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We compute three-point functions for the SLð2;RÞ-WZNW model. After reviewing the case of the
two-point correlator, we compute spectral flow preserving and nonpreserving correlation functions in the
space-time picture involving three vertex operators carrying an arbitrary amount of spectral flow. When
only one or two insertions have nontrivial spectral flow numbers, the method we employ allows us to find
expressions without any constraint on the spin values. Unlike these cases, the same procedure restrains the
possible spin configurations when the three vertices belong to nonzero spectral flow sectors. We perform
several consistency checks on our results. In particular, we verify that they are in complete agreement with
previously computed correlators involving states carrying a single unit of spectral flow.
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I. INTRODUCTION

The SLð2;RÞ-WZNW model has many physical appli-
cations, ranging from gravity and string theory [1–10] to
condensed-matter physics [11–14]. The model has been
intensively studied since the AdS/CFT correspondence was
conjectured [15–17], as it describes the world sheet of a
string propagating in AdS3 with a background NS-NS
2-form B field. So far, this is one of the few known schemes
in which Maldacena’s conjecture can be explored beyond
the supergravity approximation with complete control over
the world-sheet theory. The interest in models with a
SLð2;RÞ × SLð2;RÞ global symmetry has been recently
renewed within the context of integrability [18] and AdS3
gravity [19].
In aWZNWmodel with a compact underlying symmetry

group, the spectrum is built upon representations of the
corresponding zero-modes algebra [20]. Once all the
vectors in these representations are assumed to be annihi-
lated by those modes with positive frequency, representa-
tions of the full current algebra are constructed by acting on
them with the negative-degree modes. Unitarity further
restricts the possible configurations. When this standard
procedure is implemented in the SLð2;RÞ-WZNW model,
which is a nonrational CFT, for those zero-modes repre-
sentations with energy bounded below, the absence of
negative norm states in the physical spectrum of the string
can be reached if the allowed values of the spin have an
upper bound [21–26]. This bound implies a coupling
independent restriction on the masses of the physical states
that originally raised doubts about whether a no-ghost
theorem could be proven for strings in AdS3. Moreover, the
spectrum generated so far is empty of long string states, i.e.,

finite energy states corresponding to strings stretched
closed to the boundary of AdS3 [27,28].
Both problems were solved in [29]. In this reference, a

spectrum involving unbounded energy representations was
proposed for the SLð2;RÞ-WZNWmodel and the no-ghost
theorem based on this spectrum was proven. The case in
which the target space is the universal cover of the SLð2;RÞ
group manifold has always been considered. In [30] (see
also [31]) the proposal was verified by computing the
modular invariant partition function for a string in
AdS3 ×M, where M is a compact space represented by
a unitary CFT on the world sheet.
A key ingredient for generating the full spectrum as in

[29] is the concept of spectral flow. The spectral flow
automorphisms constitute a family of automorphisms of the
current algebra labeled by an integer number ω, the so-
called spectral flow number, which, for some states, could
be recognized as the amount of winding of the string in the
angular direction of AdS3. For WZNW models based on
compact Lie groups, spectral flow relates standard repre-
sentations, mapping a primary state of one into a current
algebra descendant of another. Unlike the rational case, in
the SLð2;RÞ-WZNW model representations with different
spectral flow numbers turn to be, generally, nonequivalent,
the spectral flow automorphisms thus defining new repre-
sentations from the conventional ones. These spectral
flowed representations are generated by infinitely many
affine quasi-primary fields and they have energies
unbounded below, giving account of long string states.
Concerning the correlation functions of the model, those

with only unflowed vertex operators are obtained from the
correlators in its Euclidean counterpart, namely, the Hþ

3 -
WZNW model [32,33], by means of a proper analytic
continuation. More care must be taken, however, when
dealing with amplitudes involving flowed insertions. There
are two strategies for computing this kind of correlators,
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both exploiting the singular properties of the so-called
spectral flow operator.1

The first one was developed in [35] and, according to it,
the computation is completely performed in the original
space-time basis, also called the x basis for short. Roughly,
the vertex operators associated with flowed states are
expressed as unflowed vertices convoluted with spectral
flow operators, the corresponding integrals being under-
stood to hold inside any correlation function. This pro-
cedure was, then, used for determining the propagator of
two states carrying a single unit of spectral flow each and
the three-point function involving two unflowed states and
one vertex with ω ¼ 1. In [36] these results were gener-
alized by computing three-point functions with only one
unflowed state and two insertions with a unit of spectral
flow and certain three-point correlators with all of their
vertices in the ω ¼ 1 sector. The main restraint of the
method relies in the fact that the referred integral definition
of a flowed vertex exists, so far, for operators with a single
unit of spectral flow, the generalization for an arbitrary
amount of spectral flow being still lacking.
The second strategy, the so-called FZZ method, was

firstly presented in [37] based on the parafermionic vertices
and the properties of their correlation functions. It does not
suppose, a priori, any constraint on the value of ω. Starting
with a regular unflowed correlator, a spectral flow operator
is inserted for each unit of spectral flow carried by each
vertex. After Fourier-transforming the amplitude thus
obtained to the m basis, i.e., the basis in which the
Cartan generator of SLð2;RÞ is diagonal, the dependence
on the “unphysical” insertion points is removed and the
world-sheet dependence, adjusted. The computation even-
tually concludes when transforming back to the original
space-time basis.
One of the consequences that can be read off from the

FZZ procedure is that, up to their dependence on the world-
sheet coordinates, correlation functions in the m basis
carrying the same total amount of spectral flow coincide.
This fact can be exploited in order to reduce the number of
inserted spectral flow operators to a minimum value. It
follows, for instance, that not only amplitudes with
unflowed vertices, but also spectral flow preserving corre-
lators in the m basis involving vertex operators in flowed
frames, are determined by Fourier transforming the corre-
sponding analytically continued expressions of the
Euclidean model. In [38–49] it is possible to find spectral
flow conserving two-, three- and four-point functions
obtained following several techniques, in particular, using
the free fields methods. The computation of correlation
functions violating the conservation of the total spectral
flow number is more involved since, as we have already
said, they require the additional insertion of spectral flow

operators. Spectral flow nonpreserving correlators are
discussed in [35,44,50,51].
Transforming the correlation functions in the m basis

back to the space-time picture is, by far, a nontrivial task.
Nevertheless, when the affine symmetry of the current
algebra fully dictates the functional dependence of the
correlators on the space-time coordinates as, for example,
for the two- and three-point functions, no integral trans-
formation is needed and the FZZ recipe can be finally
realized. In this paper we follow these ideas in order to
compute three-point functions in the space-time represen-
tation with no restriction on the amount of spectral flow the
states carry. Our results generalize, thus, those obtained in
[35,36] in the ω ¼ 1 sector.
The paper is organized as follows. In Sec. II we present

some generalities of the SLð2;RÞ-WZNW model and its
Euclidean counterpart. We stress that by the former we
mean the WZNWmodel whose target space is the universal
cover of the SLð2;RÞ group manifold. After analyzing the
spectra of both theories, the superselection rules for spectral
flow violation are discussed and the expressions of the
previously computed spectral flow conserving and non-
conserving correlators with two and three insertion points
are given. In Sec. III, after introducing the vertex operators
associated with spectral flowed states, we review the
computation of the propagator in the space-time picture
as in [35]. We also clarify some aspects concerning the
notation, since ours differs from the one employed in this
reference. In Sec. IV we compute all nontrivial three-point
functions with insertions carrying an arbitrary amount of
spectral flow. When only two vertices belong to nontrivial
spectral flow sectors, we find no constraint on the spin
configurations. This is not the case when all the vertex
operators involved have nonzero spectral flow number. We
further discuss this matter. Finally, we present our
conclusions.

