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We investigate the low-order Green’s functions of SUðNÞ Yang-Mills theory in Landau gauge, using a
covariant variational principle based on the effective action formalism. Employing an approximation to the
Faddeev-Popov determinant established previously in the Hamiltonian approach in Coulomb gauge leads
to a closed set of integral equations for the ghost and gluon propagator. We carry out the renormalization
and the infrared analysis of this system of equations. Finally, we solve the renormalized system numerically
and compare with lattice results and other functional approaches.
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I. INTRODUCTION

The low-order Green’s functions of Yang-Mills theory
have been the focus of many investigations, both in the
continuum and on the lattice. Functional methods such as
the functional renormalization group (FRG) flow equations
[1] and Dyson-Schwinger equations (DSE) [2] initially
concentrated their studies on the case of covariant gauges,
since this is the natural choice in a covariant setup, and
allows us to use Becchi-Rouet-Stora-Tyutin (BRST) sym-
metry and the ensuing Slavnov-Taylor identities to guide
and improve the analysis. Moreover, the Kugo-Ojima
criterion [3,4] argues that there should be a direct link
between the deep infrared behavior of the gluon and ghost
propagator, and the issue of color confinement. Most
investigations initially found an infrared vanishing, scaling
type of solution for the gluon propagator, which is,
however, at odds with high-precision lattice simulations
[5–8]. It was only later realized that infrared finite so-called
decoupling solutions could also be obtained in the func-
tional approach under certain circumstances [1]. In fact, an
infrared finite gluon propagator had been found before in
Refs. [9–20].
By contrast, the so-called variational approach to the

Hamiltonian formulation of Yang-Mills theory investigated
in Refs. [21–25] has been formulated in Coulomb gauge.
This noncovariant condition is advantageous in the
Hamiltonian approach since it allows for an explicit reso-
lution of Gauß’s law. In the Hamiltonian approach of
Refs. [21–25] the Schrödinger equation for the Yang–
Mills vaccum wave functional is approximately solved by
thevariational principle,minimizing the energywith suitable
trial Ansätze for the vacuum wave functional. Compared to
functional methods based on the Lagrangian formulation of
quantum field theory, like the FRG [1] and DSE [2], the

variational principle of the Hamiltonian approach has the
benefit that the relative size of the energy density controls the
quality of the approximation made, i.e. of the trial wave
functional used. By enlarging the space of trial states the
description can be improved. The Hamiltonian approach in
Coulomb gauge provides direct access to the so-called
Coulomb potential between static charges and gives rela-
tively simple explanations for confinement [26–30] and
other low-energy phenomena [31]. Furthermore it yields
propagators which are in good agreement with lattice
calculations [32–35] and the Gribov-Zwanziger confine-
ment scenario [36,37]. Unfortunately it cannot be general-
ized directly to covariant gauges and make contact with the
alternative studies mentioned above.
In the present paper, we will demonstrate that a con-

ceptually similar variational principle can be established in
covariant gauges if one relies on the effective action instead
of the energy. We will present a variational approach to
quantum field theory which is based on the minimization of
the effective action and apply it to Yang-Mills theory in
Landau gauge. This approach will result in a system of
integral equations for the low-order Green’s functions,
which we solve using the techniques borrowed from the
Coulomb gauge calculations mentioned above. We will
also argue that our method gives optimal results for the
propagators of the theory, while the extension to realistic
vertices presumably requires to go beyond the Gaussian
Ansatz using Dyson-Schwinger equation techniques [38];
see also Ref. [39] for an alternative approach.
The paper is organized as follows: in the next section, we

present the general variational principle for the effective
action and explain in Sec. III how it can be applied to Yang-
Mills theory in covariant gauges. After presenting our
Ansatz for the trial path integral measure, we discuss an
approximation to the Faddeev-Popov determinant which
was introduced in Ref. [24] in the context of the
Hamiltonian approach in Coulomb gauge and which
facilitates the treatment of the ghost sector. In Sec. IV
we apply the variational principle to the effective action of
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Yang-Mills theory in Landau gauge and derive a closed set
of integral equations for the ghost and gluon propagator.
The rather cavalier method to renormalize these equations
is put on a solid ground in Sec. V by relating it to the
traditional introduction of counterterms. After carrying out
the infrared analysis of our renormalized system of
equations, we present in Sec. VI their numerical solution
and compare with recent high-precision lattice data.
Finally, we give a short summary and end with an outlook
on further developments.

