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We construct a holographic two-band superconductor model with interband Josephson coupling. We
investigate the effects the Josephson coupling has on the superconducting condensates and the critical
temperature for their formation numerically, as well as analytically where possible. We calculate the ac
conductivity and find it qualitatively similar to the single band superconductor. We investigate the nodal
structure of our holographic two-band superconductor from the low temperature behavior of the thermal
conductivity and find it nodeless.
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I. INTRODUCTION

The AdS/CFT correspondence [1–3] has proved very
useful in providing novel tools to study strongly coupled/
correlated systems. It has been applied to, e.g. Relativistic
Heavy Ion Collider (RHIC) physics [4–8], and recently to
condensed matter phenomena [9–13] (for a review, see e.g.
Ref. [14]). A gravity model was proposed in Refs. [15,16]
in which a Uð1Þ symmetry is spontaneously broken by the
existence of a black hole. This mechanism was recently
incorporated in the model of superconductivity: critical
temperature and magnetic field were observed [17–19],1
and later non-Abelian gauge condensate [21] and conden-
sate of higher spin [22–24]. Some interesting phenomena
observed in the laboratory also appeared in the study of
fermion spectral functions [25–27].
Historically, Ginzburg-Landau theory has proved to be

an extraordinarily valuable phenomenological tool for
understanding single-component superconductors. Its gen-
eralization to the two-component Ginzburg-Landau model
(TCGL) was constructed, and its applicability to the two-
band systems studied in Refs. [28–30]. Upon switching on
the interband coupling between the two components, this
model can describe the phenomenon of the two gaps in
materials such as MgB2 (sþþ) [31,32] and iron pnictides
(sþ−)2 [34–36]. A holographic model with two order
parameters was first studied in the probe limit [37], and
recently with backreaction [38], where phases with two

condensates coexisting and competing were observed.
However, the absence of an interband (Josephson) cou-
pling in those models makes it difficult to justify them as
models of two-band superconductivity where the inter-
action between the two bands is crucial. A multiband
holographic model for three coherent orders was dis-
cussed in Ref. [39]. However, in their model the form and
strength of the interband interaction are completely fixed
by the built-in SOð3Þ gauge symmetry in the bulk, and are
not parameters that can be tuned. A similar holographic
model for the two-band case based on an Uð2Þ symmetry
was also constructed [40] in which the two condensates
can be of the same or opposite sign, i.e. zero or π relative
phase difference.
In this paper, we study the effects the interband coupling

has on the superconducting condensates and the critical
temperature of their formation in a holographic model
adapted from that proposed in Ref. [41], which has a
tunable interband Josephson coupling. In the language of
the TCGL model, for positive Josephson coupling the two-
band superconductor is in the same sign, sþþ, state, while
for negative Josephson coupling, it is in the opposite sign,
sþ−, state. A defining characteristic of the two-band
superconductor is the existence of coherent orders in which
the two orders have the same critical temperature. Here we
look for this characteristic feature in our holographic two-
band superconductor, and we study its electrical and
thermal transport properties. The thermal conductivity, κ,
is of particular interest as its low temperature behavior
provides a good probe of the superconducting gap structure
experimentally. The contribution to the thermal conduc-
tivity due to conduction electrons is expected to behave as
∼T at low temperatures, while that due to phonons as ∼T3.
Thus a linear temperature dependence in κ at low temper-
atures may be attributed to electron excitations. Now κ → 0
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as T → 0would point to a fully gapped superconductor, but
a finite value can indicate a nodal structure due to pairing
symmetry, or strong electron-electron interactions, or gap-
less behavior due to scattering.
The paper is organized as follows. We describe our

holographic two-band model in Sec. II. Results from our
numerical study of the condensates and the electric and
thermal conductivities are reported in Sec. III. We derive
analytical results in regimes where it is possible in Sec. IV.
We end with a summary and directions for the future
in Sec. V.

