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We employ methods of gauge/string duality to analyze the nonrelativistic Brownian motion and the
concomitant Langevin equation of a heavy quark in a strongly coupled, thermal, anisotropic Yang-Mills
plasma in the low anisotropy limit. We consider fluctuations both along and perpendicular to the direction
of anisotropy and study the effects of anisotropy on the drag coefficient, the diffusion constant, and the
Langevin coefficient for both the directions. We also verify the fluctuation-dissipation theorem for
Brownian motion in an anisotropic medium.
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I. INTRODUCTION

A particle immersed in a hot fluid exhibits an incessant,
random dynamics known as Brownian motion [1]. The
Brownian motion originates from the collisions experi-
enced by the particle with the constituents of the fluid
undergoing a random thermal motion. The consideration of
these random collisions requires the fact that the fluid
medium is not a continuum but made of finite-size
constituents. Hence, the Brownian motion actually offers
a better understanding of the underlying microscopic
physics of the medium. The random dynamics of a
Brownian particle is encoded in the Langevin equation
describing the total force acting on the particle as a sum of
dissipative and random forces. Although both of these
forces have the same microscopic origin, phenomenologi-
cally the dissipative force describes the in-medium fric-
tional effect, and the random force stands for a source of
random kicks from the medium.
Brownian motion is a universal phenomenon for all finite

temperature systems. Therefore, a heavy probe quark
immersed in a strongly coupled hot quark-gluon plasma
(QGP), which is believed to be created in the relativisitic
heavy ion collider (RHIC) and LHC experiments [2],
undergoes the same thermal motion [3]. From field theo-
retical standpoint, the random motion in the QGP phase is
hard to study due to nonperturbative strong coupling
effects. However, the AdS/CFT correspondence [4–7]
seems to be a good theoretical tool in this regard, since
it has been extensively used to study a large class of
strongly coupled plasma having well-defined gravity duals.
In spite of intensive efforts, to date, the gravity dual of the
strongly coupled QGP phase remains elusive, and the
gauge theories having well-defined gravity duals are

different from QGP in several aspects. Nonetheless, it is
remarkably found in some instances that many strong
coupling features extracted holographically from known
geometric duals for UV conformal theories agree with the
thermal QGP phase. For example, in Refs. [8,9], the AdS/
CFT correspondence has been used to show that the shear
viscosity to the entropy ratio of four-dimensional SUðNcÞ
(Nc being the number of colors) Yang-Mills theory with
N ¼ 4 supersymmetries is 1=4π. This low viscosity is also
speculated from the estimation of the RHIC data for QGP
[10]. Later the ratio was found to be universal for all the
strongly coupled gauge theories, in the Nc → ∞ limit,
having a gravity dual [11]. Subsequently, it was found that
there are other physical quantities, such as R-charge
conductivity to charge susceptibility ratio, a certain combi-
nation of thermal conductivity, temperature, and chemical
potential, that show universal behavior, too [11,12].
Motivated by these universal outcomes, there has been a
substantial amount of holographic analysis of dissipative
physics of various types of thermal plasma having dual
gravity to understand the dynamical feature of QGP phase
in a better way; see, for example, Refs. [13–33]. Recently, as
an important improvement in this direction, the Brownian
motion of a probe particle has been successfully studied using
the framework of the AdS/CFT correspondence [34,35].
The bulk interpretation of the Brownian motion of a

heavy probe quark immersed in a SUðNcÞ Yang-Mills
theory with N ¼ 4 supersymmetries emerges from the
consideration of a probe fundamental string in the dual anti-
de Sitter (AdS) black hole background, stretching between
the AdS boundary and the horizon. The end point of the
string attached to the boundary is holographically mapped
to the boundary probe quark. The transverse modes of the
probe string are thermally excited by the black hole
environment. This excitation propagates up to boundary
and holographically incorporates the Brownian motion of
the boundary quark. In an intuitive way, the fact that,
semiclassically, the transverse string modes are thermally
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excited by Hawking radiation reflects the bulk interpreta-
tion of random force in the boundary Langevin equation. On
the other hand, the fact that the string excitation is absorbed by
the black hole environment stands for the bulk realization of
boundary frictional force. In the detailed course of compu-
tation, we need to quantize the transverse string modes. As
explained in Ref. [36], the Hawking radiation associated with
the string excitations occurs upon quantizing these modes.
Once these modes are quantized, using holographic pre-
scription, the erratic motion of string end point attached to the
boundary can be realized as the Brownian motion.
There are two independent approaches available in the

literature to obtain these results. In the first approach, the state
of the quantized scalar fields are identified with the Hartle–
Hawking vacuum representing the black hole at thermal
equilibrium [34]. In the second approach, the Gubser-
Klebanov-Polyakov-Witten (GKPW) prescription [5,6] of
computing the retarded Green function is used. The compu-
tation of Langevin equation is done by exploring the corre-
spondence between the Kruskal extension of the AdS black
hole geometry and the Schwinger–Keldysh formalism [35].
The detailed comparison between the two independent
approaches is given in Ref. [37]. There are further general-
izations in this direction. Holographic Brownian motion has
been studied in the case of charged plasma [38], rotating
plasma [39–41], non-Abelian super Yang-Mills (SYM)
plasma [42], nonconformal plasma [43], and (1þ 1)-dimen-
sional strongly coupled conformal field theory at finite
temperature [44]. It has also been studied in the low temper-
ature domain (near criticality) [45,46]. The relativistic for-
mulationofholographicLangevindynamicswassuccessfully
addressedinRef.[47].Moreover,someimportantuniversality
related issues regarding the Langevin coefficients computed
alongthelongitudinalaswellasthetransversedirectionstothe
probe quark’s motion was studied in Ref. [48].
In our paper, we study the holographic Brownian motion

of a heavy probe quark moving in a strongly coupled
anisotropic plasma at finite temperature. For simplicity, we
only consider the nonrelativistic limit; i.e., we take v ≪ 1

where v is the velocity of the heavy quark that undergoes
Brownian motion. We also take the medium to have small
anisotropy and consider only the low-lying modes of the
string fluctuations. These conditions are imposed only to
facilitate analytical computation. The anisotropic thermal
plasma we are interested in is a spatially deformed four-
dimensionalN ¼ 4 SUðNcÞ SYM plasma at finite temper-
ature [49,50]. The deformation in the gauge theory has been
achieved by adding a topological Yang-Mills coupling
where the coupling parameter has a functional dependence
on one of the three spatial boundary coordinates signifying
the anisotropic direction. The dual bulk geometry develops
an anisotropic black hole horizon and behaves as a regular
solution embedded in type IIB string theory. The motiva-
tion for studying the Brownian motion in the context of
anisotropic N ¼ 4 SYM plasma comes from experimental

observations at the RHIC signifying the possible existence
of a locally anisotropic phase of QGP at thermal equilib-
rium. In the heavy ion collisions, right after the plasma is
formed, it is anisotropic and also far away from equilibrium
for a time t < τout. Further, in the temporal window
τout < t < τiso, it settles down into an equilibrium state
but still does not achieve isotropy. Thus, if one wishes to
probe the early time dynamics of the plasma, it is essential
to take into consideration this intrinsic anisotropy. In the
regime τout < t < τiso, the plasma has a significant momen-
tum anisotropy that leads to an unequal expansion of the
plasma in the beam direction and the transverse directions.
Although the anisotropic plasma we are interested in does
not incorporate the dynamical anisotropy as in QGP, it can
be a good toy model since it has a well-defined gravity dual.
With thisgravitybackground, followingRef. [34],westudy

the bulk interpretation of the boundary Brownian motion. In
particular, we explicitly compute the friction coefficient, the
diffusion constant, and the random force correlator from a
holographic perspectivewhen the thermal background has an
inherent anisotropy and verify the fluctuation-dissipation
theorem and the Einstein–Sutherland relation. In our bulk
analysis, we include fluctuations of the probe string modes
along both isotropic as well as anisotropic directions. We
systematically study the effect of anisotropy in the low-
frequency limit of the thermal fluctuation.
The paper is organized as follows. In Sec. II we briefly

review the field theoretic aspects of Brownian motion and
follow it, in Sec. III, with the holographic description of
Brownian motion in the anisotropic medium. Section III is
divided into four subsections. In Sec. III A we describe the
gaugetheoryanditssupergravitydual thatweareinterestedin.
In Sec. III B we discuss some generic features of the holo-
graphic formulation of the problem. In Sec. III C we perform
theholographiccomputationfor theanisotropicdirection,and
from there the computation for the isotropic direction follows
in a special limit which is discussed in Sec. III D. Finally, we
conclude with a discussion of our results in Sec. IV.

