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In the conventional formalism of physics, with one time, systems with different Hamiltonians or
Lagrangians have different physical interpretations and are considered to be independent systems unrelated
to each other. However, in this paper we construct explicitly canonical maps in one-time (1T) phase space
(including timelike components, specifically the Hamiltonian) to show that it is appropriate to regard
various 1T physics systems, with different Lagrangians or Hamiltonians, as being duals of each other. This
concept is similar in spirit to dualities discovered in more complicated examples in field theory or string
theory. Our approach makes it evident that such generalized dualities are widespread. This suggests that, as
a general phenomenon, there are hidden relations and hidden symmetries that conventional 1T physics does
not capture, implying the existence of a more unified formulation of physics that naturally supplies the
hidden information. In fact, we show that two-time (2T) physics in (dþ 2) dimensions is the generator of
these dualities in 1T physics in d dimensions by providing a holographic perspective that unifies all the dual
1T systems into one. The unifying ingredient is a gauge symmetry in phase space. Via such dualities it is
then possible to gain new insights toward new physical predictions not suspected before, and suggest new
methods of computation that yield results not obtained before. As an illustration, we will provide concrete
examples of 1T systems in classical mechanics that are solved analytically for the first time via our
dualities. These dualities in classical mechanics have counterparts in quantum mechanics and field theory,
and in some simpler cases they have already been constructed in field theory. We comment on the impact of
our approach on the meaning of space-time and on the development of new computational methods based
on dualities.
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I. INTRODUCTION

Symmetry concepts and computational techniques that
emerged from two-time (2T) physics in 4þ 2 dimensions
were successfully applied recently in 3þ 1 dimensional
cosmology, to obtain for the first time analytically the full
set of homogeneous cosmological solutions of the standard
model of particle physics coupled to gravity [1], and to
propose a new cyclic cosmology driven only by the Higgs
field with no recourse to an inflaton [2], in a geodesically
complete Universe [3]. The underlying 4þ 2 dimensions
predicts the presence of a local conformal Weyl symmetry
in 3þ 1 dimensions with restrictions on how to couple
the Higgs field to gravity such that the new conformally
invariant standard model is geodesically complete through
cosmological singularities in a cyclic universe. This Weyl
symmetry carries information and imposes properties
related to the extra 1þ 1 space and time dimensions [4].
Unprecedented analytic control in these computations
emerged from some very simple duality concepts that
amounted to making Weyl gauge transformations between
different fixed Weyl gauges of the same conformal standard
model. Such gauge transformations, or dualities, amount to
simple changes of the perspective of the 3þ 1 dimensional

phase space within the 4þ 2 dimensional phase space,
which is what we will study more generally in this paper.
Two crucial observations in M theory in 1995–1996

provided the initial hints for constructing 2T physics in
1998 based on phase space gauge symmetry [5]. These
were (i) U-dualities in M theory appeared to be discrete
phase space gauge transformations between various fixed
gauges of a mysterious gauge symmetry in M theory [6],
and (ii) there was a hint of an extra time dimension in M
theory because the 11 dimensional extended supersym-
metry of M theory is really a 12 dimensional SO(10,2)
covariant supersymmetry written in the disguise of 11
dimensions [7]. Exploration of these notions [8] raised the
question of whether the unknownM theory might be a two-
time theory with a global supersymmetry OSpð1j64Þwhose
Bogomol'nyi-Prasad-Sommerfield sectors that explained
the five dual corners of M theory [8] could naturally arise
from the constraints of an underlying gauge symmetry. So
what could the underlying gauge symmetry be? And how
could a theory with two timelike dimensions be unitary?
A ghost-free unitary theory in a target space with two

timelike dimensions could not be viable without the
presence of a new type of more powerful gauge symmetry
that could eliminate the problems of causality and ghosts
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from both timelike dimensions. After figuring out that such
a gauge symmetry does not exist in position space, but it
does exist in phase space [5], it became evident that the
same phase space framework could also provide a natural
connection to dualities. Starting in 1998, 2T physics was
developed in phase space for particles in the worldline
formalism with a target space in dþ 2 dimensions with
two times, progressively including spin [9–12], background
fields [11,13], supersymmetry [14], and twistors [15], [12]
(for a recent overview see [16]). That M theory could
be formulated naturally in 11þ 2 dimensions, with an
OSpð1j64Þ global supersymmetry and a gauge symmetry
in the phase space of branes, was illustrated with a toy M
model [17]. 2T physics was also extended to the framework
of field theory [10,11], including the standard model in
4þ 2 dimensions [18], gravity in dþ 2 dimensions [4],
SUSY field theory with N ¼ 1; 2; 4 supersymmetries in
4þ 2 dimensions [19], SUSYYang-Mills in 10þ 2 dimen-
sions in 2010 [20], and finally supergravity [21]. It is still
under construction for strings and branes [22,23] and M
theory [17], and it is expected that the most powerful
eventual form of 2T physics will be in the framework of
field theory in phase space as initiated in [24]. By now it is
evident that an underlying 4þ 2 dimensional phase space,
with appropriate extra gauge symmetry, fits all known
physics in 3þ 1 dimensions, from classical and quantum
dynamics of particles, to field theory including the realistic
conformal standard model coupled to gravity, all the way
to supergravity. This ð4þ 2Þ dimensional approach has
provided the useful technical tools for the recent advances
in ð3þ 1Þ dimensional cosmology reported in [25–30]
and [1–3].
The physics content in the 2T physics formalism in dþ

2 dimensions is the same as the physics content in the
conventional one-time (1T) physics formalism in ðd − 1Þ þ
1 dimensions except that 2T physics provides a holographic
type perspective (as described below) with a much larger
set of gauge symmetries, and naturally makes predictions
that are not anticipated in 1T physics. Some of the
predictions take the forms of hidden symmetries and
dualities; in this paper we concentrate mainly on the
dualities. The dualities are similar in spirit to dualities
encountered in M theory or string theory, in the broader
sense of relating theories that look different in conventional
1T formalism, but in reality contain the same physics
information once a map is established between them. In fact
a lot of the new information from 2T physics, which is not
contained systematically in 1T physics, can be expressed in
the language of dualities directly in 1T physics. Developing
such dualities is our primary objective in this paper.
The idea of using an embedding space XM in 4þ 2

dimensions, which is restricted to the cone, X · X ¼ 0, in
order to realize SO(4,2) conformal symmetry in 3þ 1
dimensions, originated with Dirac [31]. This idea was
further developed over the years [32–39]. 2T physics

connects to this notion of conformal symmetry in one of
its duality corners that we discuss in this paper, namely the
conformal shadow, which is a gauge fixed version of 2T
physics in 4þ 2 dimensional flat space-time. Thus, more
recent works, based on the same conformal symmetry
notion in flat 4þ 2 dimensions, are automatically con-
nected to 2T physics; these include the 4þ 2 dimensional
formulation of high-spin theory [13,40]–[42], computation
of conformal correlators in 3+1 dimensions using 4þ 2
dimensions [43,44], conformal bootstrap in the embedding
formalism [45], and new mathematical notions related to
conformal symmetry [46,47]. We emphasize that these
growing sets of connections correspond to only one corner
of 2T physics. 2T physics is much more than conformal
symmetry in 3þ 1 dimensions both conceptually and
practically. This is because 2T physics is a gauge theory
in phase space ðXM; PMÞ, generally in dþ 2 curved space-
time and, like M theory, has many 1T physics corners with
different physical interpretations as illustrated with five
specific shadows in this paper. When the idea of a gauge
symmetry in phase spacewas introduced in [5] Dirac’s idea
had faded away; so 2T physics developed as a much richer
theory, unaware of Dirac’s reasoning or motivation for
conformal symmetry. That connection was realized only
after the notions of phase space gauge symmetry had taken
root and had already revealed new corners of 1T physics
well beyond the conformal shadow. We now know that
Dirac’s idea and modern applications [40–47] are auto-
matically part of 2T physics in the special case when the
Spð2; RÞ gauge symmetry generators QijðX;PÞ take their
simplest form shown in Eq. (28), and only when the
conformal shadow (or gauge) is chosen to connect to 1T
physics. This suggests that the broader phase space proper-
ties of 2T physics, such as the multishadows and dualities
discussed in this paper, that continue to elude the practi-
tioners of the X · X ¼ 0 constraint even in modern times,
can be used to obtain further physical consequences in
those settings. Also, 2T physics is a general theory that
goes well beyond the flat 4þ 2 dimensional space-time
constraint X · X ¼ 0: it should be noted that the generalized
Spð2; RÞ generators QijðX;PÞ in curved phase space with
background fields [11,13,24], [16] and interactions in field
theory, including the standard model [18] and gravity [4],
lead to far richer applications of 2T physics.
In this paper we will extend previous results on dualities

in 1T physics predicted by 2T physics [16]. These take
the form of explicit canonical transformations among
relativistic and nonrelativistic 1T physics systems in d
dimensions, ~xμ ¼ Xμðx; pÞ and ~pμ ¼ Pμðx; pÞ, that were
not obtained before in classical mechanics with one time.
These include canonical transformations among some
newly constructed solvable 1T systems, such as a relativ-
istic particle in an arbitrary potential, and previously
studied simpler systems, such as the relativistic massless
particle, relativistic massive particle, nonrelativistic
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massive particle, H-atom, and several others. All these
cases are further generalized in this paper by including
arbitrary interactions of a particle with classical background
fields (electromagnetic, gravitational, high-spin). It is
shown that these more general systems are mapped from
one dual system to another by the same duality trans-
formations that are independent of the backgrounds. So the
dual systems considered here cover a broad spectrum of
interacting 1T physics models. In principle, these classical
canonical transformations have counterparts in the quan-
tum version of the same systems and can also be extended
to field theory, as has already been demonstrated with
simpler examples in the past [48].
One of our aims is to concentrate on the practical aspects

of these canonical transformations and to use them for
developing new computational methods within the tradi-
tional framework of 1T physics. Indeed, our duality methods
are useful for performing computations in 1T physics that
would be hard or impossible otherwise. The idea is to solve
complicated systems by solving much simpler dual systems.
As an illustration, we will solve exactly the classical
mechanics of a relativistic particle in d dimensions, which
is constrained to satisfy p2 þ Vðx2Þ ¼ 0 for any potential
Vðx2Þ, such as any power law Vðx2Þ ¼ cðx2Þb, that we
believe has not been solved before, and cannot imagine how
to solve without our dualities.
These dualities are predicted in the context of gauge

symmetries in phase space that generalize the notion of
general coordinate invariance in position space. The exam-
ples discussed here are only some representatives of a much
larger group of dualities that belong together in a unique
symmetric theory in 2T physics as reviewed in Sec. IV.
Each one of these 1T systems in d dimensions captures
holographically all of the gauge invariant information in the
2T theory in dþ 2 dimensions. We call such 1T systems
“shadows” at d dimensional boundaries of the bulk in dþ 2
dimensions. Since each shadow contains all the physical
information, the parent theory in the bulk predicts that all
shadows must be holographic duals of each other.
Before we discuss specific dualities or the underlying

theory, it is useful to outline some concepts that give a sense
of direction for why we are interested in examining these
dualities. Our canonical transformations in d dimensions,
~xμ ¼ Xμðx; pÞ and ~pμ ¼ Pμðx; pÞ, include the time coor-
dinate and its canonical conjugate Hamiltonian. Since time
and Hamiltonian transform, it is not surprising that we
will establish relations among dynamical systems that
a priori are considered to be different 1T physics dynami-
cal systems with different Hamiltonians. We conceptualize
a given phase space ðxμ; pμÞ as the coordinates of a chosen
phase space frame for an observer that rides along with
a particle on a worldline whose time development
ðxμðτÞ; pμðτÞÞ is determined by a phase space constraint
Qðx; pÞ ¼ 0. An example of such a frame is the massless
relativistic particle that satisfies the constraint p2 ¼ 0. This

observer is set up to describe all physical phenomena in the
Universe (not only the motion of this particle) from the
point of view of this frame. A different phase space ð~xμ; ~pμÞ
with a different constraint ~Qð~x; ~pÞ ¼ 0; such as the
constrained relativistic harmonic oscillator, ð ~p2 þ ω2 ~x2Þ ¼
0; represents the frame of a different observer that
also examines all phenomena from this other perspective.
The canonical transformation, ~xμ ¼ Xμðx; pÞ and ~pμ ¼
Pμðx; pÞ, that maps the 1T dynamicsQðx; pÞ ¼ 0 to the 1T
dynamics ~Qð~x; ~pÞ ¼ 0 establishes the relations between
the frames and therefore all observations made by the two
different observers are also related to each other. The reader
is invited to think of this setup as the analog of Einstein’s
observers in different frames that are related to each other
by canonical transformations in phase space which general-
ize Einstein’s special or general coordinate transformations.
The key in our theory is that the worldlines ðxμðτÞ; pμðτÞÞ
and ð~xμðτÞ; ~pμðτÞÞ, that define the frames of the two
observers, are actually two shadows of the same worldline
in the bulk in dþ 2 dimensions ðXMðτÞ; PMðτÞÞ. The two
observers see very different 1T physics phenomena from
the perspective of their own frames; however in our setup
there is already a predicted relationship between the
observers since their 1T physics equations are really two
gauge choices of the same gauge invariant equations in
dþ 2 dimensions. There is a unique set of equations in
dþ 2 dimensions supplied by 2T physics that unify the
vastly different 1T equations of all such observers in d
dimensions. This unification is not at all apparent in the
conventional setup of 1T physics. The unification makes
predictions of real physical phenomena in 1T physics that
can be tested by studying the dualities that capture the
hidden correlations of the various 1T observers. Our
purpose in this paper is to establish a few examples of
such dualities, which are surprising in 1T physics, and in
this way show that there is much more physics to be
learned from 2T physics predictions that are not supplied
systematically in conventional 1T physics.
In this paper we will first present our results for a few

specific dualities as canonical transformations, ~xμ ¼
Xμðx; pÞ and ~pμ ¼ Pμðx; pÞ, purely in the context of
conventional 1T physics. Afterwards we will show how
they were obtained in the first place as the natural
predictions of 2T physics, and also indicate how a vast
extension of such dualities can be further obtained from the
2T approach.
The canonical transformations ~xμ ¼ Xμðx; pÞ and ~pμ ¼

Pμðx; pÞ discussed in this paper take a special mathemati-
cal form. It is shown that they involve a 2 × 2 matrix

M ¼
�
α β
γ δ

�
;

of determinant 1, that belongs to the group
Spð2; RÞ ¼ SLð2; RÞ, with entries ðα; β; γ; δÞ that are
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nonlinear functions of phase space ðxμ; pμÞ including
timelike directions. For example, when the origin and
target systems are both Lorentz covariant systems, the
transformation takes the form,

~xμ ¼ xμαðx; pÞ þ pμβðx; pÞ≡ Xμðx; pÞ (1)

