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In this work we present an approach that can be systematically used to construct nonlinear systems
possessing analytical multikink profile configurations. In contrast with previous approaches to the problem,
we are able to do it by using field potentials that are considerably smoother than the ones of the doubly
quadratic family of potentials. This is done without losing the capacity of writing exact analytical solutions.
The resulting field configurations can be applied to the study of problems from condensed matter to
braneworld scenarios.
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I. INTRODUCTION

The study of nonlinear systems has been growing in
popularity since the 1960s [1,2]. Nowadays nonlinearity is
found in many areas of physics, including condensed matter
physics, field theory, cosmology, and others [3–24].
Particularly, whenever we have a potential with two or
more degenerate minima, one can find different vacua at
different portions of the space. Thus, one can find domain
walls connecting such regions, and this necessarily leads to
the appearance of multikink configurations.
Some time ago, A. Champney and collaborators [25] made

an analysis of the reasons for the appearance of multikinks in
dispersive nonlinear systems. In part this was motivated by
the discovery by Peyrard and Kruskal [26] that a single kink
becomes unstable when it moves in a discrete lattice at
sufficiently large velocity, whereas multikinks are stable. The
effect was shown to be associated with a resonant interaction
between the kink and the radiation [27], and the resonances
were already observed experimentally [28]. In fact, in an
earlier work by Manton and Merabet [29], the mechanism of
production of kinks from excitations of the internal modewas
discussed in a study of the dynamics of the interaction of two
kinks and one antikink in a ϕ4 model. Furthermore, in a
recent work byM.A. Garcia-Ñustes and J. A. González [30],
it was shown that a pair of kinklike solitons is emitted during
the process of kink breakup by internal mode instabilities in
a sine-Gordon model. The multikinks are responsible, for
instance, for a mobility hysteresis in a damped driven
commensurable chain of atoms [31]. Moreover in arrays
of Josephson junctions, instabilities of fast kinks generate
bunched fluxon states presenting multikink profiles [32].
In a different context, by working with space-time-

dependent field configurations, Coleman and collaborators
[33,34] analyzed the “fate of the false vacuum” through a

semiclassical analysis of an asymmetric λϕ4-like model.
There, they considered the decaying process of the field
configuration from the local to the global vacuum of the
model. Moreover, some recent works report fluctuating
bouncing solutions [35,36] in models presenting local and
global minima.
In all the above physical situations an analytical descrip-

tion of multikinks would be very welcome. However, as far
as we know, there is no result in the literature that presents
analytical multikink profiles beyond the case of two, the
so-called double kink [37], [38], [39]. Here, we intend to
fill this gap by presenting a general procedure in order to
construct analytical solutions for multikinks, considering
reasonably smooth field potentials.
In fact, the idea here is to improve another one used

previously in some works dealing with the so-called
double-quadratic (DQ) model [40], [41–44], whose poten-
tial is given by

VðϕÞ ¼ 1

2
ϕ2 − jϕj þ 1

2
; (1)

and some of their generalizations like the asymmetrical
double-quadratic model (ADQ) [43] and the generalized
asymmetrical double-quadratic model (GADQ) [36]. This
last one has the advantage that, having the previously
mentioned potentials as its limits, it can be used to study
systems in which the curvature of the potential is different
in each side of the discontinuity point. Moreover, the vacua
of the model can be chosen to represent a kind of slow-roll
potential, giving rise to inflaton fields that are important
in cosmological inflationary scenarios. In fact, a similar
model was used to study wet surfactant mixtures of oil and
water [45]. The model is such that

VðϕGADQÞ ¼
8<
:

λ½ðϕGADQ − ϕ2Þ2 þ V2; ϕ ≥ 0

λ

�
ϕ2
2
þV2

ϕ2
1
þV1

�
½ðϕGADQ þ ϕ1Þ2 þ V1�; ϕ ≤ 0

(2)
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where λ, ϕ1, ϕ2, V1, and V2 are constant parameters that
obey the following restrictions:

ϕ2> 0; ϕ1 > 0; V2 >−ϕ2
2 and V1>−ϕ2

1: (3)

In this line of analysis, one can go further by studying a
model with a potential for the scalar field presenting four
degenerate minima, for instance. This model is written as

VðϕÞ ¼

8>>>>>>>>><
>>>>>>>>>:

λ1
2

h�
ϕþ 3a

2

�
2 þ b1

i
; −∞< ϕ ≤ −a;

λ2
2

�
a2þ4b1
a2þ4b2

�h�
ϕþ a

2

�
2 þ b2

i
; −a ≤ ϕ ≤ 0;

λ3
2

�
a2þ4b1
a2þ4b3

�h�
ϕ− a

2

�
2 þ b3

i
; 0 ≤ ϕ ≤ a;

λ4
2

�
a2þ4b1
a2þ4b4

�h�
ϕ− 3a

2

�
2 þ b4

i
; a ≤ ϕ<∞;

(4)

where

λ2 ¼ λ1

�
a2 þ 4b1
a2 þ 4b2

�
;