II. THE Hþ
3 -WZNW AND SLð2;RÞ-WZNW

MODELS: SOME BASICS

The elements of the hyperbolic space Hþ
3 are the 2 × 2

Hermitian matrices with determinant equal to one. Since it
can be realized as the right-coset space SLð2;CÞ=SUð2Þ,
the sigma model havingHþ

3 as target space can accordingly
be constructed as a coset of the SLð2;CÞ-WZNWmodel by
the right action of SUð2Þ. The Lagrangian is expressed in
terms of the so-called Poincaré coordinates ðϕ; u; ūÞ as [52]

L ¼ kð∂ϕ∂̄ϕþ e2ϕ∂ū ∂̄ uÞ; (1)

where k is the level of the model, related to the scalar
curvature of Hþ

3 , ∂ ¼ ∂=∂z and ∂̄ ¼ ∂=∂z̄, ðz; z̄Þ being the
(complex) coordinates of the world sheet. The correspond-
ing action has a set of holomorphic and antiholomorphic
conserved currents, JaðzÞ and J̄aðz̄Þ, with a ¼ 3, �,
respectively, whose modes Jan and J̄an generate two

1We notice that an alternative efficient method to deal with
Lorentzian AdS3 is given in [34].
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commuting isomorphic sl2-current algebras. The genera-
tors Jan satisfy the following commutation relations,

½J3n; J3m� ¼ −
1

2
knδnþm;0; ½J3n; J�m� ¼ �J�nþm;

½J−n ; Jþm� ¼ 2J3nþm þ knδnþm;0;
(2)

and similarly the antiholomorphic modes J̄an.
Associated with the current algebra there are, as usual,

two commuting Virasoro algebras constructed by means of
the Sugawara procedure. Their generators are given by

Lm ¼ 1

k − 2

X∞
n¼1

ðJþm−nJ−n þ J−m−nJþn − 2J3m−nJ3nÞ; (3)

for every m ≠ 0, and

L0 ¼
1

k − 2

�
1

2
ðJþ0 J−0 þ J−0 J

þ
0 Þ − ðJ30Þ2

þ
X∞
n¼1

ðJþ−nJ−n þ J−−nJþn − 2J3−nJ3nÞ
�
; (4)

and they satisfy the commutation relation

½Lm; Ln� ¼ ðn −mÞLnþm þ c
12

nðn2 − 1Þδnþm;0; (5)

where the central charge is given by

c ¼ 3k
k − 2

: (6)

Analogous expressions hold for the antiholomorphic gen-
erators L̄n.
The space of states of the model is decomposed into a

sum of irreducible unitary representations of the current
algebra [32,33]. They are parametrized by the spin
j ¼ −1=2þ iλ, with λ ∈ R>0, and are defined as follows.
One considers a representation for the zero modes Ja0 and
J̄a0 , corresponding to a principal series of SLð2;CÞ, and
after requiring it to be annihilated by Jan and J̄an for every
n > 0, it is extended to a representation of the full current
algebra by acting with its negative triangular part, namely,
with the generators Jan and J̄an with n < 0.
A concrete realization of the spectrum may be obtained

by means of operators ΦjðxjzÞ having the following
characteristic OPEs with the currents,

JaðzÞΦjðxjwÞ ∼
1

z − w
Da

jΦjðxjwÞ; (7)

where

D−
j ¼ −∂x; D3

j ¼ −x∂x þ j;

Dþ
j ¼ −x2∂x þ 2jx;

(8)

and the same for J̄aðzÞ with similar expressions for D̄a
j . The

labels ðx; x̄Þ are coordinates that parametrize S2, the
boundary of Hþ

3 , which is the target space of the dual
two-dimensional CFT [39,40], so that we shall refer to this
realization as the space-time picture. Notice that the
operator ΦjðxjzÞ is not only an affine primary but also a
primary for the Sugawara-Virasoro algebra with conformal
dimension

Δ0 ¼ −
jð1þ jÞ
k − 2

: (9)

In the semiclassical regime, the operator ΦjðxjzÞ can be
identified with the following conti\-nu\-um-normalizable
function on Hþ

3 ,

ΦjðxjzÞ ¼
1þ 2j

π
ððu − xÞðū − x̄Þeϕ þ e−ϕÞ2j: (10)

Normal ordering does not not allow the quantum operator
to get such a simple form. However it simplifies in the
large-ϕ limit where the interaction vanishes, leading to

ΦjðxjzÞ ¼∶ e−2ð1þjÞϕ∶δ2ðu − xÞ
þ BðjÞ∶e2jϕðu − xÞ2jðū − x̄Þ2j∶: (11)

This expression fixes the normalization of the state and, in
addition, it makes explicit the linear relation between
ΦjðxjzÞ and Φ−1−jðxjzÞ given by

ΦjðxjzÞ ¼ BðjÞ
Z
C
d2x0jx − x0j4jΦ−1−jðx0jzÞ; (12)

where

BðjÞ ¼ ν1þ2j

πb2
γð1þ b2ð1þ 2jÞÞ;

ν ¼ π

b2
γð1 − b2Þ; b2 ¼ ðk − 2Þ−1; (13)

with

γðxÞ ¼ ΓðxÞ
Γð1 − x̄Þ : (14)

The invariance of correlation functions under the sym-
metries generated by Ja0, J̄a0 and Ln, L̄n, n ¼ �1; 0,
determines the functional form of the propagator and the
three-point function up to certain constants depending
strictly on the spin configurations. They were computed
in [32,33]. For the two-point function one has
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hΦj1ðx1jz1ÞΦj2ðx2jz2Þi¼ ½δð1þ j1þ j2Þδ2ðx12Þ
þBðj1Þδðj1− j2Þjx12j4j1 �jz12j−4Δ1 ;

(15)

where x12 ¼ x2 − x1 and z12 ¼ z2 − z1. The three-point
function is expressed as

�Y3
i¼1

ΦjiðxijziÞ
�

¼ CðjaÞ
Y
σ

jxσ1σ2 j2jσ jzσ1σ2 j−2Δσ ; (16)

where the product runs over all cyclic permutations
of the labels and we have introduced jσ ¼ jσ1 þ jσ2 − jσ3
and Δσ ¼ Δσ1 þ Δσ2 − Δσ3 . The structure constants
CðjaÞ≡ Cðj1; j2; j3Þ, as proposed in [32], are given by

CðjaÞ ¼
Gð1þ j1 þ j2 þ j3Þ

ν−1−j1−j2−j3G0

Y
σ

GðjσÞ
Gð1þ 2jσ1Þ

; (17)

where the special function GðjÞ is constructed by means of
the Barnes double gamma function as follows [53],

GðjÞ ¼ b−bjðbþb−1þbjÞΓ2ð−bjjb; b−1Þ
× Γ2ðbþ b−1 þ bjjb; b−1Þ; (18)

and

G0 ¼ −2π2γð1þ b2ÞGð−1Þ: (19)

The dependence of the three-point function on ðx; x̄Þ is
uniquely fixed by the SLð2;CÞ invariance as long as no jσ
equals a negative integer for any cyclic permutation σ.
Among the properties of the function GðjÞ defined by (18),
the following ones play an important role:

Gð−1 − b−2 − jÞ ¼ GðjÞ; (20)

Gð−1þ jÞ ¼ γð1þ b2jÞGðjÞ; (21)

Gð−b−2 þ jÞ ¼ b2ð1þ2jÞγð1þ jÞGðjÞ: (22)

