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According to the AdS/CFT correspondence, the N ¼ 4 supersymmetric Yang-Mills theory is studied
through its gravity dual, whose configuration has two boundaries at the opposite sides of the fifth
coordinate. At these boundaries, in general, the four-dimensional (4D) metrics are different; then we expect
different properties for the theory living in two boundaries. It is studied how these two different properties
of the theory are obtained from a common 5D bulk manifold in terms of the holographic method. We could
show in our case that the two theories on the different boundaries are described by the AdS5, which is
separated into two regions by a domain wall. This domain wall is given by a special point of the fifth
coordinate. Some issues of the entanglement entropy related to this bulk configuration are also discussed.
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I. INTRODUCTION

Up to now, many holographic approaches to the N ¼ 4
supersymmetric Yang-Mills (SYM) theory have been
performed in terms of the dual supergravity [1–10].
These approaches are based on a conjectured correspon-
dence between a conformal field theory on the boundary
Md of an asymptotic anti–de Sitter space (AdSdþ1) and
string theories on the product of AdSdþ1 with a compact
manifold. In many cases, the boundary Md is set as a
Minkowski space-time, and the bulk manifolds have a
structure that they have a boundary at the ultraviolet (UV)
side of the dual d-dimensional conformal field theory
(CFT). On the other hand, in the infrared side, they have
a horizon. Then the holographic analyses for CFT inMd are
performed in the region between the horizon and the
boundary for the gravity side.
In these approaches, the research has been extended to

the SYM theory in the background ofM4 ¼ dS4ðAdS4Þ by
introducing a 4D cosmological constant [Λ4 > 0ðΛ4 < 0Þ]
[11–16] in the supergravity solutions. In the bulk super-
gravity solutions, Λ4 appears as a free parameter in the step
of solving the equations of motion. However, this param-
eter plays an important role, since the 4D geometry of the
boundary is controlled by this parameter. Another impor-
tant point is that the form of the bulk metric is also
deformed by this parameter. As a result, we could see how
the dynamical properties of the SYM theory are changed by
the 4D geometry which is changed from the Minkowski
space-time to dS4ðAdS4Þ.

Actually, in the cases of the dS4 [11,12] and AdS4 [13],
we find quite different properties of the SYM theory from
the one observed in the Minkowski space-time. For the dS4
background, we observe a horizon in the infrared side of the
fifth coordinate, and we find the phenomena similar to the
one of the finite temperature SYM theory in the deconfine-
ment phase. On the other hand, in the case of Λ4 < 0 (for
the AdS4 boundary), we could find that the theory is in the
confining phase [13]. Furthermore, we found that the
meson spectrum obtained in our analysis is consistent with
the one obtained in the usual field theory in AdS4 [17].
Furthermore, we should notice that it is possible to

introduce another free parameter in the bulk AdS5 solution.
This parameter is called dark radiation, which corresponds
to the thermal excitation of SYM fields, and plays an
important role in determining the (de)confining phase of
the theory [14–16].
Our purpose in this article is to point out and discuss a

characteristic holographic feature of the AdS5 bulk sol-
ution. The point is that a second boundary appears in the
solution with the AdS4 boundary without horizons. It is
found at the “infrared limit” (r ¼ 0),1 which is opposite to
the boundary at the “ultraviolet limit” (r ¼ ∞). Here r
denotes the fifth coordinate of the AdS5. Then the gravity
of the bulk AdS5 is dual to the two theories living on the
two boundaries separately.
We should notice that two boundaries are also seen in the

case of the solution with dS4 boundary. However, in this
case, a horizon appears between the boundaries, and then
we can restrict the region of the holographic dual to the one
between the horizon and a boundary to study the dynamical
properties of the theory living on the boundary. In the other
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half region, the same things are considered; however, the
physics of the two boundaries might be independent of
each other.2 In the case of the AdS4 boundary, on the other
hand, there is no horizon as such a border between the two
boundaries.
The problem in this case (AdS4 boundary) is how the

bulk manifold could provide dynamical properties of the
two field theories, in other words, how we could get
information of two theories separately from the common
bulk geometry. This problem is resolved due to the
presence of a sharp domain wall in the bulk. The
dynamical properties of the boundary theory are found
through various stringy objects embedded in the bulk as
probes, since the probes are controlled by the bulk
configuration which reflects the vacuum structure of the
dual theory. In the present case, we could find that the
embedded objects are confined in one side and never cross
the wall to penetrate to the other side. Then, in this sense,
the gravity duals for the two boundaries are separated
clearly by this wall. Therefore, this wall separates the
manifold to two regions which are surrounded by the
boundaries at r ¼ 0 and r ¼ ∞, respectively. They corre-
spond to two dual field theories of the two boundaries. The
situation is shown in Fig. 1, where the two regions are
shown by IR and UV, respectively. We address the holo-
graphic problem from this viewpoint and examine the
robustness of the wall.
This statement would be correct at the level of classical

in the gravity side of the bulk. When we consider the
quantum fluctuations of the bulk, they could cross the wall,
since there are no obstacles to prevent their propagation like
a singularity at this wall point. This problem, we will
discuss in a future article.
When we add the dark radiation, our solutions of

Friedmann-Robertson-Walker (FRW) type are modified.
We find that the role of the dark radiation is to shift the
position of the horizon and the domain wall for the dS4 and
AdS4 cases, respectively. In the latter case, a phase
transition from confinement to the deconfinement phase
is seen when the magnitude of this term exceeds a critical
value as shown in Ref. [14]. Another observation is that this
term deforms the geometry of the IR boundary. On the
other hand, the metric at the UV boundary is not affected by
the dark radiation. This fact seems to be curious but
interesting. We will give more details on this point in
the future publication.
In the next section, our model to be examined is given

and two boundaries of the gravity dual are shown. Then, in
Sec. III, we show the existence of the domain wall which
divides the bulk region of two boundary theories through
the Wilson loop, D7 and D5 embeddings. From these, we
can say quarks, flavored mesons, and baryons are all

separately examined in each bulk region corresponding
to the dual theory in each boundary. In Sec. IV, the
entanglement entropy is examined. In this case also, the
minimal surface giving the entanglement entropy of a
theory in one boundary cannot penetrate into the region
which is dual to the other boundary theory, since the
penetration is protected by the domain wall. This fact
implies that there is no entanglement of the two theories of
each boundary. A summary and discussions are given in the
final section.

II. SETUP OF THE MODEL

First, we briefly review our model [14–16]. We start
from the 10D type IIB supergravity retaining the dilaton Φ,
axion χ, and self-dual five-form field strength Fð5Þ:

S¼ 1

2κ2

Z
d10x

ffiffiffiffiffiffi
−g

p �
R−

1

2
ð∂ΦÞ2þ1

2
e2Φð∂χÞ2− 1

4 ·5!
F2
ð5Þ

�
;

(1)

where other fields are neglected, since we do not need
them, and χ is Wick rotated [18]. Under the Freund-Rubin
ansatz for Fð5Þ, Fμ1…μ5 ¼ −

ffiffiffiffi
Λ

p
=2ϵμ1…μ5 [19,20], and for

the 10D metric as M5 × S5,

ds210 ¼ gMNdxMdxN þ gijdxidxj

¼ gMNdxMdxN þ R2dΩ2
5;

we consider the solution. Here, the parameter is set
as ðμ ¼Þ1=R ¼ ffiffiffiffi

Λ
p

=2.
While the dilaton Φ and the axion χ play an important

role when the boundary of M5 is given by Minkowski
space-time [19,20], we neglect them here, since we
study the case of ðAÞdS4 boundary. Then the equations

FIG. 1 (color online). A schematic picture which represents the
bulk AdS5 with two boundaries (shown by r ¼ 0 and r ¼ ∞).
The middle line (r ¼ r0) shows the domain wall (horizon) for the
AdS4 (dS4) boundary. This line separates the bulk into two
regions shown by “IR” and “UV,” which are dual to the theory on
the boundaries at r ¼ 0 and r ¼ ∞.

