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We present the details of the recently constructed E6ð6Þ-covariant extension of 11-dimensional
supergravity. This theory requires a 5þ 27-dimensional spacetime in which the “internal” coordinates
transform in the 2̄7 of E6ð6Þ. All fields are E6ð6Þ tensors and transform under (gauged) internal generalized
diffeomorphisms. The “Kaluza-Klein” vector field acts as a gauge field for the E6ð6Þ-covariant “E-bracket”
rather than a Lie bracket, requiring the presence of 2-forms akin to the tensor hierarchy of gauged
supergravity. We construct the complete and unique action that is gauge invariant under generalized
diffeomorphisms in the internal and external coordinates. The theory is subject to covariant section
constraints on the derivatives, implying that only a subset of the extra 27 coordinates is physical. We give
two solutions of the section constraints: the first preserves GL(6) and embeds the action of the complete
(i.e. untruncated) 11-dimensional supergravity; the second preserves GLð5Þ × SLð2Þ and embeds complete
type IIB supergravity. As a byproduct, we thus obtain an off-shell action for type IIB supergravity.
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I. INTRODUCTION

For more than three decades, since the seminal work of
Cremmer and Julia [1], it has been known that the toroidal
compatification of 11-dimensional supergravity [2] gives
rise to the exceptional symmetries EnðnÞðRÞ, n ¼ 6; 7; 8, in
dimensions D ¼ 11 − n. Later, in the middle 1990s, the
discrete subgroups EnðnÞðZÞ were interpreted as part of the
U-duality symmetries of M-theory [3], but ever since it has
remained a mystery why 11-dimensional supergravity
knows about the exceptional groups and to what extent
they are already present in the full theory. This fact has
inspired various authors to speculate about a hidden new
geometry in higher dimensions that transcends the
Riemannian geometry underlying Einstein’s theory
[4–32], but it is fair to say that so far there is no scheme
that casts the full 11-dimensional supergravity into a truly
EnðnÞ-covariant form. In this paper, we present in detail the
construction announced recently in Ref. [33], which gives
an extension of 11-dimensional supergravity that makes the
exceptional group E6ð6Þ manifest prior to any toroidal
compactification, while also hosting the type IIB theory
[34,35]. The details for the remaining finite-dimensional
groups E7ð7Þ and E8ð8Þ will be presented in separate
publications [36].
Our construction is a continuation and generalization of

“double field theory” (DFT), which is an approach to make
the Oðd; dÞ T-duality group of string theory manifest by
introducing a generalized spacetime with doubled

coordinates, subject to a “section constraint” or “strong
constraint,” and by reorganizing the fields into Oðd; dÞ
tensors [37–41]. (For earlier results see Refs. [42–45].)
Remarkably, DFT is applicable not only to (the low-energy
spacetime action of) bosonic string theory, but also to the
heterotic string [46], including their supersymmetric for-
mulations [47–49], as well as massless and massive type II
theories [50–53]. DFT also yields an intriguing generali-
zation of Riemannian geometry [37,54–59], which in turn
extends results in the “generalized geometry” developed in
pure mathematics [60–62]. Moreover, it provides a natural
framework for nongeometric fluxes [63–67]. Finally, an
extension of DFT to higher-derivative α0 corrections has
recently been given [68]. (For a more exhaustive list of
references see the recent reviews [69–71].)
In contrast to D ¼ 10 string theory and DFT, where the

fields naturally combine into tensors under Oð10; 10Þ, the
fields of D ¼ 11 supergravity do not organize directly into
tensors under any of the exceptional groups. For instance,
in order to realize the EnðnÞ symmetry in dimensional
reduction, some field components have to be dualized into
forms of lower rank. As such transformations are specific to
a given dimension, it is not obvious how to build complete
EnðnÞ multiplets in D ¼ 11 prior to any reduction. We have
recently shown how to overcome these obstacles by gauge
fixing the local Lorentz group and decomposing the fields
and coordinates as in Kaluza-Klein compactifications, but
without truncation [72]. The resulting formulation therefore
captures all of the original 11-dimensional supergravity, at
the cost of abandoning some of the Lorentz gauge freedom.
The various field components, necessarily including some
of their duals, can then be reorganized into EnðnÞ tensors.
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Extending the “internal” derivatives to transform in some
fundamental representation of EnðnÞ, subject to a generali-
zation of the DFT section constraint proposed in
Refs. [27,29], we arrive at a manifestly EnðnÞ-covariant
extension of 11-dimensional supergravity. The resulting
theory, which we refer to in the following as “exceptional
field theory” (EFT), closely resembles DFTwhen subjected
to an analogous Kaluza-Klein-type gauge fixing of the local
Lorentz group [73].
Already the early work of de Wit and Nicolai [5,6] has

identified directly in 11 dimensions some of the structures
found in dimensional reduction, following a Kaluza-Klein
decomposition without truncation similar to the present
construction. Manifest 11-dimensional covariance is aban-
doned, in favor of an enhanced local Lorentz symmetry in
accordance with the (composite) gauge symmetries appear-
ing in the D ¼ 4 or D ¼ 3 coset models. However, these
constructions do not yet manifest the exceptional groups,
and further work in Ref. [8] suggested that additional
coordinates should be introduced in order to achieve this,
an idea that also features prominently in the proposal of
Ref. [14]. Later work [19,20] gave a manifestly E7ð7Þ-
invariant action functional for a certain seven-dimensional
truncation of D ¼ 11 supergravity by introducing coordi-
nates in the 56 of E7ð7Þ. Recently, other subsectors of
D ¼ 11 supergravity have been reformulated in terms of a
generalized metric (see e.g., Refs. [23–25]), together with a
duality-covariant formulation of part of the gauge sym-
metries in the form of generalized Lie derivatives. These
constructions are also related to extensions of generalized
geometry to the exceptional groups [16,26]. In all these
truncations the match to 11-dimensional supergravity
requires a Kaluza-Klein-type decomposition of the latter
in which one sets to zero all off-diagonal components of the
metric and the 3-form, sets to zero the external components
of the 3-form and freezes the external metric to the
Minkowski metric, possibly up to a warp factor. Finally,
one truncates the coordinate dependence of all fields to the
internal coordinates. We will explain in the Appendix the
embedding of these theories into the full EFT formulation,
constructed in this paper.
This formulation to be constructed requires various new

mathematical tools [72], analogous to the Lorentz gauge-
fixed DFT [73]. Most importantly, the off-diagonal vector
field components of the Kaluza-Klein-like decomposition
yield a generalization of a Yang-Mills gauge field. More
precisely, these fields transform in the same way as a Yang-
Mills connection, but with a bracket, in the following
referred to as the “E-bracket,” that does not satisfy all
axioms of a Lie bracket. This, in turn, requires the
introduction of forms of higher rank in order to maintain
gauge covariance of the field strengths, in precise analogy
to the “tensor hierarchy” of gauged supergravity [74,75].
Moreover, these higher forms play a vital role as the duals
of some physical fields, which is implemented at the level

of an off-shell action by means of topological Chern-
Simons-like terms, as in gauged supergravity [76,77].
Finally, the “internal” field components organize into a
“generalized metric” MMN that is a covariant tensor under
EnðnÞ, while the “external”metric gμν is an EnðnÞ singlet that,
however, transforms as a scalar density under the (internal)
generalized Lie derivatives.
In this paper, we present in detail the construction of the

E6ð6Þ EFT. Dimensional reduction from 11 dimensions on a
torus T6 is known to give rise to maximal D ¼ 5 super-
gravity with global E6ð6Þ symmetry [78]. It becomes
manifest in five dimensions after the proper dualization
of all p-form tensors to the lowest possible degree. In
particular, the 3-form descending from 11 dimensions is
dualized into a scalar and joins the coordinates of the scalar
target space described by the coset space E6ð6Þ=USpð8Þ.
The E6ð6Þ EFT keeps the field and multiplet structure of the
five-dimensional theory, but elevates all fields to functions
of 5þ 27 coordinates ðxμ; YMÞ, where the YM, with dual
derivatives ∂M, live in the fundamental representation 2̄7 of
E6ð6Þ. The theory is subject to covariant section constraints,
which can be written in terms of the E6ð6Þ-invariant d-
symbols dMNK and dMNK as follows [26,29]:

dMNK∂N∂KA ¼ 0; dMNK∂NA∂KB ¼ 0; (1.1)

where A; B denote any fields or gauge parameters. This
constraint is the analogue of the “strong constraint” in DFT
and implies that only a subset of the 27 coordinates is
physical. While in DFT the strong constraint is motivated
from string theory, as implementing a strong version of the
level-matching constraint, Eq. (1.1) has been postulated by
analogy. However, we will discuss below that for the SO
(5,5) T-duality subgroup of E6ð6Þ it actually reduces to the
strong constraint of DFT. The E6ð6Þ-covariant field content
is given by

feμa;MMN; Aμ
M; BμνMg; (1.2)

where eμa denotes the fünfbein corresponding to the
external metric, while Aμ

M and Bμν M are the tensor gauge
fields relevant for the E6ð6Þ EFT. The symmetric matrix
MMN parametrizes the coset space E6ð6Þ=USpð8Þwhose 42
coordinates describe the “scalar” fields of the theory. The
full action is given by

SEFT ¼
Z

d5xd27Ye

�
R̂þ 1

24
gμνDμMMNDνMMN

−
1

4
MMNF μνMF μν

N þ e−1Ltop − VðMMN; gμνÞ
�
:

(1.3)

This action takes the same structural form asD ¼ 5 gauged
supergravity [77], with a (covariantized) Einstein-Hilbert
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term for eμa, a “scalar” kinetic term for MMN and a Yang-
Mills term based on the field strength F μν

M, the latter also
depending on the 2-form Bμν M in accordance with the
tensor hierarchy. All fields depend on the “internal”
coordinates, corresponding to the non-Abelian structure
of covariant derivatives and field strengths involving the
derivatives ∂M. In addition, the “potential” VðM; gÞ is
the manifestly E6ð6Þ-covariant expression (built using only
the ∂M derivatives) given by

V¼−
1

24
MMN∂MMKL∂NMKLþ

1

2
MMN∂MMKL∂LMNK

−
1

2
g−1∂Mg∂NMMN−

1

4
MMNg−1∂Mgg−1∂Ng

−
1

4
MMN∂Mgμν∂Ngμν: (1.4)

All terms in the action (1.3) are separately gauge invariant
under the internal (generalized) diffeomorphisms of the
YM, generated by a parameter ΛMðx; YÞ, with the Aμ

M

taking the role of a gauge connection for this symmetry.
The action is further gauge invariant under (Aμ-covarian-
tized) “external” diffeomorphisms generated by ξμðx; YÞ,
but this symmetry is not manifest for the Y-dependent
parameter ξμ. In fact, it is this symmetry that relates the
various terms in Eq. (1.3) and fixes all relative coefficients.
Apart from the construction of the action (1.3), a central

result of this paper is to show that this action after putting
an appropriate solution of the section condition (1.1)
reduces to full (i.e. untruncated) 11-dimensional super-
gravity after a rearrangement of the fields according a 5þ 6
Kaluza-Klein split but keeping the dependence on all 11
coordinates. We work this out in full detail and reproduce
from Eq. (1.3) the action of 11-dimensional supergravity.
Moreover, it has been noted in Ref. [33] that the section
condition (1.1) allows for (at least) two inequivalent
solutions, the second of which reduces the theory (1.3)
to the full ten-dimensional IIB theory. To this end we first
break E6ð6Þ under SLð6Þ × SLð2Þ such that the fundamental
representation decomposes as

27 → ð15; 1Þ þ ð6; 2Þ: (1.5)

If we let the fields depend on six coordinates from the SL
(2) doublet, the section constraints are satisfied. We are left
with an unbroken GL(6) symmetry and fields depending on
5þ 6 coordinates. For this choice, the action (1.3) reduces
to an action that is on-shell equivalent to 11-dimensional
supergravity. Alternatively, the section constraint is solved
by letting fields depend on five coordinates from the 15 in
Eq. (1.5), which in turn breaks the symmetry to
GLð5Þ × SLð2Þ. For this choice, Eq. (1.3) reduces to a
ten-dimensional action with a global SL(2) symmetry and
we obtain an on-shell equivalent formulation of type IIB
supergravity. As a byproduct, this yields an off-shell action

for type IIB supergravity, at the cost of sacrificing manifest
ten-dimensional spacetime covariance. In the sense just
explained, the EFT defined by Eq. (1.3) unifies type IIB
and M-theory (and thus type IIA), a feature shared with the
type II DFT constructed in Refs. [50,51]. Instead, dropping
all derivatives with respect to the extra internal coordinates,
i.e. setting ∂M ¼ 0, the theory (1.3) directly reduces to
D ¼ 5 maximal supergravity in the form in which the
exceptional symmetry E6ð6Þ is manifest without further
dualization [78]. The various links are depicted in Fig. 1,
which can be thought of as a commutative diagram that
explains the emergence of E6ð6Þ from M-theory or type IIB.
This paper is organized as follows. In Sec. II we

introduce the required E6ð6Þ structures: the generalized
Lie derivatives, the E-bracket, and the associated tensor
hierarchy. Employing these techniques, we define in
Sec. III the various terms of the E6ð6Þ EFT action and
discuss the (nonmanifest) gauge invariance under the
external, five-dimensional diffeomorphisms. In Sec. IV
we prove that 11-dimensional supergravity can be
embedded in EFT, upon solving the section constraint as
above and rewriting 11-dimensional supergravity appro-
priately for the Kaluza-Klein-inspired gauge fixing of the
Lorentz group. In Sec. V we discuss the embedding and
decomposition of type IIB supergravity along the same
lines. We close with a summary and outlook in Sec. VI. In
the Appendix we discuss truncations of our theory, in order
to relate it to some of the duality-covariant truncations
previously obtained in the literature.

II. E6ð6Þ GENERALIZED DIFFEOMORPHISMS
AND THE TENSOR HIERARCHY

We start by introducing the mathematical background
needed for the definition of the theory (1.3), including the
E6ð6Þ generalized Lie derivatives that generate the internal
(generalized) diffeomorphisms and the “E-bracket.” Then

FIG. 1 (color online). E6ð6Þ EFT embedding of D ¼ 11 super-
gravity, IIB supergravity, and D ¼ 5 supergravity.
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we introduce the gauge fields Aμ
M which gauge this

symmetry in the sense of making it local with respect to
the “external” x space. Due to the nontrivial Jacobiator of
the E-bracket, gauge covariance requires the introduction
of the 2-form BμνM in accordance with the general tensor
hierarchy of non-Abelian p-forms [74,75].

A. Generalized Lie derivatives and the E-bracket

We begin by collecting the relevant facts about the
exceptional Lie group E6ð6Þ. Its Lie algebra is of dimension
78, with generators that we denote by tα with the adjoint
index α ¼ 1;…; 78. In addition, E6ð6Þ has two inequivalent
fundamental representations of dimension 27, which we
denote by 27, and 2̄7 for its contragredient. These repre-
sentations will be indicated by lower indices M;N ¼
1;…; 27 for 27 and upper indices for 2̄7. Note, in particular,
that there is no invariant metric to raise and lower
fundamental indices. In contrast, we raise and lower
adjoint indices by the (rescaled) Cartan-Killing form
καβ ≡ ðtαÞMNðtβÞNM.
In the fundamental representation, there are two

cubic E6ð6Þ-invariant tensors, the fully symmetric d-
symbols dMNK and dMNK , which we normalize as
dMPQdNPQ ¼ δNM. Below we will need the projector onto
the adjoint representation

PM
N
K
L ≡ ðtαÞNMðtαÞLK ¼ 1

18
δMN δ

K
L þ 1

6
δKNδ

M
L

−
5

3
dNLRdMKR; (2.1)

which satisfies

PM
N
N
M ¼ 78: (2.2)

We note the useful cubic relations for the d-symbols,

dSðMNdPQÞTdSTR ¼ 2

15
δRðMdNPQÞ;

dSTRdSðMNdPQÞT ¼ 2

15
δR

ðMdNPQÞ: (2.3)

Next, we introduce the generalized Lie derivative with
respect to the vector parameter ΛM acting on E6ð6Þ tensors
in the fundamental representation with an arbitrary number
of upper and lower indices. Moreover, the tensors can carry
an arbitrary density weight λ. On a vector VM of weight λ it
acts as [26,29]

δVM ¼ LΛVM ≡ ΛK∂KVM − 6PM
N
K
L∂KΛLVN

þ λ∂PΛPVM: (2.4)

Similarly, it acts on a co-vector WM of weight λ0 as

δWM ¼ LΛWM ≡ ΛK∂KWM þ 6PN
M
K
L∂KΛLWN

þ λ0∂PΛPWM; (2.5)

and accordingly on an E6ð6Þ tensor with an arbitrary number
of covariant and contravariant fundamental indices.
Because of the projector in Eq. (2.4), the generalized
Lie derivative is compatible with the E6ð6Þ algebra structure:
the d-symbols are invariant tensors of weight λ ¼ 0,

LΛdMNK ¼ 0; (2.6)

and its action on the E6ð6Þ-valued generalized metric MMN
to be introduced below (carrying weight λ ¼ 0) preserves
the group property. Moreover, the above definition is such
that the E6ð6Þ-invariant contraction between a vector and a
co-vector transforms as

δΛðVMWMÞ ¼ ΛK∂KðVMWMÞ þ ðλþ λ0Þ∂PΛPVMWM:

(2.7)

In particular, the contraction transforms as a genuine scalar
if the vectors have opposite weights, λ ¼ −λ0. Writing out
the projector (2.1), the Lie derivative on, say, a vector reads
explicitly

δΛVM ¼ ΛK∂KVM − ∂KΛMVK þ
�
λ −

1

3

�
∂PΛPVM

þ 10dNLRdMKR∂KΛLVN: (2.8)

We observe that the projector contributes an additional
density-type term, leading to an “effective weight” of
ðλ − 1

3
Þ in the action (2.8), which singles out the value

λ ¼ 1
3
. In fact, we will see below that the vector gauge

parameter itself has to be thought of as a vector of weight
λ ¼ 1

3
, such that Eq. (2.8) carries no explicit weight term.