λ3 ¼ λ1

�
a2 þ 4b1
a2 þ 4b3

�
;

λ4 ¼ λ1

�
a2 þ 4b1
a2 þ 4b4

�
: (5)

Notice that, despite the fact that the potential is con-
tinuous by parts, their physically acceptable solutions must
be continuous for both the field and for its first derivative.
This restriction comes from the fact that one should seek
configurations where the energy density is continuous and
nonsingular. Thus one must impose that the solutions are
such that ϕðxÞ and dϕðxÞ=dx are continuous throughout the
spatial axis. In fact, in this class of potentials, one only
needs to require that ðdΦdxÞ2 be continuous due to the
continuity of the energy density. In Fig. 1 we can see
the profile of the above potential, as well as its triple-kink
configuration.

By following the approach developed in [36], one can
determine a solution that presents four regions, where the
fields are connecting the different (local or global) vacua of
the model. Specifically, we look for a solution that is
continuous and whose first spatial derivative is also
continuous, where ϕð1ÞðxÞ → −3a=2 at x → −∞ and
ϕð4ÞðxÞ → 3a=2 at x → ∞. After straightforward calcula-
tions one can verify that the solution is given by

ϕðxÞ¼

8>>>>>><
>>>>>>:

−3a
2
þB1e

x
ffiffiffi
λ1

p
−∞<x<−a;

−a
2
þA2e

−x
ffiffiffi
λ2

p
þB2e

x
ffiffiffi
λ2

p
−a<x< 0;

a
2
þA3e

−x
ffiffiffi
λ3

p
þB3e

x
ffiffiffi
λ3

p
0<x<a;

3a
2
þA4e

−x
ffiffiffi
λ4

p
a<x<∞;

(6)

where A0s and B0s are integrating constants. In order to
ensure the necessary gluing conditions at each junction
point, one arrives at the following expressions for the
parameters in ϕðxÞ:

B1 ¼
a
ffiffiffiffiffi
λ2

p
ea

ffiffiffi
λ1

p
½2 coshð ffiffiffiffiffi

λ2
p
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2½ ffiffiffiffiffiλ2p
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FIG. 1 (color online). Stepwise quadratic potential presenting two global and two local vacua and the corresponding triple kink
(a ¼ 10, b1 ¼ b4 ¼ 0, λ1 ¼ 1, and b2 ¼ b3 ¼ 3).
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However, in all these models one has the potentials
which are discontinuous in the first derivative with respect
to the field. This is the price to be paid in order to assure
that the second order derivatives describing the evolution of
the field configuration be linear by parts, and the nonlinear
effect comes precisely from that discontinuity.
Notwithstanding, we do not know how to solve analyti-

cally only linear equations but some nonlinear too. For
instance, we can get exact analytical solutions for the so-
called λϕ4 and the sine-Gordon models.
The principal idea to be developed in this work is to use

this ability, associated with the possibility of constructing a
smooth multidegenerate minima potential by gluing the
potentials of many λϕ4 models, or sine-Gordon and λϕ4

models, for different ranges of the scalar field. Once the
potential is constructed, one can use an absolutely analogous
procedure to that used for the case of the DQ model and his
fellows. As a consequence, we develop in this work an
approach which allow us to construct models with multistep

kinks, due to the presence of a chosen number of inter-
mediate local vacua, in considerably smooth potentials.

II. MODELS INVOLVING n LOCAL VACUA

As previously asserted, we present here a general
approach capable of describing analytical configurations
with an arbitrary number of local vacua and, as a conse-
quence, presenting a multikink profile. In this work we
present some models which, as far as we know, are new in
the literature and are examples of a wider class of models
which can be analytically solved in order to construct field
configurations with an arbitrary number of “steps” in a
general multikink profile. The potentials that describe these
models present two global vacua (VðϕMÞ ¼ 0) and n local
ones (VðϕmÞ > 0). As asserted in the Introduction section,
they allow one to obtain multikink analytical solutions in
smooth potentials.
The first model considered here is the one defined as

VðϕÞ ¼

8>><
>>:

λ2

2
½a2 − ðϕ − nbÞ2�2; ϕ ≥ nb

α2

2
B2 − α2

2
½b2 − ðϕ − kbÞ2�2; ðk − 1Þb ≤ ϕ < ðkþ 1Þb

λ2

2
½a2 − ðϕþ nbÞ2�2; ϕ < −nb;