2We could see a similar situation in the case of the topological
black hole solution in terms of the global coordinate r.
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of motion of noncompact five-dimensional part M5 are
written as3

RMN ¼ −ΛgMN: (3)

While this equation leads to the solution of AdS5, there
are various AdS5 forms of the solutions which are dis-
criminated by the geometry of their 4D boundary as
shown below.

A. Solution

A class of solutions of the above equation (3) are
obtained in the following form of the metric [16]:

ds210 ¼
r2

R2
ð−n̄2dt2 þ Ā2a20ðtÞγijðxÞdxidxjÞ þ

R2

r2
dr2

þ R2dΩ2
5: (4)

where

γijðxÞ ¼ δij

�
1þ k

r̄2

4r̄02

�−2
; r̄2 ¼

X3
i¼1

ðxiÞ2; (5)

and k ¼ �1 or 0. The arbitrary scale parameter r̄0 is set
hereafter as r̄0 ¼ 1. For the undetermined noncompact five-
dimensional part, the following equation is obtained from
the tt and rr components of (3) [21,22]:�

_a0
a0

�
2

þ k
a20

¼ −
Λ
4
A2 þ

�
r
R
A0
�

2

þ C
a40A

2
; (6)

where _a0 ¼ ∂a0=∂t, A0 ¼ ∂A=∂r, and

A ¼ r
R
Ā;

∂tða0ðtÞAÞ
_a0ðtÞ

¼ r
R
n̄: (7)

The constant C is given as an integral constant in obtaining
(6), we could understand that it corresponds to the thermal
excitation of theN ¼ 4 SYM theory for a0ðtÞ ¼ 1, and it is
called dark radiation [21,22].
At this stage, two undetermined functions, Āðr; tÞ and

a0ðtÞ, remain. However, the equation to solve them is
Eq. (6) only. Therefore, we could determine a0ðtÞ by
introducing the 4D Friedmann equation, which is indepen-
dent of (3). However, it should be realized on the boundary

where various kinds of matter could be added in order to
form the presumed FRW universe as in [16]�
_a0
a0

�
2

þ k
a20

¼ Λ4

3
þ κ24

3

�
ρm
a30

þ ρr
a40

þ ρu

a3ð1þuÞ
0

�
≡ λðtÞ; (8)

where κ4 (Λ4) denotes the 4D gravitational constant
(cosmological constant). The quantities ρm and ρr denote
the energy density of the nonrelativistic matter and the
radiation of the 4D theory, respectively. The most right-
hand side expression λðtÞ in (8) is given as a simple form of
the most left-hand side of (8) given by using a0ðtÞ. Then the
remaining function Aðt; rÞ is obtained from (6) in terms of
λðtÞ. The last term ρu in the middle of (8) represents an
unknown matter with the equation of state, pu ¼ uρu,
where pu and ρu denote its pressure and energy density,
respectively. It is important to be able to solve the bulk
equation (6) in this way by relating its left-hand side to the
Friedmann equation defined on the boundary [16], since we
could have a clear image for the solution.
Finally, the solution is obtained as

Ā ¼
��

1 −
λ

4μ2

�
R
r

�
2
�

2

þ ~c0

�
R
r

�
4
�

1=2
; (9)

n̄ ¼
�
1 − λ

4μ2
ðRrÞ2

��
1 −

λþa0
_a0
_λ

4μ2
ðRrÞ2

�
− ~c0ðRrÞ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

1 − λ
4μ2

ðRrÞ2
�
2 þ ~c0ðRrÞ4

r ; (10)

where

~c0 ¼ C=ð4μ2a40Þ: (11)

B. Two boundaries

1. Ultraviolet boundary r → ∞
In the case of the above solution, there is a boundary at

r → ∞, where the energy scale of the dual field theory is at
the ultraviolet limit. The boundary should be set at the
position where the metric has a second-order pole [23],
since the manifold is not well defined there. At this
boundary r → ∞, the 4D metric is given as

ds2FRW ¼ −dt2 þ a0ðtÞ2γijdxidxj; (12)

since the above solution behaves as n̄ → 1 and Āðr; tÞ → 1
for r → ∞. This is the well-known FRW metric, which is
usually used in cosmology to study the time development
of our Universe. In the present case, therefore, we can study
the SYM theory in this FRW universe from the bulk metric
(4) which is the holographic dual as shown in [16].

3The five-dimensional M5 part of the solution is obtained by
solving the following reduced Einstein frame 5D action:

S ¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffi
−g

p ðRþ 3ΛÞ; (2)

which is written in the string frame and taking α0 ¼ gs ¼ 1 and
the opposite sign of the kinetic term of χ is due to the fact that the
Euclidean version is considered here [18].
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2. Infrared boundary r → 0

Next, from (9) and (10), we find that there is another
boundary at r → 0, in the infrared limit, for Λ4 < 0, small
C, and a tiny time dependence of λðtÞ. However, the
appearance of this boundary depends on the time when
the effect of C and the time dependence of λðtÞ are
considered. The situation is therefore a little complicated.
For example, consider the case of _λ ¼ 0 for simplicity; then
the second boundary is found for λ < 0 and j λ

4μ2
j > ffiffiffiffiffi

~c0
p

.

However, the last inequality depends on time, and it is
satisfied for a restricted time interval. So a more simple case
is considered below.

(i) For the case of C ¼ 0 and negative constant
λð¼ −λ0Þ.—In order to make clear the two bounda-
ries, the situation is simplified by considering the
case of λ ¼ −λ0 and C ¼ 0, where λ0 is a positive
constant. This corresponds to the case of negative Λ4

and λ0 ¼ −Λ4=3. In this case, the scale factor is
given by solving Eq. (8) for k ¼ −1 as follows:

a0ðtÞ ¼ sin ð
ffiffiffiffiffi
λ0

p
tÞ=

ffiffiffiffiffi
λ0

p
; (13)

and then the metric is written as

ds210 ¼ ds25 þ R2dΩ2
5; (14)

ds25 ¼
r2

R2

�
1þ r20

r2

�
2

ð−dt2 þ a20ðtÞγijðxÞdxidxjÞ

þ R2

r2
dr2; (15)

where r20 ¼ λ0R4=4 and

γijðxÞ ¼ δij

�
1 −

r̄2

4

�−2
: (16)

In this case, the boundary represents a typical AdS4
manifold, and the SYM theory on this manifold has
been holographically examined well previously [13].
In this case, the analysis has been performed by
supposing that the bulk is dual to the theory on the
boundary r ¼ ∞. And we have paid no attention to the
other possible boundary at r ¼ 0.