We stress that by referring to the weight λ of a tensor V,
sometimes denoted by λðVÞ, we always denote the weight
in Eq. (2.4), as opposed to the effective weight of Eq. (2.8).
In the following, a careful treatment of the emerging
weights will be crucial. A remarkable observation is the
following: if VM is a covariant vector of weight λðVÞ ¼ 2

3
,

then the combination

WM ≡ dMNK∂KVN (2.9)

is a contravariant vector of weight λðWÞ ¼ 1
3
. This can be

viewed as an E6ð6Þ analogue of the fact that for standard
diffeomorphisms the exterior derivative ∂ ½m0

Cm1…mp� of an
antisymmetric p-form is a covariant tensor. [Note, however,
that the tensor dMNK in Eq. (2.9) is totally symmetric.]
Indeed, embedding the structures of ten- and 11-dimensional
spacetime diffeomorphisms, the tensor structure of Eq. (2.9)
precisely encodes those exterior derivatives, as we will find
from the explicit decompositions of the d-symbol in
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Eqs. (4.42) and (5.5) below. The tensorial nature of Eq. (2.9)
will prove crucial for the structure of the tensor hierarchy of
non-Abelian p-forms. For a general study of connections
and connection-free covariant derivatives in such “excep-
tional geometries” see Refs. [26,31,79].
Let us now discuss a few properties of the generalized

Lie derivatives, which all require the section constraints
(1.1). First, we note that there are “trivial” gauge param-
eters, i.e., gauge parameters that do not generate a gauge
transformation via Eq. (2.4). These are of the form

ΛM ¼ dMNK∂NχK; (2.10)

for an arbitrary covariant vector χK. To prove this claim we
compute from Eq. (2.8)

δΛVM¼ð−dMPQ∂N∂PχQþ10dNLRdMKRdLPQ∂K∂PχQÞVN:

(2.11)

Here we have set to zero the transport term and the density
term, since for the above parameter they vanish by the
section constraints (1.1). Next we apply the cubic identity
(2.3), noticing that

dRLNdRðMKdPQÞL∂K∂PχQ

¼ 1

6
dRLNð2dRMKdPQL þ 2dRQKdPMLÞ∂K∂PχQ

¼ 2

3
dRLNdRMKdPQL∂K∂PχQ; (2.12)

where we used the symmetry in K;P and the section
constraint. The cubic identity thus implies

10dRLNdRMKdPQL∂K∂PχQ

¼ 2δN
ðMdKPQÞ∂K∂PχQ ¼ dPMQ∂N∂PχQ; (2.13)

where, in the last equality, we used again the section
constraint. Inserting this in Eq. (2.11) we observe that this
cancels the first term, thus proving δΛVM ¼ 0 and so the
triviality of the action of this gauge parameter. In the above
proof we have given the detailed steps that will recur in
similar form in many of the computations below, making
repeated use of the section constraints (1.1) and the cubic
identity (2.3). As such, in the following derivations we will
not repeat all intermediate steps in similar detail.
Next, we turn to the gauge algebra. A direct computation

as above shows that, modulo the section constraints (1.1),
the gauge transformations close

½δΛ1
; δΛ2

� ¼ δ½Λ2;Λ1�E ; (2.14)

according to the “E-bracket”

½Λ2;Λ1�ME ¼ 2ΛK
½2∂KΛM

1� − 10dMNPdKLPΛK
½2∂NΛL

1�: (2.15)

Put differently, the generalized Lie derivatives satisfy the
algebra [26,29]1

½LΛ1
;LΛ2

� ¼ L½Λ1;Λ2�E : (2.16)

The E-bracket is the M-theory or EFT analogue of the
C-bracket in DFT. Like the C-bracket, the E-bracket does
not define a Lie algebra in that it has a nontrivial
“Jacobiator,”

JðU;V;WÞ≡ ½½U;V�E;W�E þ ½½V;W�E; U�E
þ ½½W;U�E; V�E: (2.17)

As in DFT, however, the Jacobiator takes the form of a
trivial parameter [Eq. (2.10)] and is therefore consistent
with the Jacobi identity for the symmetry variations,
½½δΛ1

; δΛ2
�; δΛ3

� þ cycl ¼ 0. The proof is formally identical
to that for the Courant bracket in generalized geometry [61]
or for the C-bracket in DFT [39] and proceeds as follows.2

First, we define the Dorfman-type product (or bracket)
between vectors of weight 1

3
,

ðV∘WÞM ≡ ðLVWÞM ¼ VN∂NWM −WN∂NVM

þ 10dMKRdPLR∂KVLWP: (2.18)

A comparison with Eq. (2.15) then shows that the product
differs from the E-bracket by a term symmetric in the two
arguments,

ðV∘WÞM ¼ ½V;W�ME þ 5dMKR∂KðdRPLVPWLÞ: (2.19)

Note that the symmetric contribution takes the trivial form
(2.10) and so ðV∘WÞ and ½V;W�E generate the same
generalized Lie derivative. Using this and the algebra
(2.16) it is straightforward to verify that the product
satisfies the Jacobi-like identity

U∘ðV∘WÞ − V∘ðU∘WÞ − ðU∘VÞ∘W ¼ 0: (2.20)

In fact, with Eq. (2.18) we compute

U∘ðV∘WÞ − V∘ðU∘WÞ ¼ U∘ðLVWÞ − V∘ðLUWÞ
¼ LULVW − LVLUW

¼ L½U;V�EW

¼ LðU∘VÞW ¼ ðU∘VÞ∘W; (2.21)

1Note that the seeming sign difference between Eqs. (2.14) and
(2.16) originates from the difference between a field variation,
acting on fields first, and an abstract operator like the Lie
derivative.

2See also the analysis in the context of exceptional generalized
geometry [26], to which our discussion reduces for one solution
of the section constraint.
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thus proving Eq. (2.20). Next we use Eq. (2.19) to compute

½½U;V�E;W�E
¼ ð½U;V�E∘WÞM − 5dMKR∂KðdRPL½U;V�PEWLÞ
¼ ððU∘VÞ∘WÞM − 5dMKR∂KðdRPL½U;V�PEWLÞ: (2.22)

Using the fact that as a consequence of Eq. (2.19) the E-
bracket Jacobiator is proportional to the “Jacobiator” for
the Dorfman product, one computes with the identity (2.20)

JMðU;V;WÞ ¼ 5

3
dMKR∂KðdRPLð½U;V�PEWL

þ ½W;U�PEVL þ ½V;W�PEULÞÞ: (2.23)

This completes the proof that the Jacobiator is of the trivial
form Eq. (2.11).

B. E6ð6Þ tensor hierarchy

We now turn to a discussion of external covariant
derivatives, gauge connections, and covariant curvatures.
These are necessary because in the above gauge trans-
formations we will take the gauge parameters ΛM to be
functions of the (internal) E6ð6Þ coordinates YM but also of
the (external) five-dimensional coordinates xμ. Thus, the
gauge transformations are local with respect to the x space
and the corresponding partial derivatives ∂μ need to be
covariantized. We thus introduce a gauge connection Aμ

M

and define the covariant derivative

Dμ ≡ ∂μ − LAμ
: (2.24)

For instance, the covariant derivative of a vector (of weight
λ) is given by

DμVM ¼ ∂μVM − Aμ
K∂KVM þ 6PM

N
K
L∂KAμ

LVN

− λ∂PAμ
PVM: (2.25)

Sometimes, we will explicitly split off the density term and
write

DμVM ¼ DμVM − λ∂PAμ
PVM (2.26)

for a vector VM of weight λ. The transformation of the
gauge connection is obtained by requiring gauge covari-
ance of the covariant derivatives. An explicit computation
shows that with

δAμ
M ¼ ∂μΛM − Aμ

K∂KΛM þ ΛK∂KAμ
M

− 10dMNPdKLPΛL∂NAμ
K

¼ DμΛM −
1

3
ð∂KAμ

KÞΛM

≡DμΛM; (2.27)

the covariant derivatives are indeed covariant. This con-
firms that the gauge parameter ΛM is a contravariant tensor
of weight λ ¼ 1

3
.

Next, we introduce a non-Abelian field strength for the
above gauge connection. The naive non-Abelian Yang-
Mills field strength reads

Fμν
M ¼ 2∂ ½μAν�M − ½Aμ; Aν�ME
¼ 2∂ ½μAν�M − 2A½μK∂KAν�M

þ 10dMKRdNLRA½μN∂KAν�L: (2.28)

Since the E-bracket does not satisfy the Jacobi identity,
however, this field strength does not transform fully
covariantly. We first compute its variation with respect
to an arbitrary δAμ

M, which is a contravariant vector of
weight λ ¼ 1

3
,

δFμν
M ¼ 2D½μδAν�M þ 10dMKRdNLR∂KðA½μNδAν�LÞ: (2.29)

The final term here is noncovariant, but of the “trivial” form
(2.10). In the spirit of the tensor hierarchy [74,75], this
suggests introducing 2-form potentials BμνM and defining
the full covariant field strength by

F μν
M ≡ Fμν

M þ 10dMNK∂KBμνN; (2.30)

such that its general variation is given by

δF μν
M ¼ 2D½μδAν�M þ 10dMNK∂KΔBμν N; (2.31)

with

ΔBμνN ≡ δBμνN þ dNKLA½μKδAν�L: (2.32)

The covariant field strength also appears in the commutator
of covariant derivatives,

½Dμ;Dν� ¼ −LFμν
¼ −LF μν

; (2.33)

where the last equality uses the triviality of Eq. (2.10). With
these results at hand we can now verify the gauge
covariance of the curvature. In addition to the gauge
symmetry parametrized by ΛM, the newly introduced
gauge potential Bμν M comes with its own tensor gauge
symmetry, whose parameter we denote by ΞμM. Explicitly,
the complete gauge variations are given by

δAμ
M ¼ DμΛM −

1

3
ð∂KAμ

KÞΛM − 10dMNK∂KΞμN;ΔBμνM

¼ 2D½μΞν�M −
4

3
ð∂KA½μKÞΞν�M þ dMKLΛKHμν

L

þOμνM; (2.34)

up to yet unspecified terms OμνM satisfying
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dMNK∂KOμνN ¼ 0; (2.35)

which do not contribute to Eq. (2.31). It is a straightforward
calculation to show that under Eq. (2.34), the field strength
(2.30) transforms as a contravariant vector [Eq. (2.8)] of
weight λ ¼ 1

3
. Moreover, the form of Eq. (2.34) shows that

the 2-form gauge parameter ΞμM is a covariant vector of
weight λ ¼ 2

3
.

After having introduced a gauge-covariant field strength,
we will now discuss the Bianchi identities, which is also a
convenient trick in order to define the covariant field
strength of the 2-form Bμν M. To this end we note the
following useful relation, which follows from the obser-
vation in Eq. (2.9):

DμðdMNK∂KVNÞ ¼ dMNK∂KDμVN; (2.36)

which is valid for any covariant vector VN of weight λ ¼ 2
3
.

An explicit computation shows that the field strength (2.30)
satisfies the Bianchi identities

3D½μF νρ�M ¼ 10dMNK∂KHμνρN; (2.37)

with the 3-form field strength HμνρM defined by the
following equation (up to terms that vanish under the
projection with dMNK∂K):

Hμνρ M ¼ 3D½μBνρ�M − 3dMKLA½μK∂νAρ�L

þ 2dMKLA½μKAν
P∂PAρ�L

− 10dMKLdLPRdRNQA½μKAν
N∂PAρ�Q þ � � � :

(2.38)

With respect to the generalized Lie derivative, this is a
covariant vector of weight λ ¼ 2

3
. Next, we determine the

Bianchi identity for HM. From the derivative of Eq. (2.37),

20dMNK∂KD½μHνρσ�N ¼ 6D½μDνF ρσ�M

¼ −15dMNK∂KðdNPQF ½μνPF ρσ�QÞ;
(2.39)

we conclude the Bianchi identity

4D½μHνρσ�M ¼ −3dMPQF ½μνPF ρσ�Q þ � � � ; (2.40)

again up to terms annihilated by the projection
with dMNK∂K .

III. COVARIANT E6ð6Þ THEORY

We are now in the position to define all terms in the E6ð6Þ
EFT action (1.3), specifically the kinetic terms for the
propagating fields eμa, MMN and Aμ

M. The dynamics of
the 2-form tensors BμνM is governed by a topological

Chern-Simons-type term that implies the required duality
relations between Aμ

M and BμνM. We define the “potential”
term as a function of the generalized metric MMN and the
external metric gμν, and prove its gauge invariance under
the internal generalized diffeomorphisms. Finally, we
discuss the nonmanifest invariance of the action under
the (covariantized) five-dimensional external diffeomor-
phisms, which in turn fixes all relative coefficients of the
action.

A. Kinetic and topological terms

Let us start by recalling the field content as given in
Eq. (1.2) above,

feμa;MMN; Aμ
M; BμνMg: (3.1)

In the following we define the kinetic terms for the first
three fields. The five-dimensional vielbein (“fünfbein”) eμa

is a scalar density under ΛM gauge transformations, with
weight λ ¼ 1

3
. In order to write a gauge-invariant action we

thus have to employ the covariant derivatives

Dμeνa ≡ ∂μeνa − Aμ
M∂Meνa −

1

3
∂MAμ

Meνa (3.2)

in the usual definition of the spin connection coefficients
ωμ

ab, which then become ΛM scalars (i.e. carry weight
λ ¼ 0). The correspondingly covariantized Riemann tensor
Rμν

ab defined in the usual fashion then also transforms as a
ΛM scalar. However, because of the noncommutativity of
the covariant derivatives Dμ, the covariantized Riemann
tensor does not transform tensorially under local Lorentz
transformations δλωμ

ab ¼ −Dμλ
ab. This can be repaired by

defining the improved Riemann tensor [73]

R̂μν
ab ≡ Rμν

ab þ F μν
Meaρ∂Meρb; (3.3)

which transforms covariantly under internal generalized
diffeomorphisms and local Lorentz transformations.3 The
covariantized Einstein-Hilbert term

SEH ¼
Z

d5xd27YeR̂ ¼
Z

d5xd27YeeaμebνR̂μν
ab (3.4)

then is gauge invariant under these symmetries. In particu-
lar, the weight λ ¼ 5

3
carried by the fünfbein determinant e

according to Eq. (3.2), combines with the weights of the
inverse fünfbeins to a total weight of 1, as required in order
for the Lagrangian to vary under ΛM transformations into a
total derivative.

3One could also write an A-covariantized Einstein-Hilbert term
in terms of the metric gμν, in which case there is no such extra
term present, with Lorentz symmetry being already manifest.
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Next, we turn to the kinetic term for MMN. This matrix
parametrizes the scalar coset space E6ð6Þ=USpð8Þ whose 42
coordinates describe the scalar fields of the theory. Under
the generalized diffeomorphisms (2.5) it transforms as a
symmetric 2-tensor of weight λ0 ¼ 0. Note in particular,
that this transformation is compatible with the group
property detM ¼ 1. Introducing its covariant derivative
according to Eq. (2.24), we can define the gauge-invariant
kinetic term

Lsc ¼
1

24
egμνDμMMNDνMMN; (3.5)

with the inverse matrix MMN . In particular, with the
inverse metric gμν carrying weight λ ¼ − 2

3
and the

fünfbein determinant the carrying weight λ ¼ 5
3
, the total

weight of this term in the Lagrangian is 1, as required for
ΛM gauge invariance. Similarly, the Yang-Mills kinetic
term − 1

4
eMMNF μνMF μν

N in Eq. (1.3) carries the correct
weight of 1 and is hence gauge invariant. Indeed, we saw
above that the field strengths F μν

M are gauge covariant and

carry a weight of λ ¼ 1
3
, which is precisely the correct

weight given the presence of two inverse metrics gμν.
After having discussed the kinetic terms, we now turn to

the topological Chern-Simons-like term. By this we mean a
term that is written without use of the metric (i.e., only
through exterior products of forms) and that contains bare
gauge potentials such that it is only gauge invariant up to
boundary terms. Its structure is analogous to the topological
term in general D ¼ 5 gauged supergravity [77], such that
its field equations yield the desired first-order duality
equations relating Aμ

M and Bμν M. Such a term may be
written more conveniently as a total derivative in one higher
dimension, which has the advantage of making the gauge
invariance manifest. Using form notation for the invariant
curvatures introduced in Eqs. (2.30) and (2.38),

FM ≡ 1

2
F μν

Mdxμ∧dxν; HM ≡ 1

3!
HμνρMdxμ∧dxν∧dxρ;

(3.6)

the topological term can be written as an integral of an exact
6-form over a six-dimensional space M6,

Stop ¼
Z

d5xd27YLtop

¼ κ

Z
d27Y

Z
M6

ðdMNKFM∧FN∧FK − 40dMNKHM∧∂NHKÞ; (3.7)

whose overall constant κ will be determined below. From this we may determine the nonmanifestly gauge-invariant five-
dimensional form, but it is not very illuminating and will also not be needed in the following. What will be needed in the
following is the general variation of the topological term, which is derived from Eq. (3.7) and takes the form

δLtop ¼ κεμνρστ
�
3

4
dMNKF μν

MF ρσ
NδAτ

K þ 5dMNKdKPQ∂NHμνρ MAσ
PδAτ

Q þ 5dMNK∂NHμνρ MδBστK

�
: (3.8)

In terms of the covariant variation (2.32) it takes the even simpler form

δLtop ¼ κεμνρστ
�
3

4
dMNKF μν

MF ρσ
NδAτ

K þ 5dMNK∂NHμνρ MΔBστ K

�
: (3.9)

With this form it is straightforward to explicitly
verify gauge invariance under the Λ and Ξ transformations
(2.34), integrating by parts and using the Bianchi identities
(2.37) and (2.40). Note that due to Eq. (2.36) in this
computation we can exchange the relevant ∂M and Dμ

derivatives.
We close this subsection by giving the field equations of

the topological fields BμνM, which enter the topological
term and the Yang-Mills term via the covariant field
strength F μν

M. The field equations obtained by varying
BμνP in these terms read

dPML∂LðeMMNF μνN þ κεμνρστHρστMÞ ¼ 0: (3.10)

We will see in the following sections that upon taking
appropriate solutions of the constraints (1.1), these relations
reduce to the required first-order duality relations of either
11-dimensional supergravity or type IIB supergravity.