(8)

where, for even n, k shall assume all odd values inside the
interval ½1 − n; n − 1�, and for odd values of n, k will
assume all the even values along the same interval. In other
words, n defines the number of local vacua and k labels
each one of them. We will denote the global vacua as ϕM,
and by ϕk the local ones. Furthermore, the matching points
will be denoted by ϕJ. For the case presented in this section,
the global vacua will be localized at the points where
ϕM ¼ �ðaþ nbÞ, while the local ones will be found at
ϕk ¼ kb. In order to get smooth connections, the stepwise
potential that we study here was constructed through the
junction of polynomial potentials of degree four, the so-
called ϕ4 model, which in each region was conveniently
dislocated. In the border regions the shift was given by
ϕ → ϕ� nb, while in the intermediate regions [ðk − 1Þb ≤
ϕ < ðkþ 1Þb], the inverted ϕ4 model was used. The
constant which is added at each intermediate region, is
conveniently chosen in order to keep the global vacua at the
extremals equal to zero and, as a consequence, we must to
impose that B > b2 in order grant that these vacua are really
local. Since we are dealing with a stepwise potential, some
matching conditions must be imposed at the border ϕJ of
each region. For instance we shall have

lim
ϕ→ϕ−

J

VðϕÞ ¼ lim
ϕ→ϕþ

J

VðϕÞ; (9)

which implies in the constraint,

λa2 ¼ αB: (10)

It is interesting to note that this relation between α and λ is
also enough to keep the derivative of the potential con-
tinuous at the junctions.
The second model that we will consider in this work is

such that one has

VðϕÞ ¼

8>>>>><
>>>>>:

λ2

2

h
a2 −

�
ϕ − nπ

μ

�
2
i
2
; ϕ ≥ nπ

μ

α2

2

h
B2 þ 1þð−1Þn cos ðμϕÞ

2

i
; jϕj < nπ

μ

λ2

2

h
a2 −

�
ϕþ nπ

μ

�
2
i
2
; ϕ ≤ −nπ

μ :

(11)

Once more, n is an integer number corresponding to the
number of local vacua of the potential. In this case we
construct the model by gluing two ϕ4 potentials, located at
the border regions, with a sine-Gordon potential which will
be responsible for the intermediary local vacua. In this
model, the global vacua are at ϕM ¼ �ðaþ nπ=μÞ, while
the local ones are at the points where ϕk ¼ kπ=μ. For even
n, k assume all the odd numbers along the interval
½1 − n; n − 1�, and for odd n, k assume all the even values
at the same interval. Now, the continuity condition leads to
the following constraint between the coupling constants of
the potential

λa2 ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

p
: (12)
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As in the previous model, this condition is also enough to
keep the derivative of the potential continuous. As we are
going to see below, the relation (12) is capable of granting
the continuity of the field configuration, assuring that the
energy of the configuration stays finite.

III. SOLUTION FOR THE FIRST SMOOTH
POTENTIAL LOCAL VACUA

In this section we develop the solutions and analyze
some features of the first model here proposed, the one
defined in (8). We are primordially interested in solutions
connecting the global vacua of the potential. These sol-
utions obey the following boundary conditions:

lim
x→�∞

ϕðxÞ ¼ �ðaþ nbÞ: (13)

Since we are working with the usual Lagrangian density
for a self-interacting scalar field, the corresponding equa-
tion of motion is

∂μ∂μϕþ dVðϕÞ
dϕ

¼ 0: (14)

But, we are looking for the static solutions, which can be
boosted in order to recover the traveling ones. So, the above
equation is simplified to

ϕ00 ¼ dVðϕÞ
dϕ

; (15)

which can be integrated to

1

2
ϕ02 ¼ VðϕÞ: (16)

It must be noted that the corresponding integration constant
was chosen as zero, since we are interested in configura-
tions that go asymptotically to some vacuum of the field
potential.
From Eq. (16), as usual, we can write

dϕ
dx

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕÞ

p
; (17)

and from the above we can conclude that the solution for
ϕðxÞ will be monotonically growing or decreasing accord-
ing the chosen sign of the right-hand side of the equation.
On the other hand, we are interested in solutions going from
the negative vacuum to the positive one, so we will look for
a field that increases with x.
As we have seen before, VðϕÞ is a continuous by parts

function; specifically, the potential has nþ 2 distinct
regions, each one governed by one differential equation
coming from (16). So, in order to identify the solutions and

their respective regions, we will label them as ϕiðxÞ, with
1 ≤ i ≤ nþ 2 coming from the left to the right.
There is a question that must be carefully treated, and

that is the case of the domain of the solutions ϕðxÞ, since
each region in the space of the fields corresponds to another
in the coordinate space. In order for the analysis to become
more precise, we relate each region i of the potential VðϕÞ
to a set Φi such that ϕiðxÞ ∈ Φi. Corresponding to each set
Φi, we have a set Xi, so that we can associate each element
x ∈ Xi to an element ofΦi through the map ϕ∶ Xi → Φi. In
fact, each set Φi is well determined due to the definition of
the potential VðϕÞ. However, it is still necessary to
determine the sets Xi. For the first region of the potential,
Φ1 ¼ fϕj −∞ < ϕ < −nbg, the boundary condition (13)
leads to x → −∞ ⇒ ϕðxÞ → −ðaþ nbÞ. Furthermore,
since ϕðxÞ is a growing function, there is a certain value
of x1 such that ϕðx1Þ ¼ −nb, in such a way that if x < x1
then ϕðxÞ ∈ Φ1, and for x ≥ x1 the solution ϕðxÞmust be in
the second region of the potential. Thus, we can conclude
that X1 ¼ fxj −∞ < x < x1g. In the second region of the
potential, Φ2 ¼ fϕj − nb ≤ ϕ < ð2 − nÞbg, we can use the
same argument in order to conclude that X2 ¼ fxjx1 ≤
x < x2g, with ϕðx2Þ ¼ ð2 − nÞb and for x ≥ x2 the solution
ϕ corresponds to the third region of the potential and so on.
Generally speaking, we can write for the intermediary
regions of the potential Φi¼fϕjðk−1Þb≤ϕ< ðkþ1Þbg,
and the domain of ϕðxÞ can be defined as Xi ¼ fxjxi−1 ≤
x < xig. Finally, for the right-hand border of the potential
we have Φnþ2 ¼ fϕj þ nb ≤ ϕ < þ∞g, and the domain in
the coordinate space will be given by Xnþ2 ¼ fxjxnþ1 ≤
x < þ∞g.
Solution in the first region: Here we are interested in