However, in order to have correct results of the analysis,
we must notice the fact that there is actually another
boundary at r → 0 in the bulk of (19). In order to see this
point clearly, we rewrite the above metric by changing the
coordinate r as r ¼ r20=z; then we have

ds210 ¼
z2

R2

�
1þ r20

z2

�
2

ð−dt2 þ a20ðtÞγijðxÞdxidxjÞ

þ R2

z2
dz2 þ R2dΩ2

5: (17)

Then we find again the same form of metric with (19), but r
is replaced by z. This implies the following two points.
(i) There must be another bulk region near z ¼ ∞ which is
dual to SYM theory living on AdS4 at z ¼ ∞. (ii) Second,
the limit of z ¼ ∞ is also the ultraviolet region of the SYM
theory as understood from the form of (17). Then we could
obtain the same dynamical information, from the metric
(17), of the theory with the one given for the theory at
r ¼ ∞. In other words, in the bulk manifold, the same two
dual theories should be expressed by two regions which are
separated at some point of the coordinate r. This point is
called a domain wall, and we could find it at r ¼ r0 as
shown below.
(ii) For the case of C ¼ 0 and positive constant

λ ¼ λ0.—In the case of λ ¼ λ0 > 0, Λ4 is positive
and the scale factor is given by solving Eq. (8) for
k ¼ 0 as follows:

a0ðtÞ ¼ að0Þe
ffiffiffi
λ0

p
t; (18)

and then the metric is written as

ds210 ¼ d~s25 þ R2dΩ2
5; (19)

d~s25 ¼
r2

R2

�
1 −

r20
r2

�
2

ð−dt2 þ a20ðtÞδijðxÞdxidxjÞ

þ R2

r2
dr2: (20)

In this case, the boundary represents the dS4 manifold,
and the SYM theory on this manifold has been
holographically examined well previously [12] for
the theory on the boundary r ¼ ∞. And we have
considered only for the half region of r0 < r < ∞;
then no attention is paid to the other possible boundary
at r ¼ 0. In this case, however, the situation is
different from the above case, and it would be
reasonable to restrict to the region r0 < r < ∞, since
the point r ¼ r0 represents the horizon. The situation
is similar to the case of the Schwartzschild-AdS
background, where the holographic region is restricted
to the region from the horizon to r ¼ ∞.

It would be an interesting problem to study the theory at
the r ¼ 0 boundary by considering the region of
0 < r < r0. We expect similar behavior to the theory on
r ¼ ∞. However, here, we give such study in the future
article.
(iii) General case of C ≠ 0.—Here we consider the

metric of the general case of C ≠ 0, namely, (4)
with (9)–(11). In this case, we find Ā ≠ n̄, since Ā
and n̄ are modified by the term ~c, and n̄ could have a
zero point as in the case of the black hole configu-
ration when ~c exceeds a critical value. Then we
could find a phase transition by adding the term C to
the solution with the AdS4 boundary [14].
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In the confinement phase, we find the position of the
domain wall is pushed to r ¼ 0 by increasing ~c. In the case
of the dS4 boundary, the horizon is pushed toward larger r.
In any case, the boundary metric at r ¼ 0 is deformed. This
point is seen as follows. The five-dimensional part of the
metric is rewritten in terms of z� ¼ 1=z2 as follows:

ds2ð5Þ ¼ R2

�
1

z�
ĝμνdxμdxν þ

dz�2

4z�2

�
; (21)

and the 4D part is expanded by the powers of z for R ¼ 1,
as follows:

ĝμν ¼ ĝð0Þμν þ ĝð2Þμνz�

þ z�2ðĝð4Þμν þ ĥ1ð4Þμν log z� þ ĥ2ð4Þμνðlog z�Þ2Þ þ � � � :
(22)

The first term is given as

ĝð0Þμν ¼ ðĝð0Þ00; ĝð0ÞijÞ

¼
�
−
ððbb1Þ2 − ~c0Þ2
ðb4 þ ~c0Þr40

;
b4 þ ~c0

r40
a0ðtÞ2γi;j

�
; (23)

where

b2 ¼ −
λ

4
R4; b21 ¼ −

λþ _λa0= _a0
4

R4: (24)

This implies that the boundary metric depends on the dark
radiation, namely, the SYM fields. Then this fact seems to
contradict the expectation of the decoupling of the SYM
theory and the gravity on the boundary. On the other hand,
at r ¼ ∞, the boundary metric is not affected by this dark
radiation C as expected. Then the holographic situation is
modified in the side of r ¼ 0 for C ≠ 0, where the dual
4D theory couples with gravity through the energy
momentum tensor4 generated in the side of the SYM
theory. It is an interesting problem to make clear this point
and to investigate the holography of a SYM theory
coupled with gravity. We, however, postpone to inves-
tigate this problem to the future, and we restrict to the case
of C ¼ 0 hereafter.

III. GRAVITY DUAL AND DOMAIN WALL

We consider the gravity dual of the two theories living on
different boundaries. It is represented by a common bulk

manifold. We study how we can see the holographic
properties of two field theories on the same bulk manifold
through various objects which are responsible for field
theories.

A. Wilson loop and quark confinement

The potential between a quark and an antiquark is
studied by the Wilson loop. It is obtained holographically
from the U-shaped (in the r − x plane) string which is
embedded in the bulk, and its two end points are on the
boundary. By supposing a string whose world volume is set
in the ðt; xÞ plane,5 the energy E of this state is obtained as a
function of the distance (L) between the quark and
antiquark according to Ref. [12].
Taking the gauge as X0 ¼ t ¼ τ and X1 ¼ x1 ¼ σ for the

coordinates ðτ; σÞ of string world volume, the Nambu-Goto
Lagrangian in the present background (4) becomes

LNG ¼ −
1

2πα0

Z
dσn̄ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 þ

�
r
R

�
4

ðĀðrÞa0ðtÞγðxÞÞ2
s

;

(25)

where

γðxÞ ¼ 1

1 − x2=4
(26)

and we notice r0 ¼ ∂r=∂x ¼ ∂r=∂σ and n̄; Ā have no time
dependence since we here use the metric (20). The general
forms of the solution for n̄ and Ā are given in (9)–(11), and
they depend on the time through the scale factor a0ðtÞ.
Then, in order to see the static energy as E ¼ −LNG, we
should restrict the solutions to the case of C ¼ 0 and
λ ¼ −λ0. In this case, the two boundaries have the same
form of metric as given in (13)–(17) with different notation
of the radial coordinate for each boundary, r and z,
respectively.
In the case of (13)–(17), the energy is rewritten to a more

convenient form by introducing the factor ns (given below)
[24] as

E ¼ −LNG ¼ 1

2πα0

Z
d ~σns

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
R2

r2Ā
∂ ~σr

�
2

s
; (27)

~σ ¼ a0ðtÞ
Z

dσγðσÞ ¼ a0ðtÞ
Z

dσ
1

1 − σ2=4
; (28)

ns ¼
�
r
R

�
2

Ā n̄ ¼
�
r
R

�
2
�
1þ r20

r2

�
2

: (29)

4We could show that the vacuum expectation value of the
energy momentum tenser in the IR side boundary is also derived
according to the renormalization group method used in the UV
side. The result at the IR side is given by the same form of the
one at the UV side by replacing the curvatures written by the
metric (II B). For example, the trace anomaly is given by
hTμ