~pμ ¼ xμγðx; pÞ þ pμδðx; pÞ≡ Pμðx; pÞ; (2)

where α, β, γ, δ are functions of phase space. This means
that under the dualities, ðxμ; pμÞ form Spð2; RÞ doublets
covariantly in every direction μ of space-time. When one or
both systems, ðxμ; pμÞ or ð~xμ; ~pμÞ, are nonrelativistic, the α,
β, γ, δ are not as simple and not Lorentz invariant, but they
still belong to the phase space–local Spð2; RÞ. It should be
emphasized that the set of dualities discussed in this paper
[as linear Spð2; RÞ transformations] is just a special case.
Our formalism is covariant under the most general non-
linear Spð2; RÞ as the underlying gauge symmetry in phase
space. Either the linear or nonlinear Spð2; RÞ transforma-
tions are broader than the familiar local gauge trans-
formations or general coordinate transformations since
the gauge parameters ðα; β; γ; δÞ are local in phase space,
not just in position space.1

This paper is organized as follows. In Sec. II we review
and clarify the gauge symmetries and constraints of the 1T
system consisting of a spinless particle in interaction with
an arbitrary set of background fields in d dimensions. In
Sec. III, we use the notation developed in Sec. II to present
our canonical transformations between five different 1T
physics systems. These are just examples to illustrate our
ideas which apply to a much larger class of 1T physics
systems connected to each other by canonical transforma-
tions. In Sec. IV we review the idea of general gauge
symmetry in phase space, apply it to 2T physics based on the
Spð2; RÞ gauge symmetry, and then present five different
gauge choices in Sec. IVA in which the gauge fixed forms
yield the five different 1T physics systems that appear in
Sec. III. In Sec. V we show how to map the five fixed gauge
choices to one another by Spð2; RÞ gauge transformations
from one fixed gauge to another fixed gauge, thus obtaining
the 1T physics canonical transformations described in
Sec. III. In Sec. VI we identify the invariant observables
under duality transformations and discuss special circum-
stances when there is a hidden global SOðd; 2Þ symmetry
associated with these invariants. This SOðd; 2Þ is related to
conformal symmetry in one special shadow which we call

the conformal shadow, but it is the equivalent of conformal
symmetry in all other shadows, including shadows for
massive particles. In Sec. VII we illustrate how to use
dualities to explicitly solve the dynamics of a relativistic
spinless particle with a constraint p2 þ Vðx2Þ ¼ 0 in an
arbitrary potential, a problem that could not be solved before.
Finally in Sec. VIII we interpret these results from the point
of view of (dþ 2) dimensions, comment on generalizing the
concepts of dualities, and discuss what this means for
physics and space-time in d dimensions.

II. GAUGE SYMMETRY IN 1T PHYSICS
REVISITED

In this section we present all 1T physics systems for a
spinless particle in a unified form that will be useful for
discussing the dualities and canonical transformations
among 1T physics systems that will be the subject of this
paper. In the following sections we will use this unified
framework in 1T physics to discuss canonical transforma-
tions that include spacelike as well as timelike directions
(including a change of Hamiltonian) to map various 1T
dynamical systems to each other.
To ensure that our ideas are well understood we will

begin with a simple familiar example. The worldline action
of a freely moving relativistic particle of zero spin and mass
m is the familiar expression SðxÞ ¼ −m R

2
1 dτ

ffiffiffiffiffiffiffiffi−_x2
p

. Here
_xμ ≡ ∂τxμ is the velocity of a particle, whose position xμðτÞ
as a function of the worldline parameter τ is a covariant
vector in (d − 1) space and 1 time dimensions. The
Euler-Lagrange equations derived from the action are
∂τpμðτÞ ¼ 0, where pμ ¼ m_xμ=

ffiffiffiffiffiffiffiffi−_x2
p

is the canonical
momentum derived from the action. The particle moves
freely since the momentum is a constant of motion—indeed
this is guaranteed by the fact that this Lagrangian is
translationally invariant.
As is well known, this action has a local symmetry under

τ-reparametrizations; namely xμðτÞ → xμðτÞ þ δεxμ with
δεxμðτÞ ¼ εðτÞ_xμðτÞ is a symmetry of this action
Sðxþ δεxÞ ¼ SðxÞ, as long as the end points are not
transformed, εðτ1Þ ¼ εðτ2Þ ¼ 0. This is a transformation
that mixes position and momentum locally on the
worldline, since we could write δεxμðτÞ ¼ ΛðτÞpμðτÞ, with
another local parameter ΛðτÞ≡ εðτÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−_x2ðτÞ
p

=m.
This phase space gauge symmetry is crucial to remove

the ghost degrees of freedom in the timelike direction of
xμðτÞ. As usual, any gauge symmetry leads to constraints
among the degrees of freedom. A constraint is an equation
satisfied by phase space degrees of freedom ðxμ; pμÞ such
that no time derivatives occur, and hence it is valid for
all times τ. In this case the constraint takes the form
p2 þm2 ¼ 0, which is evidently satisfied by pμ ¼
m_xμ=

ffiffiffiffiffiffiffiffi−_x2
p

. The physical meaning of the constraint is that
this is a massive relativistic particle at all times.
The same physical content is encoded in another form of

the action in the first order formalism which treats the phase

1An infinitesimal gauge parameter as a function of phase
εðx; pÞ packs together the parameters for local gauge trans-
formations ε0ðxÞ, general coordinate transformations εμ1ðxÞ, and
much more, as seen in an expansion in powers of momentum just
as in Eq. (9), εðx; pÞ ¼ ε0ðxÞ þ εμ1ðxÞðpμ þ AμðxÞÞ þ � � �. As an
example, see the familiar transformation on gauge fields, gravi-
tational metric and high-spin fields, organized as phase space
transformations, in Eqs. (33)–(37) in [13].
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space degrees of freedom ðxμðτÞ; pμðτÞÞ as two indepen-
dent vectors, whose equations of motion are derived by
extremizing with respect to all degrees of freedom ðx; p; eÞ
in the following Lagrangian:

Lðx; p; eÞ ¼
�
_xμðτÞpμðτÞ − 1

2
eðτÞðp2ðτÞ þm2Þ

�
: (3)

Here a new degree of freedom eðτÞ has been added. If first
the pμ, and then the e, degrees of freedom are integrated
out in that order, then this action reduces to SðxÞ ¼
−m R

2
1 dτ

ffiffiffiffiffiffiffiffi−_x2
p

, and hence the two versions have the
same content. However, the first order formalism reveals
more clearly the nature of the gauge symmetry, and leads
to a full generalization to cover all possible physical
systems for a single spinless particle, massive or massless
and in interaction with all possible background fields,
as seen below.
The phase space gauge symmetry of this first order

action is given by

δΛxμ¼ΛðτÞpμðτÞ; δΛpμ¼0; δΛe¼∂τΛðτÞ: (4)

Then the action is invariant, δΛSðx; p; eÞ ¼ 0, because the
Lagrangian transforms to a total derivative δΛLðx; p; eÞ ¼∂τð12ΛðτÞðp2ðτÞ −m2ÞÞ, while Λðτ1Þ ¼ Λðτ2Þ ¼ 0.
This is an example of a more general worldline gauge

symmetry formalism that applies to all physical systems as
discussed presently. Consider the action S ¼ R

2
1 dτL with

the Lagrangian

Lðx; p; eÞ ¼ _xμðτÞpμðτÞ − eðτÞQðxðτÞ; pðτÞÞ: (5)

This general Qðx; pÞ is to be regarded as a generator of
local canonical transformations for any observable Aðx; pÞ
by applying the Poisson bracket, δΛA ¼ ΛðτÞfA;Qg,
where ΛðτÞ is the local parameter on the worldline.2

Furthermore, eðτÞ is to be regarded as a Maxwell-Yang-
Mills type Abelian gauge field in 1 dimension (analog of
the time component of the gauge field A0 in Maxwell-
Yang-Mills). Note that the gauge field e is coupled to
the generator of gauge transformation Q as would be the
case in familiar gauge theories. With this point of view,
now define a gauge transformation on the phase space
degrees of freedom ðxμ; pμÞ by using Poisson brackets
to compute δΛxμ, δΛpμ, with Qðx; pÞ as the generator,
as follows:

δΛxμ ¼ ΛðτÞ ∂Q∂pμ
; δΛpμ ¼ −ΛðτÞ ∂Q∂xμ ;

δΛe ¼ ∂τΛðτÞ: (6)

Note that eðτÞ does indeed transform like an Abelian gauge
field independent of the “matter” content, while the specific
choice of Qðx; pÞ determines the dynamics of the matter
degrees of freedom ðxμðτÞ; pμðτÞÞ through the equations
of motion. It can be checked that the action is invariant
because the Lagrangian transforms to a total τ-derivative

δΛL ¼ d
dτ

½ΛðτÞðp · ∂p − 1ÞQðxðτÞ; pðτÞÞ�: (7)

The equation of motion for the gauge field ∂L=∂eðτÞ ¼ 0
imposes the constraint

Qðx; pÞ ¼ 0: (8)

This is the analog of Gauss’s law that follows from
∂L=∂A0 ¼ 0 in Maxwell-Yang-Mills theory. Since
Qðx; pÞ is the generator of gauge transformations, Q ¼ 0
identifies the sector of the theory that has zero gauge
charge, that is, the gauge invariant sector. So, the meaning
of this constraint is that only the gauge invariant subspace
of phase space, as identified by the solutions of Q ¼ 0, is
physical.
In this light, in the simple example where Q ¼ p2 þm2,

the mass-shell constraint p2 þm2 ¼ 0 implies not only that
this is a massive particle for all times, but also that the
solutions of the constraint identify the gauge invariant sub–
phase space for all times.
The first quantization of the general gauge theory with

any Qðx; pÞ can be performed by using covariant quanti-
zation, in which ðxμ; pμÞ are quantized as if they are
unconstrained variables. The Hilbert space of this quantum
phase space cannot be all physical because it does not take
into account the constraint Q ¼ 0. However, in this larger
Hilbert space, the physical subspace is found by imposing
the constraint on the quantum states Q̂jΦi ¼ 0, where the
quantum operator Q̂ is defined by an appropriate ordering
of the quantum operators ðx̂μ; p̂μÞ that appear in Q̂ðx̂; p̂Þ.
In particular, in position space ΦðxμÞ≡ hxμjΦi, where the
momentum is represented as a derivative on the complete
basis for quantum states hxμj, the constraint takes the form
of a differential equation to be satisfied by the physical
subset of quantum states Q̂ðx;−iℏ∂ÞΦðxμÞ ¼ 0. For the
example when Q̂ ¼ p̂2 þm2, this becomes the Klein-
Gordon equation ð−ℏ2∂2

x þm2ÞΦðxμÞ ¼ 0. For more com-
plicated cases, the proper definition of the physical sector
in the quantum theory is complete only after a quantum
ordering of phase space operators is specified for Q̂ðx̂; p̂Þ.
General examples of physical interest that include

electromagnetic, gravitational and high-spin relativistic
background fields are

2It is possible to generalize this first order Lagrangian
by including also a Hamiltonian U, L ¼ _x · p − eQðx; pÞ−
Uðx; pÞ, as long as the Hamiltonian is gauge invariant, meaning
a vanishing Poisson bracket fQ;Ug ¼ 0. The inclusion ofU does
not change our discussion and also does not really provide more
physical (gauge invariant) models than those obtainable from all
possible expressions forQðx; pÞ. For this reason we do not find it
useful to discuss U any further in this paper.
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Qðx;pÞ¼
� ϕðxÞþ1

2
gμνðxÞðpμþAμðxÞÞðpνþAνðxÞÞ

þP
n≥3

ϕμ1���μnðxÞðpμ1þAμ1ðxÞÞ���ðpμnþAμnðxÞÞ
�
:

(9)

Here we have assumed that Qðx; pÞ has a Taylor expansion
in powers of pμ, which is a common assumption for many
physical systems. If this assumption is not valid for some
reason, then we can just as well treat Qðx; pÞ without an
expansion. In any case, when the expansion is valid, ϕðxÞ,
AμðxÞ, hμνðxÞ, ϕμ1���μnðxÞ are the background fields [where
gμνðxÞ ¼ ημν þ hμνðxÞ, with ημν the flat metric]. Taken as
the generator of gauge transformations, the vanishing of
this generalized Qðx; pÞ defines the gauge invariant sector
at the classical level. The quantum version (defined after
an ordering of quantum operators x̂, p̂) is a differential
operator acting on the gauge invariant physical space,
Qðx;−iℏ∂ÞΦðxÞ ¼ 0, as indicated above. A good first rule
for correct quantum ordering is to replace the operators
p̂μ by generally covariant derivatives, p̂μ → −iℏ∇μ, which
commute with the background metric gμνðxÞ. Clearly,
beyond this, quantum ordering is hard to settle uniquely
in the general case without additional guidance from
symmetries of the system Qðx; pÞ, or a more complete
theory such as field theory. In this paper we do not tackle
the quantum issues any further since we will only discuss
the purely classical limit here, but instructive examples are
treated in [49–50].
It must be noted that not only relativistic mechanics,

but also all nonrelativistic mechanics may be presented
in this formalism by taking any Qðt; h; r;pÞ, where
space and time are considered on the same footing, just
as in relativity. Consider the usual nonrelativistic (d − 1)
dimensional phase space vectors rðτÞ and pðτÞ, plus the
time degree of freedom as a dynamical variable tðτÞ as well
as its conjugate variable hðτÞ, with their Poisson brackets
fri; pjg ¼ δij and ft; hg ¼ −1. Then take the Lagrangian
comparable to Eq. (5)

L ¼ _rðτÞ · pðτÞ − _tðτÞhðτÞ − eðτÞQðtðτÞ; hðτÞ; rðτÞ;pðτÞÞ:
(10)

As already argued above, for any choice of Qðt; h; r;pÞ
there is a gauge symmetry. Now consider the special case
of Qðt; h; r;pÞ given by

Qðt; h; r;pÞ ¼ ðHðr;pÞ − hÞ (11)

which is independent of t and whereHðr;pÞ is any function
of the phase space in (d − 1) dimensions. To make contact
with usual nonrelativistic physics we may choose the gauge
tðτÞ ¼ τ and then solve the constraint in Eq. (11) for the
canonical conjugate to t in the form h ¼ Hðr;pÞ. Inserting
this back in the action, and using _t ¼ 1 and h ¼ Hðr;pÞ,
results in the familiar nonrelativistic formulation of the
system for any Hamiltonian Hðr;pÞ

L ¼ _rðτÞ · pðτÞ −Hðr;pÞ: (12)

This shows that, like relativistic systems, nonrelativistic
systems, including more complicated versions of
Qðt; h; r;pÞ, may also be regarded as gauge symmetric
theories, with a dynamical timelike dimension tðτÞ and an
appropriate constraint that can be used to determine hðτÞ, as
described in the unified 1T physics formalism of Eq. (5).
To discuss examples for the nonrelativistic (cases 3, 4

below) and relativistic (cases 1, 2, 5 below) systems
in a unified form, we make up the notation, t ¼ x0,
h ¼ p0 ¼ −p0, even though Lorentz covariance/invariance
is not implied in the rest of the expressions, such as
Qðx; pÞ, for the nonrelativistic cases.

