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In brane-world models, combining the extradimensional field modes with the standard four-dimensional
ones yields interesting physical consequences that have been proved from high-energy physics to
cosmology. Even some low-energy phenomena have been considered along these lines to set bounds on the
brane model parameters. In this work, we extend to the gravitational realm a previous result which gave
finite electromagnetic and scalar potentials and self-energies for a source looking pointlike to an observer
sitting in a 4DMinkowski subspace of the single brane of a Randall-Sundrum spacetime including compact
dimensions. We calculate here the gravitational field for the same type of source by solving the linearized
Einstein equations. Remarkably, it also turns out to be nonsingular. Moreover, we use gravitational
experimental results of the Cavendish type and the parameterized post-Newtonian coefficients to look for
admissible values of the brane model parameters. The anti–de Sitter radius hereby obtained is concordant
with previous results based on the Lamb shift in hydrogen. However, the resulting parameterized
post-Newtonian parameters lie outside the acceptable value domain.
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I. INTRODUCTION

We are close to celebrating 100 years since the birth of
general relativity (GR), one of the most beautiful and
spectacular theories in physics ever conceived. GR is
beautiful because at the time, it introduced deep and
unexpected physical concepts that allowed us to understand
the gravitational field and its relation with the geometry of
the spacetime. It is spectacular because, despite its age, the
GR equations of motion have remained immutable in form,
and they describe with great accuracy most of the observ-
able gravitational physics. Over the years, GR has passed
most of the experimental tests concerning the theory;
however, it is well known that there exist some phenomena
escaping an accurate description within the framework of
GR and the Standard Model of particle physics, such as
dark matter and dark energy. In order to develop a
consistent theory that could describe these kinds of
phenomena, physicists have tried to modify either GR or
quantummechanics and consider possible extensions of the
Standard Model. Indeed, the effort to place limits on
possible deviations from the standard formulations of such
theories continues today.
Since its inception, there have been many attempts

to modify GR with different purposes. Soon after its
conception, there were notable proposals with the idea
to extend it and incorporate it in a larger unified theory.

A relevant example for the purpose of this work is the
higher-dimensional theory introduced by Kaluza [1] and
refined by Klein [2]. More recently and with the aim to
solve the hierarchy problem, the ideas of large extra
dimensions [3–5] and brane worlds were introduced
[6–10]. Of course, in the literature, there are many other
attempts to modify GR (see e.g. Ref. [11] and references
therein), and currently people continue exploring the
physical consequences predicted from them all and, most
importantly, confronting them with experimental data. This
work follows the same strategy; we will explore a particular
characteristic of the gravitational field, specifically the
behavior of the gravitational potential generated by a
pointlike source in the so-called RSIIp model, which
modifies GR by including extra dimensions, and we will
confront it with experimental data available today.
The RSIIp model is an extension of the 5D Randall-

Sundrum (RS) model with one brane (RSII) extended by p
compact extra dimensions (RSIIp) [12–14]. Its construc-
tion was motivated by the need to improve the localization
properties of matter fields within the standard RS model.
Specifically, in the RSII model there exists a problem with
localizing spin-1 fields on the brane, and a way out of this
problem can be achieved by extending the model with p
compact dimensions [15,16]. Thus, the RSIIp setup con-
tains all the nice features of the RS model and additionally
has the advantage of localizing every kind of field on the
brane. These higher-dimensional models have the property
to modify gravity in the low-scale length regime, and a
huge amount of physical phenomena have been studied
over the years, ranging from particle physics (see e.g.
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Refs. [17,18] and references therein) to cosmology (see e.g.
Refs. [19,20] and references therein). Moreover, recently it
was shown that an electric source lying in the single brane
of a RSIIp spacetime which looks pointlike to an observer
sitting in usual 3D space produces a static potential which
is nonsingular at the 3D point position [21,22], and
furthermore, it matches Coulomb potential outside a small
neighborhood. Amusingly, coping with classical singular-
ities goes back to the nonlinear proposal made by Born and
Infeld [23]. In regard to the divergences in field theory, over
the years there have been many attempts to formulate a
theory that avoids the problem, or at least that could
improve, for instance, the high-energy behavior of GR.
Among them we have, for instance, string theory (see e.g.
Ref. [24] and references therein), noncommutative theories
(see e.g. Ref. [25] and references therein), and the recent
attempt made by Horava [26] at a modified UV theory of
gravity.
In this work, we extend the analysis of Ref. [21] to the

case of the gravitational field. As wewill show, the classical
potential due to an effective 4D punctual source becomes
regular at the position of the source in an analogous way to
the scalar and gauge cases. To complement our study,
we compare the consequences of this feature with some
experimental observations: in particular, we have chosen
to compare the predictions of the model with the
experimental data of a Cavendish-type experiment which
imposes a bound to the anti–de Sitter (AdS) radius of
the bulk AdS metric. We also obtain the parameterized
post-Newtonian (PPN) coefficients of the resulting
effective theory.
The paper is organized as follows: In Sec. II, we describe

briefly the RSIIp scenarios. In Sec. III, we discuss the
linearized Einstein equations in the low-energy regime for a
massive particle with the topology of a Tp torus, but which
is seen as punctual by an observer in our 4D world. In
Sec. IV, we obtain the metric perturbations, and in Sec. V,
we discuss a Cavendish-type experiment and give the PPN
coefficients. We give a short discussion of our results
in Sec. VI.

II. RANDALL-SUNDRUM IIp SCENARIOS

The way in which the Randall-Sundrum IIp (RSIIp)
scenarios arise has been discussed several times in the
literature (see e.g. Refs. [12–16]), so here we just give a
short summary including the most important features of the
model. The RSIIp setups consist of a (3þ p)-brane with p
compact dimensions and positive tension σ, embedded in a
(5þ p) spacetime whose metrics are two patches of anti–de
Sitter (AdS5þp) having curvature radius ϵ. (For conven-
ience, in some equations we will use, instead of the radius,
its inverse: κ≡ ϵ−1.) The model arises from considering the
ð5þ pÞD Einstein action with bulk cosmological constant
Λ and the action of a (3þ p)-brane

S ¼ 1

16πG5þp

Z
d4xdy

Yp
i¼1

Ridθi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgð5þpÞj

q
ðRð5þpÞ − 2ΛÞ

þ Sbrane; (1)

which leads to the Einstein equations of motion

RMN − 1

2
Rgð5þpÞ

MN þ Λgð5þpÞ
MN ¼ 8πG5þpTMN: (2)