μi ¼ N2

32π2
ðRμνRμν − 1

3
R2Þ. See Appendix B.

5Here x denotes one of the three coordinate xi, and we take x1
in the present case.
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Here, we use the proper coordinate ~σ instead of the
comoving coordinate σ to measure the distance between
the quark and antiquark.
In this form, the criterion of the confinement is stated

such that ns has a finite minimum value at some appropriate
rð¼ r�Þ. In the present case, we find r� ¼ r0. Actually, in
such a case, E is approximated as [12]

E ∼
nsðr�Þ
2πα0

L; (30)

where

L ¼ 2

Z
~σmax

~σmin

d ~σ (31)

and ~σmin ( ~σmax) is the value at rmin (r ¼ ∞) of the string
configuration [13]. The tension of the linear potential
between the quark and antiquark is therefore given as

τqq̄ ¼
nsðr0Þ
2πα0

: (32)

We notice that the U-shaped string configuration whose
bottom point is near r0 and the string on both sides goes up
toward the boundary r ¼ ∞. When the bottom approaches
r0, the length L goes to ∞. In other words, the string
configuration is bounded at r ¼ r0 and cannot exceed this
point to smaller r.
In the case of (17), the procedure of the calculation of the

Wilson loop is completely parallel to the above case only
by replacing r by z. Then we find the same tension of the
linear potential between the quark and antiquark, which are
living on the boundary r ¼ 0 or z ¼ ∞, is obtained as

τqq̄ ¼
nsðr0Þ
2πα0

: (33)

In the present case, the string on both sides goes up toward
the boundary, namely, to r ¼ 0. So the U-shaped configu-
ration of the string has a form which has been upside down
to the one obtained above. Then we will find two types of
string configurations which are responsible to the Wilson
loop calculation. The end points of the one type of string go
towards r ¼ ∞, and the one of the other type goes to
r ¼ 0. This equation is very complicated, so we show its
numerical result in Fig. 2.

1. String configurations and domain wall

Here we show the string configurations mentioned above
to make clear the situation. They are obtained by solving
the equation of motion for the profile of the string. Both the
solutions belonging to the boundary r ¼ ∞ and r ¼ 0 are
obtained by solving the same equation, which is given from
(25) as follows:

r00 − r0
�
log

�
r4

R4
þ
�

r0

ð1þ ðr0=rÞ2Þ
�

2
��0

þ 2
r30
r3

r02

1þ ðr0=rÞ2
− 2

r3

R4

�
1 −

�
r0
r

�
4
�

¼ 0; (34)

where a prime denotes the differentiation with respect to ~σ
as r0 ¼ ∂ ~σr. This equation is complicated, so we solve it
numerically.
Several configurations are shown in Fig. 2, from which

we can see the solutions are separated to two groups by the
boundary condition at σ ¼ x ¼ 0, namely, the value of
rð0Þ. The wall which separates two classes of the solutions
is found at rð0Þ ¼ r0.

B. D7 brane embedding and domain wall

Here, we study the D7 brane embedding, which is
responsible for studying the meson spectrum and the chiral
condensate of the boundary theory. The D7 brane action is
given by the Dirac-Born-Infeld (DBI) and the Chern-
Simons terms as follows:

SD7 ¼ −T7

Z
d8ξe−Φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det ðgab þ 2πα0FabÞ

p
þ T7

Z X
i

ðe2πα0Fð2Þ ∧ cða1…aiÞÞ0…7
;

gab ≡∂aXμ∂bXνGμν; ca1…ai ≡∂a1X
μ1…∂aiX

μiCμ1…μi ;

(35)

where T7 is the brane tension. The DBI action involves the
induced metric gab and the Uð1Þ world volume field
strength Fð2Þ ¼ dAð1Þ.

1. Near r ¼ ∞
For simplicity, we consider the background (19)–(20)

near the boundary r ¼ ∞. The metric of the extra six-
dimensional part of this metric is rewritten as follows:

0.5 1.0 1.5

0.5

1.0

1.5

2.0
r

FIG. 2 (color online). Solutions for rðσÞ, where ~σ is denoted by
σ. The curves denote for rð0Þ ¼ 1.1; 1.01; 0.99; 0.9; 0.6 from the
above one. The horizontal line r ¼ 1.0 shows the domain wall.
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R2

r2
dr2 þ R2dΩ2

5 ¼
R2

r2

�
dρ2 þ ρ2dΩ2

3 þ
X9
i¼8

dXi2

�
;

(36)

where the new coordinate ρ is introduced instead of r with
the relation

r2 ¼ ρ2 þ ðX8Þ2 þ ðX9Þ2: (37)

Thus, the induced metric of the D7 brane is obtained as

ds28 ¼
r2

R2

�
1þ r20

r2

�
2

ð−dt2 þ a20ðtÞγ2ðxÞðdxiÞ2Þ

þ R2

r2
ðð1þ w02Þdρ2 þ ρ2dΩ2

3Þ; (38)

where the profile of the D7 brane is taken as ðX8; X9Þ ¼
ðwðρÞ; 0Þ and w0 ¼ ∂ρw; then

r2 ¼ ρ2 þ w2: (39)

In the present case, there is no Ramond-Ramond field, so
the action is given only by the one of DBI as

SD7 ¼ −T7Ω3

Z
d4xa30ðtÞγ3ðxÞ

Z
dρρ3Ā4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w02ðρÞ

q
;

(40)

where

Ā ¼
�
1þ r20

r2

�
2

(41)

andΩ3 denotes the volume of S3 of the D7’s world volume.
From this action, the equation of motion for w is

obtained as

w00 þ
�
3

ρ
þ ρþ ww0

r
∂rðlogðĀ4ÞÞ

�
w0ð1þ w02Þ

−
w
r
ð1þ w02Þ2∂rðlogðĀ4ÞÞ ¼ 0: (42)

The constant w is not the solution of this equation, so the
supersymmetry is broken. The numerical solutions of (42)
for wðρÞ are shown in Fig. 3. In general, in this case, we
find finite chiral condensate hΨ̄Ψi ¼ c for any mq ≥ 0,
since the curves decrease from above with increasing ρ. For
all curves, we find the behavior given by the following
asymptotic form:

w ¼ mq þ
cþ 4m2

qr20 logðρÞ
ρ2

þ � � � ; (43)

at large ρ with c > 0. Here, the term proportional to logðρÞ
comes from the breaking of the conformal invariance due to
the cosmological constant in the theory [11–13]. We can
observe spontaneous chiral symmetry breaking from the
third curve, which corresponds to mq ¼ 0. It shows the
mass generation of a massless quark due to the chiral
condensate hΨ̄Ψi.
As a result, we could say that the spontaneous mass

generation of massless quarks is realized in the theory on
the boundary at r ¼ ∞. This point was already found
previously [16]. We notice here that the embedded region
of the D7 brane with mq ≥ 0 is restricted to the region
r > r0. Furthermore, there is no D7 brane configuration
which crosses the domain wall r ¼ r0 in the w − ρ plane.
Then the quarks introduced in the dual SYM theory on the
boundary r ¼ ∞ can be represented by the D7 brane
embedded in the region of r > r0.