II. BROWNIAN MOTION IN THE BOUNDARY

Webegin by presenting a brief review of the field theoretic
aspect of the problem following Refs. [34,38,42]. The
simplest phenomenological model which attempts to explain
the Brownian motion of a nonrelativistic particle of mass m
immersed in a thermal bath is given by theLangevin equation
along the ith spatial direction,1

_piðtÞ ¼ −γðiÞo piðtÞ þ RiðtÞ; (1)

where piðtÞ ¼ m _xi is the nonrelativistic momentum of the
Brownian particle along the ith direction. Themodel, though

1We shall explicitly keep track of the direction index i in our
discussion since we need to distinguish between the anisotropic
direction and the directions transverse to it.
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simple, is capableof capturing the salient featuresof aparticle
undergoingBrownianmotion. The particle is acted upon by a
random force RiðtÞ arising out of its interaction with the
thermal bath, and, at the same time, it is suffering energy

dissipation due to the presence of the frictional term with γðiÞ0
being the friction coefficient. Under the effect of these two
competing forces, the particle undergoes random thermal
motion.TheinteractionbetweentheBrownianparticleandthe
fluid particles at a temperature T allows for an exchange of
energybetween theBrownianparticle and the fluid leading to
the establishment of a thermal equilibrium. In an isotropic
medium, the friction coefficient does not depend upon the
particularspacedirectionunderconsideration.However, if the
medium in which the particle is immersed has an anisotropy,
then we expect the drag coefficient along the anisotropic
direction γ‖0 to be different from that in the isotropic plane γ⊥0 .
The random force RiðtÞ can be approximated by a

sequence of independent impulses, each of random sign
and magnitude, such that the average vanishes. Each such
impulse is an independent random event; i.e., RiðtÞ is
independent of Riðt0Þ for t ≠ t0. Such a noise source goes by
the name of white noise. These considerations imply

hRiðtÞi ¼ 0; hRiðtÞRjðt0Þi ¼ κðiÞ0 δijδðt − t0Þ; (2)

where we call κðiÞ0 the Langevin coefficient. Again, the
presence of anisotropy inflicts a directional dependence
upon κðiÞ0 . Note that, in particular, the random forces at two
different instants are not correlated. The two parameters γðiÞ0
and κðiÞ0 completely characterize the Langevin equation
[Eq. (1)]. As we shall see, γðiÞ0 and κðiÞ0 are not independent,
which is not unexpected since they are related by the
fluctuation-dissipation theorem,2

γðiÞ0 ¼ κðiÞ0
2mT

: (3)

Assuming the theorem of equipartition of energy which
states that each degree of freedom contributes 1

2
T to the

energy (T being the temperature, and we have set the
Boltzmann constant kB ¼ 1), it is possible to derive
the temporal variation of the displacement squared of the
particle [34]

hsiðtÞ2i ¼ hðxiðtÞ − xið0ÞÞ2i ¼ 2DðiÞ

γðiÞ0
ðγðiÞ0 t − 1þ e−γ

ðiÞ
0
tÞ;

(4)

where DðiÞ is defined to be the diffusion constant. It is
related to the friction coefficient γðiÞ0 through the Einstein–
Sutherland relation,

DðiÞ ¼ T

γðiÞ0 m
: (5)

The solution to Eq. (1) has a homogeneous part determined
by the initial conditions and an inhomogeneous part
proportional to the random force. The homogeneous part
will decay to zero in a time of order tðiÞrelax ¼ 1=γðiÞ0 and the
long-time dynamics will be governed entirely by the
inhomogeneous part, independent of the initial conditions.
Based on these considerations, one can distinguish between
two different temporal domains: t ≪ 1=γðiÞ0 whence si ∼ffiffiffiffiffiffiffiffiffiffi
T=m

p
t showing that the particle moves under inertia as if

no force is acting upon it. The speed in this case is fixed by
the equipartition theorem. In the opposite regime
t ≫ 1=γðiÞ0 , one obtains si ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
2DðiÞt

p
, which is reminiscent

of the random walk problem. In this time domain, the
Brownian particle loses its memory of the initial value of
the velocity. The transition from one regime to another
occurs at the critical value of

tðiÞrelax ∼
1

γðiÞ0
; (6)

which represents a characteristic time scale of the theory,
called the relaxation time, beyond which the system
thermalizes.
The model we have considered above is based on two

assumptions: i) the friction to be instantaneous and ii) the
random forces at two different instants to be uncorrelated.
The validity of these assumptions holds well only when the
Brownian particle is very heavy compared to the constitu-
ents of the medium. However, this does not give the correct
picture when the Brownian particle and the constituents of
the medium have comparable masses. To overcome these
pitfalls, the Langevin equation is generalized such that the
friction now depends upon the past history of the particles,
and also the random forces at different instants are
correlated. To incorporate these effects, we modify
Eq. (1) to the generalized Langevin equation,

_piðtÞ ¼ −
Z

t

−∞
dt0γðiÞðt − t0Þpiðt0Þ þ RiðtÞ þ KiðtÞ: (7)

Note that now the history of the particle is encoded in the
function γðiÞðt − t0Þ, and we have also included the pos-
sibility of an external force impressed upon the particle
through the term KiðtÞ. RiðtÞ now obeys

hRiðtÞi ¼ 0; hRiðtÞRiðt0Þi ¼ κðiÞðt − t0Þ: (8)

At this stage it is convenient to go over to the Fourier space
representation of the generalized Langevin equation,

2The relation between the two quantities has its root in the fact
that both the frictional force and the random force have the same
origin—microscopically, they arise due to the interaction of the
particle with the thermal medium. In this sense, the separation of
the rhs of Eq. (1) in two parts is ad hoc from the microscopic
point of view, being only dictated by considerations of phenom-
enological simplicity.
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piðωÞ ¼
RiðωÞ þ KiðωÞ
−iωþ γðiÞ½ω� ; (9)

where piðωÞ, RiðωÞ, and KiðωÞ are the Fourier transforms
of piðtÞ, RiðtÞ and KiðtÞ, respectively, i.e.,

piðωÞ ¼
Z

∞

−∞
dtpiðtÞeiωt (10)

and so on. On the other hand, causality restricts γðiÞðtÞ ¼ 0
for t < 0 so that γðiÞ½ω� is the Fourier–Laplace transform

γðiÞ½ω� ¼
Z

∞

0

dtγðiÞðtÞeiωt: (11)

Upon taking statistical average in Eq. (9), one finds

hpiðωÞi ¼ μðiÞðωÞKiðωÞ; (12)

where we have made use of Eq. (8).

μðiÞðωÞ≡ 1

−iωþ γðiÞ½ω� (13)

is called the admittance, and since it depends upon γðiÞ, it
inherits the anisotropic effect. The admittance is a measure
of the response of the Brownian particle to external
perturbations. In particular, if the external force is taken as

KiðtÞ ¼ Kð0Þ
i e−iωt; (14)

then the response is

hpiðtÞi ¼ μðiÞðωÞKð0Þ
i e−iωt: (15)

If the memory kernel γðiÞðt − t0Þ is sharply peaked around
t0 ¼ t, then

Z
∞

0

dt0γðiÞðt− t0Þpiðt0Þ≈
Z

∞

0

dt0γðiÞðt0ÞpiðtÞ¼
1

tðiÞrelax
piðtÞ:

(16)

Thus, for the generalized Langevin equation, described by
Eq. (7), the generalization of the relaxation time is

tðiÞrelax∼
�Z

∞

0

dtγðiÞðtÞ
�−1

¼ 1

γðiÞ½ω¼0�¼μðiÞðω¼0Þ: (17)

The Wiener–Khintchine theorem relates the power spec-
trum IOðωÞ of any quantityOwith its two-point function as

hOðωÞOðω0Þi ¼ 2πδðωþ ωÞIOðωÞ; (18)

where the power spectrum IOðωÞ is defined as

IOðωÞ ¼
Z

∞

−∞
dthOðt0ÞOðt0 þ tÞieiωt: (19)