B. The potential

We now discuss the final term in the EFT action, namely
the potential, which is a function of gμν andMMN given by
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V¼−
1

24
MMN∂MMKL∂NMKLþ

1

2
MMN∂MMKL∂LMNK

−
1

2
g−1∂Mg∂NMMN−

1

4
MMNg−1∂Mgg−1∂Ng

−
1

4
MMN∂Mgμν∂Ngμν: (3.11)

The relative coefficients in here are determined by ΛM

gauge invariance, and in the following we will verify this
gauge symmetry. As the potential is an E6ð6Þ singlet, with
all indices being properly contracted, it is sufficient to
verify the cancellation of all terms that are “noncovariant”
in the following sense. For a generic object with an
arbitrary number of upper and lower E6ð6Þ fundamental
indices, we define

ΔΛ ≡ δΛ − LΛ: (3.12)

Put differently, by Δ we denote all terms in its variation that
differ from the covariant ones (in turn givenby thegeneralized
Lie derivative). As the covariant generalized Lie derivative
terms automatically combine into the Lie derivative of a
scalar, it is sufficient to verify the cancellation of the non-
covariant terms. The only terms that lead to a nontrivialΔ are
those involving a partial derivative, so we have to compute
those terms for ∂M and ∂g. First, we compare

δΛð∂MMKLÞ ¼ ∂MðΛP∂PMKL−12PðK
R
jP
Q∂PΛQjMLÞRÞ;

(3.13)

with the covariant

LΛð∂MMKLÞ
¼ ΛP∂Pð∂MMKLÞ − 12PðK

R
jP
Q∂PΛQj∂MMLÞR

þ 6PR
M
P
Q∂PΛQ∂RMKL þ λ∂PΛP∂MMKL: (3.14)

Herewe introduced λ in order to allow for a possibleweight of
∂M. In fact, wewill showmomentarily that althoughM has
weight zero, its derivative has a nontrivial weight. To see this
we note that the first term in the second line of Eq. (3.14)
simplifies by the section constraint, so that by writing out the
projector according to Eq. (2.1) we obtain

LΛð∂MMKLÞ
¼ ΛP∂Pð∂MMKLÞ − 12PðK

R
jP
Q∂PΛQj∂MMLÞR

þ 1

3
∂PΛP∂MMKL þ ∂MΛP∂PMKL þ λ∂PΛP∂MMKL:

(3.15)

In Eq. (3.13) there are no density-type terms, so in order to
match this as closely as possible with Eq. (3.15) we have to
cancel the density term by setting λ ¼ − 1

3
. We then infer that

Eq. (3.13) agrees with Eq. (3.15), up to terms that involve

second derivatives of the gauge parameter. In total, we have
shown that ∂M comes with weight λ ¼ − 1

3
while its non-

covariant variation is given by

ΔΛð∂MMKLÞ ¼ −12PðK
R
jP
Q∂M∂PΛQjMLÞR: (3.16)

Similarly, we have

ΔΛð∂MMKLÞ ¼ þ12PRðKP
jQ∂M∂PjΛQMLÞR; (3.17)

again taking ∂M to have weight λ ¼ − 1
3
. Taking the trace of

Eq. (3.16) we obtain in particular

ΔΛð∂NMMNÞ¼−
5

3
∂N∂PΛPMMN−∂N∂PΛMMPNþ���;

(3.18)

up to terms that vanish upon contraction with ∂M by the
section constraint. Finallyweneed to determineΔΛ for∂g. By
an exactly analogous computation we find that g−1∂g has
weight λ ¼ − 1

3
. Moreover, derivatives ∂M acting on gμν and

gμν induce additionalweights of− 1
3
, such thatwe find the total

weights to be

λðg−1∂MgÞ ¼ −
1

3
;

λð∂MgμνÞ ¼ −1;

λð∂MgμνÞ ¼
1

3
; (3.19)

with the noncovariant gauge variations given by

ΔΛðg−1∂MgÞ ¼
10

3
∂M∂PΛP;

ΔΛð∂MgμνÞ ¼ −
2

3
∂M∂PΛPgμν;

ΔΛð∂MgμνÞ ¼
2

3
∂M∂PΛPgμν: (3.20)

Let us now verify the gauge invariance of the potential.
First, we note that the weights of the partial derivatives of
the fields are as required in order to combine to a total
weight of 1 with the weight λ ¼ 5

3
of the fünfbein

determinant e multiplying the potential term in the action.
Thus, the complete Λ invariance of the action is proven
once we check that all ΔΛ variations above cancel, which
we will now show. We compute for the first term of
Eq. (3.11)
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δΛ

�
−

1

24
eMMN∂MMKL∂NMKL

�

¼ 1

6
e∂M∂PΛKMMNMPL∂NMKL

−
5

3
edRQSdKPS∂M∂PΛQMMNMRL∂NMKL

¼ e∂M∂PΛKMMNMPL∂NMKL: (3.21)

Here, in the second equality, we used the fact thatM is E6ð6Þ
valued with determinant 1, which allows for simplifications.
In order to explain this we first note that the current

ðJNÞKL ≡MKP∂NMPL (3.22)

lives in the adjoint representation and is traceless. Therefore
it satisfies

PM
N
K
LðJPÞLK ¼ ðJPÞMN: (3.23)

Spellingout theprojectorwithEq. (2.1), this condition implies

dNLSdMKSJLK ¼ −
1

2
JMN: (3.24)

Using this in the second termon the right-hand side of the first
equality in Eq. (3.21) then reproduces the final equality. For
the second term in the potential (3.11) we compute

δΛ

�
1

2
eMMN∂MMKL∂LMNK

�

¼ 2

3
e∂M∂PΛP∂NMMN − e∂M∂PΛKMMNMPL∂NMLK

þ e∂M∂PΛL∂LMMP: (3.25)

Herewe used again that the current J is Lie algebra valued, so
that the invariance of the d symbol implies

0 ¼ 3dKðSPJMÞ
K ¼ dKPMJSK þ 2dSKðPJMÞ

K: (3.26)

The last term inhere appears in the abovevariation, andby this
relation it has been rewritten in terms of the first term, which
then in turn gives zero by the section constraint. We observe
that the cubic term in M in Eq. (3.25) precisely cancels the
same term in Eq. (3.21), which in turn determined the relative
coefficient between these terms. By using Eq. (3.20) it is
straightforward to verify that the remaining terms linear in
∂M are cancelled by the ΔΛ variation of the terms in the
second line of Eq. (3.11). This proves the full ΛM gauge
invariance of the potential.

C. ð4þ 1Þ-dimensional diffeomorphisms

In the previous subsections, we have determined the
various terms of the EFT action (1.3) by invariance under
generalized internal ΛM diffeomorphisms. While this has

uniquely fixed the form of the five different terms in
Eq. (1.3), they could in principle have appeared with
arbitrary relative coefficients. In this section we show that
all relative factors are determined by invariance of the full
action under the remaining gauge symmetries, which are a
covariantized version of the ð4þ 1Þ-dimensional diffeo-
morphisms with parameters ξμðx; YÞ. If ξμ is independent of
Y these are manifest symmetries for each term in the action
separately. For general ξμ, however, this gauge invariance is
far from manifest and in particular it relates all terms in the
action. As a result, the action (1.3) is the unique action
(with no free parameter left up to an overall rescaling)
that is not only invariant under generalized internal
diffeomorphisms ΛMðx; YÞ but also under the appropriate
version of the external diffeomorphisms ξμðx; YÞ. The
actions of these diffeomorphisms on the various fields
are given by

δeμa ¼ ξνDνeμa þDμξ
νeνa;

δMMN ¼ ξμDμMMN;

δAμ
M ¼ ξνF νμ

M þMMNgμν∂Nξ
ν;

ΔBμνM ¼ 1

16κ
ξρeεμνρστF στNMMN; (3.27)

written for BμνM in terms of the covariant variation (2.32).
They take the form of conventional diffeomorphisms, but
they are “covariantized” with respect to the connection A of
the separate Λ gauge symmetry, except for an additional
M-dependent term in δAμ

M and an on-shell modification in
ΔBμν M. More precisely, the naive covariant variation of
Bμν M would take the form ΔξBμνM ¼ ξρHμνρ M, with the
covariant field strength defined in Eq. (2.38), but it turns
out that off-shell gauge invariance of the action requires one
to replace this field strength according to the duality
relation (3.10). Thus, the gauge variations (3.27) are only
on-shell equivalent to the conventional form of the (cova-
riantized) diffeomorphisms.
Next, we discuss the gauge invariance of the action under

Eq. (3.27) in some detail. The explicit verification of this
gauge invariance is quite tedious and so we focus on a
subset of terms that provide a very strong consistency check
and that are sufficient in order to determine all relative
coefficients in the action. Specifically, for various structures
the cancellation proceeds completely parallel to the calcu-
lation that ensures standard diffeomorphism invariance in
11-dimensional supergravity in a 5þ 6 splitting of fields
and coordinates. They can therefore be omitted. In par-
ticular, as explained in Ref. [72], terms linear inM that are
of the structural form MMN∂Mð� � �Þ∂Nð…Þ have to cancel
separately, and this computation is formally identical to the
corresponding one for standard diffeomorphisms. In the
following we focus on those terms for which cancellation
involves the novel features of the EFT action.
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We start by computing the variation of the sum of Yang-Mills and the topological term, denoted in the following
by LVT,

LVT ≡ −
1

4
eF μν

MF μν NMMN þ κLCS: (3.28)

Using Eq. (3.9) one easily sees that its general variation is given by

δLVT ¼ ðκεμνρστdMNKF νρ
KF στ

N −DνðeMMNF μν NÞÞδAμ
M þ 5dMKN∂K

�
eF μν NMMN þ 4κ

3
εμνρστHρστM

�
ΔBμν N

þOðδgμνÞ þOðδMMNÞ: (3.29)

Next, we insert the gauge variations (3.27) and first focus on the F∧F terms in the variation,

δLVTjF∧F ¼ κεμνρστdMNKF νρ
KF στ

NMMLgμλ∂Lξ
λ þ 5

16κ
dMKN∂KðeF μνQMMQÞξρeεμνρστF στPMNP

¼ κεμνρστdMNKMMLF νρ
KF στ

Ngμλ∂Lξ
λ −

5

32κ
εμνστρdMKNMMQMNPF μν

PF στ
Qgρλ∂Kξ

λ: (3.30)

We can simplify this variation by using that M is E6ð6Þ valued, so that the invariance of the d symbol implies
dMKNMMQMNP ¼ dPQMMMN . Using this in Eq. (3.30) we infer that this variation vanishes for

κ2 ¼ 5

32
: (3.31)

Let us now return to Eq. (3.29) and focus on the variation coming from the second term in the first line, restricted to the
covariant, M-independent term of δAμ

M in Eq. (3.27). Integrating by parts we compute

eF μν NMMNDνðξρF ρμ
MÞ ¼ eF μν NMMNDνξ

ρF ρμ
M −

1

2
eF μν NMMNξ

ρDρF μν
M þ 5edMPQξρF μν NMMN∂PHμνρ Q;

(3.32)

where we rewrote the DF term as a total curl and then
used the Bianchi identity (2.37) in the last term in the
second line. Let us note that the first two terms of Eq. (3.32)
occur already in a completely analogous form in the
usual diffeomorphism variation, and so their cancellation
against the variation of gμν and MMN from Eq. (3.29) is
standard. The term in the last line originating from the
novel Bianchi identity, however, needs to be cancelled
separately. This is achieved by the variation originating
from the second term in the second line of Eq. (3.29).
In fact, by inserting ΔB from Eq. (3.27) we compute for
this term

5

12
eεμνλσ0τ0εμνρστdMKN∂KHρστ Mξ

λF σ0τ0 QMNQ

¼ −5edMKN∂KHρστ Mξ
ρF στ QMNQ;

which cancels precisely the final term in Eq. (3.32).

Let us next inspect the variation of the second term
in the first line of Eq. (3.29), but now under the non-
covariant, M-dependent term of δAμ

M in Eq. (3.27). Upon
integration by parts we obtain

−DνðeMMNF μν NÞMMKgμρ∂Kξ
ρ

¼ eF μν
MMMNDνMNK∂Kξ

μ − F μν MDμðgνρ∂Mξ
ρÞ:
(3.33)

The second term precisely cancels against the main con-
tribution from the variation of the Einstein-Hilbert term.
This computation is formally identical to that presented in
Ref. [72], cf. Eq. (4.16) in that paper. The first term in
Eq. (3.33) will cancel against the variation of the scalar
kinetic term. In order to show this, let us first compute the
variation of the “scalar current,”
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δξðDμMMNÞ¼DμðξνDνMMNÞ−LδAμ
MMN

¼LξðDμMMNÞ−ξνLF μν
MMNþLξνF μν

MMN−LM•Kgμν∂KξνMMN

¼LξðDμMMNÞþ12PP
Q
K
ðMMNÞKF μν

Q∂Pξ
ν−MKL∂LMMNgμν∂Kξ

νþ12PP
Q
K
ðMMNÞK∂PðMLQgμν∂Lξ

νÞ

¼LξðDμMMNÞþ
2

3
MMNF μν

P∂Pξ
νþ2F μν

KMKðM∂NÞξν−20dPKLdQLðMMNÞKF μν
Q∂Pξ

ν

−MKL∂LMMNgμν∂Kξ
νþ2

3
MMN∂PðMLPgμν∂Lξ

νÞþ2MKðM∂NÞðMKLgμν∂Lξ
νÞ

−20dPKLdQLðMMNÞK∂PðMRQgμν∂Rξ
νÞ: (3.34)

After some tedious algebra, using in particular the fact that
ðDμM−1MÞMN is an e6ð6Þ algebra-valued matrix on which
the projector PP

Q
N
M acts as the identity, one then computes

for the variation of the scalar kinetic term

δLkin ¼ DμMMNMNKF μν
K∂Mξ

ν þDμMMN∂Mðgμν∂Nξ
νÞ

þ
�
MNL∂MMLK −

1

12
MKL∂LMMN

�

×DμMMN∂Kξ
μ: (3.35)

The first term in here precisely cancels the first term in
Eq. (3.33). The second term is of the form MMN∂M∂N ,
which we consistently omitted, cf. the discussion above and
Ref. [72]. Finally, the last line will be cancelled against part
of the variation of the potential (thereby determining the
overall coefficient of the potential). In fact, it is not difficult
to see, using the analogue of the first of the equations in
Eq. (4.22) in Ref. [72], that the variation of the leading
terms in the potential read

δV¼δ

�
1

2
MNL∂MMLK−

1

24
MKL∂LMMN

�
∂KMMNþ���

¼
�
MNL∂MMLK−

1

12
MKL∂LMMN

�

×DμMMN∂Kξ
μþ���: (3.36)

As claimed, in the combination Lkin − V they cancel the
terms in Eq. (3.35). We have thus succeeded in determining
all relative coefficients in the action (1.3) from ξμ gauge
invariance and have shown how the nonstandard diffeo-
morphism symmetry is realized in the EFT action. This
concludes our discussion of the ð4þ 1Þ-dimensional dif-
feomorphisms.

IV. EMBEDDING OF D ¼ 11 SUPERGRAVITY

In this section we show explicitly how to embed 11-
dimensional supergravity into the EFT constructed above.
To this end, in the first subsection we rewrite D ¼ 11
supergravity in a Lorentz gauge-fixed form that would be
appropriate for Kaluza-Klein compactification to D ¼ 5,
but keeping the dependence on all 11 coordinates. In the

second subsection we reduce the EFT (1.3) by choosing a
specific solution for the section constraint (1.1) that breaks
E6ð6Þ to GL(6), with all fields depending on 5þ 6 coor-
dinates. After the explicit dualization of some fields, we
establish complete equivalence with D ¼ 11 supergravity.

