual 4-form is described by propagating
degrees of freedom ¢y, and A,,,, yet the final
Lagrangian also carries some of the dual degrees of
freedom in the 2-forms men. These do not appear with
a kinetic term but couple by a topological term (5.18) such
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that their field equations precisely give rise to the first-order
duality equations that relate their field strength to the field
strength of the A, thereby reproducing part of the
ten-dimensional self-duality equations.

VI. SUMMARY AND OUTLOOK

In this paper, we have presented the detailed construction
of the Eg(g) exceptional field theory recently announced in
Ref. [33]. This theory is formally defined in 5+ 27
dimensions, with 27 coordinates transforming in the
fundamental representation of Egg), subject to a covariant
section constraint. This constraint, which implies that only
a subset of the coordinates are physical, is the M-theory
analogue of the strong constraint in double field theory,
which in turn is a stronger version of the level-matching
constraint in string theory. The constraint allows for
different solutions, two of which we have discussed in
detail. The first reduces the 27 coordinates to six, thereby
breaking Eq) to GL(6), leading to a (5 4 6)-dimensional
formulation of the full (untruncated) 11-dimensional super-
gravity. The second solution of the constraint reduces the
27 coordinates to five, breaking Eq) to GL(5) x SL(2),
leading to a (5 + 5)-dimensional formulation of type IIB
supergravity with manifest SL.(2) S-duality. In this sense,
the exceptional field theory (1.3) unifies M-theory and type
IIB in that both are obtained on different “slices” of the
generalized spacetime. This generalizes type II double field
theory, in which type IIA and type IIB arise on different
slices of the doubled spacetime [50,51]. As a byproduct, we
have obtained an off-shell action for type IIB supergravity,
at the cost of sacrificing ten-dimensional Lorentz
invariance.

In this paper we have restricted ourselves to the purely
bosonic theory, but we are confident that the extension to
include fermions and the construction of a supersymmetric
action is straightforward along the lines of the super-
symmetric D = 5 gauged supergravity [77]. The fermions
will be Eg) singlets transforming under the local gener-
alized Lorentz group of the corresponding coset, i.e., in this
case H = USp(8), which will require a notion of gener-
alized Lorentz connection. This should also clarify the
relation of our construction to that of de Wit and Nicolai
[5,6], who cast the 11-dimensional supersymmetry trans-
formations into an H-covariant from. At first sight it may
appear surprising that such a supersymmetric covariant
construction is feasible at all. First we know that conven-
tional supersymmetric theories are restricted to dimensions
D < 11. Second, the resulting theory would encode both
type IIA and type IIB, despite the crucial difference of their
fermion chiralities. The first obstacle is circumvented by
virtue of the section constraint, which implies that the
additional coordinates are not physical in the same sense as
the usual spacetime coordinates. In fact, in double field
theory supersymmetric extensions are possible and
beautifully simplify the usually rather involved N = 1
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supergravities in D = 10, with the supersymmetry trans-
formations closing into the generalized diffeomorphisms
[47]. The second obstacle is circumvented since the EFT
formulation does not preserve the D = 10 Lorentz invari-
ance, so that the EFT fermions can consistently encode the
fermions of type IIA and type IIB. This possibility is then
no more surprising than the observation that both type IIA
and type IIB give rise to the same supersymmetric theory in
D =5 upon dimensional reduction.

A novel feature of the supersymmetric EFT is that
usually it is supersymmetry which fixes the detailed form
of even some of the purely bosonic couplings, most notably
the presence and shape of the scalar potential. In contrast, in
Eq. (1.3) all bosonic couplings are already uniquely
determined by the bosonic gauge and duality symmetries.
This points to a deep connection between the duality-
covariant geometries of double and exceptional field
theories on the one hand and supersymmetry on the other,
as for instance illustrated by the striking economy of the
supersymmetric double field theory. We leave a discussion
of these matters and the detailed construction of super-
symmetric EFT to a separate publication.

There are many open questions and possible general-
izations. An obvious question is about the physical sig-
nificance of the 27 coordinates. Beyond the six coordinates
of D = 11 supergravity, are they a purely formal device, or
do they have a deeper role to play? A comparison with
string theory is illuminating. Here the doubled coordinates,
at least on toroidal backgrounds, are undoubtedly physical
and real, as made explicit by closed string field theory,
subject only to the weaker level-matching constraint that
allows for solutions depending locally both on coordinates
and their duals [38]. Thus, although the currently under-
stood double field theory is subject to the strong constraint,
the latter constraint is well motivated from string theory,
implementing the level-matching constraint in stronger
form. The section constraint of exceptional field theory
has been postulated by analogy to the strong constraint, but
since there is no analogue to string field theory in M-theory,
it cannot be “derived” in a similar fashion. However, we
may consider a partial solution of the Eg)-covariant
section constraint that breaks the symmetry to the T-duality
group of string theory. Specifically, we can embed the SO
(5,5) T-duality group that is appropriate for a (5+ 5)-
dimensional decomposition of type II string theory into
Eg6)- The fundamental representation then decomposes as