For stationary systems this does not depend upon the
choice of t0, and hence we can as well set t0 ¼ 0. Now if we
turn off the external force KiðtÞ, then from Eq. (9) we get

piðωÞ ¼
RiðωÞ

−iωþ γðiÞ½ω� ¼ μðiÞðωÞRiðωÞ; (20)

which leads to the obvious result

Ipi
ðωÞ ¼ IRi

ðωÞ
jγðiÞ½ω� − iωj2 ¼ jμðiÞðωÞj2IRi

ðωÞ: (21)

Making use of Eqs. (8) and (21), we are led to the result

κðiÞ ¼ IRi
¼ Ipi

ðωÞ
jμðiÞðωÞj2 : (22)

The random force correlator κðiÞ provides yet another time
scale involved in the Brownian motion. If we take κðiÞ to be
of the form

κðiÞðtÞ ¼ κðiÞð0Þe− t
tcol ; (23)

then tcol is the width of the correlator. It is the temporal span
over which the random forces are correlated and gives the
time scale for the duration of a collision.
In the next section, following holographic techniques

prescribed in Ref. [34], we investigate the bulk realization
of the boundary Brownian motion of a heavy probe moving
in an anisotropic thermal plasma. In doing so, we first
describe the profile of the probe string stretching between
the AdS boundary and the horizon as well as the black hole
background dual to the anisotropic plasma. Then we
describe how to compute bulk correlators of the transverse
fluctuations of the probe string.

III. HOLOGRAPHIC STORY

To incorporate the heavy dynamical probe quark in the
boundary theory, one introduces Nf D7-flavor branes
located at r ¼ rm. We work within probe approximation
meaning Nf ≪ Nc and neglect the backreaction of the
flavor brane on the background (for simplicity we take
Nf ¼ 1). On the gauge theory side, this is tantamount to
working in the quenched approximation. The probe string
stretches from the boundary at r ¼ rm to the black hole
horizon r ¼ rh. The flavor brane spans the four gauge
theory directions, the radial direction, and also a 3-sphere
S3 ⊂ S5. We take the boundary gauge theory to live at the
radial coordinate r ¼ rm. We assume that the source of the
fluctuations of the string modes is purely Hawking radi-
ation. Moreover, keeping the string coupling gs small
ensures that we can ignore the interaction between the
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transverse fluctuation modes and the closed string modes in
the bulk.

A. Anisotropic supergravity dual

In this subsection we briefly provide the details of the
gauge theory we are interested in and its supergravity dual.
The gauge theory under consideration is a spatially
deformed N ¼ 4, SUðNcÞ SYM plasma at large t’Hooft
coupling λ ¼ g2YMNc. The deformation is achieved by
introducing a θ parameter in our theory that depends
linearly upon any one of the three spatial directions, which
we take to be x3 in our case. Consequently, we can write the
gauge theory action as

Sgauge ¼ SSYM þ δS; (24)
where

δS ¼ 1

8π2

Z
θðx3ÞTrF∧F: (25)

The presence of θð¼ 2πnD7x3Þ reduces the SOð3Þ rota-
tional symmetry of the original theory down to a SOð2Þ
symmetry in the x1-x2 plane (where we have taken
ft; x1; x2; x3g to be the gauge theory coordinates) and is
responsible for making the theory anisotropic. Here nD7 is a
constant with energy dimension. In the context of heavy ion
collisions, x3 will correspond to the direction of beam,
whereas the x1, x2 directions span the transverse plane. In
heavy ion collisions, the plasma will expand and cool down
gradually, and the anisotropy parameter will also decay
with time. However, here we shall restrict ourselves to a
time domain where such temporal variation can be
neglected. The type IIB supergravity dual to this gauge
theory was given in Refs. [49,50] inspired by Ref. [51] and
reads in the string frame

ds2¼ r2
�
−FBdt2þðdx1Þ2þðdx2Þ2þHðdx3Þ2þ dr2

r4F

�

þe
1
2
ϕdΩ2

5; (26)

χ ¼ ax3; ϕ ¼ ϕðrÞ; (27)

where the axion χ is proportional to the anisotropic
direction x3, the proportionality constant a being the
anisotropy parameter. The theory also has a running dilaton
ϕðrÞ. r is the AdS radial coordinate with the boundary at
r ¼ ∞ and the horizon at r ¼ rh, and dΩ2

5 is the metric on
the 5-sphere S5. We have suppressed the common radius R
of the AdS space and S5 set R ¼ 1. There is also a Ramond-
Ramond (RR) self-dual 5-form which will not play any role
in our discussion here. The axion, which is dual to the
gauge theory θ term, is responsible for making the back-
ground anisotropic. It turns out [49] that the anisotropy
parameter a is proportional to nD7, the number density of
D7-branes along the x3 direction, a ¼ λnD7=4πNc. The
D7-branes, which source the axion, wrap around S5 and

extend along the transverse directions, x1, x2. However, the
D7-branes do not span the radial direction and hence do not
reach the boundary. So they do not contribute any new
degrees of freedom to the theory. F , B, H are all functions
of the radial coordinate r and are known analytically only in
the limiting cases when the anisotropy is very high or low
(with respect to the temperature). In the intermediate
regime, they are known only numerically. F is the usual
“blackening factor” that vanishes at the horizon, i.e.,
F ðrhÞ ¼ 0. The presence of anisotropy implies that the
dual theory develops an anisotropic horizon. The strength
of anisotropy can be tuned by varying the parameter a. In
this paper we shall consider only weakly anisotropic
plasma (the small a or high temperature T limit, whence
a=T ≪ 1). In this regime the functions F , B, H can be
expanded to leading order in a around the black D3-brane
solution,

F ðrÞ ¼ 1 − r4h
r4

þ a2F 2ðrÞ þOða4Þ;
BðrÞ ¼ 1þ a2B2ðrÞ þOða4Þ;
HðrÞ ¼ e−ϕðrÞ

with ϕðrÞ ¼ a2ϕ2ðrÞ þOða4Þ; (28)

where

F 2ðrÞ ¼
r2h
24r4

�
8ðr2 − r2hÞ

r2h
− 10 log 2

þ 3r4 þ 7r4h
r4h

log
�
1þ r2h

r2

��
;

B2ðrÞ ¼ − 1

24r2h

�
10r2h

r2h þ r2
þ log

�
1þ r2h

r2

��
;

ϕ2ðrÞ ¼ − 1

4r2h
log

�
1þ r2h

r2

�
:

(29)

The Hawking temperature of the above solution is

T ¼ rh
π
þ a2

rh

ð5 log 2 − 2Þ
48π

þOða4Þ; (30)

which is identified as the temperature of the deformed
SYM theory. The horizon position can be obtained in terms
of the temperature, which, in the limit a=T ≪ 1, reads

rh ∼ πT

�
1 − a2

5 log 2 − 2

48π2T2

�
þOða4Þ: (31)

B. Bulk view of Brownian motion

To study the dynamics of the fundamental string in the
background given by Eq. (26), we need to evaluate the
Nambu–Goto string world sheet action,
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SNG ¼ 1

2πα0

Z
dσdτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gαβ

q
; (32)

where gαβ is the induced metric on the string world sheet,

gαβ ¼ Gμν
∂Xμ

∂ξα
∂Xν

∂ξβ : (33)