III. THE CANONICAL TRANSFORMATIONS

In the remainder of this paper, we will use the approach
of the previous section to discuss canonical transformations
among a few 1T systems that are the illustrative examples
of interest in this paper. These will include the following
cases:

(13)
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We have labeled the phase space for each case ðxμi ; piμÞ
with the corresponding case number i ¼ 1, 2, 3, 4, 5.
Bold characters such as r, p in cases 3 and 4 imply vectors
in (d − 1) space dimensions, and in those cases h is the
canonical conjugate to t; otherwise x, p imply relativistic
vectors as in cases 1, 2, 5, and in those cases p0 is the
canonical conjugate to the timelike coordinate x0. The
choice of Qðx; pÞ, including background fields as in
Eq. (9), is what defines the 1T physics dynamics in each
case. In the table we indicated the form of Qðx; pÞ in the
limit when all background fields vanish. It is understood
that backgrounds represented by � � � are to be included as
follows.
The canonical transformations discussed below are

independent of any set of background fields. They apply
equally well when background fields vanish or when they
are included according to the following prescription: first
generalize only one of the systems in the table above
(say case 1) with any set of background fields as in Eq. (9),
and then apply the background-independent canonical

transformations below to generate the background fields
in all the other dual systems. This is the 1T prescription
that emerges from the unified gauge invariant 2T theory
including all backgrounds in dþ 2 dimensions, as discus-
sed in Sec. IV.
We found that for each pair i, j the corresponding

systems are related by nonlinear canonical transformations
(j←i) of the form

xμj ¼ Xμ
j ðxi; piÞ; pjμ ¼ Pjμðxi; piÞ; (14)

that satisfy the Poisson brackets fXμ
j ðxi; piÞ;X ν

jðxi; piÞg ¼
0 ¼ fPjμðxi; piÞ;Pjνðxi; piÞg and fXμ

j ðxi; piÞ;
Pjνðxi; piÞg ¼ δμν , where the brackets are evaluated in the
phase space ðxi; piÞ by taking derivatives fA; Bg ¼
ð∂xμi

AÞð∂piμ
BÞ − ð∂xμi

BÞð∂piμ
AÞ. To illustrate, in this section

we exhibit one example, namely the cases (1←2) and
(2←1), as the following 2 × 2 matrix form that gives
explicitly the functions Xμ

j ðxi; piÞ, Pμ
j ðxi; piÞ as well as

the inverse map

(15)

For all cases, the explicit ðXμ
j ðxi; piÞ;Pjμðxi; piÞÞ are given at the equation numbers specified in the following table.

(16)

As an example, the contents of Eq. (15) are indicated at
the (12) and (21) entries of this table. The expressions for
Xμ

j ðxi; piÞ, Pjμðxi; piÞ are used directly in 1T physics as
canonical transformations, but these results were obtained
as predictions from 2T physics. The notation (j←1←i)
means the composition of two transformations (1←i)

followed by (j←1), which gives the transformation
(j←i). We used this notation for cases (j←i) in
which the direct transformation ðXμ

j ðxi; piÞ;Pjμðxi; piÞÞ
looks algebraically too involved to be transparent to the
reader, and hence we opted for the more transparent
notation (j←1←i) even though the direct transformation
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(j←i) is certainly available explicitly. The derivation of
these transformations using 2T physics techniques is given
in Sec. V B.
In this section we describe some of the general properties

of these dualities for all the cases. By definition of
momentum as pμ ¼ ∂L=∂ _xμ, which is in agreement with
the only term that contains velocity in the first order
Lagrangian (5), L ¼ _x · pþ � � �, the Poisson brackets must
be fxμi ; piνg ¼ δμν for each case i. The claim that we found a
canonical map (i↔j) between cases j and i implies that our
maps satisfy the following defining property that the first
term in the Lagrangian maintains the same form up to a
total time derivative

_xj · pj ¼
d
dτ

X jðxi; piÞ · Pjðxi; piÞ

¼ _xi · pi þ
d
dτ

Λjiðxi; piÞ: (17)

The total derivative may be dropped because it does
not contribute to the action or to the equations of motion.
This is verified for each duality (i←j) and the Λjiðxi; piÞ
is computed in Sec. V B. Consequently our canonical
maps have to satisfy the Poisson bracket property
(no sum on i or j)

fxμj ; pjνg ¼ ∂Xμ
j ðxi; piÞ
∂xλi

∂Pjνðxi; piÞ
∂piλ

− ∂Pjνðxi; piÞ
∂xλi

∂Xμ
j ðxi; piÞ
∂piλ

¼ δμν : (18)

We have checked that this is indeed true, but have not
included the tedious algebra in this paper. This also
guarantees that the Poisson brackets for any observables
fA; Bg give the same result if evaluated in terms of any of
the phase spaces listed in table (13).
Our duality maps satisfy the Poisson bracket (18) or the

canonical property (17) off shell, meaning that they hold for
the bigger phase space (including physical and unphysical
sectors of phase space) before any equation of motion is
used or any constraint Qðx; pÞ is imposed. That is, they are
properties of just the duality transformations among the
phase spaces and they are satisfied independently of any
specific dynamics or physical model. This means that any
set of background fields may be introduced as outlined
above without changing the duality transformations. The
duality transformations may be thought of as transforma-
tions between observers which are set up to describe
physics in their own phase space frames, with their own
definition of 1T phase space. The canonical transforma-
tions connect the frames of such observers to one another in
a way that is analogous to general coordinate transforma-
tions connecting observers in different frames. In the
present case we are considering transformations that

connect observers that are local in phase space rather than
only in coordinate subspace.
In addition to the model-independent properties

(17)–(18), these canonical transformations have the follow-
ing remarkable property. The five quantities Qðx; pÞ listed
in (13) transform into each other under the dualities. So, up
to overall factors these expressions are proportional to each
other:

p2
1 ∼ ðp2

2 þm2
2Þ ∼ ðp2

3 − 2m3h3Þ

∼
�
p2
4 − 2m4

α

jr4j
− 2m4h4

�
∼ ðp2

5 þ Vðx25ÞÞ: (19)

The proportionality factors are given precisely by multi-
plying each constraint Qðx; pÞ by ðXþ0Þ2 in the same
Spð2; RÞ gauge, such as

ðXþ0
1 Þ2ðp2

1 þ � � �Þ ¼ ðXþ0
2 Þ2ðp2

2 þm2
2 þ � � �Þ; etc: (20)

where the gauge fixed Xþ0
i ðxi; piÞ, i ¼ 1; � � � ; 5, are given

for each gauge in Sec. IVA. Thus, when a constraint holds
in one of the frames, e.g. Q1ðx1; p1Þ ¼ 0, it holds auto-
matically also in all the dual frames, including the back-
grounds. Although we are considering only five explicit
cases in this paper, there are an infinite number of such
cases (including their generalizations with background
fields represented by the ellipsis � � �). That is, there are
an infinite number of observers defined by their own frames
in phase space, which are related to each other by canonical
transformations, as we will illustrate in Sec. V B. The 1T
physics dynamics in each frame is captured by the
expression of Qðx; pÞ as discussed in the previous section.
The relations among these Qðx; pÞ as in (19) allows us to
give physical meaning to observations (in the sense of 1T
physics) and to the dualities among them.
For example, for simplicity we consider the free massless

relativistic particle, with the constraint Q ¼ p2
1 ¼ 0 (no

background fields); then via our dualities all the expres-
sions in Eq. (19) must vanish. This means that, while
observer 1 interprets this system as the free massless
relativistic particle p2

1 ¼ 0, observer 2 interprets it as the
free massive relativistic particle p2

2 þm2
2 ¼ 0, observer 3

sees it as the free massive nonrelativistic particle with

Hamiltonian h3 ¼ p2
3

2m3
, observer 4 thinks it is a planetary

type or H-atom type interacting system with Hamiltonian
h4 ¼ p2

4

2m4
− α

jr4j, and observer 5 believes it is the relativistic
particle in an arbitrary Lorentz invariant potential that
satisfies the constraint p2

5 þ Vðx25Þ ¼ 0.
In 1T physics, the dynamics of these systems are

considered to be independent with no particular relations
among them. However, we will show in Sec. VI that there
are duality invariant quantities that do not transform, and
are exactly equal to each other in all these systems. Hence
there are an infinite number of relations among them which
are instant predictions that can be verified by experiment or

IGNACIO J. ARAYA AND ITZHAK BARS PHYSICAL REVIEW D 89, 066011 (2014)

066011-8



computation. The duality invariants contain all the physical
information about the whole collection of these systems.
For example, the initial conditions for solving the equations
of motion in any one of these systems can be expressed in
terms of the duality invariants. If the equations of motion
are solved in one system (which is easy for the free cases 1,
2, 3) then they are automatically solved in the difficult
systems, such as case 4 and especially 5, by using the
duality transformations as well as the duality invariants to
relate the initial conditions. Such hidden information is not
available in 1T physics, but it is a property of nature which
can be verified by physicists in frames related to each other
by our transformations. The frame of such observers can in
principle be created with proper conditions in a laboratory
and the predictions can be verified experimentally.
It is now clear that, based on the model-independent

properties of our transformations, we can construct large
classes of physical models that are dual to each other by
including background fields as in Eq. (9). For each case
i ¼ 1; 2; � � � one may introduce background fields. If the
backgrounds are related to each other by the background-
independent canonical transformations in Eq. (16) then the
models with such backgrounds continue to be duals of each
other. For example, if the relativistic massless particle in
case 1 is taken with a background electromagnetic field
as described by Q1ðx1; p1Þ ¼ 1

2
ðp1 þ Aðx1ÞÞ2, what are the

sets of background fields in the other dual cases? This is
computed by applying the canonical transformation (i←1)
to obtain the form for Qiðxi; piÞ and then expand it in
powers of pi as in Eq. (9) to read off the dual versions of the
backgrounds. This is sufficient to see that the type of duality
we have been discussing is the norm rather than the
exception. There is a huge number of testable physical
predictions that can be made in this way by first compiling a
list of canonical transformations without background fields,
as in the illustrative examples of Eq. (13). This list is in
principle infinitely long. The transformations among the
members of the list can all be derived from the gauge
invariant form of the theory in the framework of 2T physics
as will be discussed in Sec. V B. Hence all the corresponding
physical predictions are natural consequences of 2T physics.

IV. Spð2;RÞ GAUGE SYMMETRY IN 2T PHYSICS

The notion of gauge symmetry in phase space, based on
gauging Spð2; RÞ that led to 2T physics, appears at first
sight to be generalizable. This generalization is reviewed
in [16] where it is shown that the formulation of phase
space gauge symmetry for any Lie group would start by
constructing a set of Lie algebra generators QaðX;PÞ,
a ¼ 1; 2; � � � ; N, that close under Poisson brackets in phase
space. The closure of the Lie algebra is required for the
consistency of first class constraints QaðX;PÞ ¼ 0 for
physical states which follows from gauge invariance.
The case of a single noncompact generatorQðX;PÞ leads

to the formulation of all 1T physics as shown in Sec. II. The

case of the simplest non-Abelian noncompact group
Spð2; RÞ ¼ SLð2; RÞ with three generators leads uniquely
to all 2T physics without any ghosts and is consistent with
causality. One may be tempted to speculate that larger
noncompact Lie groups may lead to reasonable unitary
formulations of physics with more timelike dimensions as
formulated in [16]. However, with the phase space degrees of
freedom of a single particle such attempts have repeatedly
failed because we could not find expressions for QaðX;PÞ
that yielded nontrivial and ghost-free solutions of the
constraints QaðX;PÞ ¼ 0, except for the cases of one or
three generators. The failure of the attempts may suggest the
possibility of a theorem that generalizations with larger
noncompact groups [16] must always fail for a single
spinless particle. A brief review of the Spð2; RÞ case follows.
In the first order formalism, in which position XMðτÞ

and momentum PMðτÞ are treated on an equal footing, we
require our theory to have an Spð2; RÞ gauge symmetry,
which is a subset of canonical transformations that mix X
and P locally on the worldline. This gauged subset of
canonical transformations is generated by three generators
written in the form of a symmetric 2 × 2 tensor Qij. The
indices i, j correspond to doublet indices under Spð2; RÞ, i,
j ¼ 1, 2, while the symmetric tensor Qij is the triplet that
corresponds to the adjoint representation. These generators
are constructed from the phase space degrees of freedom
QijðX;PÞ. The Spð2; RÞ Lie algebra is

fQ12; Q11g ¼ −2Q11; fQ12; Q22g ¼ 2Q22;

fQ11; Q22g ¼ 4Q12; (21)

where the Poisson brackets fQij; Qklg are computed in
terms of the ðXM; PMÞ phase space. So, to proceed one
must find expressions for the QijðX;PÞ that satisfy this Lie
algebra. There are an infinite number of such phase space
structures for Spð2; RÞ, which have been classified in [13].
Assuming some such expression for QijðX;PÞ, we proceed
as follows.
This Spð2; RÞ, which algebraically is the same as

SOð1; 2Þ, is equivalent to a local conformal symmetry
SOð1; 2Þ on the worldline [i.e. SOðd; 2Þwith d ¼ 1] as seen
in a second order formalism where PM is integrated out [5].
As a guide to readers familiar with string theory, it may
be useful to mention that this gauge symmetry may be
regarded as being analogous to the local conformal sym-
metry on the world sheet generated by the Virasoro algebra
in string theory. Recall that, like here, the Virasoro algebra
is also constructed from the phase space degrees of freedom
of the string (harmonic oscillators). As a further guide, it
may also be useful to mention that background fields, that
are restricted in string theory by equations that come from
imposing local conformal symmetry on the world sheet
(closure of Virasoro algebra), also appear with analogous
restrictions in the Spð2; RÞ gauge theory on the worldline,
as seen below.
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To implement the gauge symmetry generated by QijðX;PÞ, we introduce the gauge field AijðτÞ in the adjoint
representation of Spð2; RÞ and then write the gauge invariant action on the worldline in the first order formalism as follows3:

L ¼ _XMðτÞPMðτÞ − 1

2
AijðτÞQijðXðτÞ; PðτÞÞ −HðXðτÞ; PðτÞÞ;

where HðX;PÞ is anything invariant under Spð2; RÞ; i:e:;fQij;Hg ¼ 0: (22)

If the gauge generators satisfy the algebra given in
Eq. (21), the action is invariant under the following
infinitesimal transformations with local parameters ωijðτÞ:

δωXM ¼ 1

2
ωijfXM;Qijg ¼ 1

2
ωij ∂QijðX;PÞ

∂PM
; (23)

δωPM ¼ 1

2
ωijfPM;Qijg ¼ − 1

2
ωij ∂QijðX;PÞ

∂XM ; (24)

δωAij ¼ d
dτ

ðωijÞ þ ωikεklAlj þ ωjkεklAli; (25)

δωH ¼ 1

2
ωijfH; Qijg ¼ 0: (26)

These lead to δωQkl ¼ 1
2
ωijfQkl; Qijg, where the right-

hand side is given by Eq. (21). Then it is easy to verify that
the Lagrangian transforms into a total derivative

δωL ¼ d
dτ

�
1

2
ωijðτÞPM

∂Qij

∂PM
− 1

2
ωijðτÞQij

�
; (27)

and therefore the action S ¼ R
τ2
τ1
dτLðτÞ is invariant,

δωS ¼ 0, provided ωijðτÞ vanishes at the end points τ1,
τ2. This is the Spð2; RÞ gauge symmetry that underlies all
2T physics.
An example of QijðX;PÞ that satisfies the Spð2; RÞ Lie

algebra under Poisson brackets is

example:Q11¼X ·X; Q12¼X ·P; Q22¼P ·P; (28)

where the dot products are constructed with a flat metric
ηMN of any signature. But only for dþ 2 dimensions with a
signature with two times are there nontrivial solutions to the
constraints Qij ¼ 0; this means there is a nontrivial gauge
invariant physical sub–phase space only when the formal-
ism admits two times or more. Only two times can be
admitted because for more timelike dimensions there
would be ghosts and the theory would fail to be unitary.