The relevance of these functional relations rely on the
fact that they bring a well-defined meromorphic continu-
ation for GðjÞ to the whole complex plane, its poles being
located at j ¼ nþmb−2 and j ¼ −ðnþ 1Þ − ðmþ 1Þb−2
for n, m ∈ N0.
The four-point function is expressed as the following

integral,

�Y4
i¼1

ΦjiðxijziÞ
�

¼
Z
Pþ

djCðj1; j2; jÞBð−1 − jÞ

× Cðj; j3; j4ÞGjðJjXjZÞ; (23)

where the integration contour is Pþ ¼ −1=2þ iλ,
λ ∈ R>0, and the nonchiral conformal blocks GjðJjXjZÞ,
J ¼ ðj1; j2; j3; j4Þ, X¼ðx1;x2;x3;x4Þ, Z ¼ ðz1; z2; z3; z4Þ,
were introduced and exhaustively studied in [33]. The
decomposition (23) is valid for

jReð1þ j1 þ j2Þj; jReðj2 − j1Þj <
1

2
; (24)

and the same for j1; j2↔j3; j4. Its analytic continuation for
other spin configurations is discussed in [33,35].
The SLð2;RÞ-WZNW model shares with its Euclidean

counterpart the affine symmetry though it involves different
representations. A key ingredient for generating a consis-
tent spectrum for the model is the so-called spectral flow
automorphism which is defined by

J3n → ~J3n ¼ J3n −
k
2
ωδn;0; J�n → ~J�n ¼ J�n�ω; (25)

with ω ∈ Z, and similarly for the antiholomorphic modes.
Notice that the Sugawara-Virasoro algebra is mapped under
a spectral flow automorphism into another conformal
realization generated by

Ln → ~Ln ¼ Ln þ ωJ3n −
k
4
ω2δn;0: (26)

Unlike in models with underlying compact group sym-
metries, a spectral flow automorphism generally gives rise
to nonequivalent representations when acting on a current
module. The spectrum proposed in [29], for the universal
covering group of SLð2;RÞ, contains two families of
representations of the current algebra: the one extending
the principal continuous representations of the universal
cover of SLð2;RÞ and their spectral flow images, denoted
by Ĉα;ωj ⊗ Ĉα;ωj , with j ¼ −1=2þ iλ, λ ∈ R and 0 < α ≤ 1,
and the one extending the lowest-weight discrete series and
their spectral flow images, D̂þ;ω

j ⊗ D̂þ;ω
j , both types with

the same spectral flow number and the same value of j for
the left and right sectors. Representations obtained from the
highest-weight discrete series can be identified with those
built upon the lowest-weight series as

D̂þ;ω
j ¼ D̂−;ωþ1

−k=2−j; (27)

allowing us to consider states lying in D̂−;ω
j ⊗ D̂−;ω

j as well
when computing correlators and restricting the range of
values of the spin to the real interval

−
k − 1

2
< j < −

1

2
: (28)

We shall denote by Φω
jmm̄ðzÞ the vertex operators asso-

ciated with the states that are images of the affine primaries
under a spectral flow automorphism, where we have
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introduced the levels m and m̄, with m − m̄ ∈ Z and
mþ m̄ ∈ R, to keep track of the zero modes quantum
numbers in the unflowed frame. The OPEs of these
operators with the currents can be read from (25), giving

J3ðzÞΦω
jmm̄ðwÞ ∼

mþ kω=2
z − w

Φω
jmm̄ðwÞ; (29)

J�ðzÞΦω
jmm̄ðwÞ ∼

∓jþm
ðz − wÞ1�ωΦ

ω
j;m�1;m̄ðwÞ; (30)

and the same for the antiholomorphic currents.
Vertex operators satisfying these OPEs for the case

ω ¼ 0 can be obtained from the Hþ
3 -WZNW model by

performing the following Fourier-like transformation to the
so-called m basis,2

Φjmm̄ðzÞ≡ Φω¼0
jmm̄ðzÞ ¼

Z
C
d2xxjþmx̄jþm̄Φ−1−jðxjzÞ: (31)

Accordingly, correlation functions for these unflowed
states are expected to be obtained by using the same
transformation on the Hþ

3 -WZNW model correlators, their
validity assumed beyond the Euclidean spectrum.
Moreover, since correlation functions with the same total
spectral flow number just differ in the power dependence
on the world-sheet coordinates, once the conformal dimen-
sions are changed as

Δ ¼ Δ0 − ωm −
k
4
ω2; (32)

an expression that follows from (26), correlators with
unflowed operators as well as those preserving the total
flow though involving spectral flowed primaries can be
computed by means of this Fourier transform.
The two-point function computed from (15) following

this method gives, for ω1 þ ω2 ¼ 0,

hΦω1

j1m1m̄1
ðz1ÞΦω2

j2m2m̄2
ðz2Þi

¼ ½δð1þ j1 þ j2Þ þ Bð−1 − j1Þc−1−j1m1m̄1

× δðj1 − j2Þ�δ2ðm1 þm2Þz−2Δ1

12 z̄−2Δ̄1

12 ; (33)

where

cjmm̄ ¼ π

γð−2jÞ
γð−jþmÞ

γð1þ jþmÞ ; (34)

and

δ2ðmÞ ¼
Z
C
d2xxm−1x̄m̄−1 ¼ 4π2δðmþ m̄Þδm;m̄: (35)

The three-point function with ω1 þ ω2 þ ω3 ¼ 0 is given
by

�Y3
i¼1

Φωi
jimim̄i

ðziÞ
�
¼Cð−1−jaÞWðja;ma;m̄aÞ

×δ2ðm1þm2þm3Þ
Y
σ

z−Δσ
σ1σ2 z̄

−Δ̄σ
σ1σ2 ; (36)

with Wðja;ma; m̄aÞ defined as

Wðja;ma; m̄aÞ ¼
Z
C
d2x1d2x2

×
Y
σ

x
jσ1þmσ1
σ1 x̄

jσ1þm̄σ1
σ1 jxσ1σ2 j−2−2jσ ; (37)

where x3; x̄3 ¼ 1, and, again, the product runs over all
cyclic permutations of the labels. This integral was explic-
itly computed in terms of certain hypergeometric functions
in [45]. Concerning spectral flow conserving four-point
functions, they were determined from (23) in [46,49].
Independent computations of all these correlation functions
using the free field approach were performed in [38,41,44].
Correlators in the SLð2;RÞ-WZNW model can violate

the spectral flow number conservation according to the
following selection rules,

−Nc − Nd þ 2 ≤
XNcþNd

i¼1

wi ≤ Nc − 2;

when at least one state is in Ĉwj;α ⊗ Ĉwj;α;

(38)

−Nd þ 1 ≤
XNcþNd

i¼1

wi ≤ −1;

when all states are in D̂þ;w
j ⊗ D̂þ;w

j ;

(39)

where Nc is the number of vertex operators associated with
states in Ĉwj;α ⊗ Ĉwj;α and similarly Nd for those lying in
D̂þ;w

j ⊗ D̂þ;w
j . By virtue of the series identification (27), if

states in D̂−;w
j ⊗ D̂−;w

j are also taken into account, these
rules show that two-, three- and four-point functions can
reach maximal violation with 0, 1 and 2 units of spectral
flow, respectively. The determination of these spectral flow
nonpreserving amplitudes is more involved that those we
have already referred. Indeed, a suitable procedure for
performing this kind of computation nontrivially includes
in the correlators an additional vertex, the so-called spectral
flow operator, for each amount of flow violation they
present. This method was developed in [37] and it was used
in [35,44] for obtaining the following expression for the

2Concerning this transformation, let us stress that going from
Hþ

3 to SLð2;RÞ cannot be reduced to a change of basis, as the
Mellin transform can be defined in both cases. It involves an
analytic continuation in the space-time coordinates. See [42] for
more details.
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three-point function violating the spectral flow conserva-
tion in a single unit, namely, for ω1 þ ω2 þ ω3 ¼ �1:

�Y3
i¼1

Φωi
jimim̄i

ðziÞ
�

¼ C0ð−1 − jaÞW0ðja;�ma;�m̄aÞ

× δ2ðm1 þm2 þm3 � k=2Þ
×
Y
σ

z−Δσ
σ1σ2 z̄

−Δ̄σ
σ1σ2 ; (40)

where

C0ðjaÞ ¼
Bðj1ÞCð−k=2 − j1; j2; j3Þ
γð−k=2 − j1 − j2 − j3Þ

; (41)

and

W0ðja;ma; m̄aÞ ¼ sin½πðm3 − m̄3Þ�
Y3
i¼1

γð1þ ji þmiÞ:

(42)

An independent computation of this correlator was per-
formed in [50] using free field methods. Four-point
functions violating the spectral flow conservation are not
reported in the literature.