In these equations, we use the following notation for the
5þ p coordinates: XM ≡ ðxμ; θi; yÞ, where μ ¼ 0, 1, 2, 3,
and i ¼ 1;…p. The four coordinates xμ denote the coor-
dinates that mimic our Universe, the θi’s ∈ ½0; 2π� denote
the p compact coordinates, and the Ri’s signal the sizes
of the corresponding compact dimensions. Finally, y
denotes the noncompact extra dimension. The superscript
in the determinant gð5þpÞ emphasizes the fact that the metric
is ð5þ pÞD. G5þp is the Newton constant in ð5þ pÞD,
and the energy-momentum tensor TMN ≡ 2ffiffiffiffiffiffiffiffiffiffiffi

jgð5þpÞj
p δS

δgMN

corresponds to the one produced by the brane.
With this setup and appropriate fine-tuning between the

brane tension σ and the bulk cosmological constant Λ,
which are related to κ as follows:

σ ¼ 2ð3þ pÞ
8πG5þp

κ;

Λ ¼ − ð3þ pÞð4þ pÞ
16πG5þp

κ2 ¼ − ð4þ pÞσ
4

κ; (3)

there exists a solution to the ð5þ pÞD Einstein equations
with the metric

ds25þp ¼ e−2κjyj
�
ημνdxμdxν −

Xp
i¼1

R2
i dθ

2
i

�
− dy2: (4)

Here, ημν is the 4D Minkowski metric, and without loss of
generality it was assumed that the brane is at the position
y ¼ 0. At y ¼ constant, we have 4D flat hypersurfaces
extended by p compact extra dimensions.
The interest in these setups comes from their property of

localizing on the brane: scalar, gauge, and gravity fields due
to the gravity produced by the brane itself. We emphasize
that this property is valid whenever there are p extra
compact dimensions [12,13]. In the limiting case p ¼ 0,
the model localizes scalar and gravity fields but not gauge
fields. A short discussion about the consistency of both the
KK and the RS compactifications, as well as a discussion of
the moduli-fixing mechanisms and stability of the setup can
be found, for instance, in Ref. [21]. In the literature, there
are already different analyses of low-energy physics effects
in these setups, such as the electric charge conservation
[12], the Casimir effect between two conductor hyperplates
[27–30], the Liennard-Wiechert potentials, the hydrogen
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Lamb shift [22], and perturbations to the ground state of the
helium atom [31], among others.

III. LOW-ENERGY LINEARIZED
EINSTEIN EQUATIONS

In this section, we determine the linearized Einstein
equations for the perturbations produced by a static source.
In analogy with the scalar and gauge field cases discussed
in Ref. [21], we consider a source with the topology of a
p-dimensional torus sitting on the (3þ p)-brane, which is
seen as a punctual mass from the perspective of an observer
living in the usual 3D low-energy observable part of the
brane. In order to solve the equations, we follow closely the
technique used in Ref. [32], where authors studied highly
energetic particles that leave the 4D brane and propagate
into the bulk of the 5D RSII model. The main difference in
the physical situation discussed here with respect to the
ones previously reported in the literature [32–34] is the
inclusion of the p extra compact dimensions.

A. Linearized Einstein equations

Our starting points are the ð5þ pÞD Einstein equations
[Eq. (2)]. Taking the trace of these equations and replacing
the value of R, we obtain the convenient equivalent form

RMN ¼ 8πG5þp

�
TMN − 1

3þ p
TgMN

�
þ 2

3þ p
ΛgMN:

(5)

In general, the linearized Einstein equations that result from
considering metric perturbations hMN to a known metric
solution gMN

ds2 ¼ gMNdxMdxN þ hMNdxMdxN (6)

and energy-momentum tensor perturbations δTMN to the
equations of motion [Eq. (5)] are given by

δRMN ¼ 8πG5þp

�
δTMN − 1

3þ p
ðhMNT þ gMNδTÞ

�

þ 2

3þ p
ΛhMN; (7)

where (see for instance Ref. [35])

δRMN ¼ − 1

2
½∇M∇Nĥþ∇A∇AhMN − ∇A∇MhNA

− ∇A∇NhMA� (8)

and ĥ≡ gMNhMN . Following Ref. [32], we will work in
Gaussian normal (GN) coordinates. In such a frame, one
has

hyy ¼ hyM̄ ¼ 0; (9)

where the coordinates XM̄ label the coordinates of the 4D
flat brane and the compact dimensions: XM̄ ≡ fxμ; Riθig.
Accordingly, the linearized theory is described by the
metric

ds2 ¼ a2ðyÞηM̄ N̄dx
M̄dxN̄ þ hM̄ N̄dx

M̄dxN̄ − dy2; (10)

where ηM̄ N̄ ¼ diagð1;−1;…;−1Þ is a ð4þ pÞD flat met-
ric. We have also introduced the shorthand notation
aðyÞ≡ e−kjyj. It is clear that for the metric of the RSIIp
setup, ĥ is given simply by ĥ ¼ a−2ηM̄ N̄hM̄ N̄ ≡ a−2h.
As for the perturbation of the energy-momentum tensor,

we shall consider a static source at the position y0 with the
topology of a pD torus; i.e., we consider that the massive
object is located a distance y0 away from the brane. From
these considerations it is clear that during the computation,
the perturbed energy-momentum tensor resides entirely on
the bulk and is given by

δTMN ¼ mð5þpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgð5þpÞj

q dxM

ds
dxN

ds
δ3ðx⃗ − x⃗Þδðy − y0Þ; (11)

where dxM
ds ¼ ð1; 0⃗Þ. A technicality of our calculation is

that if y0 > 0 in Eq. (11), it means we are considering an
energy-momentum tensor residing to the right of the brane;
however, the RSIIp model owns the symmetry z → −z.
Then, although wewill work entirely only to the right of the
brane, it should be understood that matter is symmetric with
respect to the brane, and therefore there exists another
source located at position −y0. The two symmetrically
located sources together with the fact that we are consid-
ering only symmetric perturbations to the metric justify the
way in which the computation is done [32]. Because we are
interested in the gravitational potential produced by a
source placed on the brane, after computing the solution
to the linearized equations we will consider the limit
y0 → 0, and the perturbations will appear as generated
by a source of mass M ¼ 2mð5þpÞ on the brane.
It is clear that for an energy-momentum tensor

on the bulk, the second term on the right-hand side of
Eq. (7) vanishes, and the third term becomes
δT ¼ a−2ηMNδTMN ≡ a−2δT0

0. Under these considera-
tions, the nonvanishing linearized Einstein equations on
the bulk are

δRyy ¼ 8πG5þp
1

3þ p
δT0

0; (12)

δRM̄ N̄ − 2Λ
3þ p

hM̄ N̄ ¼ 8πGpþ5

�
δTM̄ N̄ − 1

3þ p
ηM̄ N̄δT

0
0

�
;

(13)
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where the variation of the Ricci tensor [Eq. (8)] can be explicitly written as [36]

δRyy ¼ −∂y

�∂yh

2a2

�
; (14)

δRM̄ N̄ ¼ 1

2
∂2
yhM̄ N̄ − p

2
κ∂yhM̄ N̄ þ 2κ2hM̄ N̄ −

�
κ2hþ κ

2
∂yh

�
ηM̄ N̄

þ 1

2a2
ð∂L̄∂M̄hN̄ L̄ þ ∂L̄∂N̄hM̄ L̄ − ∂L̄∂L̄hM̄ N̄ − ∂N̄∂M̄hÞ: (15)

Notice that the role of the p compact extra dimensions at the level of the variation of the Ricci tensor is given by the second
term on the right-hand side of Eq. (15). In the case p ¼ 0, we recover the expression of the variation of the Ricci tensor for
the standard RS model [32,36].