II. THE VARIATIONAL PRINCIPLE

Below we recall the variational principle for the effective
action in quantum field theory. This material mainly serves
to fix some of our notation and introduces various concepts
used later on. We start with a theory for a quantum field ϕ
defined by an action SðϕÞ in d ¼ nþ 1 dimensional
Euclidean space time. Expectation values of operators
are computed with the normalized measure

dμ0ðϕÞ ¼ Z−1 exp ½−ℏ−1SðϕÞ�dϕ

Z≡
Z

dϕ exp ½−ℏ−1SðϕÞ�: (1)

Here dϕ is the flat (translationally invariant) measure in
field space, and an implicit regularization is understood.
The obvious analogy with statistical mechanics can now be
exploited to define a variational method: The Gibbs-like
measure Eq. (1) is the unique probability measure in field
space which minimizes the free energy (or rather, free
action),

FðμÞ≡ hSiμ − ℏWðμÞ¼! min: (2)

Here h…iμ ≡
R
dμðϕÞ… is the expectation value in the

trial measure μ, and the normalization is such that
h1iμ ¼

R
dμðϕÞ ¼ 1. If the measure is written in Radon-

Nikodym form dμðϕÞ ¼ dϕρðϕÞ with a suitable density ρ,
the quantity

WðμÞ≡−hln ρiμ ¼ −
Z

dϕρðϕÞ ln ρðϕÞ (3)

is the entropy which measures the accessible field space
for quantum fluctuations. The value of the minimal free
action from Eq. (2) attained for the Gibbs measure (1) is
Fðμ0Þ ¼ −ℏ lnZ. Notice that Planck’s constant really plays
a role similar to the temperature in statistical mechanics, i.e.
it controls the balance between the classical action hSi and
the fluctuation entropy WðμÞ.
Traditionally, one would now take the minimizing

measure Eq. (1), or some approximate minimum in a
restricted measure space, and compute the Schwinger
functions

Gnðx1;…; xnÞ≡ hϕðx1Þ � � �ϕðxnÞi

¼
Z

dμ0ðϕÞϕðx1Þ � � �ϕðxnÞ; (4)

or rather the generating functional WðjÞ of their connected
part. From this, the effective action Γ follows by Legendre
transformation.
Alternatively, the effective action can also be characterized

directly by a variational principle: To this end, we go back to
Eq. (2) and perform the minimization in two steps: first, we
define a constrained free action by restricting some operator
ΩðϕÞ to a classical value ω, and second, we minimize this
action under variation of all trial probability measures, which
yields the effective action for the operator Ω,

ΓðωÞ≡min
μ
Fðμ;ωÞ≡min

μ
fhSiμ − ℏWðμÞjhΩiμ ¼ ωg:

(5)

It depends, of course, on the choice of the operatorΩ, and is a
functional of the prescribed value ω both explicitly (via the
constraint) and implicitly (via the ω-dependence of the
solving measure). In most cases, the constraint is chosen
as the vev of the quantum field itself, so that

ΓðφÞ≡min
μ
fhSiμ − ℏWðμÞjhϕiμ ¼ φg: (6)

The variational principle Eq. (2) is now equivalent to
ΓðφÞ¼! min, which is a problem in classical field theory
that can be considered as solved. We now have two distinct
definitions of the effective action:
(i) Functional: Define the Gibbs measure as the (unique)

solution of Eq. (2), compute the Green functions,
or their generating functional, from Eq. (4), and finally
construct the effective action as generating func-
tional of 1PI correlators by means of a Legendre
transformation.

(ii) Linear response: Compute the effective action directly
from the variational principle Eq. (6) and obtain the
1PI proper n-point functions as derivatives at φ ¼ 0.

It is not hard to see that the two descriptions agree, cf.
Appendix A, but this identity only holds for the exact
solution of the variation problem, when no restrictions are
placed on the trial measures μ. This is rarely ever the case. In
practice, a viable variation scheme will have to restrict the
space of trial measures fμg to those candidates for which the
expectation values in Eq. (2) or Eq. (6) can be computed
explicitly. In such a restricted variation, the effective action
determined from (i) and (ii) will differ. In Appendix B, we
sketch the two approaches for a simple ϕ4 theory with
Gaussian trial measures, and also compare with the varia-
tional solution of the Schrödinger equation in the Hamilton
formalism.
As with all variational methods, it is not a priori clear

which of the two formulations above will give the better

M. QUANDT, H. REINHARDT, AND J. HEFFNER PHYSICAL REVIEW D 89, 065037 (2014)

065037-2



approximation to the true system, although general argu-
ments [40] indicate that the linear response approach (ii) is of
higher order in the difference between true and approximate
minimalmeasure μ0. (However, higher order does not always
mean higher accuracy.) In any case, the representation Eq. (6)
is conceptually simpler and automatically ensures thatΓðφÞ is
a convex upper bound to the true effective action whenever
restrictions are placed on the measure dμðϕÞ.