A. Decomposition of D ¼ 11 supergravity

We start by briefly recalling the bosonic sector of D ¼
11 supergravity [2], whose fields consist of the elfbein Eμ̂

â

and the 3-form potential Cμ̂ ν̂ ρ̂, where μ̂; ν̂ ¼ 0;…; 10, and
â; b̂ ¼ 0;…; 10, denote D ¼ 11 curved and flat indices,
respectively. The action reads

S11 ¼
Z

d11xE

�
R −

1

12
Fμ̂ ν̂ ρ̂ σ̂Fμ̂ ν̂ ρ̂ σ̂

þ 1

12 · 216
E−1ϵμ̂1���μ̂11Fμ̂1���μ̂4Fμ̂5���μ̂8Cμ̂9μ̂10μ̂11

�
; (4.1)

with the Abelian field strength

Fμ̂ ν̂ ρ̂ σ̂ ¼ 4∂ ½μ̂Cν̂ ρ̂ σ̂�: (4.2)

This theory is invariant under 3-form gauge transformations
δCμ̂ ν̂ ρ̂ ¼ 3∂ ½μ̂Λν̂ ρ̂� and under 11-dimensional diffeomor-
phisms as well as local Lorentz transformations. Next we
reduce the Lorentz gauge symmetry from SO(1,10) to
SOð1; 4Þ × SOð6Þ, choosing an upper-triangular gauge for
the elfbein, and accordingly split the indices and field
components in the above three terms of the action.

1. Einstein-Hilbert term

First we consider the decomposition of the Einstein-
Hilbert term, following Refs. [80,81]. For future applica-
tion it is convenient to keep the decomposition general, so
for the moment we consider a D-dimensional Einstein-
Hilbert term and split the indices as D ¼ nþ d,

μ̂ ¼ ðμ; mÞ; â ¼ ða; αÞ; (4.3)

where μ ¼ 1;…n, and m ¼ 1;…; d, and similarly for the
flat indices. The Lorentz gauge symmetry is partially
fixed by choosing the upper-triangular form of the
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D-dimensional vielbein as follows:

Eμ̂
â ¼

�
ϕγeμa Aμ

mϕm
α

0 ϕm
α

�
; (4.4)

where ϕ ¼ detðϕm
αÞ. The inverse is then given by

Eâ
μ̂ ¼

�
ϕ−γeaμ −ϕ−γeaνAν

m

0 ϕα
m

�
: (4.5)

The constant parameter γ depends on the “external”
dimension n and is determined as

γ ¼ −
1

n − 2
(4.6)

by requiring an Einstein-frame metric in the n-dimensional
theory.
Before we compute the form of the Einstein-Hilbert term

in the gauge (4.4) it is convenient to investigate the form of
the gauge symmetries after this splitting. The original
Einstein-Hilbert term is invariant under D-dimensional
diffeomorphisms xμ̂ → xμ̂ − ξμ̂ and local Lorentz trans-
formations parametrized by λâb̂, which act on the elfbein as

δEμ̂
â ¼ ξν̂∂ ν̂Eμ̂

â þ ∂ μ̂ξ
ν̂Eν̂

â þ λâb̂Eμ̂
b̂: (4.7)

After the splitting of indices, the diffeomorphisms give rise
to two types of gauge symmetries according to

ξμ̂ ¼ ðξμ;ΛmÞ: (4.8)

We will refer to the gauge transformations parametrized by
Λm as “internal” diffeomorphisms. From Eq. (4.7) we
compute

δΛeμa ¼ Λm∂meμa − γ∂mΛmeμa;

δΛϕm
α ¼ Λn∂nϕm

α þ ∂mΛnϕn
α;

δΛϕ ¼ Λn∂nϕþ ∂nΛnϕ;

δΛAμ
m ¼ ∂μΛm − Aμ

n∂nΛm þ Λn∂nAμ
m: (4.9)

We infer that e and ϕ transform as tensors (or tensor
densities) under the symmetry of Λm transformations, for
which Aμ

m provides a gauge connection. In fact, we can
define covariant derivatives and field strengths as follows:

Dμeνa¼∂μeνa−Aμ
m∂meνaþγ∂nAμ

neνa;

Dμϕm
α¼∂μϕm

α−Aμ
n∂nϕm

α−∂mAμ
nϕn

α;

Fμν
m¼∂μAν

m−∂νAμ
m−Aμ

n∂nAν
mþAν

n∂nAμ
m; (4.10)

and it is straightforward to verify that they transform
covariantly under Eq. (4.9). In order to compute the form
of the gauge transformations parametrized by ξμ, which we

refer to as “external” diffeomorphisms in the following, we
have to add a compensating local Lorentz transformation in
order to preserve the gauge choice in Eq. (4.4). The Lorentz
parameter is found to be

λaβ ¼ −ϕγϕβ
m∂mξ

νeνa: (4.11)

Moreover, it turns out to be convenient to present these
“external” diffeomorphisms in the form of covariant or
“improved” diffeomorphisms, for which we add a field-
dependent gauge transformation with parameter
Λm ¼ −ξνAν

m. The full transformation rules can then be
written directly in terms of the covariant objects from
Eq. (4.10),

δξeμa ¼ ξνDνeμa þDμξ
νeνa;

δξϕm
α ¼ ξνDνϕm

α;

δξAμ
m ¼ ξνFνμ

m þ ϕ2γϕmngμν∂nξ
ν; (4.12)

with ϕmn ¼ ϕα
mϕαn.

After having discussed the form of the gauge sym-
metries, we are now ready to decompose the Einstein-
Hilbert term. To this end it is convenient to use the
following formula:

SEH ¼
Z

dDxEEâ
μ̂Eb̂

ν̂Rμ̂ ν̂
â b̂

¼
Z

dnxddyE

�
−
1

4
Ω̂â b̂ ĉΩ̂â b̂ ĉ þ

1

2
Ω̂â b̂ ĉΩ̂b̂ ĉ â

þ Ω̂ĉ b̂
b̂Ω̂ĉ

â
â

�
; (4.13)

where we introduced the coefficients of anholonomy,

Ω̂â b̂ ĉ ¼ Eâ
μ̂Eb̂

ν̂ð∂ μ̂Eν̂ ĉ − ∂ ν̂Eμ̂ ĉÞ: (4.14)

Inserting the elfbein (4.4) and its inverse in here we find for
the various components

Ω̂abc ¼ ϕ−γΩabc þ 2γϕ−γ−1e½aμηb�cDμϕ;

Ω̂abγ ¼ ϕ−2γeaμebνFμν
mϕmγ;

Ω̂aβγ ¼ ϕ−γϕβ
meaμDμϕmγ;

Ω̂αbc ¼ ebνϕα
mDmeνc;

Ω̂αβc ¼ 0;

Ω̂αβγ ¼ Ωαβγ; (4.15)

where we introduced the “external” and “internal” coef-
ficients of anholonomy,
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Ωabc ¼ 2e½aμeb�νDμeνc;

Ωαβγ ¼ 2ϕ½αmϕβ�n∂mϕnγ; (4.16)

and defined

Dmeνc ≡ ∂meνc þ γϕ−1∂mϕeνc: (4.17)

This latter derivative is covariant under the internal diffeo-
morphisms (4.9) in that Dmeνc transforms as a vector
density (with the same weight −γ as eνc). Moreover, we see

that in Eq. (4.15) all the components are organized already
into the covariant objects (4.10), so that the Λ gauge
invariance of the action will be manifest.
Next we determine the form of the Einstein-Hilbert term

by inserting the components (4.15) into Eq. (4.13) and
using

E≡ detEμ̂
â ¼ ϕnγþ1e: (4.18)

We find

SEH ¼
Z

dnxddye

�
−
1

4
ΩabcΩabc þ

1

2
ΩabcΩbca þ ΩaΩa − eaμebνFμν

mðebρ∂meρaÞ

−
1

2
ϕmngμνDμϕm

αDνϕnα − γ2ðn − 2Þϕ−2gμνDμϕDνϕ −
1

2
gμνðϕαmDμϕm

γÞðϕγ
nDνϕnαÞ −

1

4
ϕ−2γϕmnFμνmFμν

n

þ ϕ2γ

�
−
1

2
ϕmngμνDmeμaDneνa −

1

2
ϕmnðebμDmeμcÞðecνDneνbÞ þ ϕmnðe−1DmeÞðe−1DneÞ −

1

4
ΩαβγΩαβγ

þ 1

2
ΩαβγΩβγα þ ΩαΩα þ 2ϕαmΩαe−1Dme

��
: (4.19)

Let us now write the various terms more geometrically. The
terms in the first line combine into the n-dimensional
Einstein-Hilbert term for eμa, but with the additional
covariantization that all derivatives are covariant according
to Eq. (4.10) and the Ricci scalar is based on the
“improved” Riemann tensor

R̂μν
ab ¼ Rμν

ab þ Fμν
meaρ∂meρb; (4.20)

which is necessary in order to preserve local SO(1,4)
Lorentz invariance, as discussed above for the full EFT.
Next, the terms in the last line in the potential can also be
written more geometrically, using

eϕ2γRðϕm
αÞ ¼ eϕ2γ

�
−
1

4
ΩαβγΩαβγ þ

1

2
ΩαβγΩβγα

þ ΩαΩα þ 2ϕα
me−1∂meΩα

þ 2ð2γ − 1Þϕα
mϕ−1∂mϕΩα

�
þ total der:;

(4.21)

which for γ as determined in Eq. (4.6) reproduces the last
line of Eq. (4.19). Finally, we can reorganize the De terms
into Dg terms in order to make the local Lorentz invariance
manifest. In total we obtain

SEH ¼
Z

dnxddye

�
R̂−

1

4
ϕ−2γϕmnFμνmFμν

n

−
1

2
ϕmngμνDμϕm

αDνϕnα − γ2ðn− 2Þϕ−2gμνDμϕDνϕ

−
1

2
gμνðϕαmDμϕm

γÞðϕγ
nDνϕnαÞ−Vðϕ; eÞ

�
; (4.22)

with the “Einstein-Hilbert potential”

VEHðϕ;eÞ

¼−ϕ2γ

�
RðϕÞþ1

4
ϕmnðDmgμνDngμνþg−1Dmgg−1DngÞ

�
:

(4.23)

Below we will also need the form of the potential in terms
of the symmetric tensor ϕmn ¼ ϕm

αϕnα, as opposed to the
vielbein. Integrating by parts, and setting γ ¼ − 1

3
, the term

involving the internal Ricci scalar can be written as

eϕ−2
3RðϕÞ¼ eϕ−2

3

�
1

2
ϕmnϕklϕpq∂kϕmq∂pϕnl

−
1

4
ϕmnϕklϕpq∂pϕmk∂qϕnl

−
2

3
∂mϕ

mnϕ−1∂nϕ−
21

9
ϕmnðϕ−1∂mϕÞðϕ−1∂nϕÞ

þ∂mϕ
mne−1∂neþ2ϕmnðe−1∂meÞðϕ−1∂nϕÞ

�
;

(4.24)
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which is the form that is convenient for the comparison
with the E6ð6Þ-covariant theory.

2. 3-form kinetic and topological terms

We now turn to the decomposition of the kinetic term for
the 3-form. First, we have to perform field redefinitions of
the various components of Cμ̂ ν̂ ρ̂ in terms of the Kaluza-
Klein vector in order to obtain forms that transform
covariantly under the gauge symmetries. The general
prescription for Kaluza-Klein reductions is to “flatten”
all D ¼ 11 curved indices with Ea

μ̂ and then to “unflatten”
with the external n-bein components Eμ

a. For instance,
the vectors originating from the 3-form are redefined
according to

Aμ mn ≡ Eμ
aEa

ν̂Cν̂mn: (4.25)

Performing the analogous field redefinition for the other
components we obtain the following field variables
originating from the 3-form Cμ̂ ν̂ ρ̂, denoted by A:

Amnk ¼ Cmnk; Aμmn ¼ Cμmn − Aμ
kCkmn;

Aμνm ¼ Cμνm − 2A½μnCν�mn þ Aμ
nAν

kCmnk;

Aμνρ ¼ Cμνρ − 3A½μmCνρ�m þ 3A½μmAν
nCρ�mn

− Aμ
mAν

nAρ
kCmnk: (4.26)

This definition is such that the fields transform covariantly
under internal diffeomorphisms, i.e., simply according to
their “internal” index structure. In order to display the
transformation under the components of the 3-form gauge
parameter Λμ̂ ν̂, we also have to perform redefinitions of the
parameters with the Kaluza-Klein vector, following exactly
the same prescription as for the fields. Thus, we define the
new parameters

Λ0
μm ¼ Λμm − Aμ

nΛnm; etc: (4.27)

Dropping the prime on the parameters in the following, we
obtain the gauge transformations under ðΛmn;Λμm;ΛμνÞ
which act on the fields as

δAmnk ¼ 3∂ ½mΛnk�;

δAμmn ¼ DμΛmn − 2∂ ½mΛjμjn�;

δAμνm ¼ 2D½μΛν�m − Fμν
nΛmn þ ∂mΛμν;

δAμνρ ¼ 3D½μΛνρ� − 3F½μνmΛρ�m: (4.28)

As usual, all derivatives are covariant with respect to
the internal diffeomorphisms. We observe that after the

decomposition the formerly Abelian 3-form gauge trans-
formations of D ¼ 11 supergravity take a nontrivial form
with noncommuting covariant derivatives and extra
Stückelberg-type transformations, reminiscent of the tensor
hierarchy introduced above. Moreover, the Kaluza-Klein
Yang-Mills field strength Fμν

n explicitly appears in the
transformation rules.
Let us now turn to the form of the field strength

components. As for the fields, redefinitions are required,
in order to arrive at field strengths that are covariant under
internal diffeomorphisms and invariant under Eq. (4.28).
We define

F0
μmnk ≡ Eμ

aEa
ν̂Fν̂mnk; etc:; (4.29)

which are manifestly invariant under the 3-form gauge
transformations as a consequence of the invariance of the
original field strength Fμ̂ ν̂ ρ̂ σ̂. Dropping the primes in the
following, one finds for the redefined field strength in terms
of the redefined fields

Fmnkl ¼ 4∂ ½mAnkl�;

Fμ nkl ¼ DμAnkl − 3∂ ½nAjμjkl�;

Fμνmn ¼ 2D½μAν�mn þ Fμν
kAkmn þ 2∂ ½mAjμνjn�;

Fμνρm ¼ 3D½μAνρ�m þ 3F½μνnAρ�mn − ∂mAμνρ;

Fμνρσ ¼ 4D½μAνρσ� þ 6F½μνmAρσ�m: (4.30)

These field strengths are manifestly covariant with respect
to internal diffeomorphisms. Moreover, one may verify by
an explicit computation that the field strengths are gauge
invariant under Eq. (4.28). Due to the non-Abelian gauge
connections entering the fields strengths, the latter satisfy
nonstandard Bianchi identities,

DμFmnkl ¼ 4∂ ½mFjμjnkl�;

2D½μFν�nkl ¼ −3∂ ½nFjμνjkl� − Fμν
mFmnkl;

3D½μFνρ�mn ¼ 2∂ ½mFjμνρjn� þ 3F½μνkFρ�kmn;

4D½μFνρσ�m ¼ −∂mFμνρσ þ 6F½μνnFρσ�mn;

5D½μFνρσλ� ¼ 10F½μνmFρσλ�m: (4.31)

As for the tensor hierarchy, the Bianchi identities relate the
exterior derivatives of a field strength to the “next higher”
field strength in the hierarchy.
We are now in a position to give the decomposition of the

kinetic term for the 3-form. Due to the form of the
redefinition (4.29) of the field strengths, it is straightfor-
ward to rewrite the F2 term, by simply going to flattened
indices,
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L3-form ¼ −
1

12
EFμ̂ ν̂ ρ̂ σ̂Fμ̂ ν̂ ρ̂ σ̂ ¼ −

1

12
EFâ b̂ ĉ d̂Fâ b̂ ĉ d̂

¼ −
1

12
ϕnγþ1eðϕ−8γFμνρσFμνρσ þ 4ϕ−6γϕmnFμνρ

mFμνρn þ 6ϕ−4γϕmnϕklFμν
mkFμνnl

þ 4ϕ−2γϕmnϕklϕpqFμ
mkpFμnlq þ ϕmnϕklϕpqϕrsFmkprFnlqsÞ

¼ −
1

12
eðϕ2FμνρσFμνρσ þ 4ϕ

4
3ϕmnFμνρ

mFμνρn þ 6ϕ
2
3ϕmnϕklFμν

mkFμνnl

þ 4ϕmnϕklϕpqFμ
mkpFμnlq þ ϕ−2

3ϕmnϕklϕpqϕrsFmkprFnlqsÞ: (4.32)

Herewe left the raising of spacetime indices with gμν implicit,
and we inserted the value for γ [see Eq. (4.6)] for n ¼ 5.
Next we have to decompose the topological Chern-

Simons-like term in Eq. (4.1) and write it in terms of the
invariant field strengths defined in Eq. (4.30). One finds