III. CORRELATION FUNCTIONS IN
THE SPACE-TIME PICTURE

The vertex operators in the SLð2;RÞ-WZNW model
serve as ingredients for the string theory vertex operators
describing states created by sources in the boundary of the
target space. For example, if ΦjðxjzÞ is a field associated
with an unflowed state like in (31) and ΘðzÞ is a spinless
world-sheet vertex corresponding to the internal CFT, the
sum of their scaling dimensions assumed to equal 1, an
operator like

VjðxÞ ∼
Z
C
d2zΦjðxjzÞΘðzÞ; (43)

is a vertex describing a string state created by a pointlike
source located at ðx; x̄Þ on the boundary of AdS3, and, by
means of the AdS/CFT conjecture, it can be identified with
a CFT operator inserted at the same point. Scattering
amplitudes involving operators in the space-time represen-
tation, unlike amplitudes with states in the m basis like
those we have reviewed in the previous section, acquire a
similar interpretation when integrated over the moduli
space of the string world sheet as correlation functions
on the dual two-dimensional CFT.
For unflowed primaries, the definition of the coordinate

basis vertex operators comes from the Euclidean model
through analytic continuation. The corresponding correla-
tors are the ones of the Hþ

3 -WZNWmodel. The situation is

more complicated when treating spectral flowed primary
states since they generally lie in representations with
unbounded energy. A solution for this issue was proposed
in [35]. Let jΨi be an arbitrary lowest-energy state, like any
primary in Ĉwj;α or D̂�;w

j , obeying

~L0jΨi ¼ Δ0jΨi; ~J30jΨi ¼ mjΨi;
~J�;3
n jΨi ¼ 0; n ¼ 1; 2; 3;…: (44)

The same state can be seen from a spectral flowed frame
with ω > 0 as satisfying

L0jΨi ¼ ΔjΨi; J30jΨi ¼
�
mþ k

2
ω

�
jΨi;

J−0 jΨi ¼ 0;

(45)

namely, jΨi corresponds to the lowest-weight state of a
certain discrete representation Dþ

J of the global SLð2;RÞ
algebra generated by the zero modes, the spin being
J ¼ −m − kω=2. Similarly, if the flow number ω is
negative, the spectral flow automorphism turns jΨi into
the highest-weight state of a discrete representation D−

J
with J ¼ mþ kω=2. The SLð2;RÞ algebra generated by Ja0
is identified with the space-time isometries of the back-
ground and the global SLð2Þ symmetries of the CFT at the
boundary. Accordingly, vertex operators having flowed
primaries and their global descendants as moments were
proposed in [35] as those relevant for physical applications.
A couple of comments are in place concerning these

vertices. On the one hand, the eigenvalues of ~J30 and its
antiholomorphic counterpart do not necessarily agree,
therefore it is also the case for the global right- and left-
moving SLð2Þ spins, namely, spectral flowed vertices are
no longer expected to be spinless operators, their space-
time planar spin being given by the difference between
J and J̄. This number has to be an integer in order for the
corresponding correlation functions to be single-valued.
Secondly, since the lowest-weight state of the discrete
representation Dþ

J and the highest-weight of D−
J both

contribute to the same operator, flowed vertices are not
labeled by the spectral flow number but its absolute value
instead.
We shall denote the flowed vertex operators by Φjω

JJ̄ðxjzÞ
where ω is now the (positive) amount of spectral flow and
the superscript jwas introduced to remind us the spin of the
unflowed states this vertex is built from. The transformation
between the x basis and the m basis is carried on as before,
namely, we have

Φjω
JMJ̄ M̄ðzÞ ¼

Z
C
d2xxJþMx̄J̄þM̄Φ−1−j;ω

−1−J;−1−J̄ðxjzÞ; (46)

whereM and M̄ are the eigenvalues of J30 and J̄
3
0. Unlike the

nontrivial reflection of the global SLð2Þ spin, the reflection
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of j in (46) is rather a choice by virtue of (12). For
the extremal-weight moments we have the following
identification:

Φjω
J;�J;J̄;�J̄ðzÞ ¼ Φ∓ω

jmm̄ðzÞ;

m ¼ �J � k
2
ω;

m̄ ¼ �J̄ � k
2
ω: (47)

Notice that the integral transform (46) cancels whenever
J − J̄ is an integer unlessM − M̄ is also an integer number.
We will assume this in the following.
Thus far, there are two methods available to perform the

computation of correlators involving spectral flowed oper-
ators in the space-time picture. According to the first one,
the correlation functions are computed directly in the x
basis, using two alternative integral expressions for the
flowed vertex, the one manifestly local in space-time and
the other local in the world-sheet coordinates, both involv-
ing the fusion of an unflowed state and the so-called
spectral flow operator Φ−k=2ðxjzÞ. The consistency of these
definitions as well as their equivalence were studied in [35].
The total spectral flow carried by a correlator translates into
the same amount of new insertions in the associated
unflowed amplitude. The corresponding Knizhnik-
Zamolodchikov equations are very difficult to solve when
more than five vertices are considered, despite of the fact
that they are simplified by the null descendant conditions
derived for the spectral flow operators. The usefulness
of the procedure is thus reduced to the determination of
two- and certain three-point functions as in [35,36].
Beyond any computational difficulty, the stringent con-

straint of this method lies in the fact that the x-basis
expressions for the flowed operators were originally
introduced in [35] for states with a single unit of spectral
flow, their generalizations for ω > 1 being still lacking. An
alternative strategy, the so-called FZZmethod introduced in
[37], can be followed in order to bypass this limitation.
According to it, one has to begin with an unflowed
correlator, insert as many spectral flow operators as units
of spectral flow the final correlation function violates,
transform to them basis in order to consistently remove the
dependence of the correlator on the “unphysical” insertion
points and, then, transform back to the space-time basis.
The FZZ recipe is a difficult procedure to accomplish since,
even if a correlation function is already known in the m
basis, its last step is a highly nontrivial task. Nevertheless,
in [35] it was noticed that Eq. (47) could serve to finally
realize the FZZ strategy in the simplest cases. Since
identification (47) holds only for highest- and lowest-
weight states, moments with other values for M and M̄
having contributions from flowed affine descendants, an
explicit transformation back to the x basis is, in general,
unfeasible, forcing the applicability of the procedure to

heavily rely on the knowledge of the dependence of the
correlators on the boundary coordinates. When computing
two- and three-point functions one is able to take advantage
of their invariance under the global SLð2Þ symmetry to
determine this dependence up to an overall constant. The
method is, therefore, expected to be useful in these cases.
Indeed, in [35] it was successfully implemented to obtain
the propagator for a state in an arbitrary spectral flow sector
and the three-point function with two unflowed operators
and a single vertex with ω ¼ 1. In the next section we shall
extend these computations allowing an arbitrary assign-
ment for the amount of spectral flow for each vertex
involved. Since some constraints on the spin configurations
would, in general, appear it will be convenient to firstly
review the simplified case of the two-point function
following these lines.
Invariance under the action of the algebra generated by

Ja0 and J̄a0 implies the following form for the two-point
function,

hΦj1ω1

JJ̄ ðx1ÞΦj2ω2

JJ̄ ðx2Þi ¼ DðJ; J̄; ja;ωaÞx2J12x̄2J̄12; (48)

where DðJ; J̄; ja;ωaÞ is a coefficient not determined by the
SLð2Þ global symmetry. We will omit the explicit depend-
ence on the world-sheet coordinates until the end of the
computation.
By means of (46) we can transform this expression to the

m basis. Using

Z
C
d2xjxj2aj1 − xj2bxnð1 − xÞm

¼ π
Γð1þ aþ nÞΓð1þ bþmÞΓð−1 − a − bÞ

Γð−aÞΓð−bÞΓð2þ aþ bþ nþmÞ ; (49)

we obtain

hΦj1ω1

JM1J̄M̄1
Φj2ω2

JM2J̄M̄2
i

¼ δ2ðM1 þM2ÞDð−1 − J;−1 − J̄;−1 − ja;ωaÞc−1−J−M1;−M̄1

(50)

and, therefore,

hΦj1;ω1

J;−J;J̄;−J̄Φ
j2;ω2

JJJ̄ J̄i ¼ π2
Dð−1 − J;−1 − J̄;−1 − ja;ωaÞ

j1þ 2Jj2 :