SO(5,5) C Eg6): 27 — 101681, (6.1)
where 10 and 16 are the vector and spinor representation of
SO(5.,5), respectively. Thus, under this decomposition we
obtain the Neveu-Schwarz-Neveu-Schwarz (NS-NS) fields
transforming as a vector (or rather, in the generalized metric
formulation, as a 2-tensor) but also the Ramond-Ramond
fields transforming as a spinor. The resulting theory will be
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a Kaluza-Klein-type decomposition of the original type II
double field theory of Refs. [50,51], in the sense of
Ref. [73]. The decomposition of the d symbol is then
such that the section constraint implies the independence of
all fields on the 1 + 16 variables, and further restricts the
field dependence on the remaining ten variables in the
fundamental vector representation of SO(5,5) as

dMNKaMaN =0= ﬂMNaMaN = 0, (62)
with the SO(5,5) vector indices denoted by M, N; see e.g.
Egs. (3.27) and (3.29) in Ref. [90]. Thus, the section
constraint reduces precisely to the strong constraint in
double field theory. Since in string theory the strong
constraint is relaxed so that the doubled coordinates are
physical and real, U-duality covariance strongly suggests
the same for the 27 coordinates of the Ege) EFT, and
similarly for the extended coordinates of the higher EFTs
with respect to E;7) and Egg).

A related question is about the most general solutions of
the section constraint (1.1), in particular whether there are
solutions beyond the known D = 10 and D = 11 super-
gravity. While we do not have a proof that there are no
solutions with D > 11, this appears unlikely. However, it is
certainly important to classify all solutions, in particular
in order to see whether or not there may be any
“nongeometric” solutions, for any D > 5. For instance,
one may imagine that the gauged diffeomorphisms (3.27)
and the generalized internal diffeomorphisms do not
organize into conventional diffeomorphisms of a D-
dimensional theory, thereby escaping the conventional
classifications. We leave this for future work. Even if such
more general solutions of the section constraint may be
excluded, it is still likely that there are nongeometric
solutions of the EFT field equations that locally depend
on the subset of coordinates corresponding to one solution
of the constraint, but that patch together inequivalent
solutions in a globally nontrivial manner, as happens in
double field theory [69]. Perhaps the most intriguing, but
also most involved question is about a genuine relaxation of
the section constraint, which would truly transcend the
framework of supergravity.

Another fascinating prospect is to generalize the pres-
ently known EFT to include higher-derivative M-theory
corrections along the lines of the recent results on double
field theory [68]. This would entail a deformation of the
E,(x) generalized Lie derivatives and other structures. If
possible, this would give a scheme to compute the o
corrections of type II string theories and the higher-
derivative M-theory corrections in a unified manner.

Let us finally note that the details for the remaining
finite-dimensional groups E;(7) and Eg(g) will be presented
in a separate publication. The general construction
proceeds along the same lines as the one presented here,
with a 4 +56- and 3 + 248-dimensional formulation,
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respectively. One novel feature of these cases is that
additional field components need to be introduced which,
from an 11-dimensional perspective, play the role of the
dual graviton, a field for which a local field theory
formulation is wusually considered impossible on the
grounds of the no-go theorems in Refs. [91,92]. We have
shown in Ref. [72] how to handle this problem in the
covariant approach via introducing constrained compensa-
tor fields, extending the approach of Ref. [93]. In three
dimensions, the components of the higher-dimensional
dual graviton figure among the coordinates of the scalar
target space. The Lagrangian of Ref. [72] carries these
fields in a duality-covariant way and yields the first-order
duality equations which relate them to the corresponding
components of the higher-dimensional metric, all while
retaining full higher-dimensional coordinate dependence.
The construction hinges on the introduction of the cova-
riantly constrained compensator fields, which can be
viewed as extra gauge potentials, however, satisfying the
analogue of the section constraint, but for the field
components, so that effectively only a subset of fields
survives, cf. Eq. (2.34) of Ref. [72]. In fact, these additional
gauge fields appear among the (D —2)-forms in the
covariant formulation in all dimensions and neatly fit in
the structure of the tensor hierarchy. For instance, although
such fields are not visible in the Eg ) action (1.3) presented
in this paper, they would show up when extending the
tensor hierarchy on-shell to the full set of 2-forms B, in
the form of compensating gauge fields C,,,, among the 3-
forms. For our action, they are irrelevant thanks to the extra
gauge redundancy corresponding to O, [see Eq. (2.34)],
whose 3-form gauge potential does not enter the action. For
the D =4 decomposition, however, the compensating
gauge field is a 2-form and thus enters explicitly the
gauge-covariant field strength of the gauge vectors AMM .
Finally, in the D =3 decomposition the compensating
gauge fields are among the vectors entering the covariant
derivatives, as discussed for the Ehlers SL(2, R) subgroup
in Ref. [72]. This mechanism also circumvents the seeming
problem of nonclosure of the Egg) generalized Lie deriv-
atives [29]. Summarizing, we have arrived at a satisfying
homogeneous picture of the exceptional field theory for-
mulations for E,,,, n = 6,7, 8. It is a fascinating question
whether and if so how these constructions can be extended
to even larger groups, possibly starting with the infinite-
dimensional Eq) and lifting the action functional of
Ref. [94], but here we can only speculate.
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APPENDIX: TRUNCATIONS OF EXCEPTIONAL
FIELD THEORY