solutions like ϕ∶ X1 → Φ1. In this region the correspond-
ing differential equation is given by

1

2
ϕ02 ¼ λ2

2
ða2 − ðϕþ nbÞ2Þ2: (18)

Performing the translation φ ¼ ϕþ nb, the above equation
can be cast in the form

1

2
φ02 ¼ λ2

2
ða2 − φ2Þ2; (19)

and this last equation corresponds to the usual one for
the φ4 model and can be easily integrated to give φðxÞ ¼
a tanhðλaðx − x0ÞÞ. Returning to the original variable, one
obtains

ϕðxÞ ¼ a tanhðλaðx − x1ÞÞ − nb; −∞ < x < x1;

(20)

which satisfies the adopted boundary conditions.
Solution in the region nþ 2: Focusing our attention in

the right border of the potential, where we seek a solution
like ϕ∶ Xnþ2 → Φnþ2, we can see that
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1

2
ϕ02 ¼ λ2

2
ða2 − ðϕ − nbÞ2Þ2: (21)

Again we can perform a displacement as in the above
φ ¼ ϕ − nb, and this leads to

ϕðxÞ ¼ a tanhðλaðx − xnÞÞ þ nb; xnþ1 ≤ x < þ∞:

(22)

Once more the boundary conditions are respected as
required.
Solutions in the intermediary regions: Let us now deal

with the case where ϕ∶ Xi → Φi. In those regions, the
differential equations are given by

1

2
ϕ02 ¼ α2

2
B2 −

α2

2
½b2 − ðϕ − kbÞ2�2; (23)

and, in this case, we need a bit more manipulation before
getting the solution. First of all, we rewrite the equation in
the form

dφ
dx

¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA − φ2Þðφ2 − ~AÞ

q
; (24)

where A ¼ b2 þ B, ~A ¼ b2 − B and φ ¼ ϕ − kb. Now,
making the transformation φ ¼ −

ffiffiffiffi
A

p
cos θ, it can be

rewritten as

dθ
dx

¼
ffiffiffiffi
2

B

r
λa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −msin2θ

p
; (25)

where we used Eq. (10) and definedm ¼ A
A− ~A

¼ b2þB
2B . Then,

integrating it between xi−1 and x we get

Z
θðxÞ

θðxi−1Þ

dθ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −msin2θ0

p ¼
ffiffiffiffi
2

B

r
λa2
Z

x

xi−1

dx0

¼
ffiffiffiffi
2

B

r
λa2ðx − xi−1Þ: (26)

The left-hand side of (26) can be identified with an
elliptical integral and, provided that m ∈ ½0; 1�, it can be
solved in terms of Jacobi elliptic functions [46]. More
precisely we have

Z
θðxÞ

θðxi−1Þ

dθ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −msin2θ0

p ¼ sn−1ðsin θjmÞjθðxÞθðxi−1Þ: (27)

Substituting this result in (26), and after some manipula-
tion, we arrive at

sin θðxÞ ¼ sn

�
sn−1½sin θðxi−1Þ�

þ
ffiffiffiffi
2

B

r
λa2ðx − xi−1Þ

���� b2 þ B
2B

�
: (28)

Finally, returning to the original variables we get

ϕðxÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þB

p
cn

�
δi−1þ

ffiffiffiffi
2

B

r
λa2ðx−xi−1Þ

����b2þB
2B

�
þkb;

xi−1≤x<xi; (29)

where snðujmÞ represents the elliptic sine function,
cnðujmÞ represents the elliptic cosine, and we defined that
δi−1 ¼ sn−1½sin θðxi−1Þ�.
Now, using the relation ϕ − kb ¼ −

ffiffiffiffi
A

p
cos θ and also

the continuity conditions at the junction points, which are
given by ϕðxi−1Þ ¼ ðk − 1Þb, it can be verified that δi−1
must satisfy the following constraint equation:

cn

�
δi−1

���� b2 þ B
2B

�
þ bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ B
p ¼ 0: (30)