Here ξα;β are the coordinates on the string world sheet Σ;
ξ0 ¼ τ and ξ1 ¼ σ, Gμν is the 10-dimensional metric as
given in Eq. (26), and fXμðτ; σÞg are the 10-dimensional
coordinates which specify the string embedding in the full
10-dimensional spacetime. We choose the static gauge for
evaluating Eq. (32) as τ ¼ t, σ ¼ r. The trivial solution that
satisfies the equation of motion obtained by variation of
SNG is given by Xm ¼ ft; ~0; rg. This corresponds to a quark
that is in equilibrium in a thermal bath and in the bulk
picture to a string hanging straight down radially. We now
wish to consider fluctuations around this classical solution.
We want to see the effects of anisotropy both along the
anisotropic direction as well as in the isotropic plane.
To this end we consider fluctuations of the form
Xm ¼ ft; X1ðt; rÞ; 0; X3ðt; rÞ; rg, where X1ðt; rÞ is a fluc-
tuation in a isotropic direction while X3ðt; rÞ is a perturba-
tion along the anisotropic direction. The position of the
quark is given by xμ ¼ ft; X1ðt; rmÞ; 0; X3ðt; rmÞg. Using
this parametrization we find out the components of the
world sheet metric as

gττ ¼ r2ð−FB þ ð _X1Þ2 þHð _X3Þ2Þ;

gσσ ¼ r2
�
ðX0

1Þ2 þHðX0
3Þ2 þ

1

r4F

�
;

gτσ ¼ r2ðH _X1X0
3 þHX0

1
_X3Þ; (34)

where X0
i ≡ ∂σXi and _Xi ≡ ∂τXi. From now on, we

suppress the explicit r dependence of the metric elements
F , B, H. If we restrict ourselves to small perturbation
around the classical solution, we can safely leave out terms
higher than quadratic order in the fluctuations whence the
action reduces to3

SNG ¼ 1

4πα0

Z
dτdσ

ffiffiffiffi
B

p
½Fr4ððX0

1Þ2 þHðX0
3Þ2Þ

− 1

FB
ðð _X1Þ2 þHð _X3Þ2Þ�: (35)

While writing Eq. (35), we have omitted a constant factor
that is independent of Xi. Variation of the above action
yields the equation of motion for the fluctuation X3,

Ẍ3 − F
ffiffiffiffi
B

p

H
r2h∂yð

ffiffiffiffi
B

p
HFy4X0

3Þ ¼ 0; (36a)

where we have used the new scaled coordinate, y ¼ r=rh,
and now the prime 0 denotes a derivative with respect to y.
The equation of motion for X1 is obtained in a similar
fashion,

Ẍ1 − F
ffiffiffiffi
B

p
r2h∂yð

ffiffiffiffi
B

p
Fy4X0

1Þ ¼ 0; (36b)

which is the same as Eq. (36a) with H ¼ 1. Later on, we
shall also consider forced motion of the quark under the
effect of an electromagnetic field. This is simply achieved
by switching on a Uð1Þ electromagnetic field on the flavor
D7-brane. Since the string end point on the boundary
represents a quark, it is charged and hence will couple to the
electromagnetic field. Consequently, we need to incorpo-
rate this effect at the level of the action. The action SNG is
then generalized to S ¼ SNG þ Sb, where

Sb ¼
Z
∂Σ
ðAt þ Ai

_XiÞdt: (37)

Since it is just a boundary term, it will not affect the
dynamics of the string in the bulk. However, it will modify
the boundary conditions that we need to impose upon the
string end point. We need to find solutions to Eqs. (36a) and
(36b) near the boundary, which we shall do by employing
the matching technique. The solutions are, in general, quite
complicated. However, they are readily obtained near the
horizon. So before finding out the actual solutions, let us
see how these solutions behave in the vicinity of y → 1.
First of all, we inflict a coordinate transformation r → r�,
which takes us to the tortoise coordinates so that

d
dr

¼ 1

r2F
ffiffiffiffi
B

p d
dr�

(38)

and

dr ¼ r2F
ffiffiffiffi
B

p
dr�: (39)

In this new coordinate system, the Nambu–Goto action
assumes the form

SNG ¼ 1

4πα0

Z
dτdr�r2½ðð∂r�X1Þ2 − ð _X1Þ2Þ

þHðð∂r�X3Þ2 − ð _X3Þ2Þ�: (40)

Near the horizon it simplifies to

SNG ¼ 1

4πα0
r2h

Z
dτdr�½ðð∂r�X1Þ2 − ð _X1Þ2Þ

þHðrhÞðð∂r�X3Þ2 − ð _X3Þ2Þ�: (41)

The equation of motion for both X1 and X3 obtained by
varying this action turns out to be the same,

ð∂2
r� − ∂2

τÞX1;3 ¼ 0: (42)

So near the boundary, the fluctuations are governed by a
Klein–Gordon equation for massless scalars. From now on,

3This essentially means that we are in the regime j∂tXij ≪ 1,
which, in turn, implies taking the nonrelativistic limit. Hence, on
the gauge theory side, the dual picture will also be nonrelativistic.
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in this section, we shall refer to the fluctuations as Xi, it
being understood that everything we discuss here holds true
for both X1 as well as X3. From Eq. (26) it is clear that t is
an isometry of the background, and hence we can try
solutions of the form

Xiðt; rÞ ∼ e−iωtgωðrÞ: (43)

Equation (42) has two independent solutions corresponding
to ingoing and outgoing waves, respectively, which we
write as

Xout
i ðrÞ ¼ e−iωtgouti ðrÞ ∼ e−iωðt−r�Þ (44a)

Xin
i ðrÞ ¼ e−iωtgini ðrÞ ∼ e−iωðtþr�Þ: (44b)

To find r� we need to solve Eq. (39), which yields

r� ¼
1

4rh
log

�
r
rh

− 1

��
1 − ~a2

48
ð5 log 2 − 2Þ

�
; (45)

where we have defined ~a ¼ a
rh
∼ a

πT. Hence,

gout=ini ðrÞ ¼
�
r
rh

− 1

��iν
4
ð1− ~a2

48
ð5 log 2−2ÞÞ

; (46)

where ν ¼ ω
rh
. One thus finds that gouti ¼ ðgini Þ�.

Following standard quantization techniques of scalar
fields in curved spacetime, we can perform a mode
expansion of the fluctuations as

Xiðt; rÞ ¼
Z

∞

0

dω
2π

½aωuωðt; rÞ þ a†ωuωðt; rÞ��: (47)

Here uωðt; rÞ is a set of positive frequency basis. These
modes can, in turn, be expressed as a linear combination of
the ingoing and the outgoing waves:

uωðt; rÞ ¼ A½goutðrÞ þ BginðrÞ�e−iωt: (48)

The constant B is determined by imposing a boundary
condition at r ¼ rm, i.e., y ¼ 1. However, as we shall later
see, B turns to be a pure phase. This implies that the
outgoing and the ingoing modes have the same amplitude.
This signifies that the black hole environment which can
emit Hawking radiation is in a state of thermal equilibrium.
One is then left with determining the constant A, which is
fixed by demanding normalization of the modes through
the conventional Klein–Gordon inner product defined via

ðfi; gjÞσ ¼ − i
2πα0

Z
σ

ffiffiffi
~g

p
nμGijðfi∂μg�j − ∂μfig�jÞ: (49)

Here, σ defines a Cauchy surface in the ðt; rÞ subspace of
the 10-dimensional spacetime metric, ~g is the induced
metric on the surface σ, and nμ denotes a unit normal to σ in
the future direction. Without any loss of generality, we can
take the surface σ to be a constant t surface since the inner

product does not depend upon the exact choice of the
surface in the ðt; rÞ plane [52]. Following Ref. [38] we
argue that the primary contribution to the above integral
arises from the IR region. Of course, regions away from the
horizon do contribute, but since the horizon is semi-infinite
in the tortoise coordinate, the normalization is completely
fixed by the near-horizon regime. For the anisotropic
direction, this gives

ðfi;gjÞσ ¼− iδijr2hHðrhÞ
2πα0

Z
r�→−∞

dr�ðfi _gj�− _fig�jÞ; (50)

from which we can extract A to be

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πα0

ωr2hHðrhÞ

s
: (51)

On the other hand, for fluctuations along the isotropic
direction, we have

ðfi; gjÞσ ¼ − iδijr2h
2πα0

Z
r�→−∞

dr�ðfi _gj� − _fig�jÞ; (52)

which fixes A as

A ¼
ffiffiffiffiffiffiffiffi
πα0

ωr2h

s
: (53)

The normalization ensures that the inner product
ðuω; uωÞ ¼ 1, which, in turn, guarantees that the canonical
commutation relations are satisfied,

½aω;aω0 � ¼ ½a†ω;a†ω0 � ¼ 0; ½aω;a†ω0 � ¼ 2πδðωþω0Þ: (54)

In the semiclassical approximation, the string modes are
thermally excited by the Hawking radiation of the world
sheet horizon and obey the Bose–Einstein distribution,

haωa†ωi ¼
2πδðωþ ω0Þ

eβω − 1
: (55)