2. Near r ¼ 0

For the flavor brane near r ¼ 0, its embedding is
performed as follows. First, by adopting the bulk metric
(17), the procedure is completely parallel to the above case
by replacing r by z. Then the embedded D7 branes of
mq ≥ 0 are all obtained in the region of z > r0, and we find
the dual theory with the chiral symmetry breaking phase at
the boundary r ¼ 0. In the present case, the region z > r0
means r < r0 since z ¼ r20=r. Then we find the fact that
each theory in two boundaries of the bulk is separated by
the wall at r ¼ r0. Namely, we can study each dual theories
given by considering the gravity within each region.

C. D5 Branes and baryon

Next, we consider the baryon. It is constructed from a
vertex and Nc quarks, and the latter are expressed by
fundamental strings. The vertex is identified with the D5

2 4 6 8 10

1.0

0.5

0.5

1.0

1.5

2.0

w

FIG. 3 (color online). Typical solutions of wðρÞ for
λ0 ¼ 2; μ ¼ 1=R ¼ 1.0, and r0 ¼ 1=

ffiffiffi
2

p
. The curves are given

for wð0Þ ¼ 1.3; 1.1; 1.05 from above to below. The circle
represents r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 − ρ2

p
, which corresponds to the domain wall

of the dual bulk manifold for two boundaries.
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brane, which is embedded in the bulk as a probe with a
nontrivial Uð1Þ flux in it. Then a baryon is discussed
through the D5 brane embedding given as follows.
First, we briefly review the model based on type IIB

superstring theory [25–29]. In the type IIB model, the
vertex is described by the D5 brane which wraps S5 of the
10DmanifoldM5 × S5. In this case, in the bulk, there exists
the following form of self-dual Ramond-Ramond field
strength:

Gð5Þ ≡ dCð4Þ ¼
4

R
ðϵS5 þ �ϵS5Þ; (44)

ϵS5 ¼ R5volðS5Þdθ1 ∧ � � � ∧ dθ5; (45)

where volðS5Þ≡ sin4θ1volðS4Þ≡ sin4θ1sin3θ2sin2θ3 sin θ4
and ϵS5 denotes the volume form of the S5 part. The flux
from the stacked D3 branes flows into the D5 brane as a
Uð1Þ field which is living in the D5 brane.
The effective action of the D5 brane is given by using the

Born-Infeld and Chern-Simons term as follows:

SD5 ¼ −T5

Z
d6ξe−Φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðgab þ 2πα0FabÞ

p
þ T5

Z
ð2πα0Fð2Þ ∧ cð4ÞÞ0…5

;

gab ≡ ∂aXμ∂bXνGμν;

ca1…a4 ≡ ∂a1X
μ1…∂a4X

μ4Cμ1…μ4 ; (46)

where T5 ¼ 1=ðgsð2πÞ5ls6Þ and Fð2Þ ¼ dAð1Þ, which rep-
resents the Uð1Þ world volume field strength. In terms of
(the pullback of) the background five-form field strength
Gð5Þ, the above action can be rewritten as

SD5 ¼ −T5

Z
d6ξe−Φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgþ FÞ

p
þ T5

Z
Að1Þ ∧ Gð5Þ:

The embedding of the D5 brane is performed by solving
the rðθÞ, xðθÞ, and Að1ÞðθÞ [29]. They are retained as
dynamical fields in the D5 brane action as the function of
θ≡ θ1 only. The equation of motion for the gauge field Að1Þ
is written as

∂θD ¼ −4 sin4 θ;

where the dimensionless displacement is defined as the
variation of the action with respect to E ¼ Ftθ, namely,
D ¼ δ ~S=δFtθ and ~S ¼ S=T5Ω4R4. The solution to this
equation is

D≡Dðν; θÞ ¼
�
3

2
ðνπ − θÞ þ 3

2
sin θ cos θ þ sin3θ cos θ

�
:

(47)

Here, the integration constant ν is expressed as
0 ≤ ν ¼ k=Nc ≤ 1, where k denotes the number of
Born-Infeld strings emerging from one of the pole of the S5.
Next, it is convenient to eliminate the gauge field in

favor of D; then the Legendre transformation is performed
for the original Lagrangian to obtain an energy functional
as [27–29]

U ¼ N
3π2α0

Z
dθn̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 þ ðr=RÞ4x02ðĀa0γÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffi
VνðθÞ

p
;

(48)

VνðθÞ ¼ Dðν; θÞ2 þ sin8θ; (49)

where we used T5Ω4R4 ¼ N=ð3π2α0Þ and we use the
metric form (4). Then, in this expression, (48), rðθÞ and
xðθÞ remain, and they are solved by minimizing U. As a
result, the D5 brane configuration is determined.
For simplicity, here, we restrict to the pointlike configu-

ration; namely, r and x are constants. Furthermore, the
simple metric (20) is adopted. In this case, we have for the
matter considered here

U ¼ rn̄ðrÞU0 ¼ r

�
1þ r20

r2

�
U0; (50)

where U0 is a constant given as

U0 ¼
N

3π2α0

Z
dθ

ffiffiffiffiffiffiffiffiffiffiffiffi
VνðθÞ

p
: (51)

From (50), we find that U has a minimum at rm ¼ r0. Then
the vertex is trapped at the domain wall.
We notice, however, that the embedded regions of the

fundamental strings, quarks, are separated to two regions
by the domain wall. Namely, the strings cannot cross the
domain wall. In this sense, the baryons are also separated to
two theories by the wall in the gravity side.

IV. ENTANGLEMENT ENTROPY
AND DOMAIN WALL

Next, we consider the entanglement entropy for the
theory of one boundary. It is given by calculating the
minimum area of the surface Awhose boundary ∂A is set at
the boundary of the bulk and the surface could be extended
in the bulk. In this calculation, there is a possibility that the
minimal surface could penetrate into the bulk region
corresponding to the theory living in the other boundary.
When this situation is realized, we could see a new
entanglement of two theories which are living in the
separated boundaries.
In order to see such a phenomenon, we estimate

the entanglement entropy of a theory in one boundary
according to formula (3.3) in [30]:
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SEE ¼ AreaðγÞ
4Gð5Þ

N

; (52)

where γA denotes the minimal surface, whose boundary is
defined by ∂A and the surface is extended into the bulk.

And Gð5Þ
N ¼ Gð10Þ

N =ðπ3R5Þ denotes the 5D Newton con-

stant reduced from the 10D one Gð10Þ
N . If, in this calcu-

lation, the minimal surface crosses the domain wall,
then we can say that a new kind of an entanglement
between two theories on each boundary may exist. This is
because the surface or equivalently the entanglement
entropy is controlled by the dynamics of the other
theory.
We adopt (17) as the bulk metric, which is given as

ds210 ¼
z2

R2

�
1þ r20

z2

�
2

ds2FRW4
þ R2

z2
dz2 þ R2dΩ2

5; (53)

where

ds2FRW4
¼ −dt2 þ a20ðtÞγ2ðdp2 þ p2dΩ2

2Þ; (54)

p ¼ r̄
r̄0
; γ ¼ 1=ð1 − p2=4Þ: (55)

We notice here that the mass dimension is −1 for a0, but p
has no mass dimension since it is scaled by r̄0. In order to
study the entanglement entropy (EE), we separate the 3D
space of the boundary at a fixed time by a constant value for
p ¼ p0. Then the EE for the restricted space p < p0 is
obtained holographically by finding the minimum value of
the following quantity:

Sarea
4π

¼
�
r0
R
a0

�
3
Z

ϵ

x0

dxf1ðxÞ; (56)

f1ðxÞ ¼ p2

�
1þ x2

x

�
3

γ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 þ b

γ2ð1þ x2Þ2
s

; (57)

b ¼ R4

a20r
4
0

; p0 ¼ ∂p
∂x ; (58)

where x ¼ z=r0 and x0 denotes the end point of the
embedded surface. Since this integral diverges at
the UV limit, the UV cutoff ϵ is introduced. This represents
the minimal surface of the ball embedded in the
bulk.
In order to obtain the minimum of Sarea, we must solve

the variational equation for pðxÞ which is extended in the
region 0 < x < x0 of the bulk space. On the other hand,
the information of the two boundary theories is divided by
the domain wall as mentioned above. Then we will see the
upper bound of x0 at x0 ¼ 1. This point corresponds to

r ¼ r0. This is actually assured by rewriting the above Sarea
as follows6:

Sarea
4π

¼
�
r0
R
a0

�
3
Z

dyf2ðyÞ; (59)

f2ðyÞ ¼
�
1þ x2

x

�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bðx0p2γ2Þ2

ð1þ x2Þ2

s
; (60)

y ¼ yðpÞ ¼
Z

p
dp

p2

ð1 − p2=4Þ3 ; x0 ¼ ∂yx: (61)

These formulas are very similar to the case of the Wilson
loop calculation, where the embedded string configuration
is obtained as a U-shaped one, and its bottom point is
bounded at the minimum of the prefactor of the integrand.
It corresponds here to

nSphere ¼
�
1þ x2

x

�
3

: (62)

In fact, we can see that nSphere has a minimum at x ¼ 1.
Then the embedded solution of the ball would be bounded
in the region 0 < x < 1, and this is also assured from the
numerical calculation as shown in Fig. 4.
The analysis given above is obtained for pðzÞ with

various p0, which is the value of p at the UV limit z ¼ 0.
The bottom point of pðzÞ approaches to the value for z ¼ r0
(the horizontal line x ¼ 1). However, it does not ever
exceed this line. In other words, the quantum information
of the theory on the other boundary does not affect the EE
calculation of the theory at z ¼ 0. This implies that there is
no entanglement between the two theories on the opposite
boundaries at r ¼ 0ðz ¼ ∞Þ and r ¼ ∞ðz ¼ 0Þ.

0.5 1.0 1.5 2.0
p

0.2

0.4

0.6

0.8

1.0

1.2

1.4

z

FIG. 4 (color online). Embedded solutions of pðzÞ for
p0 ¼ 0.74, 1.21, 1.79, and 1.97 from below. Other parameters
are set as r0 ¼ 1, R ¼ 1, and a0 ¼ 0.4. The horizontal line
represents the domain wall.

6Notice that p in Eq. (60) is a function of y as solved from
Eq. (61).
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A. Divergent term and central charge of the theory

While it is difficult to find an analytic solution of pðzÞ in
the present case, it is possible to see the divergent form of
Sarea
4π near the UV limit by using the approximate solution
near the boundary. Before solving our present case, this
point is shown first for the bulk AdS5 case with a
Minkowski boundary metric. Through this analysis, we
could obtain knowledge related to the central charge of the
theory. We write the AdS5 metric as

ds2AdS5 ¼
�
R
z

�
2

ðημνdxμdxν þ dz2Þ: (63)

In this case also, we use the same notation p for the three
space radial coordinate as

ds2ð4Þ ¼ ημνdxμdxν ¼ −dt2 þ dp2 þ p2dΩ2
ð2Þ: (64)

Then the 3D area of the embedded ball with radius p0 is
given as

Sarea
4π

¼ R3

Z
zmax

zmin

dz
z3

p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p02

q
; (65)

where p0 ¼ ∂p=∂z and ϵ is the cutoff, namely, z > ϵ. In
order to get the area of minimal surface, we should
minimize Sarea. This requirement is achieved by the
variational principle. The variational equation for pðzÞ is
solved in this case as

p ¼ p0 þ p2z2 þ p4z4 þ � � � : (66)

In the above, p0 and p4 are two arbitrary constants. This is
the general solution. Simple power counting assures that
only p0 and p2 are necessary to get divergent terms of Sarea.
The value of p2 is determined as

p2 ¼ −
1

2p0

: (67)

Using this solution, we can estimate the leading UV
(ϵ → 0) divergent terms as

Sarea
4π

¼ 1

2
R3

��
p2
0

ϵ2

�
þ log

�
ϵ

p0

��
þ finite terms; (68)

where the parameter p0, which characterizes the present
physical system, is introduced according to Refs. [30,31].
The entanglement entropy is then expressed in the form

used in Ref. [31] as follows:

SEE ¼ γ1
2
·
Areað∂AÞ

4πϵ2
þ γ2 log

�
p0

ϵ

�
þ finite terms; (69)

where Areað∂AÞ denotes the area of the surface A, and γ1
and γ2 are numerical constants. In the present case,
Areað∂AÞ ¼ 4πp2

0; then the coefficients γ1 and γ2 are
obtained as

γ1
2
¼ 2πR3

4Gð5Þ
N

¼ N2; γ2 ¼
2πR3

4Gð5Þ
N

¼ N2; (70)

with the use of (52) and the relation R4 ¼ 4πgsα02N. The
result is compared to the corresponding divergent terms of
our AdS4 space model in the following.
Now we return to (56). In this case, the variational

equation is solved by using the following expansion:

p ¼ p0 þ p2x2 þ p4Lx4 log xþ p4x4 þ � � � : (71)

The coefficients of this series expansion are determined by
the two arbitrary constants p0 and p4. The values of p2 and
p4L are determined, respectively, as

p2 ¼ −
ð1 − ðp2

0=4Þ2ÞR4

2a20p0r20
(72)

and

p4L ¼ −
ð1 − ðp2

0

4
Þ2ÞR8cos2ð ffiffiffiffiffi

λ0
p

tÞ
4a40p0r80

: (73)

This solution is not analytical in contrast to (66) due to
the term log x. However, it is not important, since only p0

and p2 contribute to the divergent terms of SEE as is
mentioned above. The value of p2 is determined as

p2 ¼ −
ð1 − ðp2

0=4Þ2ÞR4

2a20p0r20
: (74)

With this solution, we obtain

Sarea
4π

¼ 1

2
R3

��
k20
4ϵ2

sin2ð
ffiffiffiffiffi
λ0

p
tÞ
�

þ ð1þ k20cos
2ð

ffiffiffiffiffi
λ0

p
tÞÞ log

�
ϵ

p0

��
þ finite terms;

(75)

where k0 ¼ p0=ð1 − p2
0=4Þ. This result is also written in the

form of (69) with the following coefficients γi:

γ1
2
¼ λ0

4
N2; (76)

γ2 ¼ N2ð1þ k20cos
2ð

ffiffiffiffiffi
λ0

p
tÞÞ; (77)

where we used the following proper area in this case:
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Areað∂AÞ ¼ 4πk20a0ðtÞ2: (78)

In this case, γ1=2 is slightly different by the factor λ0=4
from the one of the AdS5 case in (70). However, this
difference can be removed by redefinition of the cutoff
parameter ϵ. Then the remaining coefficient N2 represents
the freedom of the dual theory, and this is consistent with
the previous result that the central charge of the dual theory
has been given by N2 through the calculation of the energy
momentum tensor holographically (see Appendix A) [16].
On the other hand, we find a definite difference in γ2.