II. THE MODEL

We start by putting a generalized two-component
Ginzburg-Landau theory into the (3þ 1)-dimensional
Einstein-Maxwell-dilaton gravity,

2κ2Gð−gÞ−1=2L ¼ Rþ 6

L2
−Gðφ1;φ2Þ

4
FμνFμν − 1

2
jDμφ1j2

− 1

2
jDμφ2j2 − Vðφ1;φ2Þ; (1)

where Gðφ1;φ2Þ ¼ 1þ κ1φ
�
1φ1 þ κ2φ

�
2φ2 is the nonmini-

mal coupling between the charged scalars and gauge field,
and φ1 and φ2 are charged scalars. Except for the mass
terms for the two charged scalars, we also introduce the
interactions between the two charged scalars in the poten-
tial term

Vðφ1;φ2Þ ¼ m2
1φ

�
1φ1 þm2

2φ
�
2φ2 þ ϵðφ�

1φ2 þ φ1φ
�
2Þ

þ ηjφ1j2jφ2j2; (2)

where the ϵ term is the Josephson coupling introduced in
the field theory literature, and the last term is the direct
coupling [37]. Since φ1, φ2 are complex scalars, we may

parametrize them as φ1 ¼ ψ1eiθ1 , φ2 ¼ ψ2eiθ2 . Then the
bulk action can be rewritten as

S ¼ 1

2κ2G

Z
d4x

ffiffiffiffiffiffi−gp �
Rþ 6

L2
− 1

4
Gðψ1;ψ2ÞFμνFμν

− 1

2
ð∂ψ1Þ2 − 1

2
ψ2
1ð∂μθ1 − AμÞ2 −

1

2
ð∂ψ2Þ2

− 1

2
ψ2
2ð∂μθ2 − AμÞ2 − Vðψ1;ψ2Þ

�
;

which is invariant under the gauge transformation

Aμ → Aμ þ ∂μα; θ1 → θ1 þ α; θ2 → θ2 þ α:

To preserve the gauge transformation, we can generalize
the action as [41]

S ¼ 1

2κ2G

Z
d4x

ffiffiffiffiffiffi−gp �
Rþ 6

L2
− 1

4
Gðψ1;ψ2ÞFμνFμν

− 1

2
ð∂ψ1Þ2 − 1

2
J1ðψ1Þð∂μθ1 − AμÞ2 −

1

2
ð∂ψ2Þ2

− 1

2
J2ðψ2Þð∂μθ2 − AμÞ2 − Vðψ1;ψ2Þ

�
; (3)

where J1ðψ1Þ, J2ðϕ2Þ are arbitrary functions of ψ1, ψ2, and

Gðψ1;ψ2Þ ¼ 1þ κ1ψ
2
1 þ κ2ψ

2
2;

Vðψ1;ψ2Þ ¼ m2
1ψ

2
1 þm2

2ψ
2
2 þ 2ϵψ1ψ2 þ ηψ2

1ψ
2
2: (4)

In the following we only consider the minimal model which
gives the phase-locking condition, saying θ1 ¼ θ2 ≡ θ
[42]. Since we do not consider the vortex solution, we
can consistently set θ to be any constant, say θ ¼ 0 for
simplicity. The equations of motion are

∇2ψ1 − 1

4

∂Gðψ1;ψ2Þ
∂ψ1

FμνFμν − 1

2

∂Vðψ1;ψ2Þ
∂ψ1

− 1

2

∂J1ðψ1Þ
∂ψ1

AμAμ ¼ 0;

∇2ψ2 − 1

4

∂Gðψ1;ψ2Þ
∂ψ2

FμνFμν − 1

2

∂Vðψ1;ψ2Þ
∂ψ2

− 1

2

∂J2ðψ2Þ
∂ψ2

AμAμ ¼ 0;

∇μðGðψ1;ψ2ÞFμνÞ − J1ðψ1ÞAν − J2ðψ2ÞAν ¼ 0;

Rμν − 1

2
gμνR ¼ 1

2
fðϕÞ

�
FμαFα

ν − 1

4
gμνF2

�
þ 1

2
J1ðψ1Þ

�
AμAν − 1

2
gμνA2

�

þ 1

2
J2ðψ2Þ

�
AμAν − 1

2
gμνA2

�
þ 1

2
ð∂μψ1∂νψ1 − 1

2
gμνð∂ψ1Þ2Þ þ

1

2

�
∂μψ2∂νψ2 − 1

2
gμνð∂ψ2Þ2

�
−
1

2
gμνVðψ1;ψ2Þ: (5)

We take the fully backreacted ansatz as

ds2 ¼ −gðrÞe−χðrÞdt2 þ r2ðdx21 þ dx22Þ þ
dr2

gðrÞ ; ψ1 ¼ ψ1ðrÞ; ψ2 ¼ ψ2ðrÞ; A ¼ ϕðrÞdt: (6)
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With the choice of J1 ¼ q2ψ2
1, J2 ¼ q2ψ2