Equipped with this much machinery, we are now ready to
compute the displacement squared for the test quark in the
boundary. This is required if we wish to find out an
expression for the diffusion constant. Recalling that the
position of the Brownian particle is specified by
xiðtÞ ¼ Xiðt; rmÞ, we have

hxiðtÞxið0Þi¼
Z

∞

0

dωdω0

ð2πÞ2 ½haωa†ω0 iuωðt;rmÞuω0 ð0;rmÞ�

þha†ωaω0 iuωðt;rmÞ�uω0 ð0;rmÞ�: (56)

However, this is afflicted by a divergence that can be
attributed to the zero point energy, which persists even
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when we go to the zero temperature limit. The way to
bypass this catastrophe is to invoke the normal ordering of
products

h∶xiðtÞxið0Þ∶i¼
Z

∞

0

dω
2π

2jAj2 cosωt
eβω−1

jgoutðrmÞþBginðrmÞj2:
(57)

Finally, after a little algebra, we arrive at the expression for
displacement squared,

s2i ðtÞ≡ h∶½xiðtÞ − xið0Þ�2∶i

¼ 4

π

Z
∞

0

dωjAj2 sin
2 ωt=2

eβω − 1
jgoutðrmÞ þ BginðrmÞj2:

(58)

With the general formalism in place, we are now in a
position to take up the problem of analyzing Brownian
motion in an anisotropic strongly coupled plasma from the
holographic point of view. In Sec. III C we study the case of
Brownian motion in the plasma along the anisotropic

direction. We discuss this case in detail. Later in
Sec. III D we consider Brownian motion along one of
the isotropic directions.

C. Brownian motion along anisotropic direction

Our first job will be to solve Eq. (36a) in the asymptotic
limit. Making use of Eq. (43), we recast Eq. (36a) as

ν2gðyÞ þ F
ffiffiffiffi
B

p

H
∂y½

ffiffiffiffi
B

p
HFy4g0ðyÞ� ¼ 0: (59)

Inserting the explicit expressions of the various functions,
this can be written as

g00ðyÞ þ 4
y3

y4 − 1
½1þ ~a2ΨðyÞ�g0ðyÞ

þ y4ν2

ðy4 − 1Þ2 ½1þ ~a2ϒðyÞ�gðyÞ ¼ 0; (60)

where

ΨðyÞ ¼ 1

96y4ðy4 − 1Þ
�
3 − 9y2 − 23y6 þ y4ð29þ 40 log 2Þ − 40y4 log

�
1þ 1

y2

��

ϒðyÞ ¼ 1

24ðy4 − 1Þ
�
6 − 6y2 þ 20 log 2 − 5ð3þ y4Þ log

�
1þ 1

y2

��
: (61)

We need to find a solution to this equation. However, as it
turns out, obtaining an analytic solution is a notoriously
difficult problem for any arbitrary frequency ν. To circum-
vent this difficulty, we work only in the low-frequency
approximation and then attempt to solve the equation by the
“matching technique.” Since we only require the solution
near the boundary, we just give here the expression of the
required solution. The interested reader is referred to
Appendix A for the details of the solution. We shall have

two solutions corresponding to the ingoing and outgoing
waves,

gout=in ¼ kout=in1

�
1þ ν2

2y2
þO

�
1

y4

��
þkout=in3

�
1

y3
þO

�
1

y5

��
;

(62)

where

kout=in1 ¼ 1∓ iν
8
ðπ − 2 log 2Þ � iν ~a2

768
½28 − 16βð2Þ − 20ðlog 2Þ2þπð−8þ π þ 14 log 2Þ þ 8 log 2� þOðν2Þ

kout=in3 ¼ ∓ iν
3

�
1þ ~a2

4
log 2

�
þOðν2Þ; (63)

where βð2Þ4 ∼0.915966. We find that the relation, gout ¼
gin�, obtained earlier in the near-horizon analysis, continues
to hold true in the asymptotic limit.

We can now use these solutions, supplemented by the
appropriate boundary conditions, to find out various quan-
tities of interest.However, beforegoing into the intricacies of
the actual computation, let us digress a little bit to clarify the
boundary conditions involved in the problem.
Although we are interested in the world sheet theory

of the probe string, the choice of the static gauge implies
that the characteristics of the background spacetime are

4βðsÞ is the Dirichlet beta function given by βðsÞ ¼P∞
n¼0

ð−1Þn
ð2nþ1Þs.
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encoded in the induced metric. Hence, we can exploit the
rules of the AdS/CFT correspondence to understand the
boundary conditions. When working in the Lorentzian
AdS/CFT, it is customary to choose normalizable boundary
conditions [53] for the modes. In the present scenario, this
amounts to pushing the boundary all the way up to y → ∞.
However, the AdS/CFT dictionary tells us that the radial
distance is mapped holographically to the mass of the probe
quark so that placing the boundary at y → ∞ essentially
means that we are considering our probe quark to be
infinitely massive. Of course, this at once rules out any
possibility of the quark undergoing Brownian motion. The
problem can be solved if, instead, we impose a UV cutoff in
our theory. More specifically, we introduce a UV cutoff
surface and identify it with the boundary where the gauge
theory lives. In fact, this is exactly the location of the flavor
brane ym to which the endpoint of the string is attached. The
relation between the position of the UV cutoff and the mass
of the probe can be read off easily as

m ¼ 1

2πα0

Z
rm

rh

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgrrp

¼ 1

2πα0

�
ym − 1þ ~a2

24
ðlog 2 − 3πÞ

�
; (64)

and the world sheet metric elements gtt, grr are written for
the classical string configuration, i.e., omitting the con-
tribution arising out of the fluctuations. On this surface we
can impose Neumann boundary condition5 ∂rXi ¼ 0.
However, this works only when we consider the free
Brownian motion of the particle in the absence of any
external force. In the case of forced motion, this is modified
to

Πy
i j∂Σ ≡ ∂L

∂Xi
0 ¼ Ki ¼ Kð0Þ

i e−iωt; (65)

where we have assumed a fluctuating external force.
Now the general solution Xi is a linear combination of

the outgoing and the ingoing modes at the horizon,

Xi ¼ AoutXout
i þ AinXin

i : (66)

where Xout=in
i ¼ e−iωtgout=in and gout=in is given in Eq. (62).

In the semiclassical approximation, the outgoing modes are
thermally excited by the Hawking radiation emanating
from the black hole, whereas the ingoing modes can be
arbitrary. Since the Hawking radiation is a random phe-
nomena, the phase of Aout takes random values, and its
average hAouti vanishes. So we can omit the first term in
Eq. (66) and need to consider only the ingoing wave. When
one plugs the form of the Lagrangian into Eq. (65), one

finds that, like the equations of motion, the boundary
conditions along the anisotropic direction and the isotropic
directions decouple, which allows us to treat each direction
separately. Coming back to the particular case of the
anisotropic direction, the boundary condition given in
Eq. (65) assumes the form

1

2πα0
HF

ffiffiffiffi
B

p
y4r3hX3

0jy¼ym ¼ K3 ¼ Kð0Þ
3 e−iωt: (67)

This yields

Ain ¼ 2πα0Kð0Þ
3

HF
ffiffiffiffi
B

p
y4r3hg

0ðyÞ

����
y¼ym

; (68)

where gðyÞ represents the ingoing solution in Eq. (62). So,
on the boundary the average position of the Brownian
quark is given by

hx3ðtÞi¼hX3ðt;ymÞi¼Kð0Þ
3 e−iωt 2πα0g

HF
ffiffiffiffi
B

p
y4r3hg

0

����
y¼ym

: (69)

The average momentum is

hp3ðtÞi ¼ mh _x3i ¼ −K3

2iπα0mνg

HF
ffiffiffiffi
B

p
y4r2hg

0

����
y¼ym

: (70)

Comparison with Eq. (12) results in

μ∥ðνÞ≡ μð3ÞðνÞ ¼ − 2iπα0mνg

HF
ffiffiffiffi
B

p
y4r2hg

0

����
y¼ym

: (71)

Here we have used the superscript “∥” to denote quantities
along the anisotropic direction (the x3 direction).
Reinstating the expressions for the various functions and
expanding up to Oð ~a2Þ in the low-frequency regime, we
obtain the relaxation time for the heavy quark diffusing
along the anisotropic direction,