III. APPLICATION OF THE VARIATIONAL
PRINCIPLE TO YANG-MILLS THEORY

IN COVARIANT GAUGES

Since our variational principles are covariant, it is natural
to study SUðNÞ Yang-Mills theory in covariant gauges, in
particular Landau gauge. Ignoring Gribov copies, the exact
measure for this problem is

dμ0ðAÞ ¼ Z−1J ðAÞ exp½−ℏ−1SgfðAÞ�dA (7)

Z ¼
Z

dAJ ðAÞ exp ½−ℏ−1SgfðAÞ�

Sgf ¼
1

2
∥FA∥2 þ

1

2ξ
∥d†A∥2; (8)

where A and FA are the differential forms for the gauge
connection and its field strength, respectively,

A ¼ Aμdxμ ¼ Aa
μTadxμ

FA ¼ dAþ gA∧A ¼ 1

2
Fμνdxμ ∧ dxν ¼ 1

2
Fa
μνTadxμ ∧ dxν;

(9)

and g is the bare coupling strength. As usual, Feynman
gauge (ξ ¼ 1) simplifies the Lorentz structure of the
propagator, while Landau gauge (ξ ¼ 0) yields transversal
gluons that can be compared directly to lattice investiga-
tions. The prefactors in the action and the inner product of
Lie-Algebra valued forms on 4D euclidean space M,

ðη;ωÞ≡ ð−2Þtr
Z
M
η∧ � ω ¼

Z
M
ηa∧ � ωa

are consistent with anti-Hermitian generators of the Lie–
algebra, normalized according to trTaTb ¼ − 1

2
δab.

Moreover, the measure factor J ðAÞ in Eq. (8) is the
(normalized) Faddeev–Popov determinant

J ðAÞ≡ Det½−∂μD̂
ab
μ �=Det½−□δab�

¼ Det½−□δab − g∂μfabcAc
μ�=Det½−□δab� (10)

with J ð0Þ ¼ 1. It is helpful to interpret J ðAÞ as the weight
of the gauge orbit through A, i.e. the canonical volume form
on this orbit in field space.

A. Modified variational principle

The appearance of the Faddeev-Popov determinant in the
measure Eq. (8) requires some modification of the basic
variational principle Eq. (2), because the latter only holds
for measures of the Gibbs form Eq. (1). One obvious
solution is to transfer the Faddeev-Popov determinant into
the action,

Sgf → S̄ ¼ Sgf − ℏ lnJ :

Then the variational principle based on S̄ takes the standard
form FðμÞ¼! min, where

FðμÞ ¼ hS̄iμ − ℏWðμÞ
¼ hSgfiμ − ℏhlnJ ðAÞiμ þ ℏhln ρðAÞiμ: (11)

Here, ρ is the deviation of the trial measure from the flat
measure (excluding the Faddeev-Popov determinant),
dμ ¼ dAρðAÞ. The rhs of Eq. (11) suggests to rewrite
the variational principle by redefining the entropy,

FðμÞ ¼ hSgfiμ − ℏW̄ðμÞ
W̄ðμÞ≡WðμÞ þ hlnðJ Þiμ ¼ −hlnðρ=J Þiμ ¼ −hln ρ̄iμ:

(12)

Here, ρ̄ is now the deviation from the standard measure
including the Faddeev-Popov determinant, which is the
natural metric on the space of gauge orbits,

dμ ¼ dAρðAÞ ¼ dAJ ðAÞρ̄ðAÞ: (13)

The redefined entropy Eq. (12) coincides with the usual
notion of the relative entropy of the trial volume form
dAρðAÞ compared to the standard weight dAJ ðAÞ on the
space of gauge orbits. As a consequence, the general
variational approach sketched above remains valid for
YM theory in covariant gauges, if we only replace the
entropy W by the relative entropy W̄.

B. Gaussian trial measure

In the next step, we have to choose a class of suitable trial
measures which is simple enough to allow for the necessary
integrals to be performed, but still captures the essential
physics of the system. For this purpose, we note
(i) gluons are only weakly interacting in the ultra-violet

due to asymptotic freedom
(ii) gluon configurations near the Gribov horizon (J ¼ 0)

are assumed to play a dominant role in the infrared,
and the self-interactions of gluons in such configura-
tions may become sub-dominant.