Furthermore, with less than two times all solutions ofQij ¼
0 are either identically zero phase space (zero times) or
physically trivial phase space (one time, with X and P
parallel, so no angular momentum). Hence, only two times,
no less and no more, are possible when we demand the
Spð2; RÞ gauge symmetry. In the simple case of Eq. (28) the
infinitesimal transformations δωXM, δωPM above are linear
in ðX;PÞ, and therefore in that case ðX;PÞ behaves like the
doublet of Spð2; RÞ under the local transformation. Hence,
if theQijðX;PÞ have the quadratic form (28), then the finite
Spð2; RÞ transformation takes the linear form with a matrix
of determinant 1 as follows:

�
X0M

P0M

�
¼

�
αðτÞ βðτÞ
γðτÞ 1þβðτÞγðτÞ

αðτÞ

��
XM

PM

�
: (29)

More general examples of QijðX;PÞ involve all possible
background fields as in Eq. (9). So, when there are
background fields, the local infinitesimal transformations
δωXM, δωPM in (23)–(24) are nonlinear and cannot be
written in this linear matrix form. Nevertheless, the trans-
formation of the gauge field Aij is necessarily of the Yang-
Mills form, and for finite transformations it can always be
written in terms of the matrix with one lower index, Aj

i ≡
εikAkj where εij is the Spð2; RÞ metric, as follows:

�
A12 A22

−A11 −A12

�0
¼
�
α β
γ 1þβγ

α

���
A12 A22

−A11 −A12

�
−∂τ

�

×

�
α β
γ 1þβγ

α

�−1

which gives

A011 ¼
�

γð1þ βγÞ∂τα
−1 þ γ2α−1∂τβ − α−1∂τγ

þð1þβγ
α Þ2A11 − 2 γ

α ð1þ βγÞA12 þ γ2A22

�
;

A012 ¼
� 1

α ð1þ γβÞ∂τα − β∂τγ

− β
α ð1þ βγÞA11 þ ð1þ 2βγÞA12 − γαA22

�
;

A022 ¼
�

α∂τβ − β∂τα

þβ2A11 − 2βαA12 þ α2A22

�
: (30)

For the more general case with background fields, as in
[13] one may argue that, up to canonical transformations of

3To continue the analogies to string theory, we mention that
string theory, which is usually presented in the second order
formulation, could also be reorganized in the first order formal-
ism as here. The second order formulation of the Spð2; RÞ theory
could be pursued, but this would be very messy for the general
case with all possible background fields, and hence we prefer the
first order formalism.
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XM, PM, the generators Q11ðX;PÞ and Q12ðX;PÞ may be
simplified to the following forms,4

Q11ðX;PÞ ¼ XMXNηMN; Q12ðX;PÞ ¼ XMPM; (31)

while the most general form of Q22ðX;PÞ that satisfies the
Spð2; RÞ Lie algebra in Eq. (21) may be parametrized in a
power expansion of momentum (when this is permitted) and
contains background fields as functions ofX as follows [13]:

Q22ðX;PÞ ¼ h0ðXÞ þ ðηM1M2 þ hM1M2

2 ðXÞÞðPM1
þ AM1

ðXÞÞðPM2
þ AM2

ðXÞÞ
þ
X
n≥3

hM1M2���Mn
n ðXÞðPM1

þ AM1
ðXÞÞðPM2

þ AM2
ðXÞÞ � � � ðPMn

þ AMn
ðXÞÞ: (32)

The background fields are

h0ðXÞ; AMðXÞ and hM1M2���Mn
n ðXÞ; with n¼ 2;3; � � � :

(33)

When all of these vanish we obtain the simple case
Q22ðX;PÞ ¼ P2 in Eq. (28). The vector AMðXÞ is a
Uð1Þ gauge field coupled covariantly to momentum
ðPMþAMðXÞÞ. The 2-tensor gM1M2ðXÞ¼ηM1M2þhM1M2

2 ðXÞ
is a general metric in curved space. h0ðXÞ is a scalar field,
while the hM1M2���Mn

n ðXÞ, which are symmetric traceless
tensors with n ≥ 3 indices, are higher spin fields with
spin n. There is no independent vector hM1 ðXÞ associated
with the first power of PM, because in a rearrangement in
powersofP rather than (Pþ A), thevectorhM1 ðXÞ emergesas
a combination of the vector AMðXÞ and the other hM1M2���Mn

n ,
i.e. hM1 ¼ 2ðηM1M2 þ hM1M2

2 ÞAM2
þ � � �.

For the Spð2; RÞ Lie algebra to close properly as in
Eq. (21) it is necessary to impose restrictions on the
background fields. The closure requires that the two-form,
FMN ≡ ∂MAN − ∂NAM, and all the high-spin fields be
transverse to the vector XM [13]

XMFMN¼0; and ηMM1
XMhM1M2���Mn

n ¼0; n¼2;3;���
(34)

and that all other backgrounds be homogeneous fields with
definite scaling dimensions for n ¼ 0; 2; 3; � � � [13]

ðXM∂M − ðn − 2ÞÞhM1M2���Mn
n ðXÞ ¼ 0; or

hM1M2���Mn
n ðλXÞ ¼ λn−2hM1M2���Mn

n ðXÞ:
(35)

The Spð2; RÞ algebra among the QijðX;PÞcloses only if
the background fields satisfy the transversality and homo-
geneity conditions in Eqs. (34)–(35). Hence, to define the
model with an Spð2; RÞ gauge symmetry, it is necessary
to impose these as a priori conditions on the background
fields.
For the reader familiar with string theory, these Spð2; RÞ

conditions on the backgrounds in the worldline formalism

are analogous to the conditions on backgrounds that
emerge from conformal symmetry on the world sheet
(closure of the Virasoro algebra).
It is useful to work in a fixed axial type gauge for the

Uð1Þ background gauge field, X · A ¼ 0, which makes it a
transverse vector, just like all other tensors as in Eq. (34).
In that case the constraint XMFMN ¼ 0 simplifies to the
following homogeneity condition on AM [13], which is also
similar to all other tensors as in Eq. (35):

X · A ¼ 0;

ðXM∂M þ 1ÞAM ¼ 0; or AMðλXÞ ¼ λ−1AMðXÞ:
(36)

The generalization of these equations to spinning systems
was given in [9–11] but we will not discuss this here since in
this paper we are concentrating only on spinless particles.
It may be of interest to emphasize that the constraints on

6 dimensional fields found by trial and error by Weinberg
[44] in order to have 6 dimensional correlators consistent
with conformal symmetry in 3þ 1 dimensions are identical
to the Spð2; RÞ gauge symmetry conditions on fields that
were already derived in [9–11,13,24] as given above.
So these constraints on fields, which were also naturally
incorporated in the 2T standard model [18] and 2T gravity
[4], including fermions and gauge bosons, follow directly
from a fundamental gauge symmetry Spð2; RÞ in phase
space, and their underlying role is to ensure a unitary and
causal theory with two times in dþ 2 dimensions.

4A generally covariant form that avoids the appearance of
explicit XM is given in [4,11,13] as follows: Q11 ¼ WðXÞ and
Q12 ¼ VMðXÞPM , where WðXÞ, VMðXÞ are background fields
like the others, and instead of hMN

2 ðXÞ þ ηMN in Q22 we simply
write the general metric gMNðXÞ. Then closure for Spð2; RÞ
restricts these background fields to obey some homothety
conditions as given in [4,11,13]. The simplified version, with
the explicit XM used in this paper, is a choice of coordinates under
general coordinate transformations that is equivalent to the
general version, while maintaining covariance with respect to
the SOðd; 2Þ global transformations as a subset of general
coordinate transformations. The simplified version satisfies the
homothety conditions automatically.
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As explained in footnote (4), we made a special choice
of basis of phase space ðXM;PMÞ such that the expression
for Q11 ¼ XMXNηMN introduced the flat metric ηMN
which is invariant under SOðd; 2Þ. Using this flat metric
we may raise or lower indices, such as PM ≡ ηMNPN
or XM ≡ ηMNXN, which should not be confused with
raising or lowering indices with the full metric
gM1M2ðXÞ ¼ ηM1M2 þ hM1M2

2 ðXÞ. With this definition of
PM we define the generators of SOðd; 2Þ transformations

LMN ¼ XMPN − XNPM: (37)

Under Poisson brackets these commute with all dot
products (XMXNηMN), (XMPN), (PMPNη

MN). In particular
they commute with the two Spð2; RÞ generators Q11 ¼
XMXNηMN and Q12 ¼ XMPM

fQ11; LMNg ¼ 0; fQ12; LMNg ¼ 0: (38)

This means that Q11, Q12 are invariant under global
SOðd; 2Þ transformations, but it also means that the LMN

are gauge invariant under the subgroup of Spð2; RÞ
transformations generated by Q11, Q12. Since these
two generators are quadratic, the two-parameter gauge
transformation they induce on ðXM; PMÞ is linear just as
Eq. (29), with the parameter β ¼ 0. This subgroup of gauge
transformations will play an important role in the dualities
we will discuss in this paper. The fact that LMN are gauge
invariant under this subgroup of Spð2; RÞ predicts that these
LMN are invariants under the dualities as discussed in
Sec. VI.
In the presence of background fields denoted by “� � �”

the third Spð2; RÞ generator, Q22 ¼ ðP2 þ � � �Þ, does not
commute with LMN except for its first term fP2; LMNg ¼ 0,
but when the background fields vanish then Q22 becomes
SOðd; 2Þ invariant while LMN becomes gauge invariant
under the full Spð2; RÞ.

A. Five gauges and five shadows

In this section, we give five different gauge fixed
configurations of ðXM; PMÞ such that, when inserted in
the 2T action (22), they result in five shadows in two fewer
dimensions and can be interpreted as five different 1T
physics systems. Each 1T shadow is expressed by 1T
Lagrangians Li, i ¼ 1;…; 5, as in Eq. (5), but with five
different constraints Qiðxi; piÞ as in (9), and parametrized
in terms of five canonical sets of degrees of freedom
ðxiðτÞ; piðτÞÞ, as listed in Eq. (13). It should be mentioned
that the emerging 1T Lagrangians Li are defined up to a
total derivative Li → Li þ dΛi

dτ . The total derivative could be
dropped since it does not contribute to the action or the
equations of motion, but here we will give the Λiðx; pÞ that
emerge directly from the gauge fixing, so that the interested
reader can verify the result.

It should be emphasized that for these five shadows the
parent 2T theory in general contains any set of background
fields, sinceQ22ðX;PÞ ¼ P2 þ ðbackgroundsÞ, but for sim-
plicity we will not explicitly write down specific back-
grounds. Also, we will discuss only the case of the 2T
systeminEq. (22) inwhichH ¼ 0because this is sufficient to
illustrate our methods, while the addition of a nontrivial H
does not change the essential part of the discussion.
We now give a list of five configurations for XM, PM

[where PM ¼ ηMNPN , using the ηMN already introduced in
(31)–(32)], for which two gauges have been fixed and the
two constraints X2 ¼ 0 and X · P have been solved explic-
itly. So each configuration is parametrized in terms of the
remaining 1T degrees of freedom ðxμi ; piμÞ in two fewer
dimensions. In each gauge the resulting Qiðxi; piÞ and
Λiðxi; piÞ are computed. The algebra to get these results is
straightforward. We will illustrate this in detail for the
simplest case 1 and most complicated case 5, while cases 2,
3, 4 are sketched with sufficient detail but leaving a small
exercise for the reader.

1. Shadow 1, massless relativistic

The light cone basis in the extra dimensions�0 is defined
as X�0 ¼ 1ffiffi

2
p ðX00 � X10 Þ, and similarly for the momenta.

The two gauge choices are Xþ0
1 ðτÞ ¼ 1 and Pþ0

1 ðτÞ ¼ 0

for all τ: The components X−0
1 ðτÞ ¼ 1

2
x21 and P−0

1 ðτÞ ¼
x1 · p1 are computed to satisfy the constraints,
X · X ¼ 0 ¼ −2Xþ0

X−0 þ XμXμ, and similarly for 0 ¼ X ·
P: The gauge fixed configuration of ðXM;PMÞ is then

(39)

Now, to obtain the gauge fixed form of the action (22) up to
a total τ derivative, we compute _XM

1 ¼ ð0; _x1 · x1; _xμ1Þwhich
gives _X1 · P1 ¼ _x1 · p1 þ dΛ1=dτ. We see that Λ1 ¼ 0
since we find no extra total time derivative. We also
compute the third constraint given in (32),
Q22 ¼ P2

1 þ � � �, which becomes Q22 ¼ p2
1 þ � � �, where

� � � stands for background fields consistent with the con-
straints (32)–(35). Inserting these in the 2T Lagrangian (22)
we obtain the 1T shadow Lagrangian

L1 ¼ _x1 · p1 − 1

2
A22
1 ðτÞðp2

1 þ � � �Þ: (40)

After imposing the transversality and homogeneity con-
straints in (34)–(35) on the background fields in dþ 2
dimensions, we find that the surviving background fields
denoted by � � � are precisely the background fields in d
dimensions displayed in Eq. (9) and [13]. The emergent
shadow in d dimensions is evidently the Lagrangian for the
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interacting 1T massless relativistic particle as discussed in
Eqs. (5), (9).
We call this gauge the conformal shadow. This is the

shadow in which linear SOðd; 2Þ transformations on
ðXM; PMÞ, that leave the flat metric ηMN invariant, become
the familiar nonlinear conformal transformations in phase
space in ðd − 1Þ þ 1 dimensions. To see this, the reader
is invited to evaluate the SOðd; 2Þ generators LMN ¼
XMPN − XNPM for the gauged fixed configuration
ðXM

1 ; P
N
1 Þ of Eq. (39) and verify that these LMN take the

form of the familiar SOðd; 2Þ conformal transformations
in d dimensions. That we should expect such a hidden
symmetry in Eq. (40) when all background fields vanish is
predicted from the fully covariant parent 2T theory (22)
before gauges are fixed.