B. The perturbation in modes

In order to solve the linearized Einstein equations, we start solving Eq. (13) by inserting Eq. (15) into it:

1

2
h00̄M N̄ − p

2
κh0M̄ N̄ þ 1

2a2
ð∂L̄∂M̄hN̄ L̄ þ ∂L̄∂N̄hM̄ L̄ − ∂L̄∂L̄hM̄ N̄ − h;M̄ N̄Þ þ 2κ2hM̄ N̄

− ð4þ pÞκ2hM̄ N̄ ¼ 8πGpþ5

�
δTM̄ N̄ − 1

3þ p
ηM̄ N̄δT

0
0

�
þ
�
κ2hþ κ

2
h0
�
ηM̄ N̄ ; (16)

where the prime denotes the derivative with respect to the y
coordinate. At this point it is convenient to introduce a
consideration about the mode spectrum of the metric
perturbations into the equation, dictated by the geometry
of the setup. Formally, we write down the metric perturba-
tion in a Fourier series expansion due to the compact
coordinates:

hM̄ N̄ðx; θi; yÞ ¼
Yp
k¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2πRk

p
X
n⃗

ðhM̄ N̄ðx; yÞÞðn⃗Þein⃗·θ⃗; (17)

where n⃗ denotes the collection of p different indexes n⃗ ¼
ðn1; n2;…; npÞ taking values in Z, θ⃗ is a p-dimensional
vector whose components are the p compact coordinates
θk∶ θ⃗ ¼ ðθ1; θ2;…; θpÞ, and

P
n⃗ is the collection of p

sums
P

n⃗ ¼
P∞

n1¼−∞ � � �P∞
np¼−∞. The functions ein⃗·θ⃗

correspond to the basis of the Fourier decomposition along
the compact directions. It is well known that toroidal
dimensional reductions à laKaluza-Klein lead to consistent
lower-dimensional theories (see e.g. Ref. [37] and refer-
ences therein) which although they do not come with a

mechanism to fix the radii of the Tp torus, by invoking
agreement with phenomenology at low enough energy—in
particular, agreement with the value of the electron
charge—it is possible to set a bound to the radius of the
order of the Planck length [2]. In the following, we shall
consider a low-energy approximation so that we truncate
the massive KK modes of the compact dimensions but keep
those that correspond to the noncompact dimension (so far
encoded in the y dependence of hMN), meaning that we
assume the scale energy of the former is much smaller than
that of the latter. Under these considerations, we are
performing the dimensional reduction on the Tp torus,
or equivalently, we are keeping only the zero mode of the
Fourier expansion, i.e.,

hM̄ N̄ðx; θi; yÞ ≈ ðhM̄ N̄ðx; yÞÞ0⃗: (18)

From here onwards, we replace the whole metric pertur-
bation in Eqs. (12) and (13) with its zero mode.
Under this consideration, the Laplacian operator sim-

plifies to ∂L̄∂L̄ ¼ □þ ∂θi∂θi ¼ □, and Eq. (16) can be
rewritten as

1

2
h00̄M N̄ − p

2
κh0M̄ N̄ þ 1

2a2
ð∂L̄∂M̄hN̄ L̄ þ ∂L̄∂N̄hM̄ L̄ −□hM̄ N̄ − h;M̄ N̄Þ þ 2κ2hM̄ N̄

−ð4þ pÞκ2hM̄ N̄ ¼ 8πGpþ5

�
δTM̄ N̄ − 1

3þ p
ηM̄ N̄δT

0
0

�
þ
�
κ2hþ κ

2
h0
�
ηM̄ N̄ : (19)

Introducing the shorthand definition
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ξM̄ ¼ hL̄M̄;L̄ − 1

2
h;M̄; (20)

Eq. (19) takes the form

1

2
h00̄M N̄ − p

2
κh0M̄ N̄ − 1

2a2
□hM̄ N̄ − ð2þ pÞκ2hM̄ N̄

¼ 8πGpþ5

�
δTM̄ N̄ − 1

3þ p
ηM̄ N̄T

0
0

�

þ
�
κ2hþ κ

2
h0
�
ηM̄ N̄ − 1

2a2
ðξM̄;N̄ þ ξN̄;M̄Þ: (21)

We can consider the following gauge transformation:

hM̄ N̄ ¼ h̄M̄ N̄ þ uM̄;N̄ þ uN̄;M̄; (22)

where uμ satisfies

u00̄M−pκu0M̄−2ð2þpÞκ2uM̄− 1

a2
□uM̄¼− 1

a2
ξM̄: (23)

It follows, then, that h̄M̄ N̄ should satisfy

1

2
h̄00̄MN̄−

p
2
κh̄0M̄ N̄ − 1

2a2
□h̄M̄ N̄ − ð2þpÞκ2h̄M̄ N̄

¼ 8πGpþ5

�
δTM̄N̄ − 1

3þp
ηM̄ N̄δT

0
0

�
þ
�
κ2hþ κ

2
h0
�
ηM̄ N̄ :

(24)

The strategy to solve this equation is as follows: We can
think the right-hand side of Eq. (24) as an effective energy-
momentum tensor Teff

M̄ N̄, in such a way that

8πGpþ5

�
δTM̄ N̄ − 1

3þ p
ηM̄ N̄δT

0
0

�
þ
�
κ2hþ κ

2
h0
�
ηM̄ N̄

≡ 8πGpþ5Teff
M̄ N̄ : (25)

Therefore, Eq. (24) takes the form

1

2
h̄00̄M N̄ − p

2
κh̄0M̄ N̄ − 1

2a2
□h̄M̄ N̄ − ð2þ pÞκ2h̄M̄ N̄

¼ 8πGpþ5Teff
M̄ N̄ : (26)