2, and minimal coupling κ1 ¼ κ2 ¼ 0, the independent equations of motion are
given by3

ψ 00
1 þ ψ 0

1

�
g0

g
− χ0

2
þ 2

r

�
þ q2eχφ2

g2
ψ1 − 1

g
ðm2

1ψ1 þ ϵψ2 þ ηψ1ψ
2
2Þ ¼ 0;

ψ 00
2 þ ψ 0

2

�
g0

g
− χ0

2
þ 2

r

�
þ q2eχφ2

g2
ψ2 − 1

g
ðm2

2ψ2 þ ϵψ1 þ ηψ2
1ψ2Þ ¼ 0;

φ00 þ φ0
�
χ0

2
þ 2

r

�
− q2ðψ2

1 þ ψ2
2Þ

g
φ ¼ 0;

χ0 þ rðψ 02
1 þ ψ 02

2Þ þ
q2reχφ2

g2
ðψ2

1 þ ψ2
2Þ ¼ 0;

2ðψ 02
1 þ ψ 02

2Þ þ
eχϕ02

g
þ 4g0

rg
þ 4

r2
þ −12þ 2m2

1ψ
2
1 þ 2m2

2ψ
2
2 þ 4ϵψ1ψ2 þ 2ηψ2

1ψ
2
2

g
þ 2

eχq2ϕ2

g2
ðψ2

1 þ ψ2
2Þ ¼ 0; (7)

where a prime denotes the derivative with respect to r,
and we work in units where the anti de–Sitter (AdS) radius
is unity.
The Hawking temperature is given by [43]

T ¼
ffiffiffiffiffiffi
grr

p
2π

d
dr

ffiffiffiffiffiffiffiffiffi−gttp jr¼rþ ¼ g0þe−
χþ
2

4π

¼ rþ
16π

½ð12 − 2m2
1ψ

2
1þ − 4ϵψ1þψ2þ − 2m2

2ψ
2
2þ

− 2ηψ2
1þψ

2
2þÞe

−χþ
2 − E2þe

χþ
2 �; (8)

where the horizon is located at r ¼ rþ, Eþ ¼ ϕ0ðrþÞ and
the subscript þ denotes taking the value at the horizon.
Near the boundary, the asymptotic behavior of scalar

fields are in the form of

ψ i ¼ Ψð1Þ
i r−Δ þΨð2Þ

i rΔ−3; i ¼ 1; 2; (9)

where the renormalizable (nonrenormalizable) term repre-
sents the source (expectation value) for the scalar field, and
the scaling dimension of the scalar field Δ is given by

ΔðΔ − 3Þ ¼ m2: (10)

In the rest of this paper, we choose m2
1 ¼ −2, m2

2 ¼ −1.
In this choice of mass, both falloffs of scalar fields near the
boundary are normalizable, and one can impose the
boundary condition that either one vanishes. For simplicity,

we choose the Ψð1Þ
i terms to vanish, and let Ψð2Þ

i be the
condensates for two scalar fields.4 The condensates have
the mass dimension λi ¼ 3 − Δi, where λ1 ¼ 2, λ2 ¼ 3þ ffiffi

5
p
2

.

III. NUMERICAL STUDY

To solve all five independent functions (ψ1, ψ2, φ, g, χ),
we have to impose appropriate boundary conditions at the
boundary r → ∞ and horizon r ¼ rh. At the horizon, the
regularity condition is required, means φðrhÞ ¼ 0. Others
can be obtained by taking the Taylor expansion near the
horizon and deriving it from the equations of motion. This
leaves five undetermined parameters [ψ1ðrhÞ, ψ2ðrhÞ,
φ0ðrhÞ, rh, χðrhÞ]. At the boundary, the five functions
should behave as

ψ1 ¼ Ψð1Þ
1 r−Δ1 þΨð2Þ

1 rΔ1−3;

ψ2 ¼ Ψð1Þ
2 r−Δ2 þΨð2Þ

2 rΔ2−3;

ϕ ¼ μ − ρ

r
; g ¼ r2 þ � � � ; χ ¼ 0þ � � � : (11)

As discussed in the previous section, we impose the source-

free condition Ψð1Þ
i ¼ 0 since we hope the Uð1Þ symmetry

is spontaneously broken. Also according to the AdS/CFT
dictionary, up to a normalization, the expansion coefficients

ρ, μ, Ψð2Þ
i ≡ hOii are interpreted as the charge density,

chemical potential and condensates in the dual field theory,
respectively.
On the other hand, Eqs. (7) have the scaling

symmetries

e−χ → α2e−χ ; ϕ → αϕ; t → αt; (12)

r → βr; ðt; x1; x2Þ → β−1ðt; x1; x2Þ;
g → β2g; ϕ → βϕ; (13)

3Note that due to gauge invariance, the two scalars have the
same charge.