2. Shadow 2, massive relativistic

Wewill be brief because the procedure is the same and the
result was given before (see references in [16]). The gauge
fixed configuration that also satisfies X2

2 ¼ 0 ¼ X2 · P2 is

(41)

The steps leading from the 2T Lagrangian to the 1T shadow
are parallel to those in case 1. We find _X2 · P2 ¼ _x2 · p2 þ
dΛ2=dτ with the Λ2 given in (41), and P2

2 ¼ p2
2 þm2

2.
Inserting these in the 2T Lagrangian (22) we obtain the 1T
shadow action

L2 ¼ _x2 · p2 − 1

2
A22
2 ðτÞðp2

2 þm2
2 þ � � �Þ; (42)

in which we have dropped the total derivative dΛ2=dτ.
Here the remaining constraint is the same Q22 in (32),
but now written in gauge 2, 0 ¼ Q22 ¼ P2

2 þ � � � ¼
ðp2

2 þm2
2 þ � � �Þ≡Q2ðx2; p2Þ, as listed in (13). The back-

ground fields in L2 are inherited from those in dþ 2
dimensions by specializing to the gauge 2. This is evidently
the Lagrangian for the 1T massive relativistic particle, with
mass m2, and generally interacting with background fields.
The mass can now be viewed as a modulus in the embedding
of the d dimensional phase space ðxμ2; p2μÞ in the (dþ 2)
dimensional phase space ðXM; PMÞ. So, it is a property of the
1T observer as he/she parametrizes from this perspective the
phenomena that occur in (dþ 2) dimensional phase space.

We should expect a relationship between the
background fields in shadow 1 and shadow 2 since they
are both derived from those in dþ 2 dimensions. As we
have summarized in the paragraph just before Eq. (14),
this relationship is given by the background-independent
duality transformation between shadows 1 and 2 which
takes the form of canonical transformations displayed
in Eq. (15).
When all backgrounds vanish, the massive particle

system described by (42) has a hidden SOðd; 2Þ symmetry
given by the conserved generators, LMN ¼ XM

2 P
N
2 −

XN
2 P

M
2 , as demonstrated in [16]. That we should expect

such a hidden symmetry in Eq. (42) when all backgrounds
vanish is evident from the fully covariant parent theory (22)
before gauges are fixed.

3. Shadow 3, massive nonrelativistic

The gauge fixed configuration that also satisfies
X2
3 ¼ 0 ¼ X3 · P3 is (here we use the parameters t3 for

the timelike coordinate and h3 for its canonical conjugate
since these are more intuitive symbols in nonrelativistic
physics)

(43)
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The steps leading from the 2T Lagrangian to the 1T
shadow are parallel to those in cases 1 and 2. We find
_X3 ·P3 ¼ _x3 ·p3− _t3h3þdΛ3=dτ, and P2

3 ¼ −2m3h3 þ p2
3.

Inserting these in the 2T Lagrangian (22) we obtain the 1T
shadow 3 action

L3 ¼ _x3 · p3 − _t3h3 − 1

2
A22
3 ðτÞðp2

3 − 2m3h3 þ � � �Þ; (44)

in which we dropped the total derivative dΛ3=dτ.
The remaining constraint is the same Q22 now written
in gauge 3, 0 ¼ Q22 ¼ P2

3 þ � � � ¼ ðp2
3 − 2m3h3 þ � � �Þ≡

Q3ðx3; p3Þ as listed in (13). This is evidently the
Lagrangian for the massive nonrelativistic particle, with
mass m3, as discussed in Eqs. (10)–(12). The mass m3

can be viewed as a modulus in the embedding of the d
dimensional nonrelativistic phase space ðx3;p3; t3; h3Þ in
the (dþ 2) dimensional phase space ðXM; PMÞ. So, it is a
property of the 1T nonrelativistic observer as he/she

parametrizes from this perspective the phenomena that
occur in (dþ 2) dimensional phase space. The background
fields represented by � � � are again inherited from those in
dþ 2 dimensions, and therefore are related to the back-
ground fields in shadows 1 and 2 by the background-
independent canonical transformations given in
Eqs. (72)–(73) and Eqs. (74)–(75).
When all backgrounds vanish, the massive particle system

described by (44) has a hidden SOðd; 2Þ symmetry given by
the conserved generators, LMN ¼ XM

3 P
N
3 − XN

3 P
M
3 , as dem-

onstrated in [16]. That we should expect such a hidden
symmetry in Eq. (44) when all backgrounds vanish is
evident from the fully covariant parent theory (22) before
gauges are fixed.

4. Shadow 4, H-atom

The gauge fixed configuration that already satisfies
X2
4 ¼ 0 ¼ X4 · P4 is

(45)

with

(46)

Here we use the parameters t4 for the timelike coordinate
and h4 for its canonical conjugate, and assume h4 < 0 for
bound states.5 The remaining constraint is the same Q22

now written in gauge 4, 0 ¼ Q22 ¼ P2
4 þ � � � ¼

ðp2
4 − 2

m4e24
jx4j − 2m4h4 þ � � �Þ≡Q4ðx4; p4Þ as listed in

(13). The steps leading from the 2T Lagrangian
to the 1T shadow are parallel to those in case 1.
We find _X4 · P4 ¼ _x4 · p4 − _t4h4 þ dΛ4=dτ, and

P2
4 ¼ ðp2

4 − 2
m4e24
jx4j − 2m4h4Þ. Inserting these in the 2T

Lagrangian (22) we obtain the 1T shadow action (in which
we drop the total derivative dΛ4=dτ)

L4 ¼ _x4 · p4 − _t4h4

− 1

2
A22
4 ðτÞ

�
p2
4 − 2m4e24

jx4j
− 2m4h4 þ � � �

�
: (47)

To see that this is equivalent to the Lagrangian for a particle
in the 1=r potential (like the H-atom or planetary motion),
we use the remaining gauge freedom to choose the gauge
t4ðτÞ ¼ τ and solve the constraint Q4 ¼ 0 for the canonical
conjugate h4: In the case of no background fields we get

h4 ¼ p2
4

2m4
− e2

4

jx4j. Then, using _t4ðτÞ ¼ 1 and the solved form
for h4, the Lagrangian L4 reduces to the familiar form for
the particle in the 1=r potential

L4 → _x4 ·p4−
�

p2
4

2m4

− e24
jx4j

�
; if no backgrounds: (48)

The mass m4 and coupling strength e24 can be viewed
as moduli in the embedding of the d dimensional

5The analytic continuation to the phase space region h4 > 0 for
scattering states looks similar, but to ensure a real parametrization
we also swap a timelike coordinate with a spacelike coordinate.
See Table II in [Phys. Rev. D 76, 065016 (2007)] for details.
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nonrelativistic phase space ðx4;p4; t4; h4Þ in the (dþ 2)
dimensional phase space ðXM; PMÞ. So, these are properties
of the 1T nonrelativistic observer as he/she parametrizes
from this perspective the phenomena that occur in (dþ 2)
dimensional phase space. If there are background fields
then they are inherited from those in dþ 2 dimensions
specialized to gauge 4 and related to those in shadows
1, 2, 3 by the duality transformations indicated in
Table II.
When all backgrounds vanish, the massive

particle system described by (48) has a hidden SOðd; 2Þ

symmetry given by the conserved generators,
LMN ¼ XM

4 P
N
4 − XN

4 P
M
4 , as demonstrated in [16]. That

we should expect such a hidden symmetry in Eq. (48)
when all backgrounds vanish is evident from the fully
covariant parent theory (22) before gauges are fixed.

5. Shadow 5, relativistic potential Vðx2Þ
The discussion of this case will also shed some light on

how to proceed to construct more general shadows. The
gauge fixed configuration is

(49)

The constraints X2
5 ¼ 0 ¼ X5 · P5 are already satisfied for

any Aðx5; p5Þ and ϕðx5; p5Þ. The A, ϕ are constructed to
obtain the dynamics described by the following constraint:

Q5ðx5; p5Þ ¼ ðP2
5 þ � � �Þ ¼ ½p2

5 þ Vðx25Þ þ � � �� ¼ 0; (50)

where � � � represents the contribution of background fields,
and Vðx2Þ is any function of the Lorentz invariant x25.
Hence, to obtain

P2
5 ¼ p2

5 − 1

x25
ððx5 · p5Þ2 − ϕ2Þ ¼ p2

5 þ Vðx25Þ; (51)

we chose ϕðx5; p5Þ such that

ϕðx5; p5Þ ¼ ðx5 · p5Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x25Vðx25Þ

ðx5 · p5Þ2

s
: (52)

More general relativistic shadows follow frommore general
choices of ϕðx5; p5Þ.
To ensure that ðxμ5; p5μÞ are canonical conjugates in the

emergent fifth shadow, rather than being some random
symbols, we must also require

_XM
5 P5M ¼ _xμ5p5μ þ

dΛ5

dτ
; (53)

where the second term is a total time derivative. Then
Λ5ðx5ðτÞ; p5ðτÞÞ may be dropped from the action since it
does not contribute to the equations of motion of ðxμ5; p5μÞ.
Inserting the ðXM

5 ; P
M
5 Þ of Eq. (49) into this requirement

results in a nontrivial restriction on Xþ0
5 ≡ A as follows:

1

2A
ðx5 · p5 þ ϕÞ dA

dτ
þ A
x25

ðx5 · p5 − ϕÞ d
dτ

�
x25
2A

�
¼ dΛ5

dτ
:

(54)

The general solution of this equation for the special
ϕðx5; p5Þ in Eq. (52) is given by

Aðx5; p5Þ ¼ FðϕÞ
ffiffiffiffiffi
x25

q
exp

�
−1

2

Z
x2
5 du
u

�
1− uVðuÞ

ϕ2

�−1=2�
;

(55)

and

Λ5ðx5; p5Þ ¼ −
Z

x2
5

duVðuÞðϕ2 − uVðuÞÞ−1=2

þ 2

Z
ϕ
dzz

d
dz

lnFðzÞ; (56)

where FðϕÞ is a general function of its argument ϕðx5; p5Þ
given in (52). Then we see that the emerging fifth shadow
Lagrangian which determines the dynamics of the remain-
ing degrees of freedom ðxμ5; p5μÞ as derived from Eq. (22) is
given by

L5 ¼ _xμ5p5μ − 1

2
A22
5 ðp2

5 þ Vðx25Þ þ � � �Þ: (57)

Note that the dynamics of ðx5; p5Þ is independent of the
solution Xþ0

5 ¼ Aðx5; p5Þ given in Eq. (55), but the
expression for Aðx5; p5Þ in (55) is needed to fully deter-
mine the embedding of the fifth shadow in dþ 2 dimen-
sional phase space as given in Eq. (49). Also,
Xþ0
5 ¼ Aðx5; p5Þ is needed to obtain the duality trans-

formation to the other shadows. Furthermore, Aðx5; p5Þ
determines also the components L�0μ of the SOðd; 2Þ
generators.
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When all background fields � � � vanish, the action
in Eq. (57) has a hidden SOðd; 2Þ symmetry just as in
all previous cases discussed above. The generators of
this symmetry are again, LMN ¼ XM

5 P
N
5 − XN

5 P
M
5 , where

we insert the gauge fixed ðXM
5 ; P

M
5 Þ given in Eq. (49).

These symmetry generators are the Noether charges that
are conserved using the equations of motion derived
from (57). In particular the conserved generator Lþ0−0

coincides with ϕðx5; p5Þ given in Eq. (52), namely
Lþ0−0 ¼ Xþ0

5 P−0
5 − X−0

5 Pþ0
5 ¼ ϕ, as derived from (49).

That we should expect a hidden SOðd; 2Þ symmetry for
the action in Eq. (57) when all backgrounds vanish is
evident from the fully covariant parent theory (22) before
the gauge is fixed.
As an example, consider Vðx2Þ ¼ cðx2Þb where c, b are

arbitrary constants. For this case the integrals in Eq. (55)
can be done explicitly, yielding

A1þb ¼ ðFðϕÞÞ1þb jx5 · p5jffiffiffi
c

p
�
1þ

�
1þ cðx25Þ1þb

ðx5 · p5Þ2
�

1=2�
:

(58)

As a check, we compare this result to shadow 2 given
in Eq. (41). We find agreement when we specialize
by taking Vðx2Þ ¼ m2

2, or c ¼ m2
2, b ¼ 0, with FðϕÞ ¼

m2=ð2jϕjÞ.
Note that solving for Aðx5; p5Þ from the expression (58)

involves branch cuts. Therefore A may need to be
redefined up to various signs in neighboring patches
of phase space ðxμ5; pμ

5Þ so as to be able to cover
continuously the phase space in dþ 2 dimensions
ðXM; PMÞ. We leave this issue open here, but we return
to make comments about it in Sec. VII in the context
of obtaining solutions of the constrained system (57) by
using dualities.
This example yields another interesting shadow,

namely the relativistic harmonic oscillator, with the
constraint Qðx;pÞ¼ ðp2þω2x2þ�� �Þ¼ 0, when Vðx2Þ¼
cðx2Þb is taken with the special constants c ¼ ω2, b ¼ 1.
When the background fields � � � vanish, the physical
sector of the constrained relativistic harmonic oscillator
in ðd − 1Þ þ 1 dimensions is the same as the uncon-
strained nonrelativistic harmonic oscillator in (d − 1)
space dimensions. This was demonstrated in [51] by
the following canonical transformation for the timelike
phase space:

ωx0ðτÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðhðτÞ − E0Þ

p
sin ðtðτÞÞ;

p0ðτÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðhðτÞ − E0Þ

p
cos ðtðτÞÞ; (59)

where E0 is a constant. Choosing the gauge tðτÞ ¼ τ,
and solving the relativistic constraint for h from
ðp2 þ ω2x2Þ ¼ ðp2 þ ω2r2Þ − 2ðhðτÞ − E0Þ ¼ 0, reduces
the problem to only the physical phase space

degrees of freedom ðr;pÞ with the Hamiltonian
h ¼ 1

2
ðp2 þ r2Þ þ E0, which describes the nonrelativistic

oscillator.
The more general case of the constrained system, p2 þ

cðx2Þb ¼ 0 with general b, c, is a rather complicated
problem whose solution was not known until now. But
we will show in Sec. VII that the duality methods discussed
in this paper will provide the means to solve it analytically.
The same methods apply also to the even more general case
p2 þ Vðx2Þ ¼ 0, with any Vðx2Þ, thus demonstrating the
power of our duality methods derived from 2T physics.