Solving this equation requires us to know the solutions to
the homogeneous equations; once we have these solutions,
we can compute the Green function, and with it solve the
inhomogeneous Eq. (26). It is also convenient at this point
to expand h̄MNðx; yÞ in terms of the functions ψmðyÞ, which
correspond to the mode structure of the metric perturba-
tions due to the noncompact dimension y:

ðhM̄ N̄ðx; yÞÞ0⃗ ¼
�Z

ðhM̄ N̄ðxÞÞmψmðyÞdm
�

ð0⃗Þ
: (27)

Plugging this ansatz into the left-hand side of Eq. (26)
allows us to perform a separation of variables in the
differential operator. Introducing the separation constant
m leads us to have an equation for ψmðyÞ of the following
form:

�
∂2
y − pκ∂y − 2ð2þ pÞκ2 þm2

a2

�
ψmðyÞ ¼ 0: (28)

This equation can be rewritten as a Bessel equation. In
order to do this, we perform the variable change
ξðyÞ ¼ ϵa−1ðyÞ, and we introduce the rescaled function
ψðξÞ ¼ ξp=2 ~ψðξÞ, obtaining

�
∂2
ξ þ

1

ξ
∂ξ þm2 − α2

ξ2

�
~ψ ¼ 0; (29)

where the constant α≡ 2þ p
2
contains the information

about the number of extra compact dimensions.
For the massless mode (m ¼ 0), the solution is

~ψ0ðξÞ ¼ A1ξ
α þ A2ξ

−α ⇒ ψ0ðξÞ ¼ a1ξpþ2 þ a2ξ−2;
(30)

where ai are integration constants. We take a1 ¼ 0 in
order to have a normalizable solution, which is explicitly
given by

ψ0ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ p

2

�
κ

s
e−2κy: (31)

For the massive modes (m > 0), we obtain

ψmðyÞ ¼ e
pκy
2

ffiffiffiffiffi
m
2κ

r �
amJα

�
m
κ
eκy

�
þ bmNα

�
m
κ
eκy

��
;

(32)

where the constants am and bm are given by

am ¼ − Amffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

m

p ; bm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

m

p ; (33)

with

Am ¼ Nα−1ðmκ Þ − 2κ
m Nαðmκ Þ

Jα−1ðmκ Þ − 2κ
m Jαðmκ Þ

: (34)

In order to simplify this expression further, it is convenient
to take the approximation of light modes m ≪ κ−1; this is
plausible because these are the modes contributing the most
to the potential. In this approximation,

Am ¼ Γðα − 1ÞΓðαÞ
π

�
m
2κ

�
2−2α

; (35)
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and therefore the coefficients am and bm are given by

am ¼ −1; bm ¼ π

Γðα − 1ÞΓðαÞ
�
m
2κ

�
2α−2

: (36)

Plugging these coefficients into Eq. (32) and considering
the same light-modes approximation in the Bessel and
Neumman functions, we get

ψmð0Þ ¼
ffiffiffiffiffi
m
2κ

r
1

Γðα − 1Þ
�
m
2κ

�
α−2

; (37)

ψmðy0Þ ¼ −ep
2
κy0

ffiffiffiffiffi
m
2κ

r
Jα

�
m
κ
eκy

0
�
: (38)

Notice that we are computing the massive modes at two
different points of the y coordinate, because with these
functions we are constructing the two-point Green function.

C. The Green function

With the eigenfunctions ψmðyÞ, it is straightforward to
construct the Green function

GRðx; x0; y ¼ 0; y0Þ ¼ −ψ0ð0Þψ0ðy0Þ
4πr

−
Z

∞

0

dmψmð0Þψmðy0Þ
e−mr

4πr

¼ − 1

4πr

�
1þ p

2

�
1

κξ2
þ ξ

p
2

Γðα − 1Þ2α−1κ1−αþp
2

Z
∞

0

dmmαJαðmξÞ e
−mr

m
: (39)

Explicit evaluation of this function depends on the parity of the number p of compact dimensions.

1. p odd

For this case, we have that α takes semi-integer values and the Green function is

GRðx; x0; y ¼ 0; y0Þ ¼ 1

4πr

ffiffiffi
2

π

r
ð−1Þα−1

2ξαþ
p
2

Γðα − 1Þ2α−1κ1−αþp
2

�
d
ξdξ

�
α−1

2

�
π

2ξ
− arctanðrξÞ

ξ

�
− 1

4πr

�
1þ p

2

�
1

κξ2
: (40)

Using the relation

�
d
ξdξ

�
α−1

2

�
1

ξ

�
¼ ð−1Þα−1

2½2ðα − 1Þ�!ðα − 1Þ!
2α−3

22−2αþ2
ffiffiffi
π

p
ξ2α½2ðα − 1Þ�! ¼

ð−1Þα−1
2ðα − 1Þ!

2−αþ1
2

ffiffiffi
π

p
ξ2α

; (41)

the Green function can be written as

GRðx; x0; y ¼ 0; y0Þ ¼ − 1

4πr

ffiffiffi
2

π

r
ð−1Þα−1

2ξαþ
p
2

Γðα − 1Þ2α−1κ
�

d
ξdξ

�
α−1

2

�arctanðrξÞ
ξ

�
: (42)

The derivative can be evaluated, recalling the relation

d
ξdξ

fðξÞ ¼ 2
d
dβ

f

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ β

q �����
β¼0

; (43)

which leads to the final form of the Green function:

GRðx; x0; y ¼ 0; y0Þ ¼ − 1

4πr

ffiffiffi
2

π

r
ð−1Þα−1

2ξαþ
p
2

Γðα − 1Þ2α−1κ 2
α−1

2

×

�
−Γ

�
αþ 1

2

�
rð−1Þα−1

2

2αðr2 þ ξ2Þαþ1
2

F

�
1;αþ 1

2
;αþ 1;

ξ2

r2 þ ξ2

�

þ ð−1Þα−1
2ΓðαÞffiffiffi
π

p 1

ξ2α
arcsin

�
ξffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ξ2
p �

þ ð−1Þα−1
2ffiffiffi

π
p

ξ2α
ΓðαÞ arctan

�
r
ξ

��
: (44)
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2. p even

For even p, α takes integer values and the Green
function is

GRðx;x0;y¼0;y0Þ

¼− 1

4πr

�
1þp

2

�
1

κξ2
þ

− 1

4πr
ð−1Þαξαþp

2

Γðα−1Þ2α−1κ1−αþp
2

�
d
ξdξ

�
α−1� 1

ξ2
− r

ξ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þξ2

p �
:

(45)

In a similar way to the former case, we obtain finally the
Green function for even compact dimensions:

GRðx; x0; y ¼ 0; y0Þ

¼ 1

4πr
ð−1Þαξαþp

2

Γðα − 1Þ2α−1κ
�

d
ξdξ

�
α−1� r

ξ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ξ2

p �
: (46)

IV. SOLUTIONS

We are now in position to compute the solutions to the
linearized Einstein equations in the low-energy regime.
The order in which the solutions are obtained is the
following: We start solving Eq. (12), where the Ricci
tensor is given by Eq. (14). This happens because we
have to know the expression for the combination
κ2hðx0; y0Þ þ κ

2
∂yhðx0; y0Þ in order to solve for the

perturbations h̄MN of Eq. (13).