4More precisely, Ψð2Þ
i corresponds to the expectation value of

the scalar field operator, and the condensate is proportional to the
expectation value up to some prefactor which we just neglect it.
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and one can use these two scaling symmetries to set rh ¼ 1
and χðrhÞ ¼ 0 for performing numerics. Then we choose
two of the remaining three undetermined parameters as
shooting parameters to match the source-free condition
Ψð1Þ

i ¼ 0 and solve the coupled differential equations. After
solving the coupled differential equations, we need to apply
the first scaling symmetry Eq. (12) to set χð∞Þ ¼ 0 such
that the Hawking temperature can be interpreted as the
temperature in the dual field theory [44]. Below, we fix
q ¼ 1. We also set η ¼ 0 in our numerical calculations to
focus on the effect of the Josephson coupling. We have
checked that leaving the quartic scalar interaction turned
on, viz. η ≠ 0, we obtain similar solutions for the gauge and
scalar fields, and the condensates and conductivities
extracted exhibit similar behaviors, as in the η ¼ 0 case.
We leave the detailed study of the case where both the
Josephson coupling and the quartic scalar interaction are
present to future work.
We emphasize here that the physical quantities of interest

are those associated with ψ1;2. With η ¼ 0, it is possible to
go to a basis where the quadratic scalar potential becomes
diagonal. However, this does not mean that the effect of the
Josephson coupling is gone. The theory with respect to ψ1;2
is not free. If one were to calculate quantities composed of
ψ1;2 (e.g. their correlation functions) in the new diagonal
basis, the Josephson coupling will reappear.

A. Condensates

In Fig. 1, we show how the two condensates of the
two charged scalar fields vary as a function of temperature.
We plot the dimensionless scaling-invariant quantities
hOii1=λi=μ, i ¼ 1; 2, as a function of T=μ for various values
of Josephson coupling. These scaling-invariant quantities
are equivalent to those scaled to μ ¼ 1. We have checked
that these hairy black hole solutions have lower free energy
than the normal phase solutions without condensation,
and are thus thermodynamically favored below the critical
temperature.
Without the Josephson coupling, i.e. ϵ ¼ 0, the critical

temperatures for two scalar fields are different from that
found in [38]. When the Josephson coupling is turned on,
the two scalar fields condense at the same critical temper-
ature; i.e. when one of the scalars condenses, it triggers the
other to condense as well. This is a characteristic of two-
band superconductors such as MgB2 or Fe-based super-
conductors found in experiments [45]. We see also that
the critical temperature decreases as the strength of inter-
band coupling increases, which is the same as the single
band case.
In the weakly coupled [Bardeen-Cooper-Schrieffer

(BCS)] theory, the value of the condensate is proportional
to the superconducting gap. If we naively extrapolate this to
the strongly coupled case here, we see interestingly from
Fig. 1 that with nonzero Josephson coupling, the ratio of

two superconducting gaps in the ϵ > 0 case (sþþ super-
conductor) is higher than that in the ϵ < 0 case (sþþ
superconductor). If our speculation can be confirmed, this
would be a novel feature predicted from our holographic
model and merits further investigations, both theoretically
and experimentally.

B. Conductivity

1. Optical conductivity

We are interested in the transport properties of the
two-band superconductors, such as those encapsulated
by the optical and thermal conductivities, which are
important physical quantities measured in experiments.
We compute the conductivities based on the linear response
theory. Following the standard prescription in AdS/CFT
correspondence, we turn on the fluctuations δAx ¼
axðrÞe−iωt and δgtx ¼ htxðrÞe−iωt. The fluctuation equa-
tions are given by

a00x þ a0x

�
g0

g
− χ0

2

�
þ ax

�
ω2eχ

g2
− q2ðψ2

1 þ ψ2
2Þ

g

�

¼ φ0eχ

g

�
−h0tx þ 2

r
htx

�
; (14)

h0tx − 2

r
htx þ ϕ0ax ¼ 0; (15)

which can be combined into

a00x þ a0x

�
g0

g
− χ0

2

�
þ
��

ω2

g2
− ϕ02

g

�
eχ − q2ðψ2

1 þ ψ2
2Þ

g

�
ax

¼ 0: (16)