V. SPð2;RÞ GAUGE TRANSFORMATIONS
AND DUALITIES

As was already discussed in the previous section, in the
case of 2T physics, the five gauges that were studied above
correspond to different physical systems in 1T physics.
However, all of them are holographic shadows of the same
theory in 2T physics, meaning that each shadow contains
all the gauge invariant 2T physics by virtue of being just a
gauge choice. So, there must exist duality relations that
map the 1T shadows into each other. The 1T physics
observed in the respective shadows, although they have
different 1T physics interpretations, must be related to each
other by dualities, and must describe the same gauge
invariant content of the 2T physics theory from which
the shadows are derived. This is hidden information among
1T physics systems that 1T physics does not provide
systematically, but is a prediction of the 2T physics
formulation which can be tested and verified directly in
1T physics by using our dualities.
These dualities have to be Spð2; RÞ gauge transforma-

tions acting on the 2T phase space ðXM; PMÞ. The param-
eters of these transformations are local on the worldline
parametrized by τ, but since the interest is in transforming
one fixed gauge ðXM

i ; PiMÞ to another ðXM
j ; PjMÞ, the

parameters of the gauge transformation would be written
in terms of the τ-dependent phase space coordinates of the
corresponding 1T shadows themselves. So, these Spð2; RÞ
gauge transformations must take the form of canonical
transformations among the 1T shadows. In this section we
will illustrate these ideas by considering a special subset of
canonical transformations that connect the five shadows to
each other.
We can compute algebraically the gauge transformations

that relate the phase space degrees of freedom of any two
shadows to each other. To do this we consider the gauge
transformations generated by the Spð2; RÞ charges of the
form given in Eqs. (31)–(35)

Q11¼X ·X; Q12 ¼X ·P; Q22¼P ·Pþ��� : (60)

The gauge transformations (23)–(26) generated by the first
two charges Q11, Q12 are linear Spð2; RÞ transformations
that are written as a 2 × 2 matrix of the general form (29),
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but with β ¼ 0, namely

�
α

γ

0

1=α

�
because the transforma-

tion generated by Q22 is not included in the present duality
discussion. In fact, the Spð2; RÞ transformations generated
by Q22 are nonlinear in the capital ðX;PÞ, because Q22

generally contains background fields denoted by � � � that
we wish to keep as general as possible in our discussion.
By contrast, since Q11, Q12 are purely quadratic in phase
space these charges induce only linear transformations via
(23)–(26). Recall that X · X ¼ X · P ¼ 0 are already sat-
isfied explicitly in each shadow. The gauge transformations
generated by ðX · XÞ, ðX · PÞ close into a subgroup of
Spð2; RÞ and hence they act within the physical space that
already satisfies these constraints in each shadow, namely
X · X ¼ X · P ¼ 0. Furthermore, within this restricted
phase space, the subgroup of transformations generated
by ðQ11; Q12Þ transform Q22, and the corresponding gauge
field A22, only by an overall scaling Q22 → α−2Q22 and
A22 → α2A22, as seen from Eqs. (30) at β ¼ 0. So the
remaining term in the gauge fixed action A22Q22 is
invariant while compatible with being in the subspace
X · X ¼ X · P ¼ 0. Hence these duality transformations
change one shadow into another without changing the
remaining constraint Q22 (which is eventually applied as
Q22 ¼ 0 in each shadow). This is the reason that the duality
transformations we discuss take the form of 2 × 2 matrices
as in (29), with αðx; pÞ, γðx; pÞ taken as functions of 1T
phase space ðxðτÞ; pðτÞÞ, and with β ¼ 0.
We can, therefore, use the matrix method to find

explicitly the duality transformation constructed from
phase space, with αðx; pÞ, γðx; pÞ, and β ¼ 0, given that
the gauge fixed forms of the shadows that we want to relate
to each other by 2 × 2 matrices are already specified in

Eqs. (39), (41), (43), (45), (49) as

�
X
P

�
doublets in each

direction M. These dualities must also be canonical trans-
formations since they are written only in terms of phase
space degrees of freedom and map one canonical phase
space to another canonical phase space.

A. The general duality transformation

In order to find the duality transformation we consider
the general linear form of an element of Spð2; RÞ given by
Eq. (29) with β ¼ 0, as explained above. We recall that the
gauge fixed XM and PM for each shadow are given
explicitly as doublets in Sec. IVA. First we set up a 2 × 2
matrix transformation between two shadows i and j for
every direction M

�XM
j ðxμj ;pμ

j Þ
PM
j ðxμj ;pμ

j Þ

�
¼
�
αðτÞ 0

γðτÞ α−1ðτÞ

��
XM
i ðxμi ;pμ

i Þ
PM
i ðxμi ;pμ

i Þ

�
: (61)

Note that shadow i is parametrized in terms of phase space
ðxμi ; pμ

i Þ while shadow j is parametrized in terms of phase

space ðxμj ; pμ
j Þ. Next, we solve for αðτÞ and γðτÞ such that

the 2 × 2 matrix corresponds to the gauge transformation
from one fixed gauge to another. This is done by using
some doublets in convenient directions M that contain
information on how the gauge was fixed in shadows i and j.
For example, in the case of shadow 1 in Eq. (39) the doublet
M ¼ þ0 is convenient since it is fully fixed to Xþ0

1 ¼ 1 and
Pþ0
1 ¼ 0. Finally, we express the transformation parameters

αðxμi ; pμ
i Þ, γðxμi ; pμ

i Þ in terms of the degrees of freedom
ðxμi ; pμ

i Þ of the shadow of origin. Having fixed the matrix,
the canonical transformation ðxμj ; pμ

j Þ←ðxμi ; pμ
i Þ is now

obtained by taking the M ¼ μ direction in Eq. (61) as
shown in the example (15). Using this procedure, we found
the explicit canonical transformations in Sec. V B, and
listed the results of Sec. V B in the table of Eq. (16).
To show that these gauge transformations are canonical

transformations (including time and Hamiltonian), we must
also show that the canonical structure holds up to a total
derivative

_xμjpjμ ¼ _xμi piμ þ
d
dτ

ΛjiðτÞ: (62)

When this is true, the invariance of Poisson brackets for
any two quantities fA;Bg is also guaranteed when they are
evaluated as derivatives in terms of either shadow. The
validity of Eq. (62) can be checked by using our explicit
transformations in Sec. V B. However, the result (62) is
already guaranteed by the canonical structures that
descended from dþ 2 dimensions. The essential observa-
tion is that we can equate two gauge fixed forms of the
same gauge invariant. That is, the gauge invariant
Lagrangian of the 2T theory (22) can be equated to its
five gauge fixed versions in the five shadows of Sec. IVA.
Consider two shadows i and j which satisfy the following
relations due to the gauge invariance of the Lagrangian:

L ¼ _XMPM þ 1

2
AklQkl (63)

¼ _xμi piμ þ
1

2
A22
i ðτÞQ22ðxμi ; pμ

i Þ þ
dΛi

dτ
; (64)

¼ _xμjpjμ þ
1

2
A22
j ðτÞQ22ðxμj ; pμ

j Þ þ
dΛj

dτ
: (65)

We have shown in (30) that under the gauge transformation
(61), A22

i is related to A22
j , by A22

j ¼ α2A22
i , since β ¼ 0.

SimilarlyQ22ðxμj ; pμ
j Þmust be related to Q22ðxμi ; pμ

i Þ by the
inverse transformation, Q22ðxμj ; pμ

j Þ ¼ α−2Q22ðxμi ; pμ
i Þ, so

that the combination A22Q22 is invariant under the gauge
transformation (61)

A22
j ðτÞQ22ðxμj ; pμ

j Þ ¼ A22
i ðτÞQ22ðxμi ; pμ

i Þ: (66)
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This is because A22 and Q22 are both members of the
adjoint representation whose dot product AklQkl remains
invariant under the nonderivative parts of any gauge
transformation. Since Q11 and Q12 are already identically
zero, then the above relation must hold under the gauge
transformation (61). After taking into account this identity,
equating the expressions in Eqs. (64)–(65) establishes
that the canonical transformation described in Eq. (62) is
guaranteed and predicts that the total derivative dΛij=dτ
must be given by

ΛjiðτÞ ¼ Λjðxμj ðτÞ; pμ
j ðτÞÞ − Λiðxμi ðτÞ; pμ

i ðτÞÞ (67)

where the Λiðxμi ðτÞ; pμ
i ðτÞÞ have been computed and given

explicitly for each i in Eqs. (39), (41), (43), (46), (56).
The reader may verify this expression also directly from
the five explicit canonical transformations xμj ¼ Xμ

j ðxi; piÞ,
pjμ ¼ Pjμðxi; piÞ given in the next section.
Finally, we should remark that a further consistency

check for the dualities is to verify that the different
constraints of the gauge fixed shadows transform into each
other up to overall factors as indicated in Eqs. (19)–(20).
This is evident from the remarks made above on how the

generator Q22 transforms with an overall factor α−2 under
the gauge transformation (61), and noting that this factor
can be written as α−2 ¼ ðXþ0

i =Xþ0
j Þ2.

B. Explicit canonical transformations

Now we give explicitly each one of the duality relations
between the five shadows under study. They were obtained
through the methods described above.

1. Dualities (1↔2)

For the duality (1←2) between shadows 1 and 2 we first
consider the transformation (61) by using Eqs. (39), (41) in
the direction M ¼ 0 and obtain the relation

�
1

0

�
¼

�
αðτÞ 0

γðτÞ α−1ðτÞ
�� 1þa

2a−m2
2

2ðx2·p2Þa

�
: (68)

From this equation we determine both α ¼ 2a=ð1þ aÞ and
γ ¼ m2

2

2ðx2·p2Þa as functions of ðx2; p2Þ. We insert them back

in Eq. (61) to obtain the canonical transformation (1←2)
as follows:

(69)

The inverse transformation (2←1) is given by the inverse matrix, but α and γ must be rewritten in terms of ðxμ1; pμ
1Þ. After

some algebra one gets 2a
1þa ¼ 1þ m2

2
x2
1

4ðx1·p1Þ2, which yields the inverse matrix as follows:

(70)

2. Dualities (1↔3)

To determine the duality transformation (1←3) between
shadows 1 and 3 we first consider the transformation (61)
by using Eqs. (39), (43) in the direction M ¼ 0 and obtain
the relation

�
1

0

�
¼

�
αðτÞ 0

γðτÞ α−1ðτÞ
��

t3
m3

�
(71)

which determines α¼ðt3Þ−1 and γ ¼ −m3. We insert this
back in Eq. (61) to obtain the canonical transformation
(1←3) as follows:
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(72)

The inverse transformation (3←1) is given by the inverse matrix, but α must be rewritten in terms of ðxμ1; pμ
1Þ as

α ¼ −m3x01=p
0
1, so that the inverse transformation takes the form

(73)

3. Dualities (2↔3)

To determine the duality transformation (3←2) between shadows 2 and 3 we can use shadow 1 as an intermediate step
since we already know the transformations back and forth (1↔2) and (1↔3). Hence we construct (3←2) via the steps
(1←2) followed by (3←1). This gives the following explicit transformation for (3←2):

(74)

The inverse transformation (2←3) is built in the same manner, with the result

GENERALIZED DUALITIES IN ONE-TIME PHYSICS AS … PHYSICAL REVIEW D 89, 066011 (2014)

066011-19



(75)

4. Dualities (1↔4)

For the duality (1←4) between shadows 1 and 4 we first consider the transformation (61) by using Eqs. (39), (45) in the
direction M ¼ 0 and obtain the relation

�
1

0

�
¼

�
α 0

γ α−1
�0@ 1ffiffiffiffiffiffiffiffiffiffiffiffi−4m4h4

p ½jx4j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−2m4h4

p
sin uþ x4 · p4ðcos uþ 1Þ�

1ffiffiffiffiffiffiffiffiffiffiffiffi−4m4h4
p ½2m4h4jx4j þm4e24ðcos uþ 1Þ�

1
A: (76)

This determines both α and γ as functions of ðx4;p4; t4; h4Þ:

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−4m4h4

p
jx4j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−2m4h4
p

sin uþ x4 · p4ðcos uþ 1Þ ; γ ¼ − 2m4h4jx4j þm4e24ðcos uþ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−4m4h4
p : (77)

We insert them back in Eq. (61) to obtain the canonical transformation (1←4) as follows:

(78)

To construct the inverse transformation we must rewrite the α, γ of Eqs. (77) as functions of ðxμ1; pμ
1Þ by using (78). This

gives

αðx1; p1Þ ¼
m4e24ð1þ 1

2
ðx01 − jx1jÞ2Þ

ðjx1jp0
1 − x1·p1Þ

ffiffiffi
2

p
L000

; γðx1; p1Þ ¼ m4e24

�
1ffiffiffi
2

p
L000

− 1

jx1jðjx1jp0
1 − x1 · p1Þ

�

with
ffiffiffi
2

p
L000 ≡ p0

1ð1þ
1

2
ðx01 − jx1jÞ2Þ þ x01ðjx1jp0

1 − x1 · p1Þ: (79)

The inverse transformation (4←1) is then
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(80)

5. Dualities (1↔5) for general Vðx2Þ
For the duality (1←5) between shadows 1 and 5 we first consider the transformation (61) by using Eqs. (39), (49) in the

direction M ¼ 0 and obtain the relation

�
1

0

�
¼

�
α 0

γ α−1
��

A
A
x2 ðx5 · p5 − ϕÞ

�
with

8<
:

ϕðx5; p5Þ≡ ðx5 · p5Þð1þ x25Vðx25Þðx5 · p5Þ−2Þ1=2

Aðx5; p5Þ≡ FðϕÞ
ffiffiffiffiffi
x25

q
exp

�
− 1

2

R
x2
5
du
u ð1 − ϕ−2uVðuÞÞ−1=2

�
: (81)

This determines αðx5; p5Þ ¼ A−1 and γðx5; p5Þ ¼ − A
x2 ðx5 · p5 − ϕÞ as functions of ðx5; p5Þ. We insert them back in

Eq. (61) to obtain the canonical transformation (1←5) as follows:

(82)

To construct the inverse transformation we must rewrite α, γ, or equivalently A, ϕ, in terms of ðx1; p1Þ. To construct this,
it is useful to remember that the SOðd; 2Þ generator Lþ0−0

is invariant under the Spð2; RÞ gauge transformations. It takes
the form Lþ0−0 ¼ x1 · p1 in shadow 1 while it is given by Lþ0−0 ¼ ϕðx5; p5Þ in shadow 5, but due to the gauge invariance
of Lþ0−0

we have

Lþ0−0 ¼ ϕ ¼ ðx5 · p5Þð1þ x25Vðx25Þðx5 · p5Þ−2Þ1=2 ¼ x1 · p1: (83)

Thus, we obtain ϕ ¼ x1 · p1, and x25 ¼ Ax21, while Aðx1; p1Þ is determined implicitly by solving the following algebraic
equation [which is a rewriting of (55) after inserting xμ5 ¼ Axμ1 from (49)]:

Z
x2
1
A2 du

u
ð1 − ðx1 · p1Þ−2uVðuÞÞ−1=2 ¼ ln ½x21F2ðx1 · p1Þ�: (84)

Inserting these results, we obtain the transformation (5←1) as follows:
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(85)

6. Dualities (1↔5) for Vðx2Þ ¼ cðx25Þb
To be completely explicit, we specialize to Vðx2Þ ¼ cðx2Þb. Then from Eqs. (81), (83), (84) we compute the explicit

forms for ϕ, A written in terms of the phase spaces of either shadow:

(86)

A quick way of proving the equality of the two forms of ϕ is to use the gauge invariance of the LMN ; then note that
Lþ0−0 ¼ ϕ when computed in shadow 5 of Eq. (49), and Lþ0−0 ¼ ðx1 · p1Þ when evaluated in shadow 1 of Eq. (39). Hence
the result above for ϕ is obtained. Inserting this in Eqs. (82), (85) gives the duality transformations (5↔1) for the potential
V ¼ cðx2Þb as follows:

(87)

where the FðϕÞ that appears in Aðx5; p5Þ is an arbitrary function of its argument. Similarly, the inverse transformation is

(88)

One can verify that these expressions satisfy

ðp2
5 þ cðx25Þb þ � � �Þ ¼ A−2ðp2

1 þ � � �Þ; (89)
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where � � � represent the background fields in the respective
shadows. Then, by using the constraint in shadow 1,
p2
1 þ � � � ¼ 0, the constraint in shadow 5 is automatically

satisfied and vice versa.
For a consistency check one may specialize to b ¼ 0,

c ¼ m2
2 and FðϕÞ ¼ m2=ð2jϕjÞ, to see that the (1↔5)

duality expressions in this subsection agree with the duality
expressions (1↔2) given above.