A. Solution of the yy equation

We start by integrating Eq. (12) twice:

−∂y

�∂yh

2a2

�
¼ 8πG5þp

1

3þ p
δT0

0: (47)

After the first integral, we directly get

h0 ¼ −2a2 8πG5þp

3þ p

Z
∞

y
dyδT0

0 þ 2a2CðxÞ; (48)

and after the second integral we obtain

h ¼ −
Z

∞

y
dy

�
2a2

8πG5þp

3þ p

Z
∞

y
dzδT0

0ðzÞ − 2a2CðxÞ
�

þDðxÞ; (49)

here CðxÞ and DðxÞ are functions to be determined. From
the explicit form of aðyÞ, we can evaluate in a straightfor-
ward way the second term of the integral in the equation
above:

Z
∞

y
dy2a2ðyÞ ¼ a2ðyÞ

κ
; (50)

whereas for the first term we use an integration by parts:

Z
∞

y
dy2a2

Z
∞

y
dzδT0

0ðzÞ¼
a2

κ

Z
∞

y
dyδT0

0−
Z

∞

y
dy

a2

κ
δT0

0;

(51)

obtaining that hðyÞ is of the form

h ¼ − 8πG5þp

ð3þ pÞκ
�
a2

Z
∞

y
dyδT0

0 −
Z

∞

y
dya2δT0

0

�

þ a2

κ
CðxÞ þDðxÞ: (52)

So far, we have only considered the perturbation in the
bulk. The role played by the brane in the solution appears
through the junction conditions

KM̄ N̄ ¼ − 8πG5þp

2

�
SM̄ N̄ − 1

3þ p
ηM̄ N̄a

2S

�
; (53)

which constitute a connection between the metric pertur-
bations living in the bulk and the matter perturbations
confined to the brane (SM̄ N̄) [38]. In a GN coordinate
system, the extrinsic curvature is given by the simple
expression

KM̄ N̄ ¼ 1

2
∂yða2ηM̄ N̄ þ hM̄ N̄Þ; (54)

whereas the energy-momentum tensor on the brane is
given by

SM̄ N̄ ¼ −σða2ηM̄ N̄ þ hM̄ N̄Þ þ δTM̄ N̄: (55)

In Eq. (53), we are using the definition S≡ a−2ηM̄ N̄SM̄ N̄ .
Plugging the expressions (54) and (55) into Eq. (53) and
considering the energy-momentum tensor [Eq. (11)] and
the relation between the brane tension and the AdS radius
[Eq. (3)], we obtain after taking the trace of the junction
condition that

∂yhþ 2κh ¼ 8πG5þp

3þ p
δT

����
y¼0

¼ 4πG5þpκ

3þ p
mð5þpÞ

a2þpðy0Þ δðy − y0Þδ3ðx⃗ − x⃗0Þ
����
y¼0

:

(56)

This means that the points y ¼ 0 and y0 never coincide, and
therefore δðy0 − y0Þ is null. Substitution of expression (52)
into Eq. (56) allows us to find the expression for the
function DðxÞ, which is given by the equation
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2κDðxÞ þ 16πG5þp

Z
∞

0

a2ðy0ÞδTðy0Þdy0 ¼ 0: (57)

Once we know the value of DðxÞ, we can evaluate the combination of h and h0 that appears in the definition [Eq. (25)] of
Teff
M̄ N̄ :

κ2hðx0; y0Þ þ κ

2
∂y0hðx0; y0Þ ¼ −8πG5þpκ

Z
y0

0

a2ðzÞδTðzÞdz

¼ − 8πG5þpκmð5þpÞ

a2þpðy0Þ
θðy0 − y0Þδ3ðx⃗0 − x⃗0Þ: (58)

B. The h̄00 component

Once we have the solution of Eq. (12) and, as a consequence, the expression for the combination in Eq. (58), we can
compute the expressions for the metric perturbations. Using the Green function of Sec. III C, we have that

h̄00ðr; y ¼ 0Þ ¼ 8πG5þp

Z
d3x0

Z
dy0Gðx⃗; y ¼ 0; x⃗0; y0Þ

��
δT00ðx0; y0Þ − 1

3þ p
η00δT0

0ðx0; y0Þ
�

þ 1

8πG5þp

�
κ2hðx0; y0Þ þ κ

2
∂yhðx0; y0Þ

�
η00

�
; (59)

where according to the energy-momentum tensor [Eq. (11)],

δT00ðx0; y0Þ − 1

3þ p
η00δT0

0ðx0; y0Þ ¼
2þ p
3þ p

mð5þpÞ

a2þpðy0Þ δðy
0 − y0Þδ3ðx⃗0 − x⃗0Þ: (60)

Plugging expressions (58) and (60) into Eq. (59), we obtain

h̄00ðr; y ¼ 0Þ ¼ 8πG5þp
2þ p
3þ p

mð5þpÞ

a2þpðy0Þ
GRðx; x0 ¼ x0; y ¼ 0; y0 ¼ y0Þ

− 8πG5þpκmð5þpÞ

a2þpðy0Þ
Z

dy0GRðx; x0 ¼ x0; y ¼ 0; y0Þθðy0 − y0Þ: (61)

As we have discussed, the explicit form of the Green function depends of the parity of the number of compact extra
dimensions p, and therefore this also happens for the metric component h̄00.