This is understood from the fact that γ2 depends on
the curvatures in the 4D boundary and the extrinsic
curvatures of the boundary A in general [31]. When
t ¼ ðnþ 1=2Þπ= ffiffiffiffiffi

λ0
p

(n is an integer), p4L ¼ 0 as seen
from (73). In this case, γ2 becomes the same with (70) and
independent of p0. Thus, there is a relation between γ2 and
p4L. More precisely, p4L and the extra term in γ2 both
contain the factor cos2ð ffiffiffiffiffi

λ0
p

tÞ. While we are still consid-
ering the physical interpretation of this relation, this
remains as an open question.
It would be an interesting problem to assure that our

result could coincide with the one given from the side of the
dual field theory, the SYM theory in the AdS4 background,
in order to see the validity of the gauge or gravity
corresponding to our present model. This remains here
as an open question.

V. SUMMARY AND DISCUSSIONS

In this paper, we have put forward an extended form of
AdS5=CFT4 duality proposed in the previous paper [16],
where AdS5 is replaced by gAdS5 whose boundary (in the
ultraviolet side) is expressed by the FRW4 space-time with
finite 4D curvature. However, the notation gAdS5 might be
misleading. It is because one might consider that, in order
to get the solution gAdS5, the equation of motion would be
different from the one which leads to the AdS5. Contrary to
this expectation, gAdS5 is a solution of the same 5D Einstein
equation which leads to the typical AdS5. Then the two
solutions are locally the same with each other. On this
point, we will discuss more in the future.
Two cases of the boundary geometry, AdS4 and dS4, are

possible for this FRW4 depending on the sign of the 4D
cosmological constant Λ4. The parameter Λ4 can be
introduced as an arbitrary constant in the process of solving
the 5D Einstein equation with negative 5D cosmological
constant Λ, which comes from five-form field strength and
is independent of Λ4.
Here we point out a new holographic feature of the gAdS5

with the AdS4 boundary. In this case, we observe a second
boundary in gAdS5 at the opposite side of the fifth
coordinate, namely, at r ¼ 0 in addition to the one at
r ¼ ∞. This fact is in sharp contrast to the usual asymptotic

AdS5 case, in which the boundary appears only at r ¼ ∞
and the point r ¼ 0 is usually set as a horizon.
This situation depends also on the other parameter C in

the general form of gAdS5 given in (9)–(11), where C
denotes the dark radiation. While this term pushes the
domain wall to smaller r, we could find the boundary at
r ¼ 0 for a small value of ~c0. However, the geometry of
the boundary at r ¼ 0 is generally different from a simple
AdS4 which is realized at r ¼ ∞. In Sec. 2.3, a short
discussion is given in the case of C ≠ 0, in which it is
pointed out that the metric of the IR boundary depends
on the dark radiation or the SYM fields. On the other
hand, at the UV boundary the situation is different. Its
geometry is not affected by the dark radiation. This point
is interesting, but we postpone to resolve this problem in
the future.
Thus we restricted here to the case of C ¼ 0 and constant

λ in order to simplify the problem of two boundaries
discussed in this article. In this case, we find that the metric
of the UV boundary takes the form (20), and the one of IR
boundary can be read from (17). They have the same form
if z was identified with r. Of course, they are different, but
they are related as z ¼ r20=r and the point r ¼ r0 has an
important holographic meaning in the bulk. In fact, we find
that this point corresponds to the domain wall.
As assured from the metric (17), we could observe that

the 4D dual theory living at the boundary r ¼ 0 is also the
SYM theory in the confinement phase. Furthermore, from
the scaling behavior of the metric form of IR boundary
(17), the limit of r ¼ 0 does not correspond to the IR but to
the UV limit of the corresponding 4D theory. Then there are
two holographic screens in this case. This implies that the
two field theories are described by a common gravity dual,gAdS5 with the AdS4 boundary. We notice that we find one
boundary at r ¼ ∞ and a horizon in the infrared side at
finite r for another case of gAdS5, which has the dS4
boundary.
The problem in the case of two boundaries is how the

bulk manifold gAdS5 would provide information of the two
field theories living on the different boundaries. Is it
possible to get precise dynamical information of two
theories separately from the common bulk geometry?
We could show that the answer is yes for this question
in terms of the presence of a sharp domain wall in the bulk.
The gravity duals gAdS5 for the two theories are separated
by this wall.
The existence of the domain wall is assured by embed-

ding the fundamental string, D7 brane, and D5 brane ingAdS5. These objects give us the information of the Wilson
loop, quarks, meson spectrum, and baryons of the dual
SYM theory. We could find that the embedded regions of
these objects are restricted to either side of the bulk
separated by the domain wall. In other words, these
extended objects cannot be embedded across the domain
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wall. Then the property of the field theory in one boundary
is given by the gravity of one-side bulk divided by the
domain wall.
Another interesting embedding problem is found in the

calculation of the entanglement entropy SEE. This is
obtained by the minimal surface AreaðγAÞ, which is defined
as the minimum of the embedded surface whose boundary
separates the fixed-time boundary space into two regions.
In this calculation, we find the embedded surface never
extends across the domain wall as other embedded stringy
objects discussed above. This fact implies that the quantum
fields in the theories of the two boundary do not affect
each other.
As for the entanglement entropy SEE defined in either

boundary, it diverges in general and is written as (69).
The two coefficients γ1 and γ2 of this expression reflect
the freedom of the quantum fields of the theory and the
geometry of the 4D space-time of the boundary, respec-
tively. The result γ1

2
¼ N2 is common to the one of the

case of AdS5 when we take the area of the sphere of the
three space boundary by using the proper distance in thegAdS5 case with AdS4 boundary. On the other hand, γ2
depends on the 4D curvatures and extrinsic curvatures on
the 3D sphere. These quantities largely change γ2 ofgAdS5 from the one of AdS5. Our result (70) for γ2 would
be important to assure the curvature dependence of SEE in
curved space-time. We will discuss this point in the
future work.
Finally, we give the following two comments. First, the

boundary of the AdS5 is considered here as the point
where a double pole (as given by Witten in [1]) with
respect to the fifth coordinate is observed. Two such points
are found here at r ¼ 0 and r ¼ ∞ for the ðAÞdS4 slice.
Of course, another kind of boundary can be considered as
discussed in [32]. In [32], the authors have examined the
bulk fields near a bulk singularity by supposing the
existence of a new CFT there.
As for the boundary as a double pole point, the double

boundaries are also observed in the black hole type
solutions. In [33], the so-called topological black hole
solutions are discussed. While we do not consider this type
of geometry, we can see that this case is similar to our
solution of the dS4 slice, since a horizon exists between the
two boundaries in both cases.
Second, we should notice the following point. In [15], it

is shown that our solutions used here can be rewritten to
the form of the topological black hole solutions by a
coordinate transformation. This is not surprising, because
both solutions are obtained from the same bulk Einstein
equations which are derived from the action of the
Einstein-Hilbert and 5D cosmological constant as men-
tioned above. However, this transformation is performed
in 5D by a kind of Rindler transformation; then the slice
of the 4D space-time and the fifth coordinate are changed.
As a result, the properties of the CFT in the sliced 4D

space-time are also changed. This point is important
and really assured by various holographic methods and
quantities. So we think that the dual theory of the
topological black hole is different from our present case
given in this article. As mentioned in the first paragraph of
this section, gAdS5 is rewritten by AdS5 through an
appropriate coordinate transformation. However, we
should notice that we can see the properties of the
CFT in 4D space-time, which is deformed from 4D
Minkowski space-time, through gAdS5.
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Appendix A: hTμνi OF THE DUAL THEORY
AT r ¼ ∞