VI. DUALITY INVARIANTS AND HIDDEN SOðd;2Þ
In Eqs. (37)–(38) we argued that the SOðd; 2Þ generators

LMN ¼ XMPN − XNPM are gauge invariant under the
subgroup of Spð2; RÞ gauge transformations that corre-
spond to the duality transformations. Therefore, it is
predicted that any function of the LMN must be invariant
under the duality transformations. Namely, if one inserts
the gauge fixed versions of ðXM

i ; P
M
i Þ for i ¼ 1, 2, 3, 4, 5,

given in Eqs. (39), (41), (43), (45), (49), into
LMN ¼ XMPN − XNPM, they must equal each other:

LMN ¼ X½M
1 PN�

1 ¼ X½M
2 PN�

2 ¼ X½M
3 PN�

3 ¼ X½M
4 PN�

4

¼ X½M
5 PN�

5 : (90)

We list below the different shadow forms of the LMN ¼
ðLþ0−0

; Lþ0μ; L−0μ; LμνÞ for each of the five shadows.
These LMN in the shadows satisfy the Lie algebra of
SOðd; 2Þ under Poisson brackets computed in terms of
fxμi ; piμg in each shadow i. The closure of the SOðd; 2Þ
algebra in each shadow holds whether or not these
LMN are conserved, that is whether background fields
are present or not.
Hence each shadow provides a new phase space repre-

sentation of SOðd; 2Þ. One of these, shadow 1, which we
sometimes call the conformal shadow, yields the familiar
form of conformal transformations SOðd; 2Þ in d dimen-
sions. Namely δωx

μ
1 ¼ ωMNfLMN; xμ1g, computed with

the Poisson brackets of shadow 1, gives precisely the

infinitesimal SOðd; 2Þ conformal transformations of xμ1.
However, we claim that all shadows, including the shadows
with mass, also provide a representation space for SOðd; 2Þ,
with an action of LMN on that phase space that is the dual of
a conformal transformation in shadow 1.
The LMN are not necessarily symmetry generators of the

full theory, but there are specialized forms of the theory in
which they do generate the natural SOðd; 2Þ rotation type
symmetry of flat dþ 2 dimensions. First, it is important to
note that the LMN are generators of an SOðd; 2Þ symmetry
of the first two constraints, since they do commute
with each other under Poisson brackets in the bulk,
fLMN; X · Xg ¼ 0 and fLMN; X · Pg ¼ 0. The third con-
straint, ðP2 þ � � �Þ ¼ 0, does not commute with LMN if
the background fields � � � are present in general. But, in
the case when all background fields vanish, � � � ¼ 0, the
third constraint, and indeed the full 2T Lagrangian, is
invariant under SOðd; 2Þ transformations. Therefore, by
Noether’s theorem, the LMN must be conserved generators
dLMN=dτ ¼ 0 of the SOðd; 2Þ symmetry in that case.
Since the LMN are gauge (or duality) invariants, then their
shadows listed below, LMN ¼ ðLþ0−0

; Lþ0μ; L−0μ; LμνÞ,
must also be conserved in each shadow by virtue of being
the generators of a hidden SOðd; 2Þ symmetry in the case
of no background fields. Prior to the introduction of 2T
physics in 1998, the presence of a hidden SOðd; 2Þ
symmetry in shadows 2, 3, 4, 5 without backgrounds
had not been noticed in 1T physics. This hidden symmetry
in the other shadows, which is a close cousin of the familiar
conformal symmetry in shadow 1, is just as powerful and
just as fundamental as conformal symmetry. Indeed all
forms of this hidden symmetry in the shadows are the same
symmetry of the bulk, which turns out to be realized in the
same irreducible unitary representation of SOðd; 2Þ in
each shadow, as further discussed below at the classical or
quantum levels.
In the following we use definitions for symbols given

earlier in the paper, which include

(91)
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The dual forms of the gauge invariant Lþ0−0
and Lμν in the five shadows are (these are conserved if the backgrounds

vanish)

(92)

Similarly, the dual forms of the gauge invariant L�0μ in the five shadows are (these are conserved if the backgrounds
vanish)

(93)

where for shadow 4 it is more convenient to give L00μ, L10μ instead of L�0μ, as follows:

(94)

It is interesting to point out that, in shadow 4, the last listed L10i is the famous Runge-Lenz vector, which is recognized as
follows. After the τ-reparametrization gauge is chosen, t4ðτÞ ¼ τ and the constraint of Eq. (47) is solved when backgrounds
are absent as in Eq. (48), yielding h4 ¼ p2

4=2m4 − e24=jx4j, the L10i takes the familiar form proportional to the Runge-Lenz
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vector, L10i ¼ ½−ðx4·p4Þpi
4 þ p2

4x
i
4 − m4e24

jx4j x
i
4�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−2m4h4
p

.

This conserved vector in the H-atom or in a planetary
system is responsible for explaining the seemingly acciden-
tal systematic degeneracies of the H-atom levels, or why
planetary ellipses do not precess. In the 2T physics approach
the explanation is because the dimension labeled by 10 is an
extra hidden space dimension that, in the bulk, is at the same
footing as the other usual three space dimensions. There is a
natural rotation symmetry SO(4) which is part of the hidden
SO(4, 2) symmetry in the H-atom shadow. The conservation
of angular momentum in all four dimensions, not only in the
first three dimensions, is the real explanation of the interest-
ing observations in the H-atom or in planetary systems.
Another familiar case of hidden symmetry is the more
familiar conformal symmetry SO(4, 2) of the conformal
shadow. These are examples of the more general hidden
symmetries and conservation rules that we are advocating in
this section. For more examples of previously unknown
hidden SOðd; 2Þ symmetries see [49,50].
Using the duality invariants LMN (whether the theory has

background fields or not) we make an infinite number of
predictions that may be checked both experimentally and
theoretically by comparing any function of the LMN in
various shadows. Namely, at the classical level we predict

fðLMN
shadow iÞ ¼ fðLMN

shadow jÞ; any function f;

any dual pair ði↔jÞ:

The functions f need not be SOðd; 2Þ invariants. For
example, we may take any function of just Lþ0−0

and
use the corresponding expressions that are listed in the table
above to make predictions that follow from our dualities.
Some such functions are the Casimir invariants of SOðd; 2Þ;
for example the quadratic Casimir is C2 ¼ 1

2
LMNLMN . At

the classical level we find C2 ¼ X2P2 − ðX · PÞ2 ¼ 0,
since X2 ¼ 0 and X · P ¼ 0 is satisfied in every shadow
for any set of background fields (namely without con-
straining P2, leaving it off shell). The same vanishing
result, with off-shell P2, is found for all higher Casimirs at
the classical level, Cn ¼ 1

n!TrððiLÞnÞ ¼ 0, n ¼ 2; 4; 6;…,
where LM

N is treated like a matrix to evaluate the trace.
However, at the quantum level there are quantum order-

ing issues that must be resolved in order to satisfy
Hermiticity of the LMN and the SOðd; 2Þ Lie algebra by
using the quantum commutators for the operators
ðXM; PMÞ. Hermiticity implies that at the quantum level
we deal with unitary representations of SOðd; 2Þ. These
requirements lead to nonzero but definite eigenvalues for
all the Casimir operators in the physical subspace. The
gauge invariant physical quantum states are those that
satisfy the vanishing of the Spð2; RÞ generators,
X2jphysi ¼ 0 and ðX · Pþ P · XÞjphysi ¼ 0, in SOðd; 2Þ
covariant quantization. The third Spð2; RÞ generator Q22 ¼
ðP2 þ � � �Þ is to be imposed as well, but since the

background fields � � � are not yet specified, we consider
P2 to be off shell, namely so far unconstrained. This
definition of physical states is compatible with the duality
transformations which do not alter theQ22 constraint. In the
physical sector as defined, we obtain a definite numerical
eigenvalue for the SOðd; 2Þ quadratic Casimir operator

C2jphysi ¼
�
1 − d2

4

�
jphysi; P2off shell:

To see how this result is obtained we construct the
Hermitian quantum quadratic Casimir operator and reorder
operator factors as follows:

C2 ¼
1

2
LMNLMN ¼

�
P2X2 þ iðX · Pþ P · XÞ

− 1
4
ðX · Pþ P · XÞ2 þ ð1 − d2=4Þ

�
;

where X2 has been pulled to the right and X · P has been
written in Hermitian form. Applying this on physical states,
we see that all operator parts vanish, leaving behind a
constant eigenvalue. Note that no constraint has been
imposed on P2; hence the result C2 → ð1 − d2

4
Þ for physical

states works for any set of background fields. Similarly, for
physical states we get nonzero numerical eigenvalues for
all higher Casimirs Cn, for any set of background fields,
since P2 is off shell.
Due to the gauge invariance of the LMN , the quantum

theory in each shadow must agree with the SOðd; 2Þ
covariant quantization just described. This requires that
in each shadow the quantum ordering of the LMN must be
performed so that the same gauge invariant physical result
is obtained for the Casimir eigenvalues independent of
the shadow and independent of the background fields.
Examples of how this quantum ordering is done in a few
shadows were given in [49,50]. The numerical eigenvalues
of the Casimirs obtained in covariant quantization already
identify the specific unitary representation of SOðd; 2Þ,
which turns out to be the unitary singleton representation
of SOðd; 2Þ. This result was known before in the absence of
background fields [49,50], and now we have established it
for any set of background fields and any shadow since we
have shown it holds for P2 off shell.
We see now that the duality invariants must also hold at

the quantum level in every shadow; namely, once the LMN

listed above are quantum ordered properly in two dual
shadows (i↔j), they are equal to each other as operators
acting on a complete set of states in the physical Hilbert
space

LMN
quantumðxi; piÞ ¼ LMN

quantumðxj; pjÞ:

A subset of these identities is the numerical values of the
SOðd; 2Þ Casimir operators being the same in every shadow,
which is already guaranteed by the correct quantum order-
ing. But, well beyond this, all matrix elements between any
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set of quantum states for any function fðLMN
quantumÞ must also

yield identical results for either the left or the right side of
this operator equation for every set of dual shadows (i↔j).
This is a huge set of quantum relations between 1T physics
systems that can be tested as predictions of our dualities
derived from 2T physics.

VII. SOLVING PROBLEMS USING DUALITIES

To illustrate the usefulness of our dualities we will solve
the classical equations of motion of the constrained system
in shadow 5 at zero background fields. The equations of
motion and constraint are given by the 1T Lagrangian

L5 ¼ _xμ5p5μ − 1

2
A22
5 ðp2

5 þ Vðx25ÞÞ: (95)

As far as we know, the solution to the classical equations of
motion of this constrained system is not available in the
literature for general Vðx2Þ, or even for the specialized case
Vðx2Þ ¼ cðx2Þb, except for b ¼ 0 (massive particle) or
b ¼ 1 (constrained relativistic harmonic oscillator [51]).
Furthermore, attempting to solve it with standard methods,
such as choosing a gauge, and solving the constraint, leads
to a time-dependent potential that is difficult or impossible
to solve in closed form. However, by using our dualities, we
obtain the desired analytic solutions easily as follows.
The equations that determine ðxμ5ðτÞ; p5μðτÞÞ are

_xμ5 ¼ A22
5 pμ

5; _pμ
5 ¼ −A22

5 V 0ðx2Þxμ5; p2
5 þVðx25Þ ¼ 0:

(96)

We can make a gauge choice for τ-reparametrizations by
making some convenient choice for A22

5 ðτÞ as an explicit
function of τ. The solution we display below corresponds
to an insightful gauge choice for the gauge field A22

5 ðτÞ that
yields the analytic solution for any Vðx2Þ. It would be
impossible to foresee such a gauge choice without our
dualities. We proceed as follows.
First we transform the equations derived from (95) to

shadow 1, where the equations of motion and constraints
are easily solved for xμ1ðτÞ, p1μðτÞ in the gauge A22

1 ðτÞ ¼ 1
as follows:

xμ1ðτÞ¼qμ1þτpμ
1; with constantpμ

1; and constraintp
2
1¼0:

(97)

Then transforming this solution in shadow 1 back to
shadow 5 we obtain the desired analytic solution. Thus,
we use the duality (5←1) given in Eq. (85) to write
ðxμ5; p5μÞ in terms of ðxμ1; p1μÞ and insert the solution
(97) to obtain the time dependence of the classical
trajectories xμ5ðτÞ and p5μðτÞ that solve the equations of
motion as well as the constraint, p2

5 þ Vðx25Þ ¼ 0, derived
from the Lagrangian L5.