(51)

By virtue of (33) and (47), it follows that DðJ; J̄; ja;ωaÞ
cancels unless ω1 ¼ ω2 and
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DðJ; J̄; ja;ω1 ¼ ω2Þ

¼ Vconf
j1þ 2Jj2

π2

�
δð1þ j1 þ j2Þ þ π

Bðj1Þ
γð−2j1Þ

×
γð−1 − j1 − J þ kω1=2Þ

γðj1 − J þ kω1=2Þ
δðj1 − j2Þ

�
; (52)

where Vconf is the conformal volume on the sphere.
Introducing

Λjω
JJ̄ ¼ cj−1−Jþkω=2;−1−J̄þkω=2 ¼

π

γð−2jÞ
γωð−1 − j − JÞ

γωðj − JÞ ;

(53)

with

γωðxÞ ¼ γðxþ kω=2Þ; (54)

we finally get

hΦj1ω1

JJ̄ ðx1jz1ÞΦj2ω2

JJ̄ ðx2jz2Þi

¼ Vconf
j1þ 2Jj2

π2
δω1;ω2

½δð1þ j1 þ j2Þ

þ Bðj1ÞΛj1ω1

JJ̄ δðj1 − j2Þ�x2J12x̄2J̄12z−2Δ1

12 z̄−2Δ̄1

12 ; (55)

where

Δ1 ¼ Δ01 − ω1J − ω1 þ kω2
1=4: (56)

Notice that

lim
J;J̄→j

Λj;ω¼0

JJ̄ ¼ π2

Vconfð1þ 2jÞ2 ; (57)

therefore, the regular term of the two-point function for
unflowed states is reached in the same limit, namely, by
taking

ΦjðxjzÞ ¼ lim
J;J̄→j

Φj;ω¼0

JJ̄ ðxjzÞ: (58)

The contact term is not expected to be obtained from (55)
since the global spins for both insertions agree.
In order to determine the two-point function in space-

time, besides of the vertex operators we have considered,
the contribution coming from the internal CFT must be
taken into account. If we assume that the corresponding
vertices are unit normalized and that we are dealing with
states obeying the Virasoro constraint, this contribution
reduces to a factor z−2h112 z̄−2h̄112 , where ðh1; h̄1Þ are the
internal conformal weights. The target space two-point
function is obtained after integrating over the moduli space,
dividing by the volume of the conformal group on the
sphere. We get

hVj1ω1

JJ̄ ðx1ÞVj2ω2

JJ̄ ðx2Þi¼j1þ2Jj2δω1;ω2
½δð1þj1þj2Þ

þBðj1ÞΛj1ω1

JJ̄ δðj1−j2Þ�x2J12x̄2J̄12; (59)

where

J ¼ −1þ k
4
ω1 −

1

ω1

ð1 − h1 − Δ01Þ; (60)

and a similar expression holds for J̄. Notice that, unlike the
situation in [35], we had no need to rescale the vertex
operators neither for states built up upon the continuous nor
the discrete series in order to obtain the correct propagator.
While the two-point function for the former is explicitly
finite, it is also the case for the propagator of a short string,
since the divergence coming from the evaluation of
δðj1 − j2Þ at j1 ¼ j2 in (59) is canceled by a pole developed
by Γðj1 − J þ kω1=2Þ in the denominator of (53).
Even though, there is a subtlety when performing this
cancellation, since it gives rise to an additional factor
j1þ 2j − ðk − 2Þωj. In turn this factor brings the j1þ 2jj
needed in order to properly reproduce the factorization of
the four-point function onto the short string with ω ¼ 0.

A. Notation

In the unflowed frame, our notation differs from the one
used in [35] simply in the signs of the spins, namely,

ΦjðxjzÞ↔ ~ΦjðxjzÞ ¼ Φ−jðxjzÞ: (61)

A little more care should be taken when ω ≠ 0. Since the
definition of the Fourier transform connecting the x and
the m basis in [35] is different from (46), for recovering the
expressions obtained in [35] from ours, the following
identification must be imposed,

Φjω
JJ̄ðxjzÞ↔ ~Φjω

JJ̄ðxjzÞ

¼ 1

Vconf

Z
C
d2x0ðx − x0Þ−2Jðx̄ − x̄0Þ−2J̄Φ−j;ω

−1þJ;−1þJ̄ðx0jzÞ.(62)

The integration is needed in order to adjust the dependence
of the correlation functions in the space-time coordinates.
Indeed, using (49) twice, it is straightforward to get

h ~Φj1ω1

JJ̄ ðx1jz1Þ ~Φj2ω2

JJ̄ ðx2jz2Þi

¼ 1

Vconf
δω1;ω2

½δð1 − j1 − j2Þ

þ Bð−j1ÞΛ−j1;ω1

−1þJ;−1þJ̄δðj1 − j2Þ�x−2J12 x̄2J̄12z
−2Δ1

12 z̄−2Δ̄1

12 ; (63)

where, now, Δ1 ¼ Δ01 − ω1J þ kω2
1=4, in full agreement

with the corresponding correlator obtained in [35].
Notice that, apart from the change in the signs of the

spins and an eventual overall factor, the correspondence
(62) resembles the reflection identity (12), a symmetry that
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it is not clear to be present in the spectral flowed frame. In
the next section we shall make extensive use of (62) when
checking the agreement of our results with other correlators
reported in the literature.

IV. THREE-POINT CORRELATORS

Some three-point functions have been already computed
in the space-time picture. A correlator involving one vertex
with a single unit of spectral flow and two unflowed
operators was obtained in [35] using the two strategies we
have already described in the previous section, and the
three-point function involving two operators in the ω ¼ 1
sector and an unflowed vertex and certain three-point
functions with all of their insertions carrying a unit of
flow were determined in [36] directly in the x basis. Other
three-point functions were also computed in [54] within the
context of the superstring theory on AdS3 × S3 × T4. In this
section we extend these computations for an arbitrary
amount of spectral flow.
The invariance under the global symmetry generated

by the zero modes of the SLð2Þ algebra establishes the
following space-time dependence for the three-point
function,

hΦj1ω1

J1J̄1
ðx1ÞΦj2ω2

J2J̄2
ðx2ÞΦj3ω3

J3J̄3
ðx3Þi

¼ DðJa; J̄a; ja;ωaÞ
Y
σ

xJσσ1σ2 x̄
J̄σ
σ1σ2 ; (64)

where the product runs over all cyclic permutations of the
labels, Jσ ¼ Jσ1 þ Jσ2 − Jσ3 , DðJa; J̄a; ja;ωaÞ is a constant
to be determined and, again, we are omitting any depend-
ence on the world-sheet coordinates until the final
expressions.
After transforming to the m basis according to (46), we

obtain

hΦj1ω1

J1M1J̄1M̄1
Φj2ω2

J2M2J̄2M̄2
Φj3ω3

J3M3J̄3M̄3
i

¼ Dð−1 − Ja;−1 − J̄a;−1 − ja;ωaÞ
×WðJa; J̄a;Ma; M̄aÞδ2ðM1 þM2 þM3Þ; (65)

where WðJa; J̄a;Ma; M̄aÞ is the generalization of (37) for
Ja ≠ J̄a, namely,

WðJa; J̄a;Ma; M̄aÞ

¼
Z
C
d2x1d2x2

Y
σ

x
Jσ1þMσ1
σ1 x̄

J̄σ1þM̄σ1
σ1 x−1−Jσσ1σ2 x̄−1−J̄σσ1σ2 ; (66)

with x3; x̄3 ¼ 1. Unlike (37), there is no explicit formula
for this integral, but for our purposes it will be enough
to compute it when one of the insertions, say the first
one, corresponds to a lowest-weight state, namely, for

M1 ¼ −J1 and M̄1 ¼ −J̄1. In this case, Eq. (66) simplifies
to

W1ðJa; J̄a;M2; M̄2Þ ¼
Z
C
d2x1d2x2x

J2þM2

2 x̄J̄2þM̄2

2

×
Y
σ

x−1−Jσσ1σ2 x̄−1−J̄σσ1σ2 ; (67)

and it can be explicitly solved using (49) twice. We obtain

W1ðJa;J̄a;M2;M̄2Þ

¼π2γð−1−J1−J2−J3Þγð1þJ2þM2Þγð−J31Þγð−J12Þ
γð−2J1Þγð−J31−J2þM2Þ

;

(68)

where we are now following the standard notation, writing
Jσ1σ2 instead of Jσ.