Ltop ¼ −
1

108
ϵμνρσλϵmnklpq

�
AμνmFρσλnFklpq

þ 6AμνmFρσnkFλlpq −
1

2
AμνρFσλmnFklpq

þ 2

3
AμνρFσmnkFλlpq −

1

4
AμmnFklpqFνρσλ

þ 4AμmnFνklpFρσλq −
9

2
AμmnFνρklFσλpq

þ 1

3
AmnkFμlpqFνρσλ þ 2AmnkFμνlpFρσλq

�
: (4.33)

The validity of this expression can be checked explicitly by
verifying gauge invariance under Eq. (4.28). As the field
strengths are already gauge invariant by construction, we
only have to vary the bare gauge potentials A. After this we
may integrate by parts and show the cancellation by use of
the Bianchi identities (4.31). This computation requires

repeated use of Schouten identities according towhich terms
with total antisymmetrization over seven internal indices
m; n;… vanish identically. Let us note that up to total
derivatives, the form of Eq. (4.33) is uniquely determined by
gauge invariance under Eq. (4.28), up to the overall
coefficient that is determined by D ¼ 11 supergravity.
Finally, we can give the complete action of D ¼ 11

supergravity under the 5þ 6 decomposition and the cor-
responding gauge fixing of the local Lorentz group,

S11¼
Z

d5xd6ye

�
R̂−

1

4
~MmnF μνmF μν

n−
1

12
ϕ2FμνρσFμνρσ

−
1

3
ϕ

4
3ϕmnFμνρ

mFμνρn−
1

2
ϕmnDμϕm

αDμϕnα

−
1

3
ϕ−2DμϕDμϕ−

1

2
ðϕαmDμϕm

γÞðϕγ
nDμϕnαÞ

−
1

3
ϕmnϕklϕpqFμ

mkpFμnlq−Vðe;ϕÞþe−1Ltop

�
:

(4.34)

Here we fixed γ ¼ − 1
3
according to Eq. (4.6). Moreover, we

combined the 2-form field strengths of the Kaluza-Klein
gauge vector and the vector originating from the 3-form,

F μν
m ¼ ðF μν

m;F μνmnÞ≡ ðFμν
m; Fμνmn − Fμν

kAkmnÞ; (4.35)

by introducing the scalar-dependent kinetic metric

~Mm;n ¼ ϕ
2
3ðϕmn þ 2ϕklϕpqAmkpAnlqÞ; ~Mm;

kl ¼ 2ϕ
2
3ϕkpϕlqAmpq; ~Mmn;kl ¼ 2ϕ

2
3ϕm½kϕl�n; (4.36)

with the index m ¼ ð m; ½mn�Þ. The topological term is given by Eq. (4.33) and the full potential reads

eV ¼ −eϕ−2
3

�
1

2
ϕmnϕklϕpq∂kϕmq∂pϕnl −

1

4
ϕmnϕklϕpq∂pϕmk∂qϕnl −

2

3
∂mϕ

mnϕ−1∂nϕ−
1

9
ϕmnðϕ−1∂mϕÞðϕ−1∂nϕÞ

þ ∂mϕ
mne−1∂ne−

2

3
ϕmnðe−1∂meÞðϕ−1∂nϕÞ þ

1

4
ϕmnð∂mgμν∂ngμν þ g−1∂mgg−1∂ngÞ −

1

12
ϕmnϕklϕpqϕrsFmkprFnlqs

�
:

(4.37)

It is obtained by combining Eq. (4.23) with the purely internal F2 term from Eq. (4.32). Moreover, we used Eq. (4.24) and
expanded the Dg terms according to Eq. (4.17). This is the final form of the action, and it is still equivalent to the full
D ¼ 11 supergravity. In the following, we will compare and match this result with the action obtained by evaluating the
EFT (1.3) for a particular solution of the section constraints.
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B. GL(6)-invariant reduction of EFT

In this subsection, we will consider the E6ð6Þ-covariant
EFT (1.3) upon specifying an explicit solution of the
section condition, that breaks E6ð6Þ down to GL(6). We
will show that the resulting theory upon further dualization
precisely coincides with 11-dimensional supergravity in the
form presented in the previous subsection.

1. GL(6)-invariant solution of the section condition

The relevant embedding of GL(6) into E6ð6Þ is given by

GLð6Þ¼SLð6Þ×GLð1Þ⊂SLð6Þ×SLð2Þ⊂E6ð6Þ; (4.38)

with the fundamental representation of E6ð6Þ breaking as

2̄7 → 6þ1 þ 1500 þ 6−1; (4.39)

and the adjoint breaking into

78 → 1−2 þ 20−1 þ ð1þ 35Þ0 þ 20þ1 þ 1þ2; (4.40)

with the subscripts referring to the GL(1) charges. An
explicit solution to the section condition (1.1) is given by
restricting the YM dependence of all fields to the six
coordinates in the 6þ1. Explicitly, by splitting the coor-
dinates YM according to Eq. (4.39) into

fYMg → fym; ymn; ym̄g; (4.41)

with indices m; n ¼ 1;…; 6, the nonvanishing components
of the d symbol are given by4

dMNK∶ dmn̄
kl¼

1ffiffiffi
5

p δm½kδ
n
l�; dmnklpq¼

1

4
ffiffiffi
5

p εmnklpq;

dMNK∶ dmn̄
kl¼ 1ffiffiffi

5
p δk½mδ

l
n�; dmnklpq¼ 1

4
ffiffiffi
5

p εmnklpq; (4.42)

and all those related by symmetry, dMNK ¼ dðMNKÞ. In
particular, the GL(1) grading guarantees that all compo-
nents dmnk vanish, such that the section condition (1.1)
indeed is solved by restricting the coordinate dependence of
all fields according to

f∂m̄A ¼ 0; ∂mnA ¼ 0g ⇔ Aðxμ; YMÞ → Aðxμ; ymÞ: (4.43)

Let us first revisit the resulting field content of the model.
The E6ð6Þ-covariant formulation presented above carries all
27 vector fields Aμ

M, now breaking according to Eq. (4.39),
whereas the 2-forms appear only under the projection
dMNK∂NBμνK. With Eq. (4.42) we find that only the

components Bμνn̄ and Bμν
mn enter the Lagrangian;

moreover, they enter under ∂m derivatives according to

∂mBμνn̄ − ∂nBμνm̄; and ∂mBμν
mn: (4.44)

In other words, with this parametrization the Lagrangian
comes with an additional local shift symmetry

δBμνn̄ ¼ ∂nΩμν; δBμν
mn ¼ ∂kΩμν

½kmn�; (4.45)

for arbitrary Ωμν, Ωμν
½kmn�. In total, the full p-form field

content of the E6ð6Þ Lagrangian in this basis is thus given by

fAμ
m; Aμmn; Aμ

m̄g; fBμνm̄; Bμν
mng; (4.46)

moduloEq. (4.45). ComparingEq. (4.46) to the field content
of the Kaluza-Klein reduction of D ¼ 11 supergravity in
the split of Sec. IVA suggests identifying the Aμ

m

with the Kaluza-Klein vector fields sitting in the
11-dimensional vielbein (4.4), and to relate the fields
fAμmn; Bμνm̄g to the different components of the 11-
dimensional 3-form (4.26). The index structure of the
remaining fields fBμν

mn; Aμ
m̄g suggests relating them to

the corresponding components of the 11-dimensional 6-
form, i.e. to describe degrees of freedom on-shell dual to
fAμmn; Bμνm̄g. Finally the six 2-form tensors Bμνm that are
absent in Eq. (4.46) represent the degrees of freedom that are
on-shell dual to the Kaluza-Klein vector fields, i.e. descend-
ing from the 11-dimensional dual graviton. They do not
figure in the action (1.3) andwe comment on their role in the
conclusions.We recall that in theEFT formulation, all vector
fields appear with a Yang-Mills kinetic term whereas the 2-
forms couple via a topological term. The latter do not
represent additional degrees of freedombut are on-shell dual
to the vector fields. In order tomatch the structure ofD ¼ 11
supergravity, we will thus have to trade the Yang-Mills
vector field Aμ

m̄ for a propagating 2-form Bμνm̄ as we shall
describe in detail in Sec. IV B 3 below.
Let us now work out the details of this identification by

evaluating the general EFT formulas in the basis (4.39) and
imposing the explicit solution of the section condition
(4.43) on all fields. We first consider the six vector fields
Aμ

m transforming in the same representation as the
surviving coordinates (4.43). Under the general gauge
transformations (2.27) they transform according to

δΛAμ
m ¼ ∂μΛm − Aμ

n∂nΛm þ Λn∂nAμ
m; (4.47)

while they remain invariant under all higher tensor gauge
transformations from Eq. (2.34). The associated gauge
transformations close into the Lie algebra

½δΛ1
; δΛ2

� ¼ δΛ12
; Λm

12 ≡ Λk
2∂kΛm

1 − Λk
1∂kΛm

2 (4.48)

of standard six-dimensional diffeomorphisms, embedded
into the E-bracket (2.15). The six vector fields Aμ

m thus
4We use the summation conventions XMYM ¼ XmYmþ

XmnYmn þ Xm̄Ym̄.
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ensure that the theory is invariant under internal diffeo-
morphisms with the parameters Λm. As anticipated above,
we will identify them with the Kaluza-Klein vector fields
from the 11-dimensional vielbein (4.4). For the following
and just as in the previous section, cf. Eq. (4.10), we thus
define the covariant derivatives

Dμ ¼ ∂μ − LAμ
; (4.49)

corresponding to the action of six-dimensional internal
diffeomorphisms. Accordingly, the covariant field strength
as evaluated from the corresponding components of the
E6ð6Þ object F μν

M coincides with the non-Abelian field
strength for the Kaluza-Klein vector field in Eq. (4.10),

F μν
m¼2∂ ½μAν�m−Aμ

n∂nAν
mþAν

n∂nAμ
m¼Fμν

m: (4.50)

Evaluating the remaining components of the covariant field
strengths (2.30) yields the field strengths for the other
gauge fields as

F μνmn ¼ 2D½μAν�mn þ ∂m
~Bμνn̄ − ∂n

~Bμνm̄;

F μν
m̄ ¼ 2D½μAν�m̄ − 2ð∂kA½μkÞAν�m̄ −

1

2
ϵmnrsklA½μjrs∂njAν�kl

þ 2∂n
~Bμν

nm; (4.51)

where we have redefined the 2-form tensors as

~Bμνm̄ ¼
ffiffiffi
5

p
Bμνm̄ þ A½μnAν�nm;

~Bμν
mn ¼

ffiffiffi
5

p
Bμν

mn þ 1

2
ðA½μmAν�n̄ − A½μnAν�m̄Þ: (4.52)

In turn, we obtain the field strengths for these 2-form
tensors by evaluating the corresponding components of the
E6ð6Þ object HμνρM,

~Hμνρm̄≡ ffiffiffi
5

p
Hμνρm̄− ∂mOμνρ ¼ 3D½μ ~Bνρ�m̄þ 3A½μjmnjFνρ�n;

~Hμνρ
mn≡ ffiffiffi

5
p

Hμνρ
mn − ∂kOμνρ

½kmn�

¼ 3D½μ ~Bνρ�
mn− 3∂kA½μk ~Bνρ�

mn

þ 3

2
ðA½μm̄Fνρ�n −A½μn̄Fνρ�mÞ

−
3

4
ϵmnklpqðA½μjkljDνAρ�pqþ 2A½μjkl∂pj ~Bνρ�q̄Þ;

(4.53)

where we have split off the additional contributions

Oμνρ ≡ −A½μkAν
lAρ�kl;

Oμνρ
½kmn� ≡ A½μkAν

mAρ�n̄ þ A½μnAν
kAρ�m̄ þ A½μmAν

nAρ�k̄

þ 1

2
ϵkmnlpqð3A½μjlpj ~Bνρ�q̄ − 2A½μjlpjAν

rAρ�rqÞ
(4.54)

that are projected out from the Lagrangian, since—just as
with the tensor fields—their field strengths also appear only
under the projection dMNK∂NHμνρK, cf. Eq. (4.44).
For completeness, let us also give the vector and tensor

gauge transformations of the various components as
obtained from evaluating the general formulas (2.34),

δAμmn ¼ DμΛmn þ LΛAμmn − 2∂ ½m ~Ξjμjn�;

δAμ
m̄ ¼ DμΛm̄ − ∂nAμ

nΛm̄ þ LΛAμ
m̄ − 2∂n

~Ξμ
nm;

δ ~Bμνm̄ ¼ 2D½μ ~Ξν�m þ LΛ
~Bμνm þ ΛkmFμν

k − ∂mðΛk ~Bμνk̄Þ;
(4.55)

with the tensor gauge parameters redefined in accordance
with Eq. (4.52),

~Ξμm ≡ ffiffiffi
5

p
Ξμm þ ΛnAμnm;

~Ξμ
mn ¼

ffiffiffi
5

p
Ξμ

mn þ 1

2
ðΛmAμ

n̄ − ΛnAμ
m̄Þ: (4.56)

2. Scalar sector

Let us now discuss the scalar field content of the theory.
In the E6ð6Þ-covariant formulation they parametrize the
coset space E6ð6Þ=USpð8Þ in terms of the symmetric matrix
MMN . To relate toD ¼ 11 supergravity, we need to choose
a parametrization of this matrix in accordance with the
decomposition (4.40). Following Ref. [82], we build the
matrix as M ¼ VVT from a “vielbein” V in triangular
gauge,

V ≡ exp½Φtð0Þ�V6exp½ckmntkmn
ðþ1Þ�exp½φtðþ2Þ�: (4.57)

Here, tð0Þ is the E6ð6Þ generator associated to the GL(1)
grading, V6 denotes a general matrix in the SL(6) subgroup,
whereas the tðþnÞ refer to the E6ð6Þ generators of positive
grading in Eq. (4.40). All generators are evaluated in
the fundamental 27 representation (4.39), such that the
symmetric matrix MMN takes the block form
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MKM ¼

0
B@

Mkm Mk
mn Mkm̄

Mkl
m Mkl;mn Mkl

m̄

Mk̄m Mk̄
mn Mk̄ m̄

1
CA: (4.58)

An explicit evaluation of Eq. (4.57) determines the various
blocks in Eq. (4.58). E.g. its last line is given by

Mm̄n ¼
1

24
eΦmmkϵ

klpqrscnlpcqrs − eΦmmnφ;

Mm̄
kl ¼ −

1

6
ffiffiffi
2

p mmnϵ
nklpqreΦcpqr; Mm̄ n̄ ¼ eΦmmn;

(4.59)

parametrized by Φ, φ, ckmn. The symmetric matrix mmn ≡
ðννTÞmn is built from the SL(6) vielbein ν that parametrizes
the standard embedding of this subgroup via V6 in
Eq. (4.57) as

ðV6ÞMA ¼

0
B@

νm
a 0 0

0 ðν−1Þ½maðν−1Þn�b 0

0 0 νm̄
ā

1
CA: (4.60)

The remaining blocks of Eq. (4.58) yield more lengthy
expressions, but can be expressed in compact form via the
corresponding blocks of the matrix

~MMN ≡MMN −MMm̄ðMm̄ n̄Þ−1Mn̄N; (4.61)

which take the form

~Mmn ¼ e−Φmmn þ
1

2
cmkpcnlqmklmpq;

~Mm
kl ¼ −

1ffiffiffi
2

p cmpqmpkmql; ~Mkl;mn ¼ mm½kml�n:

(4.62)

The matrix (4.61) will play a central role in the following
after redualizing some of the vector fields. From the inverse
matrix MMN we will need only the particular block

Mmn ¼ eΦmmn: (4.63)

Now, that we have specified the field content according
to the explicit solution (4.43), we can work out the E6ð6Þ-
covariant Lagrangian in this parametrization. Let us start
with the scalar kinetic term. First, we should evaluate the
covariant derivatives DμMMN in the split (4.39). With
Eq. (4.42) we find for the covariant derivatives of the
components of a general vector VM

DμVm ¼ DμVm þ 1

3
ð∂kAμ

kÞVm;

DμVmn ¼ DμVmn þ
1

3
ð∂kAμ

kÞVmn þ Vk∂kAμmn

þ Vk∂mAμnk þ Vk∂nAμkm;

DμVm̄ ¼ DμVm̄ −
2

3
ð∂kΛkÞVm̄ þ 1

2
ϵmnklpq∂nAμklVpq

þ ð∂kAμ
k̄ÞVm; (4.64)

where as above the derivatives Dμ are only covariantized
with respect to the Kaluza-Klein gauge transformations, i.e.
Dμ ≡ ∂μ − LAμ

. Comparing this to the parametrization
(4.59) of the matrix MMN , we derive the covariant
derivatives on the parameters of this matrix as

Dμmmn ¼ Dμmmn þ
1

3
ð∂kAμ

kÞmmn;

DμΦ ¼ DμΦþ ð∂nAμ
nÞ;

Dμcklm ¼ Dμcklm þ 3
ffiffiffi
2

p ∂ ½kAjμjlm�;

Dμφ ¼ Dμφ − ð∂nAμ
nÞφþ ∂nAμ

n̄

þ
ffiffiffi
2

p

24
ϵklmnpqcklm∂nAμpq: (4.65)

From the first two lines we infer that the combination

ϕmn ≡ e−Φ=3mmn (4.66)

transforms as a genuine tensor (of vanishing weight)
under six-dimensional diffeomorphisms. As anticipated
by the notation, we will identify it with the internal part
ϕmn ¼ ϕmαϕn

α of the metric of 11-dimensional super-
gravity (4.4).
Putting all this together, we obtain after some

calculation the explicit form of the scalar kinetic term
from Eq. (1.3),

e−1Lkin;0 ≡ 1

24
DμMMNDμMMN

¼ 1

4
DμϕmnDμϕmn −

1

3
ϕ−2DμϕDμϕ

−
1

12
ϕ−2=3ϕknϕlpϕmqDμcklmDμcnpq

−
1

2
ϕ−2

�
Dμφþ 1

72
ϵklmnpqcklmDμcnpq

�
2

;

(4.67)

with ϕ≡ e−Φ ¼ ðdetϕmnÞ1=2 as above. Next, we can
evaluate the E6ð6Þ-covariant potential (3.11) in the
parametrization (4.59) and (4.62) and obtain
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V ¼ −
1

3
ϕ−2=3∂mϕnk∂lϕpqϕ

mnϕklϕpq þ 1

36
ϕ−2=3∂mϕnk∂lϕpqϕ

mlϕnkϕpq

þ 1

4
ϕ−2=3∂mϕnk∂lϕpqϕ

mlϕnpϕkq −
1

2
ϕ−2=3∂mϕnk∂lϕpqϕ

mpϕnqϕkl

þ 2

3
ϕ−5=3ϕmne−1∂me∂nϕ − e−1ϕ−2=3∂me∂nϕ

mn þ 1

3
ϕ−2=3∂ ½kclmn�∂ ½pcqrs�ϕkpϕlqϕmrϕns

− ϕ−2=3ϕmne−1∂mee−1∂ne −
1

4
ϕ−2=3ϕmn∂mgμν∂ngμν: (4.68)

In particular, the second line of the potential (3.11) is
straightforwardly evaluated with Eq. (4.63).