1. p odd

In the case in which p is odd, we use the Green function [Eq. (44)], obtaining

h̄00ðr; y ¼ 0Þ ¼ −8πG5þp
2þ p
3þ p

mð5þpÞ

a2þpðy0Þ
1

4πr

ffiffiffi
2

π

r
ð−1Þα−1

2ϵξαþ
p
2

Γðα − 1Þ2α−1
�

d
ξdξ

�
α−1

2

�arctanðrξÞ
ξ

�����
ξ¼ξ0

þ 8πG5þpκmð5þpÞ

a2þpðy0Þ
Z

dξ
kξ

1

4πr

ffiffiffi
2

π

r
ð−1Þα−1

2ϵξαþ
p
2

Γðα − 1Þ2α−1
�

d
ξdξ

�
α−1

2

�arctanðrξÞ
ξ

�
θðξ − ξ0Þ: (62)

Example: p ¼ 1—In particular, if we take the value p ¼ 1, we have

GRðx; x0; y ¼ 0; y0Þð1Þ ¼ − 1

4πr
ϵξ3

π

�
d
ξdξ

�
2
�arctanðrξÞ

ξ

�
¼ − 1

4πr
ϵ

π

�
5r

ξ3ð1þ r2

ξ2
Þ −

2r3

ξ5ð1þ r2

ξ2
Þ2 þ

3

ξ2
arctan

�
r
ξ

��
; (63)

and h̄00 is given by
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h̄00 ¼
6πG6mð6Þ

a2ðy0Þ
ϵ

4π2r

�
5r

ξ30ð1þ r2

ξ2
0

Þ −
2r3

ξ50ð1þ r2

ξ2
0

Þ2 þ
3

ξ20
arctan

�
r
ξ0

��

− 8πG6mð6Þ

a2ðy0Þ
ϵ

4π2r

�
− 3

2

arctanðrξÞ
ξ2

− 3

2

1

rξ
− 1

2

arctanðξrÞ
r2

þ 1

rξð1þ r2

ξ2
Þ

�����∞
ξ¼ξ0

: (64)

Taking the limit when y0 → 0, ξ0 ¼ ϵ, we obtain for this component

h̄00 ¼ − 3G6mð6Þ

2π2

�
5

ϵ2ð1þ r2

ϵ2
Þ −

2r2

ϵ4ð1þ r2

ϵ2
Þ2 þ

3

rϵ
arctan

�
r
ϵ

��

þ 2G6mð6Þ

π2

�
3

2

arctanðrϵÞ
rϵ

þ 3

2

1

r2
þ ϵ

2

arctanðϵrÞ
r3

− 1

r2ð1þ r2

ϵ2
Þ −

1

4

πϵ

r3

�
: (65)

It is illustrative to calculate the short- and the long-distance limits

h̄00 ¼ −G6mð6Þ

π2

�
20

3ϵ2
− 44

5ϵ4
r2 þ � � �

�
; r → 0; (66)

h̄00 ¼ −G6mð6Þ

π2

�
3π

4ϵ

1

r
þ ϵπ

2r3
þ � � �

�
∼ − 2GNm

r

�
1þ 2ϵ2

3

1

r2

�
; r → ∞; (67)

where we have defined the effective 4D Newton constant in terms of the 6D one as

GN ¼ 3Gð6Þ
8πϵ

: (68)

2. p even

Example: p ¼ 2—For the even case, we give as an example the value p ¼ 2. In this case, the Green function is

GRðx; x0; y ¼ 0; y0Þð2Þ ¼ − 1

4πr
ϵξ4

4

�
d
ξdξ

�
2
�

r

ξ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ξ2

p �
¼ − 1

4π

ϵ

4

�
8

ξ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ξ2

p þ 4

ðr2 þ ξ2Þ32 þ
3ξ2

ðr2 þ ξ2Þ52
�
; (69)

and the potential is given by

h̄ð2Þ00 ¼ −4
5

8πG7mð7Þ

a3ðy0Þ
1

4π

ϵ

4

�
8

ξ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ξ2

p þ 4

ðr2 þ ξ2Þ32 þ
3ξ2

ðr2 þ ξ2Þ52
�����

ξ¼ξ0

þ 8πG7mð7Þ

ϵa3ðy0Þ
Z

∞

ξ0

ϵdξ
ξ

1

4π

ϵ

4

�
8

ξ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ξ2

p þ 4

ðr2 þ ξ2Þ32 þ
3ξ2

ðr2 þ ξ2Þ52
�
θðξ − ξ0Þ: (70)

Evaluating the integral, we finally have

h̄ð2Þ00 ¼ − 2G7mð7Þ

5

�
8

ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ϵ2

p þ 4ϵ

ðr2 þ ϵ2Þ32 þ
3ϵ3

ðr2 þ ϵ2Þ52
�
þ G7mð7Þ

2

4r2 þ 5ϵ2

ϵðϵ2 þ r2Þ3=2 : (71)

The short- and long-distance limits for this case are

h̄ð2Þ00 ¼ −G7mð7Þ
�
7

2ϵ2
− 21

4ϵ4
r2 þ � � �

�
; r → 0; (72)
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h̄ð2Þ00 ¼ −G7mð7Þ
�
6

5ϵ

1

r
þ ϵ

2r3
þ � � �

�
∼ − 2GNm

r

�
1þ 5ϵ2

12

1

r2

�
; r → ∞; (73)

where the 4D Newton constant is

GN ¼ 3Gð7Þ
5ϵ

: (74)

C. The h̄ij components

For the spatial components of the induced metric on the brane, we proceed as before. In this case, the Green function of
Sec. III C reads

h̄ijðr; y ¼ 0Þ ¼ 8πG5þp

Z
d3x0

Z
dy0Gðx⃗; y ¼ 0; x⃗0; y0Þ

��
δTijðx0; y0Þ − 1

3þ p
ηijδT0

0ðx0; y0Þ
�

þ 1

8πG5þp

�
κ2hðx0; y0Þ þ κ

2
∂yhðx0; y0Þ

�
ηij

�
; (75)

where this time, according to Eq. (11),

δTijðx0; y0Þ − 1

3þ p
ηijδTðx0; y0Þ ¼ − ηij

3þ p
mð5þpÞ

a1þpðy0Þ δðy
0 − y0Þδ3ðx⃗0 − x⃗0Þ: (76)

Thus, in this case, we have in general that

h̄ijðr; y ¼ 0Þ ¼ −8πG5þp
ηij

3þ p
mð5þpÞ

a2þpðy0Þ
GRðx; x0 ¼ x0; y ¼ 0; y0 ¼ y0Þ

− 8πG5þpκmð5þpÞ

a2þpðy0Þ
ηij

Z
dy0GRðx; x0 ¼ x0; y ¼ 0; y0Þθðy0 − y0Þ: (77)

Again the computations have to be worked out in two separate cases depending on the parity of the number of extra compact
dimensions.