To be completely explicit, we specialize to Vðx2Þ ¼
cðx2Þb and use the duality in Eq. (88) in which we insert
the explicit time dependence for xμ1ðτÞ, p1μðτÞ given in (97).
To make all τ dependence evident, we note that pμ

1 is a
constant that also satisfies p2

1 ¼ 0, while the other dot
products have the following explicit τ dependence:

x21ðτÞ ¼ q21 þ 2ðq1 · p1Þτ; p1 · x1ðτÞ ¼ q1 · p1: (98)

The FðϕÞ that appears in Eq. (88) is evaluated as
Fðq1 · p1Þ, so it is another τ-independent constant that
we will denote simply as a constant F. Then the explicit τ
dependence of the solution ðxμ5ðτÞ; p5μðτÞÞ follows from
Eq. (88). After some simplifications it takes the form

xμ5ðτÞ ¼
�
4ðq1 · p1Þ2
cF2þ2b

� 1
2þ2b

×
qμ1 þ τpμ

1

ðF−2−2b þ ðq21 þ 2τq1 · p1Þ1þbÞ 1
1þb

; (99)

and

pμ
5ðτÞ ¼

�
cF2þ2b

4ðq1 · p1Þ2
� 1

2þ2b

×
pμ
1 þ ½q21pμ

1 − 2ðq1 · p1Þqμ1�ðq21 þ 2τq1 · p1Þb
ðF−2−2b þ ðq21 þ 2τq1 · p1Þ1þbÞ b

1þb

:

(100)

The τ in these expressions is the τ parameter conven-
iently gauge fixed for shadow 1 which a priori would not
occur naturally as a gauge choice for shadow 5, although
these are related to each other by τ reparametrizations. The
τ-gauge in each shadow amounts to making a choice for
A22ðτÞ. The gauge choice, A22

1 ðτÞ ¼ 1, was already made in
shadow 1 when writing the solution for ðxμ1ðτÞ; p1μðτÞÞ in
the form (97). Hence, using the solution as it stands,
without further reparametrizing τ, amounts to making a
definite choice for A22

5 ðτÞ which is given by the Spð2; RÞ
transformation in Eq. (30) with β ¼ 0. Therefore, we
must take A22

5 ðτÞ ¼ α2ðτÞA22
1 ðτÞ ¼ ðAðx1ðτÞ;p1ðτÞÞÞ2 × 1,

where Aðx1; p1Þ is given in Eq. (86),

A22
5 ðτÞ ¼ F−2b

�
4ðq1 · p1Þ2

cðF−2−2b þ ðq21 þ 2τq1 · p1Þ1þbÞ2
� 1

1þb

:

(101)

So, the solution for ðxμ5ðτÞ; p5μðτÞÞ given in (99), (100),
(101) is expressed in terms of this choice of τ-gauge applied
to Eqs. (96) with Vðx2Þ ¼ cðx2Þb. This is a highly non-
trivial gauge choice for A22

5 ðτÞ that would be hard to
imagine without the guidance of the duality transformation.
With this understanding of the τ-gauge, one may now check
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explicitly that the equations of motion and the constraints
in Eq. (96) are indeed completely solved by the
ðxμ5ðτÞ; p5μðτÞ; A22

5 ðτÞÞ given above.
Note that this solution is defined up to� signs in different

regions of τ since it contains branch cuts in the complex τ
plane (see below for an example). This means that as τ
changes, the corresponding expressions must be continued
across the branch cuts in order to get continuously all the
patches of the solution. An example of this for the case of
b ¼ 1 is a square-root branch cut as discussed below.
As a check, we may specialize to two cases, namely

b ¼ 0, 1, for which we do have a direct means of obtaining
analytic solutions without using dualities, that we may
compare to the general case given above.
(i) When b ¼ 0, or Vðx25Þ ¼ c, the Lagrangian L5 reduces

to the free massive relativistic particle with mass
c≡m2, satisfying the equations of motion,
_xμ5 ¼ A22

5 pμ
5, _pμ

5 ¼ 0, p2
5 þ c ¼ 0, for which a direct

solution is obtained as

b ¼ 0∶

8<
:

xμ5ðτÞ ¼ qμ5 þ pμ
5

R
τ A22

5 ðτ0Þdτ0;
pμ
5ðτÞ ¼ pμ

5;
p2
5 þ c ¼ 0; with qμ5; p

μ
5 constants:

(102)

The solution in Eqs. (99), (100), (101) is indeed of this
form when b ¼ 0. This is verified by noting that in the
gauge (101) we have

b¼0∶
Z

τ
A22
5 ðτ0Þdτ0 ¼ −2ðq1 ·p1ÞF−2

c½F−2þðq1þp1τÞ2�
; (103)

and that the constrained constants pμ
5 are parametrized

in terms of the constants qμ1, p
μ
1 with p2

1 ¼ 0. The
choice of A22

5 ðτÞ in Eq. (101) as a function of τ to
express the solution (99), (100) is clearly τ-gauge
dependent, but this does not affect the gauge invariant
physics. To see this in the case b ¼ 0, we can write
the solution for any A22

5 ðτÞ given in (102) in terms
of the gauge invariant variables ðx05;xi

5Þ and
ðp0

5;p
i
5Þ as follows. First we write x05ðτÞ ¼ q05þ

p0
5

R
τ A22

5 ðτ0Þdτ0, from which we solve forR
τ A22

5 ðτ0Þdτ0 ¼ ðx05ðτÞ − q05Þ=p0, and replace it in
the solution for xi

5ðτÞ in (102) to obtain

xi
5 ¼ qi þ pi

5

p0
5

ðx05 − q05Þ; with p0
5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
5 þ c

q
:

This expression, written in terms of x05, is gauge
independent because it has the same form in terms
of ðx05ðτÞ;xi

5ðτÞÞ for any choice of the function A22
5 ðτÞ.

Hence all the physical information about the solution
is encoded in any gauge choice for A22

5 ðτÞ, including
the choice of gauge in (101) that made the solution
(99), (100) possible for any b.

(ii) When b ¼ 1, or Vðx25Þ ¼ cx25, the Lagrangian L5

reduces to the constrained relativistic harmonic oscil-
lator with frequency

ffiffiffi
c

p
, satisfying the equations of

motion, _xμ5 ¼ A22
5 pμ

5, _pμ
5 ¼ −A22

5 cxμ5, p2
5 þ cx25 ¼ 0,

for which a direct solution is obtained as

b ¼ 1∶

8>>>>><
>>>>>:

xμ5ðτÞ ¼ xμ0 cos

� ffiffiffi
c

p R
τ A22

5 ðτ0Þdτ0
�
þ 1ffiffi

c
p pμ

0 sin

� ffiffiffi
c

p R
τ A22

5 ðτ0Þdτ0
�
;

pμ
5ðτÞ ¼ pμ

0 cos

� ffiffiffi
c

p R
τ A22

5 ðτ0Þdτ0
�
− ffiffiffi

c
p

xμ0 sin

� ffiffiffi
c

p R
τ A22

5 ðτ0Þdτ0
�

p2
0 þ cx20 ¼ 0; with ðxμ0; pμ

0Þ constants:

(104)

The solution in Eqs. (99), (100), (101) is indeed of this form when b ¼ 1. This is verified by noting that the constrained
constants ðxμ0; pμ

0Þ are parametrized in terms of the constants ðqμ1; pμ
1Þ with p2

1 ¼ 0, and that the τ dependence in the
gauge (101) becomes

b ¼ 1∶
ffiffiffi
c

p Z
τ
A22
5 ðτ0Þdτ0 ¼ arctan ½F2q21 þ 2F2ðq1 · p1Þτ�:

Then

cos

� ffiffiffi
c

p Z
τ
A22
5 ðτ0Þdτ0

�
¼ �ð1þ F4ðq21 þ 2τq1 · p1Þ2Þ−1=2

sin

� ffiffiffi
c

p Z
τ
A22
5 ðτ0Þdτ0

�
¼ F2ðq21 þ 2τq1 · p1Þð1þ F4ðq21 þ 2τq1 · p1Þ2Þ−1=2 (105)
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reproduces the expressions in (99), (100) with b ¼ 1.
Note that the � in the cosine expression is related to
recovering all the patches of the solution; this set of
signs corresponds to the continuation of the expres-
sion across the square-root cut in the complex τ plane,
as mentioned above more generally for any b. Again
we may argue that the gauge choice for A22

5 ðτÞ is
immaterial because the same gauge invariant physics
is reproduced when written in terms of a gauge
invariant choice of the time coordinate. For b ¼ 1,
a natural gauge invariant time coordinate tðτÞ
was given in Eq. (59) which amounts to tðτÞ ¼
arctan ð ffiffiffi

c
p

x0ðτÞ=p0ðτÞÞ; in that case the solution
(99), (100) is seen to capture all the motions of the
nonrelativistic harmonic oscillator when rewritten in
terms of t. To obtain the gauge invariant motion it is
not necessary to explicitly solve for tðτÞ or for the
inverse τðtÞ; instead one may simply do a parametric
plot of ðx5ðτÞ; tðτÞÞ and ðp5ðτÞ; tðτÞÞ which is gauge
invariant. Hence, again, all the physical information
about the solution is encoded in any gauge choice for
A22
5 ðτÞ, including the choice of gauge in (101) that

made the solution (99), (100) possible for any b.
We do not know of another approach to solve the

equations (96) analytically for Vðx2Þ ¼ cðx2Þb with any
b, c, except for the duality methods discussed in this
section. Even more impressive is that we have obtained
the analytic expressions for any Vðx2Þ. This demonstrates
the utility and power of our system of dualities.

VIII. OUTLOOK

The study of dualities in 1T physics in d dimensions
is equivalent to probing the properties of the underlying
dþ 2 dimensions including the extra 1þ 1 dimensions.
In this sense the extra dimensions are not hidden and can
be investigated both experimentally and theoretically via
the dualities directly in 3þ 1 dimensions, with the guid-
ance of 2T physics. It is apparent that the discussion given
in this paper is just the tip of an iceberg of dualities that
will take a long time to mine.
We have seen that the underlying meaning of the

dualities (i↔j), which were realized here as canonical
transformations, is really gauge transformations from one
fixed gauge to another fixed gauge for the gauge group
Spð2; RÞ acting in phase space in dþ 2 dimensions. There
definitely are gauge invariants (equivalently duality invar-
iants). Specifically, any function of the LMN is an invariant,
as explained in Sec. VI, but time, Hamiltonian or more
generally space-time, as interpreted by observers in any 1T
shadow, is not among the gauge invariants. This is why 1T
physics is different in different shadows, but yet there are
deep relations and corresponding physical predictions
among observers because of the underlying gauge sym-
metry. This concept of gauge symmetry in phase space is
more general than the more familiar gauge symmetries,

such as Yang-Mills or general coordinate transformations,
that act locally only in space-time, rather than in
phase space.
The reader may better grasp the significance of these

statements by considering the concept of observers outlined
in the introduction, i.e. that a given phase space ðxμi ; piμÞ in
shadow i defines the frame of an observer that rides along
with a particle on a worldline ðxμi ðτÞ; piμðτÞÞ which is
embedded in the bulk in dþ 2 dimensions. Such an
observer, which may be said to live on a “screen i” or
“boundary i” or “shadow i” in 1þ 1 fewer dimensions,
interprets all the gauge invariant phenomena occurring in
the bulk in dþ 2 dimensions from his/her perspective i,
which is totally different than perspective j defined by
another observer riding along worldline ðxμj ðτÞ; pjμðτÞÞ that
defines shadow j. For the five different shadows discussed
in this paper we have seen that these five perspectives are
indeed very different forms of 1T physics. Nevertheless
each shadow, being just a gauge choice, captures all the
gauge invariant information in the bulk. Therefore each
shadow is holographic and hence must be dual to all other
shadows. Indeed, we have shown that all shadows are
closely related to one another by explicit dualities, and even
more strongly, that all of the different 1T physics equations
in various shadows are united and captured in a unified
form of gauge invariant equations for the phase space
ðXM; PMÞ in the bulk in dþ 2 dimensions, namely just
X2 ¼ 0, X · P ¼ 0, and P2 þ � � � ¼ 0.
These ideas resonate with Einstein’s concepts of observ-

ers in his thought experiments in various frames in special
or general relativity in 1T physics. In our case, the
analogous infinite set of frames are connected to each
other by phase space transformations. This is a much larger
set as compared to the set of frames connected to each other
by only position space transformations. Hence the uni-
fication of 1T observers is much larger in the framework of
2T physics, while the corresponding unification of their
diverse 1T equations is a unique set of equations in dþ 2
dimensions, whose form is dictated by gauge symmetry in
phase space.
More generally, the dualities generated by 2T physics

go well beyond the realm of canonical transformations
in 1T phase space because they include additional degrees
of freedom besides ðx; pÞ. We remind the reader that the 2T
formalism includes also the degrees of freedom of spinning
systems [9–12], supersymmetric systems [14], twistors
[15], fields in local field theory [18], [4], [19–21], and
fields in phase space [24]. Hence 2T physics provides a
new path to unification of 1T systems that is not available
among the familiar concepts in 1T physics.
Extrapolating from a particle’s phase space to the

corresponding situation in field theory, the shadow i in
field theory, derived from the field theory in the bulk in
dþ 2 dimensions (such as the standard model in 4þ 2
dimensions [18]) describes all the physics as seen from the
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perspective of observer i, and similarly the shadow field
theory j describes all the physical phenomena as seen from
the perspective of observer j. These are the dual field
theories that correspond to the duality (i↔j) in phase
space. These dual field theories predict the relationships
between observers i and j and capture all the gauge
invariant phenomena that the observers could measure,
so the duality between 1T field theories predicted by 2T
field theory leads to much broader verifiable tests of the
entire approach described here. For some simple cases of
(i↔j) dualities discussed in the past (simpler than the five
cases in this paper), examples of such dual field theories are
developed in [48]. For the harder cases (i↔j) discussed in
this paper it is also possible in principle to construct the
corresponding dual field theories. Our future goals include
the construction of dual versions of the standard model and
their use as new tools of investigation. The recent success-
ful application in cosmology (involving transformations
between different fixed Weyl gauges to solve and interpret
cosmological equations) [1,2] is a simple example of this
idea involving “Weyl dualities” in 3þ 1 dimensions which
originated from 2T physics gauge symmetries.
We have argued that phase space gauge symmetry in 2T

physics offers superior unifying power compared to gauge

symmetry in 1T physics. Having seen that even in simple
classical mechanics systems there does exist a deeper
unification, as shown in this paper, it is natural to expect
that the same must also be true at the deepest level of
physics principles. Hence 2T physics is likely to show the
right path to the ultimate theory. Therefore, we posit that
there is much benefit in developing further this formalism
and in studying its consequences, such as the types of
dualities discussed in this paper, and much more, in order
to better understand the meaning of space-time and true
unification. Along this path we should also benefit from
new computational techniques in 1T physics that emerge
from 2T physics. There is still much to be accomplished
in 2T physics even in classical and quantum mechanics, not
to mention field theory, string theory and M theory.
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