A. Three-point function with a single flowed insertion

The case of the three-point function with only one
spectral flowed operator was previously treated in [35].
We recall it here for completeness.
Let us assume that the flowed vertex is inserted in the

first point. According to (39), we necessarily should have
ω1 ¼ 1, so that (65) reduces to

hΦj1;ω1¼1

J1;−J1;J̄1;−J̄1
Φj2m2m̄2

Φj3m3m̄3
i

¼ Dð−1 − Ja;−1 − J̄a;−1 − ja;ωaÞ
×W1ðJa; J̄a;m2; m̄2Þδ2ð−J1 þm2 þm3Þ; (69)

where Ji ¼ J̄i ¼ ji, i ¼ 2, 3. Setting m1 ¼ −J1 − k=2 and
m̄1 ¼ −J̄1 − k=2, it follows from (40), (42) and (47), that

Dð−1 − Ja;−1 − J̄a;−1 − ja;ωaÞ

¼ C0ð−1 − jaÞW0ðja;ma; m̄aÞ
W1ðJa; J̄a;m2; m̄2Þ

¼ C0ð−1 − jaÞγð1þ j1 − J1 − k=2Þγð−2J1Þ
π2γð−1 − J1 − j2 − j3Þγð−J31Þγð−J12Þ

: (70)

Since Φj2m2m̄2
ðx2jz2Þ and Φj3m3m̄3

ðx3jz3Þ run over all the
allowed representations, m2, m̄2, m3 and m̄3 can take
arbitrary values. The delta functions appearing in (40) and
(69) do not imply any constraint to the spin configurations
and, therefore, they have been canceled. Therefore,
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hΦj1;ω1¼1

J1J̄1
ðx1jz1ÞΦj2ðx2jz2ÞΦj3ðx3jz3Þi

¼ C0ðjaÞγð1 − j1 þ J1 − k=2Þγð2þ 2J1Þ
π2γð2þ J1 þ j2 þ j3Þγð1þ J31Þγð1þ J12Þ
×
Y
σ

xJσσ1σ2 x̄
J̄σ
σ1σ2z

−Δσ
σ1σ2 z̄

−Δ̄σ
σ1σ2 : (71)

The target space correlator is obtained after integrating
over the moduli space, once those contributions to the
scaling dimensions coming from the internal space are
taken into account. One gets, up to a proper normalization,

hVj1;ω1¼1

J1J̄1
ðx1ÞVj2ðx2ÞVj3ðx3Þi

¼ C0ðjaÞγð1−j1þJ1−k=2Þγð2þ2J1Þ
π2γð2þJ1þj2þj3Þγð1þJ31Þγð1þJ12Þ

Y
σ

xJσσ1σ2 x̄
J̄σ
σ1σ2 :

(72)

Using the following identity,

γðcÞ
πγðbÞγðc−bÞjx

1−cj2
Z
C
d2yjyb−1ðx−yÞc−b−1ð1−yÞ−aj2

¼
����2F1

�
a;b

c

����x
�����2−λ

����x1−c2F1

�
1þb−c;1þa−c

2−c

����x
�����2;
(73)

where 2F1 represents the hypergeometric function and

λ ¼ γðcÞ2γða − cþ 1Þγðb − cþ 1Þ
ðc − 1Þ2γðaÞγðbÞ ; (74)

together with the fact that

2F1

�
a; b
c

����x
�

¼ ð1 − xÞ−b (75)

it is possible to show from (71), that

h ~Φj1;ω1¼1

J1J̄1
ðx1jz1Þ ~Φj2ðx2jz2Þ ~Φj3ðx3jz3Þi

¼ Bðj1ÞCð−k=2þ j1;−j2;−j3Þ
Vconf

γðj1 þ J1 − k=2ÞγðJ23Þ
γðj1 þ j2 þ j3 − k=2Þ

×
Y
σ

x−Jσσ1σ2 x̄
−J̄σ
σ1σ2z

−Δσ
σ1σ2 z̄

−Δ̄σ
σ1σ2 ; (76)

with Δ1 ¼ Δ01 − J1 þ k=4. This expression coincides with
the corresponding three-point function reported in [35].

B. Three-point functions with two flowed insertions

When two spectral flowed vertex operators are inserted
in a three-point function, the expression (67) can be further
simplified since another extremal-weight state must be
considered in order to use the identity (47). In our case we

shall consider a highest-weight state in the second point so
that M2 ¼ J2 and M̄2 ¼ J̄2. Introducing

W2ðJa; J̄aÞ≡W1ðJa; J̄a; J2; J̄2Þ

¼ π2γð−1 − J1 − J2 − J3Þγð1þ 2J2Þγð−J12Þ
γð−2J1Þ

; (77)

Eq. (65) reduces to

hΦj1ω1

J1;−J1;J̄1;−J̄1
Φj2ω2

J2J2J̄2J̄2
Φj3m3m̄3

i
¼ Dð−1 − Ja;−1 − J̄a;−1 − ja;ωaÞ
×W2ðJa; J̄aÞδ2ð−J1 þ J2 þm3Þ; (78)

where J3 ¼ J̄3 ¼ j3.
According to the selection rules for the spectral flow

violation (39), there are just two cases of interest: the
spectral flow conserving correlator and the correlation
function violating the spectral flow conservation in a unit.
Both cases must be treated separately.

1. Spectral flow preserving correlator

Let us assume that the first two insertions correspond to
the flowed vertex operators and that ω1 ¼ ω2. By virtue of
(47) we can identify Φj1ω1

J1;−J1;J̄1;−J̄1
in (78) with Φω1

j1m1m̄1
,

where m1 ¼ −J1 − kω1=2 and m̄1 ¼ −J̄1 − kω1=2, and
Φj2ω2

J2J2J̄2J̄2
with Φ−ω2

j2m2m̄2
, where m2 ¼ J2 þ kω2=2 and

m̄2 ¼ J̄2 þ kω2=2. Under these identifications, we can
equate (36) with (78), obtaining

Dð−1 − Ja;−1 − J̄a;−1 − ja;ωaÞ

¼ Cð−1 − jaÞWðja;ma; m̄aÞ
W2ðJa; J̄aÞ

¼ Cð−1 − jaÞWðja;ma; m̄aÞγð−2J1Þ
π2γð−1 − J1 − J2 − j3Þγð1þ 2J2Þγð−J12Þ

: (79)