1. p odd

This case corresponds to having integer values of the parameter α, so the expression of the components h̄ij is given by

h̄ijðr; y ¼ 0Þ ¼ 8πG5þp
ηij

3þ p
mð5þpÞ

a2þpðy0Þ
1

4πr

ffiffiffi
2

π

r
ð−1Þα−1

2ϵξαþ
p
2

Γðα − 1Þ2α−1
�

d
ξdξ

�
α−1

2

�arctanðrξÞ
ξ

�����
ξ¼ξ0

þ 8πG5þpκmð5þpÞηij
a2þpðy0Þ

Z
dy0

1

4πr

ffiffiffi
2

π

r
ð−1Þα−1

2ϵξαþ
p
2

Γðα − 1Þ2α−1
�

d
ξdξ

�
α−1

2

�arctanðrξÞ
ξ

�
θðy0 − y0Þ:

Example: p ¼ 1—Evaluating the Green function for this case leads us to the expression

GRðx; x0; y ¼ 0; y0Þð1Þ ¼ − 1

4πr
ϵξ3

π

�
d
ξdξ

�
2
�arctanðrξÞ

ξ

�
¼ − 1

4πr
ϵ

π

�
5r

ξ3ð1þ r2

ξ2
Þ −

2r3

ξ5ð1þ r2

ξ2
Þ2 þ

3

ξ2
arctan

�
r
ξ

��
: (78)

Hence, h̄ij is, after taking the limit y0 → 0,
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h̄ij ¼
G6mð6Þηij

2π2

�
5

ϵ2ð1þ r2

ϵ2
Þ −

2r2

ϵ4ð1þ r2

ϵ2
Þ2 þ

3

rϵ
arctan

�
r
ϵ

��

þ 2G6mð6Þηij
π2

�
3

2

arctanðrϵÞ
rϵ

þ 3

2

1

r2
þ ϵ

2

arctanðϵrÞ
r3

− 1

r2ð1þ r2

ϵ2
Þ −

1

4

πϵ

r3

�
: (79)

For astrophysical applications, it is convenient to calculate the long-distance limit

h̄ij ¼ −G6mð6Þηij
π2

�
− 9π

4ϵ

1

r
þ ϵπ

2r3
þ � � �

�
∼ − 2GNm

r

�
−3þ 2ϵ2

3

1

r2

�
ηij; r → ∞; (80)

where the Newton constant is the same as in Eq. (68).

2. p even

Example: p ¼ 2—In this case, α is a semi-integer number and the Green function is given by

GRðx; x0; y ¼ 0; y0Þð2Þ ¼ − 1

4πr
ϵξ4

4

�
d
ξdξ

�
2
�

r

ξ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ξ2

p �
¼ − 1

4π

ϵ

4

�
8

ξ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ξ2

p þ 4

ðr2 þ ξ2Þ32 þ
3ξ2

ðr2 þ ξ2Þ52
�
: (81)

Thus, the potential is written as

h̄ð2Þij ¼ G7mð7Þϵηij
10a3ðy0Þ

�
8

ξ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ξ2

p þ 4

ðr2 þ ξ2Þ32 þ
3ξ2

ðr2 þ ξ2Þ52
�����

ξ¼ξ0

þG7mð7Þϵηij
2a3ðy0Þ

�
− 4r2 þ 5ξ2

ξ2ðξ2 þ r2Þ3=2
�����∞

ξ¼ξ0

: (82)

Evaluating the limits explicitly, we have

h̄ð2Þij ¼ G7mð7Þηij
10

�
8

ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ϵ2

p þ 4ϵ

ðr2 þ ϵ2Þ32 þ
3ϵ3

ðr2 þ ϵ2Þ52
�
þ G7mð7Þηij

2

4r2 þ 5ϵ2

ϵðϵ2 þ r2Þ3=2 : (83)

Taking the long-distance limit (r → ∞), we obtain

h̄ð2Þij ¼ −G7mð7Þηij

�
− 14

5ϵ

1

r
þ ϵ

2r3
þ � � �

�
∼ − 2GNm

r

�
− 7

3
þ 5ϵ2

12

1

r2

�
ηij; (84)

where GN is given by Eq. (74).

V. EXPERIMENTAL TESTS

In this section, we consider two gravitational experi-
ments in order to set bounds to the parameters of the model.
First, we look at a Cavendish-type experiment. As a second
test, we compare the perturbed induced metric of the
model with the generic PPN metric generated by a static
nonrotating compact object.

A. Cavendish-type test

In the context of the 5D Randall-Sundrum model, in
Ref. [39], authors obtained the relative force corrections to
Newton’s gravitational force between two massive spheres.
The analysis was performed by computing both the exact

(considering the whole Kaluza-Klein massive tower) and
the approximated gravitational potential (long-distance
limit) and comparing them in order to find out where
the application of the approximate solution is appropriate.
For their analysis, they used the long-distance limit of the
potential generated by a massive particle (of massm) in the
RS model, which is of the form

φðrÞ ≈ −mGN

r

�
1þ α

r2

�
; α ¼ l2=2; (85)

where l is proportional to the anti–de Sitter radius. This
potential leads to the following gravitational force between
two massive spheres:
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FðrÞ ¼ GNm1m2

r2
ð1þ δFÞ; (86)

with

δF ¼ − 9α

8R3R03

×

�
ln

�
r2 − ðR0 þ RÞ2
r2 − ðR0 − RÞ2

��
− 1

4
r4 þ 1

2
r2ðR02 þ R2Þ

− 1

4
ðR02 − R2Þ2

�
− r2R0Rþ R03Rþ R0R3

�
: (87)

Here, R and R0 are the radii of the spheres. Experimental
data to verify this expression of the force is obtained from
the Moscow Cavendish-type experiment [40], where one of
the spheres was made of platinum with a radius R ≈
0.087 cm and mass m1 ¼ 59.25 × 10−3 g, whereas the
second sphere was made of tungsten with a radius R0 ≈
0.206 cm and mass m2 ¼ 706 × 10−3 g. The centers of the
spheres were separated by a distance of r ¼ 0.3773 cm.
To obtain a bound on l, it is necessary to use an accurate

value of Newton’s gravitational constant. The values given
by CODATA in 2010 [41] are

GN

10−11
m3

kgs2
¼ 6.674215� 0.000092 and

6.674252� 0.000124; (88)

here the relative errorΔGN=GN shows the agreement of the
measurements of the gravitational constant with the r−2
experiments [39]—i.e., the relation jΔGN=GN j ¼ δF gives
the upper limit for δF in order to not detect experimental
deviations from Newton’s law. In the 5D RS model, this
implies that l ≤ 9.067 μm and l ≤ 10.527 μm. A second
approach using the complete solution gives l ≤ 9.070 μm
and l ≤ 10.531 μm. For practical use, we can take
l ≤ 10 μm, which, combined with the expressions (67)
and (73) that we have obtained for the potentials in the
brane, produces a bound to the AdS radius:

l2¼4ϵ2

3
⇒ ϵ¼

ffiffiffi
3

4

r
l≃0.86l¼8.6 μm; for p¼1; (89)

l2¼5ϵ2

6
⇒ ϵ¼

ffiffiffi
6

5

r
l≃1.09l¼10.9 μm; for p¼2: (90)

These bounds are not in conflict with others previously
reported in the literature; nevertheless, the ones obtained
here are weaker than, for instance, the ones obtained by the
Lamb shift, which gives bounds of the order ϵ ∼ 10−14 m
for p ¼ 1 and ϵ ∼ 10−13 m for p ¼ 2 [22].