In this appendix we discuss possible truncations of the
EFT action (1.3) in order to relate it to results in the
literature on duality-covariant formulations of subsectors of
11-dimensional supergravity [20,23-26,30]. In particular,
in these formulations all off-diagonal field components and
the external components of the 3-form are set to zero, and it
is assumed that all fields depend only on internal coor-
dinates. In terms of the fields and coordinates of the Egg)
EFT presented here this truncation therefore assumes

AM =0, By =0,

9,=0. (Al

For the action (1.3) this truncation implies

R — 0,
./\/lMN}"””M}"WN - 0,

g”DD”MMNDDMMN i 0,
Lip = 0. (A2)

such that the only surviving term is a truncation of the
potential term V(M. g,,). The available formulations in
the literature differ in the treatment of the remaining fields,
ie., the external metric g, and the generalized metric
My encoding the internal field components. The original
work by Hillmann on E;(7) covariance [20] sets the external
metric to the flat Minkowski metric,

g;w:'l/u/:>\/__g:e:11 (A3)
so that the volume factor becomes unity. In the analogous
truncation of the Eg) EFT, the action (1.3) reduces to the
“potential term” only,

Sgpr — —/5[27YV(M), (A4)

with V(M) obtained from Eq. (1.4) by setting g, = 7,,. It
is useful to investigate what are the residual gauge
symmetries after this truncation. Of course, the (4 + 1)-
dimensional diffeomorphisms are broken, but also the
“internal” generalized diffeomorphisms are not completely
preserved, for the presence of g-dependent terms in the
potential was crucial for gauge invariance, as discussed in
Sec. Il B. In particular, the volume factor e with the
appropriate weight is needed. Requiring that the condition
e = 1 be preserved under gauge transformations we obtain

5Ae = ANaNe —|—§e@NAN ;0 = 8NAN =0. (AS)

In fact, Hillmann found that his formulation matches the
considered truncation of D = 11 supergravity only in the
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“unimodular gauge” of the internal metric [19], for which
the residual gauge transformations are indeed compatible
with Eq. (AS).

For a proper duality-covariant truncation of Eq. (1.3), the
volume factor of the internal metric has to be kept as a
separate degree of freedom, as already noted in Ref. [19].
Specifically, Eq. (A3) is relaxed to

G = ezAﬂyw (A6)
with a warp factor that in accordance with Eq. (Al) is a
function of Y only and transforms as a scalar density of
weight 4 = % under the A gauge transformations (2.4). For
this truncation, the EFT action (1.3) again reduces to its
potential term, now with extra contributions in A,

1
SEFT — /JZ7Y€5A <ﬂMMN3MMKL3NMKL
1
- EMMN(?MMKL(?LMNK

— 50, A0y MMV — 2OMMN8MA8NA> . (AD

This truncated action is duality and AY gauge invariant.
Note that A is a separate degree of freedom that transforms
independently of the 42 scalars parametrizing the Eg)
matrix M ,y. It may be convenient to combine M,y and
A into a single object
MMN = e Myy, (A8)
with some factor y, and rewrite the potential in terms of M
only. This rescaled matrix is no longer an element of the
duality group E,,), but can rather be thought of as taking
values in E,,) x R, which is the starting point in the
approach of Ref. [26]. The formulations of Refs. [23-25]
employ the object (A8) (with different choices for y), but
identify A with one of the internal components of My,
which breaks the E,,,) covariance of Eq. (A7) down to the
subgroup commuting with that parameter, as pointed out in
Refs. [23,30]. The resulting truncation for the Eg case
[25] coincides with Eqgs. (A7) and (A8) (choosing y = —5).
We close by pointing out that, in principle, one may also
separate the R™ factor in the full, untruncated EFT in
Eq. (1.3), by redefining g,, = €**§,,, with unimodular
metric g, and then rescaling the generalized metric M,y as
in Eq. (A8). This has various technical disadvantages,
however, as for instance the Einstein-Hilbert and scalar-
kinetic terms start mixing in an intricate fashion, thereby
obscuring the manifest Eq) covariance of the current
formulation.
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