For writing (79) we have canceled the delta functions
appearing in (36) and (78) since m3 and m̄3 take arbitrary
values and, as before, these delta functions do not imply
any constraint to the spin assignments.
It follows that

hΦj1ω1

J1J̄1
ðx1jz1ÞΦj2ω2

J2J̄2
ðx2jz2ÞΦj3ðx3jz3Þi

¼ CðjaÞŴðja; Ja; J̄aÞ
Y
σ

xJσσ1σ2 x̄
J̄σ
σ1σ2z

−Δσ
σ1σ2 z̄

−Δ̄σ
σ1σ2 ; (80)

where we have introduced

bWðja; Ja; J̄aÞ

¼ Wð−1 − ja;ma; m̄aÞγð2þ 2J1Þ
π2γð2þ J1 þ J2 þ j3Þγð−1 − 2J2Þγð1þ J12Þ

; (81)
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with m1 ¼ 1þ J1 − kω1=2, m̄1 ¼ 1þ J̄1 − kω1=2, m2 ¼
−1 − J2 þ kω2=2 and m̄2 ¼ −1 − J̄2 þ kω2=2.
The target space correlation function is computed,

as usual, by integrating over the moduli space, after
adjusting the world-sheet dependence of the fields by
considering their scaling dimensions in the internal space
ðhi; h̄iÞ. We get

hVj1ω1

J1J̄1
ðx1ÞVj2ω2

J2J̄2
ðx2ÞVj3ðx3Þi

¼ CðjaÞ bWðja; Ja; J̄aÞ
Y
σ

xJσσ1σ2 x̄
J̄σ
σ1σ2 ; (82)

with

Ji ¼ −1þ k
4
ωi −

1

ωi
ð1 − hi − Δ0iÞ; i ¼ 1; 2: (83)

There are several interesting consistency checks that can
be performed on (80). The simplest one corresponds to the
limit (58). Setting ωi ¼ 0 and taking the limit Ji; J̄i → ji
for i ¼ 1, 2, we get Wð−1 − ja;ma; m̄aÞ →
W2ð−1 − ja;−1 − jaÞ. By virtue of (77), all the gamma
functions appearing in (81) are canceled andbWðja; Ja; J̄aÞ → 1. At the end, the three-point function
for unflowed vertices is reproduced.
Another check follows through (62) when ω1 ¼ ω2 ¼ 1.

Indeed, using (73) twice together with (75) it is straightfor-
ward to prove that (80) reduces to

h ~Φj1ω1

J1J̄1
ðx1jz1Þ ~Φj2ω2

J2J̄2
ðx2jz2Þ ~Φj3ðx3jz3Þi

¼ Cð−jaÞWð−ja;ma; m̄aÞ
V2
conf

Y
σ

x−Jσσ1σ2 x̄
−J̄σ
σ1σ2z

−Δσ
σ1σ2 z̄

−Δ̄σ
σ1σ2 ; (84)

where Δi ¼ Δ0i − ωiJi þ kω2
i =4 with i¼1, 2,

m1¼−J1−kw1=2, m̄1¼−J̄1−kw1=2, m2 ¼ J2 þ kw2=2,
m̄2 ¼ J̄2 þ kw2=2, . Setting ω1 ¼ ω2 ¼ 1 one recovers the
corresponding expression found in [36].
More interestingly, inserting an identity at the third point

in (80), the emergence of both terms of the two-point
function (55) can be proven. Due to the factor G−1ð1þ 2ϵÞ
coming from CðjaÞ when setting j3 ≡ ϵ → 0, the correlator
(80) vanishes unless further terms behave singular in
the same limit. When j1 ∼ j2, there are two such
factors: Gðj1 − j2 þ ϵÞ and Gðj2 − j1 þ ϵÞ. The singular
behavior of the first one can be represented, by virtue of
(21), as −b−2ðj1 − j2 þ ϵÞ−1Gð−1Þ. Similarly, we have
Gðj2 − j1 þ ϵÞ ∼ −b−2ðj2 − j1 þ ϵÞ−1Gð−1Þ. It follows
that

lim
ϵ→0

Gðj1 − j2 þ ϵÞGðj2 − j1 þ ϵÞ
Gð−1ÞGð1þ 2ϵÞ ¼ 2πγðb2Þδðj1 − j2Þ;

(85)

since

lim
ϵ→0

2ϵ

x2 − ϵ2
¼ −2πδðxÞ; (86)

and, therefore,

Cðj1; j2; ϵÞ → Bðj1Þδðj1 − j2Þ: (87)

On the other hand, we have

Wð−1 − ja;ma; m̄aÞ ∼
Z
C
d2x1d2x2jx1j−2j1þ2J1−kω1 x̄J̄1−J11 jx2j−4−2j1−2J2þkω1 x̄J2−J̄22 jx12j4j1−2ϵ

∼ δ2ðJ1 − J2Þ
πγω1

ð−1 − j1 − J1Þ
γð−2j1 þ ϵÞγω1

ðj1 − J1 − ϵÞ → δ2ðJ1 − J2ÞΛj1ω1

J1J̄1
; (88)

where we have used (35) and (49). We recover the second term of (55) after inserting (87) and (88) into (80). The overall
factor Vconf follows from the evaluation of the delta function.
In order to obtain the first term of (55) one has to have a little more care. When 1þ j1 þ j2 ∼ 0, we find just one singular

factor in CðjaÞ, namely, Gð1þ j1 þ j2 þ ϵÞ, which behaves as −b−2ð1þ j1 þ j2 þ ϵÞ−1Gð−1Þ, so that

CðjaÞ ∼ −
Gðj1 − j2ÞGðj2 − j1Þ

2π2v−1−j1−j2Gð1þ 2j1ÞGð1þ 2j2Þ
2ϵ

1þ j1 þ j2 þ ϵ
: (89)

Unlike the case where only unflowed vertex operators are considered, there is no singular behavior coming from the
dependence of (80) in the space-time coordinates but, again, it comes from the integral Wð−1 − ja;ma; m̄aÞ. Indeed,
we have

MORE AdS3 CORRELATORS PHYSICAL REVIEW D 89, 066006 (2014)

066006-11



Wð−1 − ja;ma; m̄aÞ ¼
Z
C
d2x1d2x2jx1j−2j1þ2J1−kωx̄J̄1−J11 jx2j−4−2j2−2J2þkω × x̄J2−J̄22 jx12j2j1þ2j2−2ϵj1 − x1j2j2−2j1 j1 − x2j2j1−2j2

∼
πδ2ðJ1 − J2 − 1 − j1 − j2Þ

1þ j1 þ j2 − ϵ
; (90)

wherewe have used jx12j2ðj1þj2−ϵÞ ∼ πð1þ j1 þ j2 − ϵÞ−1×
δ2ðx12Þ. By virtue of (86), we get

CðjaÞWð−1−ja;ma;m̄aÞ→δð1þj1þj2Þδ2ðJ1−J2Þ: (91)

We recover the first term of (55) after replacing this expression
in (80). Again, the factor Vconf arises from the evaluation of
the delta function in (91).

2. Spectral flow violating correlator

Let us assume, again, that the first two insertions
are those with flowed vertex operators. Without any loss
of generality, we can set ω1 ¼ ω2 þ 1. If we now identify
Φj1ω1

J1;−J1;J̄1;−J̄1
in (78) with Φω2þ1

j1m1m̄1
, where m1 ¼

−J1 − kω2=2 − k=2 and m̄1 ¼ −J̄1 − kω2=2 − k=2, and
Φj2ω2

J2J2J̄2J̄2
with Φ−ω2

j2m2m̄2
, where m2 ¼ J2 þ kω2=2 and

m̄2 ¼ J̄2 þ kω2=2, we can equate (40) with (78). We obtain,

Dð−1 − Ja;−1 − J̄a;−1 − ja;ωaÞ

¼ C0ð−1 − jaÞW0ðja;ma; m̄aÞγð−2J1Þ
π2γð−1 − J1 − J2 − J3Þγð1þ 2J2Þγð−J12Þ

: (92)