B. The four-dimensional effective metric on the brane

Here we want to obtain the effective metric on the brane
and look at the Newtonian and the parametrized post-
Newtonian (PPN) limits in order to set some bounds on the
parameters of the theory. The PPN limit of metric theories
of gravity contains ten real-valued parameters, and to every
metric theory of gravitation corresponds a set of values of
the PPN parameters. The observational values of the
parameters have been measured in the Solar System and
also in binary neutron stars [42,43].
The corresponding PPN metric in “standard” spherical

coordinates for a nonrotating object is [43]

ds2PPN ¼
�
1 − 2GNm

ρ
þ 2G2

Nm
2ðβ − γÞ
ρ2

þ � � �
�
dt2

−
�
1þ 2GNmγ

ρ
þ � � �

�
dρ2 − ρ2dΩ: (91)

For this case, only the β and γ parameters appear. The γ
parameter measures how much space curvature gij is
produced by a unit rest mass, while β measures how much
nonlinearity is there in the superposition law for gravity
g00. These two parameters are involved in the astrophys-
ical effects of the perihelion shift and light deflection as
follows [44]:

δprec ¼
1

3
ð2þ 2γ − βÞ

�
6πGNm

c2að1 − e2Þ
�
; (92)

where a is the orbit’s semimajor axis and e is the
eccentricity.

δdef ¼
1þ γ

2

4GNm
c2b

; (93)

in this case, b is the impact parameter of the light ray.
The four-dimensional effective metric on the brane is

given by

ds2 ¼ ð1þ h00Þdt2 þ ð−δij þ hijÞdxidxj: (94)

For the cases of one and two extra compact dimensions
(p ¼ 1, 2), taking into account the results in Eqs. (67), (73),
(80), and (84), the metric is, to the lowest order that is
needed here,

ds2 ¼
�
1 − 2GNm

r

�
1þ kp

r2

��
dt2

þ
�
−1þ 2GNm

r
lp

�
δijdxidxj; (95)

with
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k1 ¼
2ϵ2

3
; l1 ¼ 3; k2 ¼

5ϵ2

12
; l2 ¼

7

3
: (96)

In spherical coordinates, we have

ds2 ¼
�
1 − 2GNm

r

�
1þ kp

r2

��
dt2

þ
�
−1 − 2lp

GNm
r

�
½dr2 þ r2ðdθ2 þ sin2ðθÞdϕ2Þ�:

(97)

This metric is given in the isotropic form, and we want it in
the “standard” form, which is the one adopted for the
calculation of the PPN form of the metric of a static
nonrotating compact object. In order to obtain that form for
our metric, we take the coordinate transformation

ρ ¼ r

�
1þ lpGNm

r
þ � � �

�
: (98)

The metric in the new coordinates is

ds2 ¼
�
1 − 2GNm

ρ
− 2lpG2

Nm
2

ρ2
þ � � �

�
dt2

−
�
1þ 2lpGNm

ρ
þ � � �

�
dρ2 − ρ2dΩ: (99)

The corresponding PPN metric is [43]

ds2PPN ¼
�
1 − 2GNm

ρ
þ 2G2

Nm
2ðβ − γÞ
ρ2

þ � � �
�
dt2

−
�
1þ 2GNmγ

ρ
þ � � �

�
dρ2 − ρ2dΩ: (100)

We notice by comparing the metrics that we do have the
Newtonian limit. The values of the PPN coefficients β and γ
for this theory are

β ¼ 0; γ ¼ lp: (101)

At the order of approximation considered here, the quantity
kp does not appear, implying that the astrophysical tests do
not impose a constraint on the anti–de Sitter length. The
obtained values for the PPN parameters for this theory, in
the cases where we have one or two extra compact
dimensions, disagree with the observed values, since they
are very close to 1 (the values for general relativity). We
cannot tell if taking more compact dimensions will amelio-
rate the problem.

VI. DISCUSSION

The perspective on known phenomena changes in light
of models of spacetime that include extra dimensions. In

particular, brane-world models have provided new pos-
sibilities in high-energy physics and cosmology to try to
solve some problems like the hierarchy [6,7] or dark matter/
energy problems [19,20]. However, little attention has been
devoted to low-energy physical effects, which may shed
light in regard to the viability of such higher-dimensional
scenarios by making reference to known experimental data
including the Casimir effect, Lamb shift, and others
[21,22,29,30]. In fact, even there, some unexpected
results may emerge, as in the case of nonsingular field
configurations like those reported here and in previous
works [21,22].
In the present work, we studied the gravitational

potential produced by a source which looks pointlike to
a 4D observer sitting in the single brane of an extended
Randall-Sundrum-II scenario. Such source extends along
the p compact extra dimensions of the single brane, thus
forming a Tp torus touching our usual 3D space at one
point. A linear approximation for the hyperdimensional
Einstein equations appropriate for such models was used.
We obtained a gravitational potential which is nonsingular
at the position of the source in 4D. In line with our
motivation, we also calculated the gravitational force
between two spheres in order to compare it with exper-
imental data. This sets a bound for the AdS radius of the
order 10 μm which is consistent with previous more
stringent electromagnetic results based on the Lamb shift
in hydrogen [22]. On the other hand, we obtained the PPN
parameters for the field configuration corresponding to the
pointlike source. The Newtonian limit is correctly con-
tained in our results, and this was proved explicitly for
p ¼ 1, 2 extra compact dimensions. However, the PPN
values obtained for the parameters of the RSIIp model are
out of range of the experimental data. This is not a
problem, as long as we do consider our brane model
RSIIp to be a test scenario rather than a realistic proposal
to describe our world.
Future work along the lines we have developed here can

include the following: The gravitational radiation reaction
problem may be reanalyzed in a setting similar to the one
presented here. This may help us to further understand the
role of its specific features that allow us to solve the
divergent character of the standard 4D case. In particular, it
would be of interest to pinpoint what are the elements
relevant for the resolution of the divergence in connection
with the source—namely, whether is it linked to its top-
ology, extension, codimension, or something else. Further
divergences in field theory may acquire a different form in
brane worlds, and we think they deserve some effort. This
may be the case, for instance, for quantum field theory in a
brane-world background.
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