By solving this equation for ax with an incoming wave
boundary condition, the optical conductivity can be
extracted from the asymptotic behavior of ax using
the standard holographic prescription based on Ohm’s
law [14],

axðrÞ ¼ að0Þx þ að1Þx

r
þ � � � σðωÞ ¼ Jx

Ex
¼ 1

iω
að1Þx

að0Þx

:

(17)

As an example of the typical behavior of the optical
conductivity, σðωÞ, in our model, we show in Fig. 2 the real
and imaginary parts of σðωÞ when ϵ ¼ −1 for various
values of T =T c, where we define T ≡ T=μ. We normalize
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the real part by σ∞ ≡ limω→∞ ReσðωÞ to better display its
features. We see that the optical conductivity exhibits features
typically seen in the one-band superconductor case. Notice the
pole atω ¼ 0 in the imaginary part of the optical conductivity.
By the Kramer-Kronig relation this implies a delta function in
the real part of optical conductivity with the strength given by

the coefficient of the pole. In our model, this coefficient does
not vanish, and it approaches a constant as T → Tc. This delta
function at T ≥ Tc is due to the translational invariance, and is
only visible in systems with full backreactions [44]. By
varying the strength and sign of the interband coupling ϵ,
the qualitative features do not change; only σ∞ is changed.
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FIG. 1 (color online). The two condensates, hO1i (blue curves) and hO2i (red curves), as functions of temperature for nonzero
Josephson coupling, ϵ (a) ϵ ¼ 0.1, (b) ϵ ¼ −0.1, (c) ϵ ¼ 0.5, (d) ϵ ¼ −0.5, (e) ϵ ¼ 1, (f) ϵ ¼ −1. The mass dimensions of the
two condensates are λ1 ¼ 2 and λ2 ¼ 3þ ffiffi

5
p
2

, respectively.
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2. Thermal conductivity

The thermal conductivity is a useful probe of the nodal
structure of superconductors.5 In experiments, the low
temperature behavior of the thermal conductivity is well
fitted by κ=T ¼ aþ bTγ−1, where the constant part comes
from the contribution of nodal excitations, while the Tγ part
can arise from effects that break the Cooper pairs, phonons
(for γ ¼ 3) or gapped excitations at low temperature.
In the holographic model, the thermal conductivity,

κ̄ðωÞ, is given by [14]

Tκ̄ðωÞ ¼ iðϵþ P − 2μρÞ
ω

þ μ2σðωÞ; (18)

We see that the real part of κ̄ðωÞ is determined by that of the
electric conductivity alone. In Fig. 3 we plot the behavior of

κ̄=T ≡ limω→0Reκ̄ðωÞ=T. For convenience, we plot it as a
function of T =T c ∝ T=Tc at various values of ϵ. At low
temperature, we find for x≡ T =T c ≲ 0.2, κ̄=T can be well
fitted by the form axb þ cxd, which indicates that as
T → 0, κ̄=T → 0 indicating the nodeless feature of our
model. We list the fitted values of the parameters in Table I.
From our fits, both the sþþ and the sþ− states seem to be

nodeless (κ̄ → 0 as T → 0). For the sþþ state, this is to be

0 1 2 3 4 5 6 7 T

0.2

0.4

0.6

0.8

1.0

Re AC

1 2 3 4 5 6 7 T

2

4

6

8

Im AC

FIG. 2 (color online). The ac conductivity in the case ϵ ¼ −1, (a) real part, (b) imaginary part. The colored lines, blue, purple, brown,
and green, correspond to T =T c ¼ 0.92, 0.79, 0.65, 0.45, respectively. In the same order, σ∞ ¼ 0.94, 0.85, 0.72, 0.58.
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c
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T

0.10 1.000.500.20 0.300.15 0.70
c
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2.0

5.0

10.0

T

FIG. 3 (color online). Thermal conductivity for various values of ϵ with both (a) positive and (b) negative signs.

TABLE I. Values of the low temperature fit κ̄=T ¼ axb þ cxd at
various ϵ.