It can be verified from above that δi−1 is independent from
the chosen region of the potential, which allow us to use the
notation δ≡ δi−1. However, from Eq. (30) we can conclude
that δ cannot be univocally determined, since there is an
infinite number of solutions for δ due to the periodicity of
the elliptic cosine. On the other hand, despite the fact that
the solutions of (30) are enough to keep the continuity of
ϕðxÞ, not all of them grant the continuity of its derivative at
the junction points. Furthermore, it can be numerically
observed that half of the roots of (30) lead to continuous
ϕðxÞ, while the other half lead to continuous ϕ0ðxÞ, and this
behavior under the continuity of the solutions is alternate.
Fortunately, it can be numerically verified that the first
negative root of Eq. (30) is able to grant the continuity of
ϕðxÞ and its derivative. A further important point is the one
related to the determination of the position of the junction
points xi. In fact, x1 can be arbitrarily chosen due to the
translation symmetry inherent to the model. However, the
points x2; x3;…; xi depend of the choice of x1. Once more
using the boundary conditions at the junction points, we get
the constraint relation

cn

�
δþ

ffiffiffiffi
2

B

r
λa2ðxi − xi−1Þ

���� b2 þ B
2B

�
¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ B
p : (31)

Once x1 is specified, we can use the above equation in order
to determine x2. It can be seen from the above equation that
xi − xi−1 is independent of the region of the potential that is
under study, so we can verify that
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x2 − x1 ¼ x3 − x2 ¼ x4 − x3 ¼ � � �
¼ xi − xi−1 ¼ � � �
¼ xnþ1 − xn: (32)

By using this last equation, we can still conclude that one
can write

xi ¼ ði − 1Þx2 − ði − 2Þx1; (33)

so, given a x1, the remaining xi can be computed from
Eqs. (31) and (33).
In general we can write the solution of this model in

the form

ϕðxÞ ¼

8>>><
>>>:

a tanhðλaðx − x1ÞÞ − nb; −∞ < x < x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ B

p
cn

�
δþ

ffiffiffi
2
B

q
λa2ðx − xi−1Þ

���� b2þB
2B

�
þ kb; xi−1 ≤ x < xi

a tanhðλaðx − xnþ1ÞÞ þ nb; xnþ1 ≤ x < þ∞:

(34)

As it was mentioned above, the parameter B controls the
height of the local vacua in the model and, as one can
verify, when B approaches its critical value b2, the
intermediary solutions assume a kinklike profile, and the
complete solution behaves like a kind of multikink, like a
ladder with many steps, and this, as far as we know, is new
in terms of an analytical configuration. In the limit case
where B ¼ b2, we find a configuration where the potential
exhibits only global vacua and, as a consequence, the

solution connects the adjacent vacua through kinklike
configurations. The field configurations which obey
Eq. (16) have their energy density given by

ε½ϕðxÞ� ¼
�
dϕðxÞ
dx

�
2

; (35)

and this leads to the following energy density for the
present case

ε½ϕðxÞ� ¼

8>>><
>>>:

λ2a4sech2ðλaðx − x1ÞÞ; −∞ < x < x1
2λ2a4
B ðb2 þ BÞcn2

�
hðxÞ

��� b2þB
2B

�
dn2
�
hðxÞ

��� b2þB
2B

�
; xi−1 ≤ x < xi

λ2a4sech2ðλaðx − xnþ1ÞÞ; xnþ1 ≤ x < þ∞;

(36)

where hðxÞ ¼ δþ ffiffiffiffiffiffiffiffi
2=B

p
λa2ðx − xi−1Þ and dnðu;mÞ is a

Jacobi function. In fact, the energy density above obtained
is an integrable function which keeps the total energy finite
as necessary. In Fig. 2, it is presented a typical example of
this first situation, including the potential, the correspond-
ing triple kink and its energy density.

IV. ASYMMETRIC VERSION OF A MODEL
WITH LOCAL VACUA

In this section we work with an asymmetrical potential
presenting two local vacua and which can be described by
the stepwise function

VðϕÞ¼

8>>>>>>>><
>>>>>>>>:

λ2
1

2
½a21− ðϕ−2b1Þ2�2; ϕ≥ 2b1

α2
1

2
B2
1−

α2
1

2
½b21− ðϕ−b1Þ2�2; 0≤ϕ< 2b1

α2
2

2
B2
2−

α2
2

2
½b22− ðϕþb2Þ2�2; −2b2 ≤ϕ< 0

λ2
2

2
½a22− ðϕþ2b2Þ2�2; ϕ<−2b2:

(37)

This model was constructed from the potential (8),
However, for the sake of simplicity, we considered a
version with only two local vacua, but it is important to
remark that it can be extended in order to have an arbitrary
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FIG. 2 (color online). Smooth symmetric potential presenting two global and two local vacua, its triple kink, and energy density
(a ¼ λ ¼ 1, n ¼ 2, b ¼ 2, and B ¼ 4.1).
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number of local vacua. Thus, like in the symmetric case, we
must to keep it continuous at the junction points and, using
Eq. (9), we get the following constraint between their
coupling constants