3. Dualization

Before explicitly evaluating the remaining parts of the
E6ð6Þ-covariant Lagrangian, let us recall the field content.
From Eq. (4.46) and the subsequent discussion, we have
vectors and 2-forms given by

fAμ
m; Aμmn; Aμ

m̄g; f ~Bμνm̄; ~Bμν
mng; (4.69)

of which only the vectors represent propagating degrees of
freedom. In the previous subsection we introduced the
parametrization of the scalar fields of the model as

fϕmn; ckmn;φg: (4.70)

Comparing this to the form of 11-dimensional supergravity
in the 5þ 6 split presented in Sec. IVA, we see that we will
have to dualize the singlet scalar field φ into a 3-form tensor
field and eliminate the fields Aμ

m̄ and ~Bμν
mn. In particular,

the latter step should introduce a kinetic term for the 2-form
tensor fields ~Bμνm̄, promoting these fields to propagating
degrees of freedom.
For the dimensionally reduced theory this is precisely the

pattern of dualizations of p-forms into ð3 − pÞ-forms that is
required to make the E6ð6Þ symmetry apparent [82]. In the
following, we give a version of that dualization which
applies even for the fully y-dependent fields despite the
non-Abelian structure of the internal diffeomorphisms that
may pose an obstacle for the possibility of dualization. It is
rather similar to the mechanisms of non-Abelian dual-
izations appearing in gauged supergravity [83,84] empow-
ered by the compensating fields of the tensor hierarchy. As
a result, we will show in this section that upon this
dualization, the Lagrangian evaluated from Eq. (1.3) pre-
cisely coincides with D ¼ 11 supergravity.
We start by dualizing the singlet scalar field φ into a

3-form. To this end, we first note that the Lagrangian (1.3)
after the resolution of the section condition according to
Eq. (4.43) has a global symmetry that acts by a shift on φ.
Its origin is the E6ð6Þ generator tðþ2Þ in the basis of
Eq. (4.57) with action

δλφ ¼ λ; δλAμ
m̄ ¼ λAμ

m (4.71)

on scalar and vector fields. This symmetry is compatible
with the solution of the section constraint (4.43) due to

δλ∂m̄ ¼ 0; δλ∂mn ¼ 0; (4.72)

as an immediate consequence of the grading (4.39) and
(4.40). As a result, this symmetry survives after imposing
the explicit solution of the section constraint. Moreover,
due to our field redefinitions (4.52), the same generator has
a nontrivial action on the 2-forms as

δλ ~Bμν
mn ¼ λA½μmAν�n: (4.73)

For dualizing the scalar fields φ we will now follow a
standard routine: we gauge the shift symmetry (4.71) by the
introduction of an auxiliary vector field and eliminate the
latter by its field equations. Specifically, in the scalar sector
we introduce covariant derivatives

Dμ → D̂μ ≡Dμ − aμtðþ2Þ; (4.74)

such that the kinetic term (4.67) remains invariant under the
local form of Eq. (4.71) provided the auxiliary vector aμ
transforms as

δλaμ ¼ ∂μλ; δΛaμ ¼ LΛaμ þ ð∂kΛkÞaμ: (4.75)

In the vector sector, the gauging of Eq. (4.71) is more
intricate, since the new gauge symmetry interferes with the
existing non-Abelian structure (4.55) of the vector fields.
As a result, this further deformation necessitates the
introduction of additional Stückelberg-type couplings on
the level of the field strengths according to

F μν
m̄ → F̂ μν

m̄ ≡ 2D̂½μAν�m̄ − 2ð∂kA½μkÞAν�m̄

−
1

2
ϵmnrsklA½μjrs∂njAν�kl

þ 2∂n
~Bμν

nm þ bμνm; (4.76)

with the new auxiliary 2-form bμν transforming as

δλbμνm ¼ 0;

δΛbμνm ¼ LΛbμνm þ ð∂kΛkÞbμνm þ 2a½μ∂ν�Λm; (4.77)
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in order to guarantee the covariant transformation behavior
of the field strength. With these extra fields and modified
transformations, the kinetic part of the Lagrangian is thus
invariant under λ and ΛM transformations. Moreover, the
auxiliary 2-form bμνm comes with its own tensor gauge
invariance,

δξbμνm ¼ 2∂ ½μξν�m̄; δξaμ ¼ −∂nξμ
n̄;

δξAμ
m̄ ¼ −ξμm̄; δξ ~Bμν

mn ¼ −A½μmξν�n̄ þ A½μnξν�m̄;

(4.78)

which separately leaves the kinetic part of the Lagrangian
invariant.
Let us now turn to the topological term (3.7) in order to

render it invariant under the new gauge symmetries (4.71),
(4.73), and (4.78). After evaluating this term with the
solution of the section condition (4.43), it is invariant
under the global symmetry (4.71) and (4.73) but acquires
a nontrivial variation for a local gauge parameter λ
according to

δλLtop;0 ¼−
1ffiffiffi
2

p εμνρστ∂μλðFνρ
mAσmnAτ

nþ ∂m
~Bνρn̄Aσ

mAτ
nÞ:

(4.79)

In view of Eq. (4.75), this variation can be cancelled by
adding the additional topological term

Ltop;1 ≡ 1ffiffiffi
2

p ϵμνρστaμðFνρ
mAσmnAτ

n þ ∂m
~Bνρn̄Aσ

mAτ
nÞ;
(4.80)

such that the sum Ltop;0 þ Ltop;1 is invariant under local λ
transformations. In turn, the variation of this combined
topological term under the local tensor gauge symmetry
(4.78) is given by

δξLtop;0þ1¼−
1ffiffiffi
2

p ϵμνρστð2∂μAν
k∂ ½k ~Bρσm̄�−2Aμ

k∂ν∂ ½k ~Bjρσjm̄�

−∂μðAνmnFn
ρσÞÞξτm̄

¼ 1

3
ffiffiffi
2

p εμνρστð ~Hμνρm̄þ3∂mðAμ
n ~Bνρn̄ÞÞ∂σξτ

m̄;

(4.81)

and thus it can be cancelled by the introduction of a second
addition to the topological term,

Ltop;2¼−
1

6
ffiffiffi
2

p εμνρστð ~Hμνρm̄þ3∂mðAμ
n ~Bνρn̄ÞÞbστm: (4.82)

Finally, we have to ensure that the combined topological
term Ltop;0þ1þ2 remains invariant under the original ΛM and
ΞμM gauge transformations of Eq. (2.34). After some

lengthy but straightforward calculations, we find for this
variation

δLtop;0þ1þ2 ¼
1

2
ffiffiffi
2

p ϵμνρστð2Aμ
kAν

n∂k
~Ξρn − Aμ

kFνρ
nΛkn

− Λn∂μ
~Bνρn̄Þð2∂σaτ þ ∂mbστmÞ

−
1

2
ffiffiffi
2

p εμνρστ∂mð2Aμ
k ~Ξνk − Λn ~Bμνn̄Þ∂ρbστm:

(4.83)

This variation is cancelled by adding to the topological
Lagrangian the final contribution

Ltop;3 ¼
1

4
ffiffiffi
2

p ϵμνρστð2aμ∂νAρστ þ ∂mbμνmAρστÞ; (4.84)

with the new field Aρστ, transforming as

δAμνρ ¼ LΛAμνρ þ 2Λn∂ ½μ ~Bνρ�n þ 2A½μmFνρ�nΛmn

− 4∂m
~Ξ½μjn̄jAν

mAρ�n þ 2∂ ½μð2Aν
k ~Ξρ�k − Λn ~Bνρ�n̄Þ:

(4.85)

A short calculation also shows that the terms in the
variation of Eq. (4.84) proportional to Aρστ cancel.
Moreover, the term (4.84) is separately invariant under
the new gauge symmetries (4.71) and (4.78), so no further
compensation is required. To clean up the construction, we
may eventually combine all new contributions with the
topological term, which can be put into the more compact
form

Ltop;1þ2þ3 ¼
1

4
ffiffiffi
2

p εμνρστ
�
2aμðDν

~Aρστ − ~Bνρm̄Fστ
mÞ

−
1

3
~bμν

mð2 ~Hρστm̄ þ 3∂m
~AρστÞ

�
; (4.86)

with the auxiliary fields redefined as

~bμν
m ≡ bμνm − 2a½μAν�m;

~Aμνρ ≡Aμνρ þ 2Aμ
n ~Bνρn̄: (4.87)

After these redefinitions, the gauge transformations ofAμνρ

in Eq. (4.85) take the fully covariant and more compact
form

δ ~Aμνρ ¼ LΛ
~Aμνρ þ 2F½μνn ~Ξρ�n: (4.88)

In the course of our construction, something interesting has
happened. We recall that the original Lagrangian carried the
2-form ~Bμνn̄ exclusively under ∂m derivative à la Eq. (4.44).
This is still true for its variation (4.81) (although not
manifest in the final expression), but no longer for the
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compensating term (4.82). Consequently, the new topo-
logical term (4.86) carries the longitudinal part of ~Bμνn̄ as a
new field. Nevertheless, the shift symmetry (4.45) of the
original Lagrangian can be preserved, if the field ~Aμνρ

simultaneously transforms as

δ ~Aμνρ ¼ −2D½μΩνρ�; δ ~Bμνm̄ ¼ ∂mΩμν: (4.89)

I.e. this symmetry is identified with the tensor gauge
symmetry of the new 3-form ~Aμνρ.
Let us pause and summarize what we have achieved.

Upon introducing the new covariant derivatives and field
strengths (4.74) and (4.76) in the Lagrangian, as well as
extending its topological term Ltop;0 to Ltop;0þ1þ2þ3 from
Eq. (4.86) we have modified the original Lagrangian such
that in addition to the former gauge symmetries it is also
invariant under the new local gauge symmetries (4.71),
(4.78), and (4.89). The modification has introduced the
auxiliary vector and tensor gauge fields aμ, bμνm, andAμνρ.
The resulting Lagrangian provides an efficient tool to
perform the dualization of the original theory. We can
show that depending on how we treat the auxiliary fields,
the Lagrangian either reduces to the original one or takes a
different form, in which the former fields φ and Aμ

m̄

disappear. Thereby we arrive at the dual version of the
original Lagrangian.
Let us first show that the new Lagrangian is equivalent to

the original theory obtained from the E6ð6Þ-covariant EFT
after solving the section condition. We recall that the only
term in which ~Bμνm̄ appears without derivative, is
Eq. (4.82). It thus gives separate equations of motion
[by a variation of the type (4.45) under which all other
terms are invariant] implying that

∂m∂ ½μbνρ�m ¼ 0: (4.90)

With the local gauge symmetry (4.78) we can thus set

∂mbμνm ¼ 0 ⇒ bμνm ¼ ∂nϒμν
½mn�; (4.91)

for some locally defined ϒμν
½mn�. Upon making use of yet

another local symmetry of the full Lagrangian,5

δ ~Bμν
mn ¼ 1

2
ϒμν

½mn�; δbμνm ¼ −∂nϒμν
½nm�; (4.92)

we can then completely eliminate the field bμνm. The field
equations following from the variation ofAμνρ in Eq. (4.84)
imply that

2∂ ½μaν� ¼ −∂mbμνm ¼ 0: (4.93)

Thus, aμ is also pure gauge and can be set to zero with the
local symmetry (4.75). As a result, all auxiliary fields aμ,
bμνm, andAμνρ disappear from the equations of motion and
we are back to the theory obtained from the E6ð6Þ-covariant
formulation.
Alternatively, we may integrate out the auxiliary gauge

fields aμ, bμν upon using their algebraic field equations.
The local symmetries (4.71), (4.78), and (4.92) which
formally remain present in this procedure, show that after
integrating out aμ and bμν, the resulting Lagrangian no
longer depends on the fields φ, Aμ

m̄, and ~Bμν
mn. Instead, the

fields Aμνρ and ~Bμν
m̄ are promoted to propagating fields

with proper kinetic terms. We thus obtain a dual version of
the original Lagrangian with precisely the field content of
D ¼ 11 supergravity. To conclude this discussion, we will
now show in detail that the result indeed coincides with the
D ¼ 11 supergravity Lagrangian after Kaluza-Klein
decomposition.
With the kinetic terms from Eq. (1.3) evaluated accord-

ing to Eqs. (4.58) and (4.67), and covariantized according
to Eqs. (4.74) and (4.76), the equations of motion for the
auxiliary fields aμ, ~bμν

m read

aμ ¼ Dμφþ 1

72
ϵklmnpqcklmDμcnpq

þ 2εμνρστϕ2ðDν
~Aρστ − ~Bνρm̄Fστ

mÞ;
~bμν

m ¼ −ðMm̄ n̄Þ−1Mn̄MF μνM

−
2

3
εμνρστðMm̄ n̄Þ−1ð2 ~Hρστn̄ þ 3∂n

~AρστÞ: (4.94)

Inserting this into the Lagrangian produces the new kinetic
terms

e−1Lkin;2þ3 ¼ −
1

24
ϕ4=3ϕmnð2 ~Hμνρm̄ þ 3∂m

~AμνρÞ
× ð2 ~Hμνρ

n̄ þ 3∂n
~AμνρÞ

−
3

2
ϕ2ðD½μ ~Aνρσ� − ~B½μνjm̄jFρσ�mÞ

× ðDμ ~Aνρσ − ~Bμν
n̄Fρσ nÞ; (4.95)

for the 2-forms ~Bμν
m̄ and 3-form ~Aμνρ, while the vector

kinetic term turns into

e−1Lkin;1 ¼ −
1

4
F μν

MF μνN ~MMN; (4.96)

with the matrix ~MMN from Eqs. (4.61) and (4.62). In
particular, the form of this matrix shows that the vector
fields Aμ

m̄ have disappeared from the kinetic term (4.96) as
expected. In order to calculate the topological term after the
elimination of the auxiliary fields, let us first consider
the original topological term (3.7). After explicitly solving
the section condition (4.43) we can give a fairly compact
expression for this term upon integrating up Eq. (3.8) as

5This is not a novel gauge symmetry but simply illustrates
some redundancy in the introduction of the auxiliary field bμν in
Eq. (4.76).
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Ltop;0 ¼
1

4
ffiffiffi
2

p εμνρστεmnklpq

�
1

2
AμmnF νρkl∂p

~Bστq

þ 1

3
DμAνmnDρAσklAτpq þ

1

3
∂mAμpqAνklAρnrFστ

r

þOðAμ
m̄Þ þOðBμν

mnÞ
�
: (4.97)

Eventually, we are only interested in this term at vanishing
Aμ

m̄, Bμν
mn, since we know from the general symmetry

argument above that these fields will no longer enter the
Lagrangian after the elimination of the auxiliary fields.
Moreover, plugging Eq. (4.94) into the original Lagrangian
gives the following additional contributions to the
topological term:

Ltop; dual ¼
1

4
ffiffiffi
2

p εμνρστεmnklpq

�
1

12
cmnk

� ffiffiffi
2

p ∂lAμpq þ
1

3
Dμclpq

�
ðDν

~Aρστ − ~Bνρr̄Fστ
rÞ

þ 1

72
ðFμν

rcrlpcqmn − 12Aμkl∂nAνpqÞð2 ~Hρστk̄ þ 3∂k
~AρστÞ −

1

18
ffiffiffi
2

p cpqnF μνklð2 ~Hρστm̄ þ 3∂m
~AρστÞ

�
: (4.98)

Comparing the resulting parts of the Lagrangian
(4.95)–(4.98) to the Kaluza-Klein decomposition of 11-
dimensional supergravity presented in Sec. IVA, we are led
to the following redefinition of fields:

~Aμνρ →
2

ffiffiffi
2

p

3
Aμνρ; ~Bμν m̄ →

ffiffiffi
2

p
Aμν m;

Aμ mn →
ffiffiffi
2

p
Aμ mn; cmnk → −2Amnk: (4.99)

With this translation, the above combinations of field
strengths become

2 ~Hμνρm̄ þ 3∂m
~Aμνρ → 2

ffiffiffi
2

p
Fμνρm;

D½μ ~Aνρσ� − ~B½μνjm̄jFρσ�m → −
ffiffiffi
2

p

6
Fμνρσ;

F μν mn →
ffiffiffi
2

p
F μν mn;

Dμcklm → −2Fμklm; (4.100)

i.e. translated directly into the field strengths (4.30) and
(4.35) introduced in the discussion of the Kaluza-Klein
decomposition of 11-dimensional supergravity. It is then
straightforward to verify that the combination of kinetic
terms (4.67), (4.95), and (4.96), indeed precisely coincides
with the corresponding terms of Eq. (4.34), from 11-
dimensional supergravity. Likewise, the combination of
the topological terms (4.86), (4.97), and (4.98), and using
the dictionary (4.99) reproduces the 11-dimensional result
(4.33) up to total derivatives. Although this comparison is
not straightforward since there is no canonical form in
which to give these nonmanifestly gauge covariant terms,
they can be systematically matched by comparing their
general variation with respect to the various gauge fields.
Similarly, agreement is found between the potential terms
(4.68) and (4.37). Finally, the Einstein-Hilbert terms from
11 dimensions and from EFT are based on the improved
Riemann tensors (3.3) and (4.20), that are readily identified
since

F μν
M∂M → Fμν

m∂m; (4.101)

on the solution of the section constraint (4.43). Thus we
have shown total agreement between the EFT evaluated for
Eq. (4.43) and the full 11-dimensional supergravity cast
into the (5þ 6)-dimensional Kaluza-Klein form.