ϵ a b c d

1 −0.374 1.238 0.436 1.274
0.5 −1.886 1.224 2.16 1.26
0.1 −0.139 1.207 0.758 1.6
−0.1 3.562 1.581 0 0
−0.5 5.36 1.532 0 0
−1 3.789 1.152 11.02 2.011

5Other probes of the nodal structure used in experiments
include specific heat, magnetic penetration length and the NMR
spin lattice relaxation time.
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expected due to the existence of the superconducting gap,
as is confirmed by experiments [46]. The situation for the
sþ− state is less clear experimentally. The sþ− state is
widely believed to appear in iron-based superconductors.
While most families of iron-based sþ− superconductors are
found to be nodeless, not all of them are. Some families
such as LaFePO are found to have a residual linear
temperature dependence in κ at low temperature, and there
is nodal excitations in at least one of its bands [36].
Experimentally, the thermal conductivity of a fully

gapped (and thus nodeless) superconductor is seen to have
at least a power-law temperature dependence at low
temperature with an exponent larger than three. In the case
with nodes, however, the power-law exponent can be
arbitrary depending on how the Cooper pairs are broken.
In our holographic model, we found the power-law
exponent to be less than three for all the values of
Josephson coupling we looked at. This may be a feature
of our holographic model, which requires further inves-
tigation beyond the scope of the present work. But given
that confusion remains under what circumstances sþ−
superconductors are nodeless experimentally, we caution
against too literal a comparison with current experiments.
From Fig. 3, we find the temperature dependence of κ̄=T

in sþ− and sþþ states is quite different near the critical
temperature. We see that the thermal conductivity increases
faster for a holographic sþþ superconductor than an sþ−
one as the temperature increases. This might explain the
result that the critical temperature of the sþ− state is
generically higher than the sþþ state (for the normalized
critical temperature Tnor ≡ Tc=μc at various ϵ, see Table II):
if the sþþ state is more susceptible to thermal excitations

than the sþ− state, the Cooper pairs in the sþþ state would
be easier to break than in the sþ− state as the temperature
increases, resulting in an exit from superconductivity at a
lower temperature.

IV. ANALYTIC STUDY

In previous sections, we have investigated the two-band
model numerically. It would be also insightful to study
the connection between condensates and other variables
in the model via some analytic method. Many analytic
approaches have been proposed to address the universal
properties of second order phase transitions in holographic
superconductors [47–54]. In particular, it would be inter-
esting to apply the variational method for the Sturm-
Liouville eigenvalue problem in [48] to our two-band
model. First we notice that near the critical temperature,
where one can neglect the backreaction, Φ and Ψi take the
following forms:

Φ ¼ λrþð1 − zÞ;

Ψi ¼
hOiiffiffiffi
2

p
rΔiþ

zΔiFiðzÞ; (19)

where λ ¼ ρ
r2þc

and Δ�
i ¼ 3

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4
þm2

i

q
. Applying the

Sturm-Liouville theorem to the equations of condensate
fields, one can minimize the eigenvalue λ2 providing the

coupling ϵ and condensate ratio O12 ≡ hO1i
hO2i at the critical

temperature. To be specific, we have to minimize

λ2 ¼ 1R
dz½W1ðzÞF1ðzÞ2 þW2ðzÞF2ðzÞ2�

�Z
dz½P1ðzÞF0

1ðzÞ2 þ P2ðzÞF0
2ðzÞ2�

þ
Z

dzf½Q1ðzÞ þ R1ðzÞ�F1ðzÞ2 þ ½Q2ðzÞ þ R2ðzÞ�F2ðzÞ2g
�

(20)

for trial functions Fi ¼ 1 − αiz2. The functions
PiðzÞ; QiðzÞ; RiðzÞ are derived in the Appendix. Then one can read the critical temperature as a function of ρ,

Tc ¼
3

4π

ffiffiffiffiffi
ρ

λm

r
: (21)

To compare with our numerical results, here we focus on the same choice for the conformal dimensions of condensates.
Following similar derivation as in [48], one can express the condensates near and below the critical temperature as follows:

TABLE II. The normalized critical temperature Tnor
c ≡ Tc=μc at various ϵ.