At first, we show the 4D stress tensor of the boundary
theory at r ¼ ∞. Previously, it has already been given, so
we review it briefly. First we rewrite the 5D part of the
metric (4) according to the Fefferman-Graham framework
[34–36]. Then it is given as

ds2ð5Þ ¼
1

ρ
ð−n̄2dt2 þ Ā2a20ðtÞγ2ðxÞðdxiÞ2Þ þ

dρ2

4ρ2
(A1)

¼ 1

ρ
ĝμνdxμdxν þ

dρ2

4ρ2
; (A2)

where ρ ¼ 1=r2, R ¼ 1, and

Ā ¼
��

1 −
λ

4μ2

� ρ

R2

��2 þ ~c0
� ρ

R2

�
2
�1=2

; (A3)

n̄ ¼
�
1 − λ

4μ2
ð ρ
R2Þ

��
1 − λþ_λa0= _a0

4μ2
ð ρ
R2Þ

�
− ~c0ð ρ

R2Þ2
Ā

: (A4)

Next, ĝμν is expanded as [35]

ĝμν ¼ gð0Þμν þ gð2Þμνρ

þ ρ2ðgð4Þμν þ h1ð4Þμν log ρþ h2ð4Þμνðlog ρÞ2Þ þ � � � ;
(A5)

where

gð0Þμν ¼ ðgð0Þ00; gð0ÞijÞ ¼ ð−1; a0ðtÞ2γi;jÞ (A6)

and

gð2Þμν ¼
λ

2

�
1þ

a0
_a0
_λ

λ
;−gð0ÞijÞ

�
; (A7)
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gð4Þμν ¼
~c0
R4

ð3; gð0ÞijÞ þ
λ2

16

�
−
ðλþ a0

_a0
_λÞ2

λ2
; gð0Þij

�
: (A8)

Then by using the following formula [34]:

hTμνi ¼
4R3

16πGN

�
gð4Þμν −

1

8
gð0ÞμνððTrgð2ÞÞ2 − Trg2ð2ÞÞ

−
1

2
ðg2ð2ÞÞμν þ

1

4
gð2ÞμνTrgð2Þ

�
; (A9)

we find

hTμνi ¼ h ~Tð0Þ
μν i þ 4R3

16πGð5Þ
N

�
3λ2

16
ð1; βgð0ÞijÞ

	
; (A10)

h ~Tð0Þ
μν i ¼ 4R3

16πGð5Þ
N

~c0
R4

ð3; gð0ÞijÞ; β ¼ −
�
1þ

2 a0
_a0
_λ

3λ

�
;

(A11)

where h ~Tð0Þ
μν i comes from the conformal YM fields

given in Ref. [16], so we find no anomaly for this
component:

h ~Tð0Þμ
μ i ¼ 0: (A12)

The second term corresponds to the loop corrections of the
YM fields in the curved space-time, and we find the
conformal anomaly due to this term as

hTμ
μi ¼ −

3λ2ð1þ _λ
2λ

a0
_a0
Þ

8π2
N2; (A13)

where we used Gð5Þ
N ¼ 8π3α04gs=R5 and R4 ¼ 4πNα02gs.

The above anomaly (A13) is obtained from the loop
corrections of the N ¼ 4 SYM theory in a space-time,
gð0Þμν, which is given by (A6). For this metric, the
curvature squared terms responsible to the anomaly are
given as

RμνλσRμνλσ ¼ 12

�
2λ2 þ _λλ

a0
_a0

þ
�
_λ
a0
2_a0

�
2
�
; (A14)

RμνRμν ¼ 12

�
3λ2 þ 3_λλ

a0
2_a0

þ
�
_λ
a0
2_a0

�
2
�
; (A15)

1

3
R2 ¼ 12

�
4λ2 þ 4_λλ

a0
2_a0

þ
�
_λ
a0
2_a0

�
2
�
: (A16)

In general, the conformal anomaly for ns scalars, nf Dirac
fermions, and nv vector fields is given as [37,38]

hTμ
μi ¼ −

ns þ 11nf þ 62nv
90π2

Eð4Þ −
ns þ 6nf þ 12nv

30π2
Ið4Þ;

(A17)

Eð4Þ ¼
1

64
ðRμνλσRμνλσ − 4RμνRμν þ R2Þ; (A18)

Ið4Þ ¼ −
1

64

�
RμνλσRμνλσ − 2RμνRμν þ

1

3
R2

�
; (A19)

where□R has been abbreviated since it does not contribute
here. For theN ¼ 4 SYM theory, the numbers of the fields
are given by N2 − 1 times the number of each fields, which
are equivalent to ns ¼ 6, nf ¼ 2, and nv ¼ 1. Then we find,
for large N,

hTμ
μi ¼ N2

32π2

�
RμνRμν −

1

3
R2

�
¼ −

3λ2ð1þ _λ
2λ

a0
_a0
Þ

8π2
N2:

(A20)

This result (A20) is precisely equivalent to the above
holographic one (A13). Thus, we could see that the
holographic analysis could give correct results for the
energy momentum tensor even if the metric is time
dependent as shown previously in Ref. [16].

Appendix B: hTIR
μν i OF THE

DUAL THEORY AT r ¼ 0

In the IR side, we get hTIR
μνi by the parallel method. By

using the above formula (A9), we find

hTIR
μνi ¼

4R3

16πGð5Þ
N

ðĝð0Þ00t00; ĝð0Þijt11Þ; (B1)

t00 ¼ −
3r80

r�4 þ ~c0
; t11 ¼ −r80

2r�4 þ ðr�r�1Þ2 þ ~c0
ðr�4 þ ~c0Þððr�r�1Þ2 − ~c0Þ

:

(B2)

This result should be interpreted as the vacuum expectation
value of the energy momentum tensor of the SYM theory
living in the space-time ĝð0Þμν given by (23). In the present
case, however, both the metric ĝð0Þμν and the hTμνi are
different from the one given at the boundary r → ∞.
Then we must check how the two theories on each
boundary are different. We perform this for the following
three cases.
One expects that the central charges on each boundaries

would be different from each other, since the
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renormalization group flow would be different. The answer
for this issue is given by observing the trace anomaly,
which is found from the above hTμνi as follows:

hTμ
μi ¼ 4R3

16πGð5Þ
N

ðt00 þ 3t11Þ (B3)

¼ −
N2

2π2
6r80r

�2ððr�2 þ r�1Þ2Þ
ðr�4 þ ~c0Þððr�r�1Þ2 − ~c0Þ

; (B4)

where we used Gð5Þ
N ¼ 8π3α04gs=R5 and R4 ¼ 4πNα02gs.

This is rewritten by using the relation

WIR ¼
�
RμνRμν −

1

3
R2

�
(B5)

¼ −16
6r80r

�2ðr�2 þ r�21Þ
ðr�4 þ ~c0Þððr�r�1Þ2 − ~c0Þ

; (B6)

and we obtain

hTμ
μi ¼ N2

32π2
WIR: (B7)
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