Notice that, again, we have been able to cancel the delta
functions appearing in (40) and (78) since m3 and m̄3 can
acquire any value.
Replacing (92) in (64) we get the following expression

for the spectral flow violating three-point function,

hΦj1ω1

J1J̄1
ðx1jz1ÞΦj2ω2

J2J̄2
ðx2jz2ÞΦj3ðx3jz3Þi

¼ C0ðjaÞ bW0ðja; Ja; J̄aÞ
Y
σ

xJσσ1σ2 x̄
J̄σ
σ1σ2z

−Δσ
σ1σ2 z̄

−Δ̄σ
σ1σ2 (93)

where we have introduced

Ŵ0ðja; Ja; J̄aÞ ¼
γð2þ 2J1Þγð2þ 2J2Þγω2

ð−1 − j2 − J2Þ
π2γð2þ J1 þ J2 þ j3Þγð1þ J31Þγð1þ J12Þγω1

ðj1 − J1Þ
(94)

Notice that, after setting ω2 ¼ 0, in the limit J2; J̄2 → j2
we obtain

Ŵ0ðja; Ja; J̄aÞ

→
γð1 − j1 þ J1 − k=2Þγð2þ 2J1Þ

π2γð2þ J1 þ j2 þ j3Þγð1þ J31Þγð1þ J12Þ
(95)

so that we recover (71), as expected.
The target space correlator is given by

hVj1ω1

J1J̄1
ðx1ÞVj2ω2

J2J̄2
ðx2ÞVj3ðx3Þi

¼ C0ðjaÞŴ0ðja; Ja; J̄aÞ
Y
σ

xJσσ1σ2 x̄
J̄σ
σ1σ2 : (96)

Let us finally quote the expression of the three-point
function following the notation of [35]. By virtue of (62),
using (73) twice and (75), we get

h ~Φj1ω1

J1J̄1
ðx1jz1Þ ~Φj2ω2

J2J̄2
ðx2jz2Þ ~Φj3ðx3jz3Þi

¼ C0ð−jaÞγω2
ðj2 − J2ÞγðJ23Þ

V2
confγω1

ð1 − j1 − J1Þ
Y
σ

x−Jσσ1σ2 x̄
−J̄σ
σ1σ2z

−Δσ
σ1σ2 z̄

−Δ̄σ
σ1σ2 ;

(97)

where Δi ¼ Δ0i − ωiJi þ kω2
i =4, i ¼ 1, 2.

C. Three-point functions with three
flowed insertions

When there are three flowed insertions in a correlator,
another highest-weight state should be also considered in
the third point, so that we can set M3 ¼ J3 and M̄3 ¼ J̄3.
Unlike in the previous cases, the FZZ recipe fails to give the
most general correlation function since the delta functions
in (36), (40) and (65) now do impose some constraints on
the possible values of the spins. Indeed, the method is
restraint to be valid only when the arguments of these delta
functions vanish.
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Under these nontrivial conditions, Eq. (65) reduces to

hΦj1ω1

J1;−J1;J̄1;−J̄1
Φj2ω2

J2J2J̄2J̄2
Φj3ω3

J3J3J̄3J̄3
i

¼ Dð−1 − Ja;−1 − J̄a;−1 − ja;ωaÞ
×W3ðJa; J̄aÞδ2ð−J1 þ J2 þ J3Þ; (98)

where W3ðJa; J̄aÞ is the restriction of W2ðJa; J̄aÞ on the
hyperplanes J3 ¼ J1 − J2, J̄3 ¼ J̄1 − J̄2, i.e.,

W3ðJa; J̄aÞ ¼
π2

j1þ 2J1j2
: (99)

As before, the spectral flow preserving correlator and the
correlation function violating the spectral flow conservation
in a unit must be treated separately.

1. Spectral flow conserving correlator

Without any loss of generality, we can sort the states
inside the correlation function in descending order of
spectral flow, namely, we can freely assume that
ω1 ≥ ω2 ≥ ω3. For a spectral flow preserving correlator
we accordingly have ω1 ¼ ω2 þ ω3. By virtue of (47) we
can identify Φj1ω1

J1;−J1;J̄1;−J̄1
in (98) with Φω1

j1m1m̄1
, where m1 ¼

−J1 − kω1=2 and m̄1 ¼ −J̄1 − kω1=2, Φj2ω2

J2J2J̄2J̄2
with

Φ−ω2

j2m2m̄2
, where m2 ¼ J2 þ kω2=2 and m̄2 ¼ J̄2 þ kω2=2,

and Φj3ω3

J3J3J̄3J̄3
with Φ−ω3

j3m3m̄3
, where m3 ¼ J3 þ kω3=2 and

m̄3 ¼ J̄3 þ kω3=2, and under these identifications we can
equate (36) with (98), obtaining

Dð−1 − Ja;−1 − J̄a;−1 − ja;ωaÞ

¼ Cð−1 − jaÞWðja;ma; m̄aÞ
W3ðJa; J̄aÞ

: (100)

The delta functions appearing in (36) and (98) have been
canceled, but it must be kept in mind that (100) is only valid
when their arguments vanish.
It follows that

hΦj1ω1

J1J̄1
ðx1jz1ÞΦj2ω2

J2J̄2
ðx2jz2ÞΦj3ω3

J3J̄3
ðx3jz3Þi

¼ j1þ 2J1j2
π2

CðjaÞWð−1 − ja;ma; m̄aÞ

×
Y
σ

xJσσ1σ2 x̄
J̄σ
σ1σ2z

−Δσ
σ1σ2 z̄

−Δ̄σ
σ1σ2 ; (101)

with m1 ¼ 1þ J1 − kω1=2, m̄1 ¼ 1þ J̄1 − kω1=2, m2 ¼
−1 − J2 þ kω2=2 and m̄2 ¼ −1 − J̄2 þ kω2=2. The restric-
tions on the spins are

J1 ¼ J2 þ J3 þ 1 and J̄1 ¼ J̄2 þ J̄3 þ 1: (102)

The target space correlation function is obtained, as before,
by omitting the world-sheet dependence.

2. Spectral flow violating correlator

If, again, we sort the states inside a correlator in
descending order of spectral flow, the condition for max-
imally violating the spectral flow number conservation is
achieved by imposing jω1 − ω2 − ω3j ¼ 1. By virtue of (47)
we can make the same identifications for the states as in the
previous case and equate (40) with (98). We finally obtain

hΦj1ω1

J1J̄1
ðx1jz1ÞΦj2ω2

J2J̄2
ðx2jz2ÞΦj3ω3

J3J̄3
ðx3jz3Þi

¼ j1þ 2J1j2
π2

C0ðjaÞ
Y3
i¼1

γð−ji þmiÞ
Y
σ

xJσσ1σ2 x̄
J̄σ
σ1σ2z

−Δσ
σ1σ2 z̄

−Δ̄σ
σ1σ2 ;

(103)

with m1 ¼ 1þ J1 − kω1=2, m̄1 ¼ 1þ J̄1 − kω1=2, and
mi ¼ −1 − Ji þ kωi=2, m̄i ¼ −1 − J̄i þ kωi=2, i ¼ 2, 3.
As before, this expression is valid as long as Eq. (102) holds.
The target space correlation function is reached after
eliminating the world-sheet dependence.

V. CONCLUDING REMARKS

In this paper we have computed three-point functions on
the sphere for the SLð2;RÞ-WZNW model following a
procedure based on the FZZ recipe [37], similar to the one
discussed in [35]. We have considered spectral flow
preserving and nonpreserving correlation functions involv-
ing vertex operators defined on arbitrary spectral flow
frames. The Fourier-like transformation for going from the
space-time picture to the m basis slightly differs from the
one given in [35]. It allowed us to avoid singularities and to
unify the treatment of short and long string states. Several
consistency checks were performed on the expressions we
have obtained. They reduce to the known correlators in
the unflowed limit, and they all agree with correlation
functions previously referred to in the literature when
setting ω ¼ 1.
For those cases in which at least one insertion corre-

sponds to an unflowed state, no restriction is found for the
spins involved. By contrast, when all three vertices belong
to a nontrivial spectral flow sector, the FZZ recipe fails to
give the most general correlator and only constrained spin
configurations are allowed. It would be interesting to
further explore the model in order to improve the method
for solving this issue.
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