ϵ 1 −1 0.5 −0.5 0.1 −0.1
Tnor
c 9.35 × 10−5 1.38 × 10−3 6.44 × 10−4 4.25 × 10−2 1.29 × 10−3 2.14 × 10−2
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hO1i≃
�
1− T

Tc

�
1=2

γ1T
Δ1
c

�
1þ

�
γ1
γ2

�
2

T2ðΔ1−Δ2Þ
c O−1

12

�−1=2
;

hO2i≃
�
1− T

Tc

�
1=2

γ2T
Δ2
c

�
1þ

�
γ2
γ1

�
2

T2ðΔ2−Δ1Þ
c O12

�−1=2
;

(22)

where γi ≡ 2ffiffiffiffi
Ci

p ð4π
3
ÞΔi and Ci ¼

R
λm2

i
z2ðΔi−1Þð1−zÞ

1−z3 F2
i dz. In

Fig. 4, we showed that the analytical approximation (22)
agrees very well with the numerical results near the
critical point.
The analytic method also has the advantages to easily

reveal the connection between model parameters. In Fig. 5,
we plot the fitting curve of eigenvalues λ2 as a function of ϵ
and condensate ratio O12. We conclude that Tc slightly
decreases (increases) for positive (negative) coupling and
remains nearly the same for different condensate ratios at
small coupling.

V. SUMMARY AND OUTLOOKS

We have constructed a fully backreacted holographic
model of a two-band superconductor with an explicit
interband coupling between the two charged scalars.
The sign of the interband coupling indicates whether the
pairings of two bands is in phase or out of phase. We have
studied its effects on the two condensates and the critical
temperature. We have shown that in the presence of the
interband coupling, when one scalar field condenses,
it will induce the other scalar to condense at the same critical
temperature, and the critical temperature decreases as the
strength of the interband coupling increases. The ratio of
the twogaps in the sþþ state is larger than in the sþ− state, but
the critical temperature of sþ− is generically higher.6

We have also studied the transport properties of the
holographic two-band superconductor, and we calculated
its optical and thermal conductivities. The optical conduc-
tivity is qualitatively similar to that of the single band
superconductor, while the thermal conductivity seems to
indicate that ourmodel has no nodal excitations.Our study is
primarily a numerical one. But in regimes where the Sturm-
Liouville method is applicable, analytical results can be
obtained, and it is fully consistentwith our numerical results.
There aremanydirections for futureworks.One is to see in

the higher frequency region of the optical conductivity if
there exists amid-infrared peakwhen the interband coupling
is large. In thiswork,weworkedwith a translational invariant
system with no impurities. It would be interesting to
introduce impurities in our model, as the mid-infrared peak
in the optical conductivity is expected when the scattering
between the impurities and charge carriers is large.
Furthermore, it would be interesting to study the impurity
induced sþ− → sþþ transition as discussed in Ref. [56] in
our model.
To be completely sure of the nodal structure, the strict

zero temperature limit should be taken in our model. As
was shown in the single band case [57], the bulk geometry
could be quite different when T is strictly zero from when T
is small but nevertheless finite. It is reasonable to expect
this applies to the two-band case as well, and new solutions
for the strict T ¼ 0 case have to be found. Another way to
probe the gap structure of the superconductor complemen-
tary to the thermal conductivity is to study the specific heat.
A generalization of the discussions in Ref. [58] to the two-
band case would be an immediate next step.
The strongest indication for an sþ− superconductor is in

the neutron spin measurement, where there is a resonance
peak in the dynamical spin susceptibility at ω ∼ 2Δ
[59,60].7 If we can see this feature in our model, we can

0.2 0.4 0.6 0.8 1.0
T Tc

1 10 4

5 10 4

0.050

0.010

0.005

0.001

Oi
1 i

FIG. 4 (color online). Analytic fits (curves) of two condensates
near and below the critical temperature agree well with numerical
results (dots). We remark that to obtain the analytic result, we
have adopted coupling ϵ ¼ 1 and O12 ¼ 36.

1 2 3 4 5
O12

1

22

23

24

25

2

FIG. 5 (color online). The eigenvalues λ2 (vertical axis) are
plotted against the condensate ratio (horizontal axis) at the Tc.
Different curves, from top to down, correspond to ϵ ¼ 1, 0.1,
0.05, 0, −0.05, −0.1, −1.

6The critical temperature of the sþ− state larger than that of the
sþþ state is consistent with earlier studies [40,55].