μ∥ð0Þ ¼ t∥relax ¼
2m

π
ffiffiffi
λ

p
T2

�
1 − a2

24π2T2
ð2þ log 2Þ

�
; (72)

from which one gets the drag coefficient along the
anisotropic direction

γ∥½0� ¼ π
ffiffiffi
λ

p
T2

2m

�
1þ a2

24π2T2
ð2þ log 2Þ

�

¼ γiso

�
1þ a2

24π2T2
ð2þ log 2Þ

�
; (73)

where γiso represents the drag coefficient when the quark
moves in a isotropic SYM plasma. Here we have used the
standard AdS/CFT dictionary, R4 ¼ ðα0Þ2λ, with R ¼ 1 in
our convention. Our expression for the friction coefficient

5One cannot impose the Dirichlet condition since it implies no
fluctuation on the boundary at all.
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γ∥ matches exactly with that obtained in Ref. [17] in the
nonrelativistic limit v ≪ 1 along the anisotropic direction.
Note that the drag force increases compared to its isotropic
counterpart when the quark moves along the anisotropic
direction. Next we turn toward computing the displacement
squared for the Brownian particle from which we can
extract the expression for the diffusion constant D∥. We
have already provided a generic expression for s2i in
Eq. (58). The details of the calculation will depend
upon the background metric. Let us again return to the
boundary condition, Eq. (65), but now with the gauge fields
turned off. Equation (65) then reads for the anisotropic
direction

∂L
∂X3

0 ¼
1

2πα0
HF

ffiffiffiffi
B

p
y4r3hX3

0
����
y¼ym

¼ 0; (74)

which translates to X3
0 ¼ 0 at the boundary. The fluctua-

tions Xiðt; yÞ can be expressed as the sum of outgoing and
ingoing modes as

Xiðt; yÞ ¼ A½goutðyÞ þ BginðyÞ�e−iωt: (75)

It then easily follows that X3
0 ¼ 0 implies

B ¼ − gout0

gin0

����
y¼ym

¼ 1þOðνÞ; (76)

which gives

jgoutðymÞ þ BginðymÞj2 ¼ 4þOðνÞ: (77)

Using Eqs. (51) and (77) in Eq. (58), one then has

s23 ¼
4t

πT
ffiffiffi
λ

p
�
1 − a2

24π2T2
ð2þ log 2Þ

�
: (78)

Hence, the diffusion constant along the anisotropic direc-
tion is

D∥ ¼ 2

πT
ffiffiffi
λ

p
�
1 − a2

24π2T2
ð2þ log 2Þ

�
¼ T

mγ∥
: (79)

This is nothing but theEinstein–Sutherland relation [Eq. (5)]
mentioned earlier. We have thus performed an explicit
verification of the relation from the bulk point of view.
Finally, we proceed to verify the fluctuation-dissipation
theorem for which we need to know the random force
correlator. First of all, we compute the two-point correlator
of the momentum along the ith direction,

h∶piðtÞpið0Þ∶i≡−m2∂2
t h∶xiðtÞxið0Þ∶i

¼
Z

∞

0

dω
2π

2m2ω2jAj2 cos ωt
eβω − 1

jgoutðymÞ þ BginðymÞj2:
(80)

Invoking the Wiener–Khintchine theorem [Eq. (18)] and
the expression for A [Eq. (51)] and specializing to the
anisotropic direction, we find

Ip3
ðωÞ ¼ 4

m2π

r2hα
0Hðy ¼ 1Þβ

βω

eβω − 1
: (81)

Expanding in ω and keeping only the leading-order term,
one has

Ip3
ðωÞ¼ 4m2ffiffiffi

λ
p

πT

�
1þ a2

24π2T2
ð5 log 2−2Þ

�

×

�
1− a2

4π2T2
log 2

�
þOðωÞ: (82)

Now, the Langevin coefficient along the direction of
anisotropy is

κ∥ ¼ IR3
¼ Ip3

ðωÞ
jμ∥ðωÞj2

¼ 2mT
π

ffiffiffi
λ

p
T2

2m

�
1þ a2

24π2T2
ð2þ log 2Þ

�
¼ 2mTγ∥

¼ κiso

�
1þ a2

24π2T2
ð2þ log 2Þ

�
(83)

(where κiso is the Langevin coefficient in isotropic plasma),
which is nothing but the statement of the fluctuation-
dissipation theorem. We thus observe that the strength of
the autocorrelator along the anisotropic direction increases
in the presence of anisotropy. Thus, we explicitly check the
validity of the fluctuation-dissipation theorem for a heavy
test quark executing Brownian motion in a strongly
coupled, anisotropic plasma when the fluctuations are
aligned with the direction of anisotropy.

D. Brownian motion transverse to the
anisotropic direction

In this subsection we discuss the case of the Brownian
motion in the isotropic plane. For definiteness, we take the
motion to be along the X1 direction. The calculations in
this caseproceed in almost the samewayas inSec. III C.As is
evidentuponcomparingEqs. (36a)and (36b), theequationof
motion in the isotropic direction can be simply obtained by
setting H ¼ 1 in the anisotropic case. This can also be
understood by looking at the metric in Eq. (26). So we shall
be brief in our discussion here. The equation to solve is

ν2gðyÞ þ F
ffiffiffiffi
B

p ∂yð
ffiffiffiffi
B

p
Fy4g0Þ ¼ 0; (84)

which can be recast as

g00ðyÞ þ 4
y3

y4 − 1
½1þ ~a2 ~ΨðyÞ�g0ðyÞ

þ y4ν2

ðy4 − 1Þ2 ½1þ ~a2 ~ϒðyÞ�gðyÞ ¼ 0; (85)
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where

~ΨðyÞ ¼ 1

96y4ðy4 − 1Þ
�
15 − 21y2 − 11y6 þ y4ð17þ 40 log 2Þ − 40y4 log

�
1þ 1

y2

��

~ϒðyÞ ¼ 1

24ðy4 − 1Þ
�
6 − 6y2 þ 20 log 2 − 5ð3þ y4Þ log

�
1þ 1

y2

��
: (86)

As in the anisotropic version, here, too, we look for solutions by resorting to thematching technique. Herewe present only the
final form of the solution in the asymptotic limit,

gout=in ¼ ~kout=in1

�
1þ ν2

2y2
þO

�
1

y4

��
þ ~kout=in3

�
1

y3
þO

�
1

y5

��
; (87)

where

~kout=in1 ¼ 1∓ iν
8
ðπ − 2 log 2Þ∓ iν ~a2

768
½−80βð2Þ þ πð8þ 5πÞ − 4ð7þ 2 log 2Þ þ 10ðπ þ 2 log 2Þ log 2� þOðν2Þ

~kout=in3 ¼ ∓ iν
3
: (88)

We thus find that while the y dependence is the same as in
its anisotropic counterpart, only the coefficients ~k1 and ~k3
are different. Note that, in particular, the coefficient ~k3 does
not pick up any contribution from anisotropy. The boun-
dary condition now reads in the presence of the gauge field
on the boundary

1

2πα0
F

ffiffiffiffi
B

p
y4r3hX1

0jy¼ym ¼ K1 ¼ Kð0Þ
1 e−iωt; (89)

which fixes the normalization factor

Ain ¼ 2πα0Kð0Þ
1

F
ffiffiffiffi
B

p
y4r3hg

0

����
y¼ym

: (90)

One can now easily obtain expressions for the position and
hence the momentum of the Brownian quark from which
follows the expression for the admittance,

μ⊥ðνÞ ¼ − 2iπα0νmg

F
ffiffiffiffi
B

p
y4r2hg

0

����
y¼ym

; (91)

with gðyÞ now being the ingoing solution in Eq. (87). Here
we denote the direction transverse to the anisotropic one as
“⊥.” Reinstating the expressions for the various functions
and expanding up to Oð ~a2Þ in the low-frequency domain,
we obtain the relaxation time for fluctuations in the
transverse plane,

μ⊥ð0Þ ¼ t⊥relax ¼
2m

π
ffiffiffi
λ

p
T2

�
1þ a2

24π2T2
ð5 log 2 − 2Þ

�
;