λ1a21 ¼ λ2a22 ¼ α1B1 ¼ α2B2: (38)

One can verify that the conditions B1 > b21 and B2 > b22
are also necessary to grant the presence of local vacua.
The solution of the differential equation (16) in each region
of the potential (37) follows the same line of reasoning as
in the previous case and, due to this, we will present
the solution directly in this section. So, in this case we have

ϕðxÞ ¼

8>>>>>>>>><
>>>>>>>>>:

a1 tanhðλ1a1ðx − x1ÞÞ − 2b1; −∞ < x < x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ B1

p
cn
�
δ1 þ

ffiffiffiffi
2
B1

q
λ1a21ðx − x1Þ

��� b21þB1

2B1

�
− b1; x1 ≤ x < x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b22 þ B2

p
cn
�
δ2 þ

ffiffiffiffi
2
B2

q
λ1a21ðx − x2Þ

��� b22þB2

2B2

�
þ b2; x2 ≤ x < x3

a2 tanh
�
λ1

a2
1

a2
ðx − x3Þ

�
þ 2b2; x3 ≤ x < þ∞:

(39)

The continuity of ϕðxÞ, makes necessary that the constants
δ1 and δ2 satisfy the following conditions

cn

�
δ1

���� b21 þ B1

2B1

�
þ b1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b21 þ B1

p ¼ 0;

cn
�
δ2

���� b22 þ B2

2B2

�
þ b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b22 þ B2

p ¼ 0: (40)

As it can be seen, in contrast with the case of Eq. (30), in this
case the δ parameters depend on the region of the potential.
Furthermore, as in the previous case, there aremany solutions
for δ satisfying the above equations. Once more it can be
checked numerically that the first negative solutions warrant
the continuity of ϕðxÞ and its derivative.We can also see how
x1,x2 andx3 are related toeachother.As in thepreviouscasex1
can be arbitrarily chosen and, once it is defined, the remaining
coordinates, x2 and x3, can be obtained through the equations

cn

 
δ1þ

ffiffiffiffiffiffi
2

B1

s
λ1a21ðx2−x1Þ

����b21þB1

2B1

!
¼ b1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b21þB1

p ;

cn

 
δ2þ

ffiffiffiffiffiffi
2

B2

s
λ1a21ðx3−x2Þ

����b22þB2

2B2

!
¼ b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b22þB2

p : (41)

Infact,eachoneoftheaboveequationsisverysimilartotheone
in (31), but in the asymmetrical case there is no expression
which is analogous to (32).
In this model, the parameters which are responsible for

controlling the local vacua are B1 and B2, and when they
approach respectively their critical values b21 and b22, the
intermediary solutions start to present the expected typical
kink profile. In the particular case where n ¼ 2, the solution
obtained is an asymmetrical triple kink, as one can see in
Fig 3. Finally, through Eq. (35) it can be computed the
energy density, which is given by

ε½ϕðxÞ� ¼

8>>>>>>>><
>>>>>>>>:

λ21a
4
1sech

2ðλ1a1ðx−x1ÞÞ; −∞<x<x1
2λ2

1
a4
1

B1
ðb21þB1Þcn2

�
h1ðxÞ

���b21þB1

2B1

�
dn2
�
h1ðxÞ

���b21þB1

2B1

�
; x1 ≤ x<x2

2λ2
1
a4
1

B2
ðb22þB2Þcn2

�
h2ðxÞ

���b22þB2

2B2

�
dn2
�
h2ðxÞ

���b22þB2

2B2

�
; x2 ≤ x<x3

λ21a
4
1sech

2
�
λ1

a2
1

a2
ðx−x3Þ

�
; x3 ≤ x<þ∞;

(42)
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FIG. 3 (color online). Smooth asymmetric potential presenting two global and two local vacua, its triple kink, and energy density
(a1 ¼ λ1 ¼ b1 ¼ 1, b2 ¼ 2, λ2 ¼ 1=2, a2 ¼

ffiffiffi
2

p
, B1 ¼ 1.1, and B2 ¼ 4.2).
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where we defined h1ðxÞ ¼ δ1 þ
ffiffiffiffiffiffiffiffiffiffi
2=B1

p
λ1a21ðx − x1Þ and

h2ðxÞ ¼ δ2 þ
ffiffiffiffiffiffiffiffiffiffi
2=B2

p
λ1a21ðx − x2Þ.

V. SOLUTIONOF THE SECOND SMOOTHMODEL
WITH SYMMETRIC LOCAL VACUA

Now, we will treat the case of the potential (11). We are
again interested in solutions connecting a negative vacuum
with a positive one, so that they shall obey the following
boundary conditions

lim
x→�∞

ϕðxÞ ¼ �ðaþ nπ=μÞ; (43)

and using the very same argument of the first model, one is
lead to conclude that ϕðxÞ shall be a monotonically
increasing function. Despite the fact that VðϕÞ is written
in terms of only three regions, it will be convenient to divide
the axis ϕ in 2nþ 2 regions, each one localized between a
local maximum and the next adjacent maxima. In each
potential region we associate a set Φi, and this leads us to

Φ1 ¼ fϕjϕ < −nπ=μg;
Φ2 ¼ fϕj − nπ=μ ≤ ϕ < ð1 − nÞπ=μg;

..