7Note such spin resonances are only found in unconventional
superconductors such as the sþ− or the d-wave superconductors.
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be sure that at negative Josephson coupling we are indeed
modeling the sþ− superconductor.
The response of the two-band superconductor to an

external magnetic field presents many very interesting
questions. For one, the magnetic field can significantly
change the temperature dependence of the thermal con-
ductivity, and it would be very interesting to see what it
would be in our model.
It has been argued that the sþþ superconductor could

be the so-called “type-1.5” superconductor [42,61], which
has the unusual properties that the intervortex interaction
is attractive at long range and repulsive at short range
[31,62–65], and vortex clusters coexisting with the
Meissner domain at intermediate field strength forming the
so-called “semi-Meissner” state [64,66]. More technically,
for a two-band type-1.5 superconductor, the coherence
lengths for the two bands, ξ1 and ξ2, and the magnetic
penetration length, λ, satisfy the relation ξ1 <

ffiffiffi
2

p
λ < ξ2

[31,64,65–67,68]. As steps to confirm whether the type-1.5
state truly exists, it would be very interesting to verify this
relation, and to look for a first order phase transition between
the Meissner and the semi-Meissner states.
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APPENDIX: DERIVATION OF EQ. (20)

In this appendix, we give a derivation of Eq. (20). Near
the critical temperature, the equations of motion for scalar
fields are simplified as those in the probed limit,

Ψ00
1 þ

f0

f
Ψ0

1 þ
r2þ
z4

�
Φ2

f2

�
Ψ1 − ϵr2þ

z4f
Ψ2 ¼ 0;

Ψ00
2 þ

f0

f
Ψ2

0 þ r2þ
z4

�
Φ2

f2

�
Ψ2 − ϵr2þ

z4f
Ψ1 ¼ 0; (A1)

where we have defined z ¼ rþ=r and derivative 0 is
respective to z. The leading order terms in the fields
ΦðzÞ and ΨiðzÞ take the following forms:

ΦðzÞ ¼ λrþð1 − zÞ;

ΨiðzÞ ¼
hOiiffiffiffi
2

p
rΔiþ

FiðzÞ; (A2)

for some trial functions FiðzÞ. Substitute them into (A1)
and one obtains

F00
1 þ

�
f0

f
þ 2Δ1

z

�
F0
1 þ

�
Δ1ðΔ1 − 1Þ

z2
þ f0

f
Δ1

z
− r2þ

z4
m2

1

f

þ λ2
r4þð1 − zÞ2

z4f2

�
F1ðzÞ − ϵ

rΔ1−Δ2þ2
þ

zΔ1−Δ2þ4f
O12F2 ¼ 0;

F00
2 þ

�
f0

f
þ 2Δ2

z

�
F0
2 þ

�
Δ2ðΔ2 − 1Þ

z2
þ f0

f
Δ2

z
− r2þ

z4
m2

2

f

þ λ2
r4þð1 − zÞ2

z4f2

�
F2ðzÞ − ϵ

rΔ2−Δ1þ2
þ

zΔ2−Δ1þ4f
O−1

12 F1 ¼ 0:

(A3)

Multiply each equation with z2Δif, respectively, and one
can further put them in the following form:

− ½P1F0
1�0 þQ1F1 þ R2F2 ¼ λ2W1F1;

− ½P2F0
2�0 þQ2F2 þ R1F1 ¼ λ2W2F2; (A4)

with

Pi ¼ z2Δif;

Qi ¼ −ΔiðΔi − 1Þz2Δi−2f − Δiz2Δi−1f0 þm2
i r

2þz2Δi−4;
Wi ¼ r2þz2Δi−4ð1 − zÞ2f−1;
R1 ¼ ϵrΔ2−Δ1þ2

þ O12zΔ1þΔ2−4;

R2 ¼ ϵrΔ1−Δ2þ2
þ O−1

12 z
Δ1þΔ2−4: (A5)

If one is able to find a common eigenvalue λ to minimize
both equations as follows:

Z
P1F0

1
2dzþ

Z
ðQ1F2

1 þ R2F1F2Þdz ¼ λ2
Z

W1F2
1dz;Z

P2F0
2
2dzþ

Z
ðQ2F2

2 þ R1F1F2Þdz ¼ λ2
Z

W2F2
2dz;

(A6)

where each equation is minimized according to the varia-
tion method of the Sturm-Liouville theorem and integration
is from z ¼ 0 to 1. Then the same eigenvalue can surely
minimize the sum of them, say,
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Z
ðP1F0

1
2 þ P2F0

2
2Þdzþ

Z
½ðQ1 þ R1ÞF2

1 þ ðQ2 þ R2ÞF2
2�dz ¼ λ2

Z
ðW1F2

1 þW2F2
2Þdz: (A7)

In other words, we can express λ2 as in Eq. (20). We remark this expression reduces to the variation of a single field as in
[48] if coupling ϵ and one of the field Ψi are swtiched off.
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