V. EMBEDDING OF TYPE IIB SUPERGRAVITY

In the previous section, we have shown that upon
imposing the explicit GL(6)-invariant solution (4.43) of
the section condition and subsequent dualization of some of
the fields, the E6ð6Þ-covariant EFT precisely reproduces the
full 11-dimensional supergravity in the 5þ 6 Kaluza-Klein
split. In this section, we discuss an inequivalent solution
[33] to the section condition upon which the EFT
reproduces the full ten-dimensional IIB theory [34,35].6

A. GLð5Þ × SLð2Þ-invariant solution
of the section condition

The corresponding solution of the section condition
preserves the group GLð5Þ × SLð2Þ embedded according to

GLð5Þ × SLð2Þ ⊂ SLð6Þ × SLð2Þ ⊂ E6ð6Þ (5.1)

into E6ð6Þ. In this case, the fundamental and the adjoint
representation of E6ð6Þ break as

2̄7 → ð5; 1Þþ4 þ ð50; 2Þþ1 þ ð10; 1Þ−2 þ ð1; 2Þ−5; (5.2)

78 → ð5; 1Þ−6 þ ð100; 2Þ−3 þ ð1þ 15þ 20Þ0 þ ð10; 2Þþ3

þ ð50; 1Þþ6; (5.3)

6An analogous IIB solution of the SL(5)-covariant section
condition, corresponding to some three-dimensional truncation of
type IIB supergravity, has been studied recently [85] in the
truncation of the theory to its potential term.
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with the subscripts referring to the charges under
GLð1Þ ⊂ GLð5Þ. An explicit solution to the section con-
dition (1.1) is given by restricting the YM dependence of all
fields to the five coordinates in the ð5; 1Þþ4. Explicitly, by
splitting the coordinates YM and the fundamental indices
according to Eq. (5.2) into

fYMg → fym; ymα; ymn; yαg; (5.4)

with internal indices m; n ¼ 1;…; 5 and SL(2) indices
α ¼ 1; 2, the nonvanishing components of the d symbol
are given by

dMNK∶ dmnα;β ¼
1ffiffiffiffiffi
10

p δmn ϵαβ; dmn
kα;lβ ¼

1ffiffiffi
5

p δmn
kl ϵαβ;

dmn;kl;p ¼ 1ffiffiffiffiffi
40

p ϵmnklp;

dMNK∶ dmnα;β ¼ 1ffiffiffiffiffi
10

p δnmϵ
αβ; dmn

kα;lβ ¼ 1ffiffiffi
5

p δklmnϵ
αβ;

dmn;kl;p ¼ 1ffiffiffiffiffi
40

p ϵmnklp; (5.5)

and all those related by symmetry, dMNK ¼ dðMNKÞ. In
particular, the GL(1) grading guarantees that all compo-
nents dmnk vanish, such that the section condition (1.1)
indeed is solved by restricting the coordinate dependence of
all fields according to

f∂mαA¼ 0;∂mnA¼ 0;∂αA¼ 0g⇔Aðxμ;YMÞ→Aðxμ;ymÞ:
(5.6)

Moreover, the form of the d symbol (5.5) shows that
any further coordinate dependence of a field A on combi-
nations of the remaining coordinates violates the section
condition. This explicitly shows that Eq. (5.6) is not a
subcase of Eq. (4.43), but rather a different inequivalent
solution.

B. GLð5Þ × SLð2Þ-invariant reduction of EFT

In this subsection, we evaluate the EFT Lagrangian
(1.3) upon splitting fields and tensors according to
Eqs. (5.2)–(5.5) and assuming the explicit solution
(5.6) of the section condition. Having gone through this
analysis in great detail for the case of D ¼ 11 super-
gravity in Sec. IV, we will keep the discussion much
shorter here, and restrict it to the essential new ingre-
dients. In particular, in this case, due to the presence of
the self-dual 4-form in IIB, there is no known ten-
dimensional Lagrangian to which the result can immedi-
ately be compared. Rather, the procedure will produce an
action, in which only an SOð1; 4Þ × SOð5Þ subgroup of
the ten-dimensional Lorentz group is realized, much in
the spirit of Refs. [86,87] in which Lorentz symmetry

appears broken to SOð9Þ but is recovered on the level of
the equations of motion.7

In analogy to the discussion in Sec. IV B above, let us
first revisit the resulting field content of the model. With the
split (5.2) and (5.3), the full p-form field content of the
E6ð6Þ Lagrangian in this basis is thus given by

fAμ
m; Aμmα; Aμkmn; Aμαg; fBμν

α; Bμνmn; Bμν
mαg; (5.7)

where we have defined Aμkmn ¼ 1
2
ϵkmnpqAμ

pq. More pre-
cisely, the Lagrangian depends on the 2-forms only under
derivatives,

f∂mBμν
α; ∂ ½kBjμνjmn�; ∂mBμν

mαg: (5.8)

Similar to the case ofD ¼ 11 supergravity, the vector fields
Aμ

m will be identified with the IIB Kaluza-Klein vector
fields. Indeed, they transform under the general gauge
transformations (2.27) according to

δΛAμ
m ¼ ∂μΛm − Aμ

n∂nΛm þ Λn∂nAμ
m; (5.9)

with the associated gauge transformations closing into the
algebra

½δΛ1
; δΛ2

� ¼ δΛ12
; Λm

12 ≡ Λk
2∂kΛm

1 − Λk
1∂kΛm

2 (5.10)

of five-dimensional diffeomorphisms, embedded into the
E-bracket (2.15). Comparing the remaining fields of
Eq. (5.7) to the field content of the Kaluza-Klein reduction
of IIB supergravity suggests relating the fields fAμmα; Bμν

αg
in Eq. (5.7) to the different components of the doublet
of ten-dimensional 2-forms, and the fields Aμkmn; Bμνmn
with the components of the (self-dual) IIB f4-form. The
remaining fields Aμα; Bμν

mα descend from components
of the doublet of dual 6-forms. Again, the 2-form tensors
Bμνm that do not figure in the E6ð6Þ-covariant Lagrangian
represent the degrees of freedomon-shell dual to theKaluza-
Kleinvector fields, i.e. descending from the ten-dimensional
dual graviton. We recall that in the EFT formulation, all
vector fields appear with a Yang-Mills kinetic term whereas
the 2-forms couple via a topological term and are on-shell
dual to thevector fields. In order tomatch the structure of IIB
supergravity,wewill thushave to trade theYang-Mills vector
fields Aμα for a propagating 2-form Bμν

α.
The details of this identification can be worked out by

evaluating the general formulas of the E6ð6Þ-covariant
formulation with Eq. (5.5) and imposing the explicit
solution of the section condition (5.6) on all fields.
Without repeating the details of the derivation which goes
in close analogy to the analysis of Sec. IV B, we summarize
the covariant field strengths for the different vector fields
from Eq. (5.7),

7Covariant Pasti-Sorokin-Tonin-type formulations of IIB
supergravity have been constructed in Refs. [88,89].
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F μν
m ¼ 2∂ ½μAν�m − Aμ

n∂nAν
m þ Aν

n∂nAμ
m;

F μνmα ¼ 2D½μAν�mα þ ϵαβ∂m
~Bμν

β;

F μνkmn ¼ 2D½μAν�kmn − 3
ffiffiffi
2

p
ϵαβA½μ½kjαj∂mAν�n�β

þ 3∂ ½k ~Bjμνjmn�;

F μνα ¼ 2D½μAν�α − 2ð∂kA½μkÞAν�α

−
ffiffiffi
2

p
A½μmn∂nAν�mα −

ffiffiffi
2

p
A½μjmαj∂nAν�mn

− ϵαβ∂k
~Bμν

kβ; (5.11)

with the modified 2-forms

~Bμν
α ≡ ffiffiffiffiffi

10
p

Bμν
α − ϵαβA½μnAν�nβ;

~Bμνmn ≡
ffiffiffiffiffi
10

p
Bμνmn þ A½μkAν�kmn;

~Bμν
kα ≡ ffiffiffiffiffi

10
p

Bμν
kα þ ϵαβA½μkAν�β: (5.12)

All covariant derivatives Dμ ≡ ∂μ − LAμ
correspond to the

action of five-dimensional internal diffeomorphisms. The
corresponding vector gauge transformations are given by

δAμ
m ¼ DμΛm;

δAμmα ¼ DμΛmα þ LΛAμmα − ϵαβ∂m
~Ξμ

β;

δAμkmn ¼ DμΛkmn þ LΛAμkmn − 3
ffiffiffi
2

p
ϵαβ∂ ½kAjμjmjαjΛn�β

− 3∂ ½k ~Ξjμjmn�; (5.13)

with

~Ξμ
α≡ ffiffiffiffiffi

10
p

Ξμ
α−ϵαβΛnAμnβ; ~Ξμmn≡

ffiffiffiffiffi
10

p
ΞμmnþΛkAμkmn:

(5.14)

As for the vector fields Aμα, it will be sufficient to observe
that its gauge variation is given by

δAμα ¼ � � � þ ϵαβ∂k
~Ξμ

kβ; (5.15)

implying that it can entirely be gauged away by the tensor
gauge symmetry associated with the 2-forms Bμν

kβ.
Consequently, it will automatically disappear from the
Lagrangian upon integrating out ∂kBμν

kβ. The remaining
2-form field strengths in turn come with the gauge
transformations

δ ~Bμν
α ¼ 2D½μ ~Ξν�

α þ LΛ
~Bμν

α − ϵαβΛnβFμν
n;

δ ~Bμνmn ¼ 2Dμ

�
~Ξνmn þ

1ffiffiffi
2

p ϵαβAνmαΛnβ

�
þ

ffiffiffi
2

p ∂mAμnα
~Ξν

α

þ LΛ
~Bμνmn −

1ffiffiffi
2

p Λ½mjαj∂n� ~Bμν
α þ ΛmnkFμν

k

(5.16)

and field strengths

~Hμνρ
α ≡ ffiffiffiffiffi

10
p

Hμνρ
α ¼ 3D½μ ~Bνρ�

α þ 3ϵαβF½μνnAρ�nβ;

~Hμνρmn ≡
ffiffiffiffiffi
10

p
Hμνρmn

¼ 3Dμ
~Bνρmn − 3Fμν

kAρkmn − 3
ffiffiffi
2

p
ϵαβAμmαDνAρnβ

þ 3
ffiffiffi
2

p
Aμmα∂n

~Bνρ
α; (5.17)

up to terms that are projected out from the Lagrangian
under y derivatives. The expressions on the rhs in
Eqs. (5.16) and (5.17) are understood to be projected onto
the corresponding antisymmetrizations in their parameters,
i.e. ½mn�, ½μν�, ½μνρ�, etc.
Finally, we note that the topological term (3.7) in this

parametrization is given by

Ltop¼
1

8
εμνρστϵklmnp

� ffiffiffi
2

p

6
ϵαβF μνmαF ρσnβAτpklþ

1

6
F μνmnqFρσ

qAτklp−
ffiffiffi
2

p

2
ϵαβAμmα∂nAνpβFρσ

qAτklqþ
1

2
∂p

~BμνmnFρσ
qAτ klq

þ
ffiffiffi
2

p
ϵαβAμmαDνAρnβ∂p

~Bστkl−
ffiffiffi
2

p
Aμmα∂n

~Bνρ
α∂p

~Bστklþ
2

3
ϵαβAμmα∂nAνkβAρlγ∂p

~Bστ
γ − ϵαβϵγδAμmα∂nAνkβAρlγDσAτpδ

þ
ffiffiffi
2

p

9
∂m

~Hμνρ
αAσnαAτklp−Dμ

~Bνρmn∂p
~Bστkl−

2

3
ϵαβ ~Hμνρ

β∂k
~Bστ

kαþOðAμαÞ
�
: (5.18)

Let us nowmove to the scalar field content of the theory. In
the EFT formulation, they parametrize the symmetric matrix
MMN . To relate to IIB supergravity, we need to choose a
parametrization of this matrix in accordance with the decom-
position (5.3). In standard fashion, we build the matrix as
M ¼ VVT from a “vielbein” V in triangular gauge,

V≡ exp½Φtð0Þ�V2V5exp½bmn
αtðþ3Þmn

α
�exp½ϵklmnpcklmntðþ6Þp�:

(5.19)

Here, tð0Þ is the E6ð6Þ generator associated to the GL(1)
grading of Eq. (5.3), V2, V5 denote matrices in the SL(2) and
SL(5) subgroup, respectively, parametrized by the vielbeins
ν2, ν5 in analogy to Eq. (4.60). The tðþnÞ refer to the E6ð6Þ
generators of positive grading in Eq. (5.3), with the nontrivial
commutator

½tðþ3Þklα ; tðþ3Þmn
β
� ¼ ϵαβϵ

klmnptðþ6Þp: (5.20)
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All generators are evaluated in the fundamental 27 repre-
sentation (5.2), such that the symmetric matrix MMN takes
the block form

MKM ¼

0
BBB@

Mkm Mk
mβ Mk;mn Mk

β

Mkα
m Mkα;mβ Mkα

mn Mkα;β

Mkl;m Mkl
mβ Mkl;mn Mkl

β

Mα
m Mα;mβ Mα

mn Mαβ

1
CCCA: (5.21)

An explicit evaluation of Eq. (5.19) determines the various
blocks in Eq. (5.21). For instance, its last line is given by

Mαβ ¼ e5Φ=3mαβ; Mα
mn ¼

ffiffiffi
2

p
e5Φ=3bmn

α;

Mα;mβ ¼ 1

2
e5Φ=3mαγϵγδϵ

mklpqbklβbpqδ

− e5Φ=3mαβϵmklpqcklpq;

Mα
m ¼ 1

3
e5Φ=3mαβϵβγϵ

kpqrs

×

�
ϵδ1δ2bmk

δ1bpqδ2brsγ þ
1

4
bmk

γcpqrs

�
; (5.22)

with the symmetric matrix mαβ ¼ ðν2Þαuðν2Þβu build from
the SL(2) vielbein fromEq. (5.19). Later, after integrating out
some of the fields, we will need the components of (cf. the
discussion in the previous section)

~MMN ≡MMN −MM
αðMαβÞ−1MN

β; (5.23)

for which we find

~Mmn;kl ¼ e2Φ=3mm½kml�n;

~Mmn
kα ¼

1ffiffiffi
2

p e2Φ=3ϵmnpqrmkpmαβbqrβ;

~Mmn;k ¼ 1ffiffiffi
2

p e2Φ=3ϵmnpqrϵαβmklblpαbqrβ

−
1

6
ffiffiffi
2

p e2Φ=3ϵmnpqrmklclpqr;

~Mmα;nβ ¼ e−Φ=3mmnmαβ þ 2e2Φ=3mαγmβδmkp

× ðmmnmlqbklγbpqδ − 2mkpbmk
γbnpδÞ; (5.24)

etc., with mmn ¼ ðν5Þmaðν5Þna. From the inverse matrix
MMN we will in particular need the components

Mmn ¼ e4Φ=3mmn: (5.25)

With Eq. (5.5) we find for the covariant derivatives of the
matrix parameters from Eq. (5.21)

DμΦ ¼ Dμϕþ 4

5
∂kAμ

k;

Dμmmn ¼ Dμmmn þ
2

5
∂kAμ

kmmn;