.

Φi ¼ fϕjði − n − 2Þπ=μ ≤ ϕ < ði − n − 1Þπ=μg;
..
.

Φ2nþ2 ¼ fϕjnπ=μ ≤ ϕg: (44)

As it was done in the case of the first model, we associate a
set Xi to each Φi, and we get that ϕ∶ Xi → Φi. This allow
us to define the sets X as

X1 ¼ fxjx1 > xg;
X2 ¼ fxjx1 ≤ x < x2g;

..

.

Xi ¼ fxjxi−1 ≤ x < xig;
..
.

X2nþ2 ¼ fxjx2nþ1 ≤ xg; (45)

where ϕðxiÞ ¼ ði − n − 1Þπ=μ.
Solution in region 1: In this region the solution

ϕ∶ X1 → Φ1, comes from the equation

1

2
ϕ02 ¼ λ2

2
ða2 − ðϕþ nπ=μÞ2Þ2: (46)

We can identify the above equation with the one appearing
in (18) simply by doing b ¼ π=μ and ϕðxÞ can be obtained
from (20), giving

ϕðxÞ ¼ a tanhðλaðx − x1ÞÞ − nπ=μ; −∞ < x < x1:

(47)

It is easy to verify that it obeys the correct boundary
conditions.
Solution in the 2nþ 2 region: In this last region

ϕ∶ X2nþ2 → Φ2nþ2 the differential equation is such that

1

2
ϕ02 ¼ λ2

2
ða2 − ðϕ − nπ=μÞ2Þ2: (48)

Now, choosing b ¼ π=μ, the solution of (22) leads us to

ϕðxÞ ¼ a tanhðλaðx − x2ÞÞ þ nπ=μ; x2 ≤ x < þ∞:

(49)

Intermediary solutions: In these regions the differential
equations look like

1

2
ϕ02 ¼ α2

2

�
B2 þ 1þ ð−1Þn cos ðμϕÞ

2

�
: (50)

Again, we are looking for a solution of the type
ϕðxÞ∶ Xi → Φi. However, the process of solution will
be the same in all the intermediary regions, and it will
be necessary only to adjust the appropriate boundary
conditions in each of them. First of all, we will work with
an even n. In this case, we can rewrite the differential
equation (50) as

dϕ
dx

¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 1 − sin2ðμϕ=2Þ

q
: (51)

Performing the transformation of variable φ ¼ μϕ=2, one
can integrate the above equation in the following manner,

Z
φðxÞ

φðxi−1Þ

dφ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −msin2φ0p ¼ μλa2

2

Z
x

xi−1

dx0 ¼ μλa2

2
ðx − xi−1Þ;

(52)

where we defined m≡ 1=ð1þ B2Þ (with m ∈ ½0; 1�) and
used Eq. (12) in order to eliminate the parameter α in terms
of λa2. The left-hand side of this last equation represents an
elliptic integral, and (27) allows us to write

sinðμϕðxÞ=2Þ ¼ sn

�
δi þ

μλa2

2
ðx − xi−1Þ

���� 1

1þ B2

�
; (53)

where δi ¼ sn−1½sinðμϕðxi−1Þ=2Þ�. On the other hand, by
using ϕðxiÞ ¼ ði − n − 1Þπ=μ, it can be shown that

sinðμϕðxi−1Þ=2Þ ¼ ð−1Þn2þ1 sinðiπ=2Þ: (54)

At this point we shall be careful, since the field ϕðxÞ
depends on the function arcsinðxÞ which, by its turn, must
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have its image and dominion very well specified, due its
multivalence. In order to avoid such kind of problem, we
specify

arcsin ∶ ½−1; 1� → ½−π=2;þπ=2�: (55)

On the other hand, the boundary conditions are assured
since Eq. (51) is invariant under transformations of the type
ϕðxÞ → ϕðxÞ þ kπ (valid for integer values of k). Thus, we
can write

ϕðxÞ¼ 2

μ
arcsin

�
sn

�
δiþ

μλa2

2
ðx−xi−1Þ

���� 1

1þB2

��
−
2kπ
μ

;

xi−1 ≤ x<xi: (56)

Now, using the boundary condition ϕðxiÞ ¼ ði − n −
1Þπ=μ in the above equation, we get

ϕðxi−1Þ ¼
2

μ
arcsin

�
sn

�
δi

���� 1

1þ B2

��
−
2kπ
μ

¼ i − n − 2

μ
π:

(57)

Using the definition of δi and Eq. (54), we can conclude
that

k ¼
( nþ2−i

2
; for even i

nþ2þ½ð−1Þn2þ1−1�i
2

; for odd i:
(58)