(92)

from which one gets the drag coefficient along the isotropic
direction,

γ⊥½0� ¼ π
ffiffiffi
λ

p
T2

2m

�
1 − a2

24π2T2
ð5 log 2 − 2Þ

�

¼ γiso

�
1 − a2

24π2T2
ð5 log 2 − 2Þ

�
: (93)

This expression for the friction coefficient γ⊥ in the
isotropic direction agrees with that obtained in Ref. [17]
in the nonrelativistic limit v ≪ 1. It is to be observed that
the isotropic direction also picks up correction from
anisotropy; i.e., even the isotropic plane can “feel” the
presence of anisotropy in the normal direction. Moreover,
while the presence of anisotropy increases the drag force
along the anisotropic direction, it leads to a suppression in
the drag force in the isotropic plane. The computation for
the displacement squared for the Brownian particle pro-
ceeds in exactly a similar fashion as in the previous
subsection. Switching off the external field, we impose
the free Neumann condition,

∂L
∂Xi

0 ¼
1

2πα0
F

ffiffiffiffi
B

p
y4r3hX1

0
����
y¼ym

¼ 0; (94)

which translates to X1
0 ¼ 0 at the boundary that furnishes

B ¼ − gout0

gin0

����
y¼ym

¼ 1þOðνÞ; (95)

which implies

jgoutðymÞ þ BginðymÞj2 ¼ 4þOðνÞ: (96)

Using Eqs. (96) and (53) in Eq. (58), one then has

s21 ¼
4t

πT
ffiffiffi
λ

p
�
1þ a2

24π2T2
ð5 log 2 − 2Þ

�
: (97)

We can now easily read off the diffusion constant to be

D⊥ ¼ 2

πT
ffiffiffi
λ

p
�
1þ a2

24π2T2
ð5 log 2 − 2Þ

�
: (98)

A comparison of Eqs. (93) and (98) reveals the relation,

D⊥ ¼ T
mγ⊥

; (99)
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which verifies the validity of the Einstein–Sutherland
relation in the isotropic plane. Next we find the random
force correlator κ⊥ along the isotropic direction. We have

Ip1
ðωÞ ¼ 4

m2π

r2hα
0β

βω

eβω − 1

¼ 4m2ffiffiffi
λ

p
πT

�
1þ a2

24π2T2
ð5 log 2 − 2Þ

�
þOðωÞ:

(100)

Now,

κ⊥ ¼ IR1
¼ Ip1

ðωÞ
jμ⊥ðωÞj2

¼ 2mT
π

ffiffiffi
λ

p
T2

2m

�
1 − a2

24π2T2
ð5 log 2 − 2Þ

�
¼ 2mTγ⊥

¼ κiso
�
1 − a2

24π2T2
ð5 log 2 − 2Þ

�
: (101)

Hence, we find that the fluctuation-dissipation theorem
continues to hold true in the isotropic plane, too, and also
the random forces are less correlated in the isotropic plane
due to the presence of anisotropy in the perpendicular
direction.

IV. CONCLUSION

In this work we have studied the holographic Brownian
motion of a nonrelativistic heavy probe quark immersed in
an weakly anisotropic, strongly coupled hot plasma. Our
computation in the bulk theory involves an explicit solution
of the transverse fluctuation modes of the probe string in
the low-frequency regime along anisotropic as well as
isotropic directions. The above restrictions are imposed to
have an analytic handle upon the computations. One might
try to relax some of these restrictions, like considering
general values of the parameter a=T. For large values of
a=T, or small values of T, the gravity background is known
analytically, and one might try to perform a similar
computation. However, in that regime of the parameter
space, the quantum fluctuations will dominate over the
random fluctuations. For intermediate values of a=T, no
analytical results are available, and one will have to fall
back upon numerical means right from the outset. It might
also be possible that some of the results obtained in this
paper get modified away from these limits we have
considered. Hence, it might be interesting to investigate
the Brownian motion in more general scenarios.6 The
analytic solution is obtained using matching boundary
techniques. Recently it has been shown that in the presence

of a background electric field in the bulk the world sheet of
the probe open string develops an induced horizon struc-
ture. This is also true when the probe string possesses a
nontrivial velocity profile [55,56]. Since we have not
considered such configurations, our solution smoothly
interpolates from the boundary to the black hole horizon.
The only horizon structure is embedded in the black hole
background. It is important to note that if we could
precisely measure the Brownian dynamics in the boundary
it would be a very promising step toward learning the
quantum dynamics of black hole physics. However, that
requires the knowledge of nonperturbative gauge theory
correlators, which is beyond the scope of this paper. In this
work, using the holographic prescription, we have com-
puted the drag coefficient, the diffusion constant, and the
strength of the random force in a low-frequency as well as
nonrelativistic limits. The expressions for the drag coef-
ficient and the Langevin coefficient along the anisotropic
direction clearly signify an enhancement over the corre-
sponding isotropic counterparts. The fluctuations along the
isotropic direction also respond to the anisotropy in the
bulk. As a result, in the boundary theory, we observe that
both the drag coefficient and the coefficient of autocorre-
lator take lower values compared to the case of ordinary
SYM plasma. We have also checked that even in the
presence of anisotropy the fluctuation-dissipation theorem
is still valid for random variation along both isotropic and
anisotropic directions. Moreover, we have computed the
diffusion constant and reproduced the Einstein–Sutherland
relation in a holographic sense. Before closing let us also
observe an interesting qualitative agreement of our result
with those obtained in the case of noncommutative Yang-
Mills (NCYM) plasma, which also has an inherent
anisotropy built into it. In Ref. [42] the drag force, the
diffusion constant, and the Langevin coefficient were
holographically computed for strongly coupled NCYM.
In the case of NCYM, an unbroken SOð2Þ symmetry is
confined to the noncommutative plane, whereas for spa-
tially deformed anisotropic YM plasma, the unbroken
SOð2Þ symmetry lives on the isotropic plane (x1-x1 plane).
Therefore it is reasonable to compare the result in the
isotropic plane in the present paper with the NCYM result.
Within the small anisotropy approximation, it is observed
that in both cases the drag force coefficient is weaker than
the one computed in the context of ordinary Yang-Mills
plasma. This observation is also true for the relevant
Langevin coefficient. It is important to check the validity
of this comparison for the arbitrary strength of anisotropy.
However, this is beyond the scope of analytic computation
and is left for a future work.
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APPENDIX A: DETAILS OF THE SOLUTION
ALONG ANISOTROPIC DIRECTION BY THE

MATCHING TECHNIQUE

In this appendix we present the details of the solution
[Eq. (62)] referred to in Sec. III C. We employ the so-called
matching technique. The solution to Eq. (60) is extremely
difficult to obtain analytically for any frequency. To make
the problem tractable, we focus only on the behavior of the
solution in the low-frequency domain. In this frequency
domain, we resort to the matching technique whereby we
find the solutions in three different regimes and then match
these solutions to the leading in the frequency at the
interface of two domains. To be more specific, we find
solutions to Eq. (60) in the following three limiting cases:
(A) near the horizon, i.e., y → 1 for arbitrary frequency and
then taking the low-frequency limit; (B) throughout the
bulk (i.e., arbitrary y) but for low frequency ν ≪ 1 and then
taking the near-horizon limit [we match this solution with
the low-frequency limit of the solution obtained in (A)]; (C)
we solve the equation in the asymptotic limit ðy → ∞Þ for
arbitrary ν, and then taking the low-frequency limit, we
match it with the solution of (B). Below we elucidate the
details of the solutions for each regime.