Dμbmn
α ¼ Dμbmn

α − ϵαβ∂ ½mAn�βμ;

Dμcklmn ¼ Dμcklmn þ 4
ffiffiffi
2

p ∂ ½kAlmn�μ þ 12b½klα∂mAn�α;

(5.26)

which will build the kinetic term of the Lagrangian.
As discussed above and similar to the analysis for the

embedding of D ¼ 11 supergravity, the precise map with
type IIB supergravity requires some dualizations of the
fields. To this end, we observe that in the Lagrangian the
2-form tensors ~Bμν

kβ appear only under a divergence, i.e.
contracted with ∂k, cf. Eq. (5.8), and with the algebraic
field equations

ϵαβ∂k
~Bμν

kβ ¼ðMαβÞ−1Mβ
MF μνM−

1

6
εμνρστðMαβÞ−1 ~Hρστ

β:

(5.27)

By means of these equations, the fields ~Bμν
kβ can be

eliminated from the Lagrangian. The gauge symmetry
(5.15) shows that in the process, the vector fields Aμα also
disappear. We infer from Eq. (5.27) that the kinetic term for
the remaining vector fields changes into the form (4.96)
with ~MMN from Eq. (5.24). Moreover, the 2-forms ~Bμν

α are
promoted into propagating fields with the kinetic term

−e−5=3Φmαβ
~Hμνρ

α ~Hμνρβ; (5.28)

and we note that the cross terms from Eq. (5.27) give
rise to additional contributions to the topological term
in Eq. (5.18).
Let us conclude by commenting on some of the proper-

ties of the resulting Lagrangian. At first sight, it may appear
surprising that we can obtain a ten-dimensional Lagrangian
describing the field equations of the full IIB supergravity,
whereas it is known that the presence of a self-dual 4-form
poses a severe obstruction to the construction of a Lorentz-
covariant Lagrangian. It is the latter property which justifies
the existence of our Lagrangian: what we have constructed
is a ten-dimensional Lagrangian in which however only an
SOð1; 4Þ × SOð5Þ subgroup of the SO(1,9) Lorentz sym-
metry is realized. In this respect, its existence is no more
surprising than the corresponding constructions of
Refs. [86,87] in which Lorentz symmetry appears broken
to SO(9) but is recovered on the level of the equations of
motion. The self-dual 4-form is described by propagating
degrees of freedom cklmn and Aμkmn, yet the final
Lagrangian also carries some of the dual degrees of
freedom in the 2-forms ~Bμνmn. These do not appear with
a kinetic term but couple by a topological term (5.18) such
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that their field equations precisely give rise to the first-order
duality equations that relate their field strength to the field
strength of the Aμkmn, thereby reproducing part of the
ten-dimensional self-duality equations.

VI. SUMMARY AND OUTLOOK

In this paper, we have presented the detailed construction
of the E6ð6Þ exceptional field theory recently announced in
Ref. [33]. This theory is formally defined in 5þ 27
dimensions, with 27 coordinates transforming in the
fundamental representation of E6ð6Þ, subject to a covariant
section constraint. This constraint, which implies that only
a subset of the coordinates are physical, is the M-theory
analogue of the strong constraint in double field theory,
which in turn is a stronger version of the level-matching
constraint in string theory. The constraint allows for
different solutions, two of which we have discussed in
detail. The first reduces the 27 coordinates to six, thereby
breaking E6ð6Þ to GL(6), leading to a ð5þ 6Þ-dimensional
formulation of the full (untruncated) 11-dimensional super-
gravity. The second solution of the constraint reduces the
27 coordinates to five, breaking E6ð6Þ to GLð5Þ × SLð2Þ,
leading to a ð5þ 5Þ-dimensional formulation of type IIB
supergravity with manifest SL(2) S-duality. In this sense,
the exceptional field theory (1.3) unifies M-theory and type
IIB in that both are obtained on different “slices” of the
generalized spacetime. This generalizes type II double field
theory, in which type IIA and type IIB arise on different
slices of the doubled spacetime [50,51]. As a byproduct, we
have obtained an off-shell action for type IIB supergravity,
at the cost of sacrificing ten-dimensional Lorentz
invariance.
In this paper we have restricted ourselves to the purely

bosonic theory, but we are confident that the extension to
include fermions and the construction of a supersymmetric
action is straightforward along the lines of the super-
symmetric D ¼ 5 gauged supergravity [77]. The fermions
will be E6ð6Þ singlets transforming under the local gener-
alized Lorentz group of the corresponding coset, i.e., in this
case H ¼ USpð8Þ, which will require a notion of gener-
alized Lorentz connection. This should also clarify the
relation of our construction to that of de Wit and Nicolai
[5,6], who cast the 11-dimensional supersymmetry trans-
formations into an H-covariant from. At first sight it may
appear surprising that such a supersymmetric covariant
construction is feasible at all. First we know that conven-
tional supersymmetric theories are restricted to dimensions
D ≤ 11. Second, the resulting theory would encode both
type IIA and type IIB, despite the crucial difference of their
fermion chiralities. The first obstacle is circumvented by
virtue of the section constraint, which implies that the
additional coordinates are not physical in the same sense as
the usual spacetime coordinates. In fact, in double field
theory supersymmetric extensions are possible and
beautifully simplify the usually rather involved N ¼ 1

supergravities in D ¼ 10, with the supersymmetry trans-
formations closing into the generalized diffeomorphisms
[47]. The second obstacle is circumvented since the EFT
formulation does not preserve the D ¼ 10 Lorentz invari-
ance, so that the EFT fermions can consistently encode the
fermions of type IIA and type IIB. This possibility is then
no more surprising than the observation that both type IIA
and type IIB give rise to the same supersymmetric theory in
D ¼ 5 upon dimensional reduction.
A novel feature of the supersymmetric EFT is that

usually it is supersymmetry which fixes the detailed form
of even some of the purely bosonic couplings, most notably
the presence and shape of the scalar potential. In contrast, in
Eq. (1.3) all bosonic couplings are already uniquely
determined by the bosonic gauge and duality symmetries.
This points to a deep connection between the duality-
covariant geometries of double and exceptional field
theories on the one hand and supersymmetry on the other,
as for instance illustrated by the striking economy of the
supersymmetric double field theory. We leave a discussion
of these matters and the detailed construction of super-
symmetric EFT to a separate publication.
There are many open questions and possible general-

izations. An obvious question is about the physical sig-
nificance of the 27 coordinates. Beyond the six coordinates
of D ¼ 11 supergravity, are they a purely formal device, or
do they have a deeper role to play? A comparison with
string theory is illuminating. Here the doubled coordinates,
at least on toroidal backgrounds, are undoubtedly physical
and real, as made explicit by closed string field theory,
subject only to the weaker level-matching constraint that
allows for solutions depending locally both on coordinates
and their duals [38]. Thus, although the currently under-
stood double field theory is subject to the strong constraint,
the latter constraint is well motivated from string theory,
implementing the level-matching constraint in stronger
form. The section constraint of exceptional field theory
has been postulated by analogy to the strong constraint, but
since there is no analogue to string field theory in M-theory,
it cannot be “derived” in a similar fashion. However, we
may consider a partial solution of the E6ð6Þ-covariant
section constraint that breaks the symmetry to the T-duality
group of string theory. Specifically, we can embed the SO
(5,5) T-duality group that is appropriate for a ð5þ 5Þ-
dimensional decomposition of type II string theory into
E6ð6Þ. The fundamental representation then decomposes as

SOð5; 5Þ ⊂ E6ð6Þ∶ 27 → 10⊕16⊕1; (6.1)

where 10 and 16 are the vector and spinor representation of
SO(5,5), respectively. Thus, under this decomposition we
obtain the Neveu-Schwarz-Neveu-Schwarz (NS-NS) fields
transforming as a vector (or rather, in the generalized metric
formulation, as a 2-tensor) but also the Ramond-Ramond
fields transforming as a spinor. The resulting theory will be
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a Kaluza-Klein-type decomposition of the original type II
double field theory of Refs. [50,51], in the sense of
Ref. [73]. The decomposition of the d symbol is then
such that the section constraint implies the independence of
all fields on the 1þ 16 variables, and further restricts the
field dependence on the remaining ten variables in the
fundamental vector representation of SO(5,5) as

dMNK∂M∂N ¼ 0 ⇒ ηM
̬
N
̬ ∂M

̬ ∂N
̬ ¼ 0; (6.2)

with the SO(5,5) vector indices denoted by M
̬
; N

̬
; see e.g.

Eqs. (3.27) and (3.29) in Ref. [90]. Thus, the section
constraint reduces precisely to the strong constraint in
double field theory. Since in string theory the strong
constraint is relaxed so that the doubled coordinates are
physical and real, U-duality covariance strongly suggests
the same for the 27 coordinates of the E6ð6Þ EFT, and
similarly for the extended coordinates of the higher EFTs
with respect to E7ð7Þ and E8ð8Þ.
A related question is about the most general solutions of

the section constraint (1.1), in particular whether there are
solutions beyond the known D ¼ 10 and D ¼ 11 super-
gravity. While we do not have a proof that there are no
solutions withD > 11, this appears unlikely. However, it is
certainly important to classify all solutions, in particular
in order to see whether or not there may be any
“nongeometric” solutions, for any D > 5. For instance,
one may imagine that the gauged diffeomorphisms (3.27)
and the generalized internal diffeomorphisms do not
organize into conventional diffeomorphisms of a D-
dimensional theory, thereby escaping the conventional
classifications. We leave this for future work. Even if such
more general solutions of the section constraint may be
excluded, it is still likely that there are nongeometric
solutions of the EFT field equations that locally depend
on the subset of coordinates corresponding to one solution
of the constraint, but that patch together inequivalent
solutions in a globally nontrivial manner, as happens in
double field theory [69]. Perhaps the most intriguing, but
also most involved question is about a genuine relaxation of
the section constraint, which would truly transcend the
framework of supergravity.
Another fascinating prospect is to generalize the pres-

ently known EFT to include higher-derivative M-theory
corrections along the lines of the recent results on double
field theory [68]. This would entail a deformation of the
EnðnÞ generalized Lie derivatives and other structures. If
possible, this would give a scheme to compute the α0
corrections of type II string theories and the higher-
derivative M-theory corrections in a unified manner.
Let us finally note that the details for the remaining

finite-dimensional groups E7ð7Þ and E8ð8Þ will be presented
in a separate publication. The general construction
proceeds along the same lines as the one presented here,
with a 4þ 56- and 3þ 248-dimensional formulation,

respectively. One novel feature of these cases is that
additional field components need to be introduced which,
from an 11-dimensional perspective, play the role of the
dual graviton, a field for which a local field theory
formulation is usually considered impossible on the
grounds of the no-go theorems in Refs. [91,92]. We have
shown in Ref. [72] how to handle this problem in the
covariant approach via introducing constrained compensa-
tor fields, extending the approach of Ref. [93]. In three
dimensions, the components of the higher-dimensional
dual graviton figure among the coordinates of the scalar
target space. The Lagrangian of Ref. [72] carries these
fields in a duality-covariant way and yields the first-order
duality equations which relate them to the corresponding
components of the higher-dimensional metric, all while
retaining full higher-dimensional coordinate dependence.
The construction hinges on the introduction of the cova-
riantly constrained compensator fields, which can be
viewed as extra gauge potentials, however, satisfying the
analogue of the section constraint, but for the field
components, so that effectively only a subset of fields
survives, cf. Eq. (2.34) of Ref. [72]. In fact, these additional
gauge fields appear among the ðD − 2Þ-forms in the
covariant formulation in all dimensions and neatly fit in
the structure of the tensor hierarchy. For instance, although
such fields are not visible in the E6ð6Þ action (1.3) presented
in this paper, they would show up when extending the
tensor hierarchy on-shell to the full set of 2-forms BμνM in
the form of compensating gauge fields CμνρM among the 3-
forms. For our action, they are irrelevant thanks to the extra
gauge redundancy corresponding to OμνM [see Eq. (2.34)],
whose 3-form gauge potential does not enter the action. For
the D ¼ 4 decomposition, however, the compensating
gauge field is a 2-form and thus enters explicitly the
gauge-covariant field strength of the gauge vectors Aμ

M.
Finally, in the D ¼ 3 decomposition the compensating
gauge fields are among the vectors entering the covariant
derivatives, as discussed for the Ehlers SLð2;RÞ subgroup
in Ref. [72]. This mechanism also circumvents the seeming
problem of nonclosure of the E8ð8Þ generalized Lie deriv-
atives [29]. Summarizing, we have arrived at a satisfying
homogeneous picture of the exceptional field theory for-
mulations for EnðnÞ, n ¼ 6; 7; 8. It is a fascinating question
whether and if so how these constructions can be extended
to even larger groups, possibly starting with the infinite-
dimensional E9ð9Þ and lifting the action functional of
Ref. [94], but here we can only speculate.
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APPENDIX: TRUNCATIONS OF EXCEPTIONAL
FIELD THEORY

In this appendix we discuss possible truncations of the
EFT action (1.3) in order to relate it to results in the
literature on duality-covariant formulations of subsectors of
11-dimensional supergravity [20,23–26,30]. In particular,
in these formulations all off-diagonal field components and
the external components of the 3-form are set to zero, and it
is assumed that all fields depend only on internal coor-
dinates. In terms of the fields and coordinates of the E6ð6Þ
EFT presented here this truncation therefore assumes

Aμ
M ¼ 0; BμνM ¼ 0; ∂μ ¼ 0: (A1)

For the action (1.3) this truncation implies

R̂ → 0; gμνDμMMNDνMMN → 0;

MMNF μνMF μν
N → 0; Ltop → 0; (A2)

such that the only surviving term is a truncation of the
potential term VðMMN; gμνÞ. The available formulations in
the literature differ in the treatment of the remaining fields,
i.e., the external metric gμν and the generalized metric
MMN encoding the internal field components. The original
work by Hillmann on E7ð7Þ covariance [20] sets the external
metric to the flat Minkowski metric,

gμν ¼ ημν ⇒
ffiffiffiffiffiffi
−g

p ¼ e ¼ 1; (A3)

so that the volume factor becomes unity. In the analogous
truncation of the E6ð6Þ EFT, the action (1.3) reduces to the
“potential term” only,

SEFT → −
Z

d27YVðMÞ; (A4)

with VðMÞ obtained from Eq. (1.4) by setting gμν ¼ ημν. It
is useful to investigate what are the residual gauge
symmetries after this truncation. Of course, the ð4þ 1Þ-
dimensional diffeomorphisms are broken, but also the
“internal” generalized diffeomorphisms are not completely
preserved, for the presence of g-dependent terms in the
potential was crucial for gauge invariance, as discussed in
Sec. III B. In particular, the volume factor e with the
appropriate weight is needed. Requiring that the condition
e ¼ 1 be preserved under gauge transformations we obtain

δΛe ¼ ΛN∂Neþ
5

3
e∂NΛN ¼! 0 ⇒ ∂NΛN ¼ 0: (A5)

In fact, Hillmann found that his formulation matches the
considered truncation of D ¼ 11 supergravity only in the

“unimodular gauge” of the internal metric [19], for which
the residual gauge transformations are indeed compatible
with Eq. (A5).
For a proper duality-covariant truncation of Eq. (1.3), the

volume factor of the internal metric has to be kept as a
separate degree of freedom, as already noted in Ref. [19].
Specifically, Eq. (A3) is relaxed to

gμν ¼ e2Δημν; (A6)

with a warp factor that in accordance with Eq. (A1) is a
function of Y only and transforms as a scalar density of
weight λ ¼ 2

3
under the Λ gauge transformations (2.4). For

this truncation, the EFT action (1.3) again reduces to its
potential term, now with extra contributions in Δ,

SEFT →
Z

d27Ye5Δ
�
1

24
MMN∂MMKL∂NMKL

−
1

2
MMN∂MMKL∂LMNK

− 5∂MΔ∂NMMN − 20MMN∂MΔ∂NΔ
�
: (A7)

This truncated action is duality and ΛM gauge invariant.
Note that Δ is a separate degree of freedom that transforms
independently of the 42 scalars parametrizing the E6ð6Þ
matrix MMN . It may be convenient to combine MMN and
Δ into a single object

M̂MN ¼ eγΔMMN; (A8)

with some factor γ, and rewrite the potential in terms of M̂
only. This rescaled matrix is no longer an element of the
duality group EnðnÞ, but can rather be thought of as taking
values in EnðnÞ ×Rþ, which is the starting point in the
approach of Ref. [26]. The formulations of Refs. [23–25]
employ the object (A8) (with different choices for γ), but
identify Δ with one of the internal components of MMN ,
which breaks the EnðnÞ covariance of Eq. (A7) down to the
subgroup commuting with that parameter, as pointed out in
Refs. [23,30]. The resulting truncation for the E6ð6Þ case
[25] coincides with Eqs. (A7) and (A8) (choosing γ ¼ −5).
We close by pointing out that, in principle, one may also

separate the Rþ factor in the full, untruncated EFT in
Eq. (1.3), by redefining gμν ¼ e2Δĝμν, with unimodular
metric ĝ, and then rescaling the generalized metricMMN as
in Eq. (A8). This has various technical disadvantages,
however, as for instance the Einstein-Hilbert and scalar-
kinetic terms start mixing in an intricate fashion, thereby
obscuring the manifest E6ð6Þ covariance of the current
formulation.
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