Before finishing the discussion of this section, we shall
determine the relative position of the xi. From the boundary
condition in ϕðxiÞ, we can write

ϕðxiÞ¼
2

μ
arcsin

�
sn

�
δiþ

μλa2

2
ðxi−xi−1Þ

���� 1

1þB2

��
−
2kπ
μ

¼ i−n−1

μ
π: (59)

From the definition of δi and using Eq. (58), we arrive at

sn

�
μλa2

2
ðxi − xi−1Þ

���� 1

1þ B2

�
¼ 1; for even i;

δi þ
μλa2

2
ðxi − xi−1Þ ¼ 0; for odd i: (60)

Through the above equation it can be shown that

x3 − x1 ¼ x5 − x3 ¼ x7 − x7 ¼ � � � ¼ xi − xi−2;

for even i;

x4 − x2 ¼ x6 − x4 ¼ x8 − x6 ¼ � � � ¼ xi − xi−2;

for odd i: (61)

Again, once the value of x1 is defined, we can determine x2
and x3 through (60) and the remaining junction points are
given by the above equations.
In general, the solution for the multikink field configu-

ration of this model can be written in the form

ϕðxÞ ¼

8>><
>>:

a tanhðλaðx − x1ÞÞ − nπ=μ; −∞ < x < x1
2
μ arcsin

h
sn
�
δi þ μλa2

2
ðx − xi−1Þ

��� 1
1þB2

�i
− 2kπ

μ ; xi−1 ≤ x < xi

a tanhðλaðx − x2nþ2ÞÞ þ nπ=μ; x2nþ2 ≤ x < þ∞:

(62)

As expected, this solution has the same profile as the one
obtained for the first model which is appearing in Fig. 2. All
the above discussion was done for the case with even n.
However, the same procedure can be used for the case with
odd n and the result will have the same appearance, and due
to this we will not present the details here. The energy
density of this soliton can also be calculated by using
Eq. (35), and it presents a very similar profile of the one
corresponding to the first model, which can be seen in Fig. 2.

VI. TOPOLOGICAL PROPERTIES

In this section we will consider some topological proper-
ties for the models proposed in this paper. It is well know
that the usual kinklike configurations are topological
solutions and, as a consequence, we may use some index
in order to classify such solutions with respect to the
topological features. The so-called topological charge is an
example of the topological index often used in the

literature. Here, we show that the topological charge is
well defined for the models presented here, and we will
calculate this charge for both models. We have defined a
topological current in the usual way [17], namely,

jμ ¼ εμν∂νϕ; (63)

where εμν is the Levi-Civita symbol. It is not difficult to
conclude that a conservation law follows from the defi-
nition of jμ, in fact we have ∂μjμ ¼ 0 as a consequence of
the antisymmetry of εμν. Note that both the topological
charge and its conservation law are well defined, since
we have ensured that first and the second derivatives of
the scalar fields solutions are continuous at any point.
The topological charge may be defined in terms of jμ in the
following way:
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Q ¼
Z

∞

−∞
dxj0: (64)

Note that j0 ¼ ε0ν∂νϕ ¼ ∂ϕ=∂x; thus, after integration we
obtain the following result:

Q ¼ ϕðx ¼ þ∞Þ − ϕðx ¼ −∞Þ: (65)

For the first model considered in this work, whose
solution is given by Eq. (34), we have the asymptotic
values for the scalar field given by

ϕðx ¼ þ∞Þ ¼ aþ nb and ϕðx ¼ −∞Þ ¼ −a − nb:

(66)

Therefore, the topological charge for the first model is
given by

Q ¼ 2aþ 2nb: (67)

It is interesting to note that the topological charge obtained
for the usual ϕ4 theory [which may be obtained with n ¼ 0
in Eq. (8)] is given by Q0 ¼ 2a; thus, we may rewrite the
case with arbitrary n as follows

Qn ¼ Q0 þ 2nb: (68)

Repeating the same procedure for the second model,
whose solution is given by Eq. (62), we obtain ϕðx¼
þ∞Þ¼ aþnπ=μ and ϕðx¼−∞Þ¼−a−nπ=μ. Therefore,
in this case the topological charge is given by

Qn ¼ 2aþ 2nπ=μ ¼ Q0 þ 2nπ=μ: (69)

We may note that in both cases the topological charge
increases linearly with the number of local vacua as well as
with the separation of them.

VII. CONCLUSIONS

In this work, we have introduced a method that can
be systematically used to obtain analytical multikink
configurations which come from very smooth stepwise
scalar field potentials. The approach was presented
through three examples, and their corresponding typical
triple kink and energy density profiles can be seen in
Figs. 2 and 3. In fact, as it can be observed from the
case studied in the Introduction section, these multikink
profiles can be constructed in the case of potentials
similar to the DQ model and its generalizations (see
Fig. 1). However, those potentials present discontinuity
in their derivative at the junction points, which do not
happen in the cases we have introduced in this work.
Among the possible applications of our results, we are
presently interested in the possibility of constructing
multi-braneworld scenarios.
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