1. Near-horizon limit

In this regime we solve Eq. (60) near the horizon, i.e., in
the limit y → 1. In the near-horizon regime, Eq. (60)
simplifies to

g00AðyÞþ
1

y−1
g0AðyÞ

þ ν2

16ðy−1Þ2
�
1þ ~a2

24
ð5 log2−2Þ

�
gAðyÞ¼ 0: (A1)

This has a solution

gAðyÞ ¼ Aoutðy − 1Þ
iν
4

h
1− ~a2

48
ð5 log 2−2Þ

i

þ Ainðy −1Þ−
iν
4

h
1− ~a2

48
ð5 log 2−2Þ

i
; (A2)

where the coefficients Aout=in correspond to outgoing and
ingoing modes, respectively. We normalize these modes
according to Eq. (46) and expand for low frequencies to
obtain

gout=inA ðyÞ∼1� iν
4
logðy−1Þ

�
1− ~a2

48
ð5 log2−2Þ

�
þOðν2Þ:

(A3)

2. Low-frequency limit

Next we attempt to solve Eq. (60) in the low-frequency
limit but for arbitrary y, i.e., throughout the bulk. We can
perform a series expansion in powers of ν to write the
solution in the generic form,

gBðyÞ ¼ g0ðyÞ þ νg1ðyÞ þ ν2g2ðνÞ þ � � � (A4)

Inserting this ansatz in Eq. (60), setting the coefficient of
each power of ν to zero, and solving the resulting equations,
we can find g0; g1; g2. At the zeroth order, the equation to
solve is

g000ðyÞ þ
4y3

y4 − 1
½1þ ~a2ΨðyÞ�g00ðyÞ ¼ 0; (A5)

with ΨðyÞ being given in Eq. (61). The solution to
the equation for general y is quite complicated and is
given by

g0ðyÞ¼
1

2
C1ðtan−1yþ tanh−1yÞþC2þ

~a2

768ðy4−1ÞC1

�
−16yþ16y3þ80y log2þ log

�
1þ 1

y2

�
ð−80y−51ðy4−1Þ

×logð1−yÞ−9ðy4−1Þ logðy−1Þþ60ðy4−1Þ logð1þyÞÞ− ðy4−1Þ
�
logðy−1Þ

�
−17−9 log

�
1þ 1

y2

��
þ logð1−yÞð25þ102 logyþ17 logðy2þ1ÞÞ−8ð1þ17 logyÞ logð1þyÞ−8 logðy2þ1Þ logð1þyÞ

þ4 logð−iþyÞ
�
2i logð1− iyÞþ2 log

�
i
yþ1

y−1

�
− i logð4ð−iþyÞÞ

�

þ4 logðiþyÞ
�
−2i logð1þ iyÞþ2 log

�
i
yþ1

1−y

�
þ i logð4ðiþyÞÞ

��
−8ðy4−1Þtanh−1yð15 log2þ17 logð1þy2ÞÞþ8ðy4−1Þtan−1yð4−15 log2þ4 logyÞ

þ8ðy4−1Þ
�
2Li2ð1−yÞ− iLi2

�
1

2
ð1þ iyÞ

�
þ2Li2ð−yÞ−2iLi2ð−iyÞþ2iLi2ðiyÞ−Li2

�
1

2
ð−1þ iÞðy− iÞ

�

þLi2

�
1

2
ð1þ iÞð−iþyÞ

�
−Li2

�
1

2
ð−1− iÞðiþyÞ

�
þ iLi2

�
1

2
ð1− iyÞ

�
þLi2

�
1

2
ð1− iÞðiþyÞ

���
þOð ~a4Þ; (A6)
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with C1 and C2 being the constants of integration and LinðzÞ is the polylogarithm function. Upon taking the near-horizon
limit, it reduces to7

g0ðyÞ ¼ C2 þ C1

��
1

8
− i
4

�
π þ log 2

4
− logðy − 1Þ

4

�
þ ~a2C1

2304
½84 − 48βð2Þ þ ð24 − 75i − πÞπ − 90ð1 − 2iÞπ log 2

−204ðlog 2Þ2 þ 24 log 2 − 24 logðy − 1Þ þ 204 log 2 logðy − 1Þ�. (A7)

Upon comparison with Eq. (A3), we can extract the coefficients C1 and C2 as

C1 ¼ 0; C2 ¼ 1 (A8)

for both outgoing and ingoing waves. Next we proceed to find g1ðyÞ. Now note that g1ðyÞ satisfies the same equation as g0
and so has the same solution [Eqs. (A6) and (A7))], albeit with different constants of integration, but now the matching has
to be done with the coefficient of ν in Eq. (A3)). Replacing C1 and C2 in Eq. (A7)) with ~C1 and ~C2, respectively, and
comparing with Eq. (A3), we can extract the constants for both the outgoing and ingoing waves as

~Cout=in
1 ¼∓i

�
1þ ~a2

4
log2

�
þOð ~a4Þ;

~Cout=in
2 ¼�

�
1

4
þ i
8

�
π� 1

4
i log2∓i

~a2

2304
½−84þ 48βð2Þ− ð24− 75i− πÞπþð18ð1− 2iÞπþ 60 log2− 24Þ log2� þOð ~a4Þ:

(A9)

The constants so evaluated can now be used in the full solution for gBðyÞ and not just in the near-horizon limit (the
restriction to low-frequency regime still holds, though), which now reads

gBðyÞ¼1þν

�
1

2
~C1ðtan−1yþ tanh−1yÞþ ~C2

�
þ ν ~a2

768ðy4−1Þ
~C1

�
−16yþ16y3þ80ylog2

þ log

�
1þ 1

y2

�
ð−80y−51ðy4−1Þlogð1−yÞ−9ðy4−1Þ logðy−1Þþ60ðy4−1Þ logð1þyÞÞ

−ðy4−1Þ
�
logðy−1Þ

�
−17−9 log

�
1þ 1

y2

��
þ logð1−yÞð25þ102 logyþ17logðy2þ1ÞÞ

−8ð1þ17 logyÞ logð1þyÞ−8 logðy2þ1Þlogð1þyÞþ4logð−iþyÞ
�
2i logð1− iyÞþ2log

�
i
yþ1

y−1

�

− i logð4ð−iþyÞÞ
�
þ4 logðiþyÞ

�
−2i logð1þ iyÞþ2 log

�
i
yþ1

1−y

�
þ i logð4ðiþyÞÞ

��
−8ðy4−1Þtanh−1yð15log2þ17logð1þy2ÞÞþ8ðy4−1Þtan−1yð4−15log2þ4 logyÞ

þ8ðy4−1Þ
�
2Li2ð1−yÞ− iLi2

�
1

2
ð1þ iyÞ

�
þ2Li2ð−yÞ−2iLi2ð−iyÞþ2iLi2ðiyÞ−Li2

�
1

2
ð−1þ iÞðy− iÞ

�

þLi2

�
1

2
ð1þ iÞð−iþyÞ

�
−Li2

�
1

2
ð−1− iÞðiþyÞ

�
þ iLi2

�
1

2
ð1− iyÞ

�
þLi2

�
1

2
ð1− iÞðiþyÞ

���
þOð ~a4Þ: (A10)

Next we can take the asymptotic limit of the full solution to arrive at

7While taking the near-horizon limit, we have let y → 1þ ϵ and used the following expansion:

Linðzþ ðaþ ibÞϵÞ ¼ LinðzÞ þ ϵ
aþ ib

z
Lin−1ðzÞ þOðϵ2Þ:
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gout=inB ∼ 1∓ iν
8
ðπ − 2 log 2Þ � iν ~a2

768
½28 − 16βð2Þ − 20ðlog 2Þ2 þ πð−8þ π þ 14 log 2Þ þ 8 log 2� þOðν2Þ

∓ 1

y3

�
iν
3

�
1þ ~a2

4
log 2

�
þOðν2Þ

�
þOð1=y4Þ: (A11)

3. Asymptotic limit

Finally, we are to solve Eq. (60) in the asymptotic limit, i.e., near the boundary where the gauge theory lives. We attempt a
power series in the form

gCðyÞ ¼ k0 þ k1=yþ k2=y2 þ k3=y3: (A12)

It turns out the only the constants k0 and k3 are independent, and the solution assumes the form

gCðyÞ ¼ k0

�
1þ ν2

2y2
þOð1=y4Þ

�
þ k3

�
1

y3
þOð1=y5Þ

�
: (A13)

Matching the coefficients with Eq. (A11) in the low-frequency limit furnishes the two undetermined constants k0 and k3 as
follows:

kout=in0 ¼ 1∓ iν
8
ðπ − 2 log 2Þ � iν ~a2

768
½28 − 16βð2Þ − 20ðlog 2Þ2 þ πð−8þ π þ 14 log 2Þ þ 8 log 2� þOðν2Þ

kout=in3 ¼ ∓
�
iν
3

�
1þ ~a2

4
log 2

�
þOðν2Þ

�
: (A14)

The final result is then given in Eq. (62).
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