The overall picture is (i) an (almost) noninteracting
constituent gluon with (ii) an enhanced weight near the
Gribov horizon. It is precisely this picture which is
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supported by the variational calculation in the Hamiltonian
approach to Yang-Mills theory in Coulomb gauge devel-
oped in Refs. [23–25]. The first condition implies that the
trial action should be (close to) Gaussian, while the
enhancement at the horizon is controlled by the volume
form on the gauge orbit: Since the natural volume form is
J ðAÞ, replacing it in the trial measure by J 1−2α with α ≥ 0
will enhance the weight of near-horizon configurations by a
relative factor J ðAÞ−2α ≫ 1.
Wewill thus attempt a variational approach based on trial

measures of the form (ℏ ¼ 1)

dμðAÞ¼N α ·dAJ ðAÞ1−2α

×exp
�
−1

2

Z
ddðx;yÞAa

μðxÞωab
μνðx;yÞAb

νðyÞ
�
; (14)

whereN α is the overall normalization.1 Note that for α ¼ 0
the Gaussian represents the relative weight ρ̄ðAÞ while
for α ¼ 1

2
it gives the full weight ρðAÞ, cf. Eq. (12). We

will treat α as a variational parameter, although we shall
find below that the exact value of α is immaterial, at least up
to two loop order in a formal loop counting scheme
introduced in the next subsection.
The measure (14) is unconstrained and thus appropriate

for the functional approach discussed in Sec. II. (We
present the necessary modifications to comply with the
constraint hAi ¼ A in Eq. (26) below.) In the absence of an
external classical field A the variational method maintains
global color and Lorentz symmetry, and the kernel ω can be
chosen diagonal and transversal up to the covariant gauge
fixing term from Eq. (8),

ωab
μνðx;yÞ¼

Z
ddk
ð2πÞ4e

ikðx−yÞωab
μνðkÞ

ωab
μνðkÞ¼ δab

�
δμν−kμkν

k2
ð1−ξ−1Þ

�
ωðkÞ≡δabtμνðkÞωðkÞ:

(15)

The normalization in Eq. (14) is such that the bare gluon
propagator

Dab
μνðx; yÞ≡ hAa

μðxÞAb
νðyÞi ¼

Z
ddk
ð2πÞd e

ikðx−yÞDab
μνðkÞ

(16)

reduces for g → 0 (and hence J → 1) to

Dab
μνðkÞ→J→1½ωðkÞ−1�abμν ¼ δabt−1μν ðkÞ

1

ωðkÞ ¼g→0
δabt−1μν ðkÞ

1

k2
;

(17)

i.e. ωðkÞ → k2. This is also the UV limit of ωðkÞ due to
asymptotic freedom. Here, the Lorentz structure is given by
the inverse

t−1μν ðkÞ ¼ δμν − kμkν
k2

ð1 − ξÞ; (18)

for Landau gauge (ξ ¼ 0) this becomes the transversal
projector.
A possible caveat against the trial measure Eq. (14) is

that it does not respect the BRST symmetry of the full
theory, nor any of the identities that follow from it. This is,
in a sense, unavoidable in a variational Ansatz, because the
simplest nontopological action with full BRST symmetry is
already the full YM theory, so that any truncation will
necessarily break the Slavnov-Taylor identities to a certain
extent. For Landau gauge, however, recent lattice calcu-
lations favor a soft BRST breaking massive gluon propa-
gator in the deep infrared, and such decoupling solutions
were also found under certain assumptions within func-
tional approaches [9–18]. Since a dynamical mass gen-
eration is one of the main virtues of variational methods, the
Ansatz Eq. (14) seems therefore justified for covariant
gauges.

C. Curvature approximation

The Faddeev-Popov determinant Eq. (10) and its expect-
ation value in the trial measure (14) cannot be computed in
closed form. In the following, we will adopt an approxi-
mation that has been shown to be correct up to two-loop
order in the energy functional within the variational
Hamiltonian approach [24] in Coulomb gauge: Since
ðlnJ Þ and δ lnJ =δA both vanish at A ¼ 0, we can write

lnJ ½A� ¼ − 1

2

Z
ddðx; yÞKab

μνðx; yÞAa
μðxÞAb

νðyÞ (19)

with a symmetric kernel K½A� that may depend arbitrarily
on the gauge connection A. As a consequence,

Kð1; 2Þ ¼ − δ2 lnJ
δAð1ÞδAð2Þ −

�
δKð1; 3Þ
δAð2Þ þ δKð2; 3Þ

δAð1Þ
�
Að3Þ

− 1

2

δKð3; 4Þ
δAð1ÞδAð2ÞAð3ÞAð4Þ; (20)

where each digit stands for the combination of color,
Lorentz and spacetime indices, and repeated indices are
summed or integrated over. If we now formally introduce a
loop counting parameter in the exponent of the trial
measure (14), we find from Eqs. (19) and (20)

1The normalization factor N α will, in general, depend on the
variational kernel ω. In the case α ¼ 1

2
, for instance, we have

N 1
2
¼ det½ω=ð2πÞ�12.
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hlnJ ½A�i ¼
�
1

2

δ2 lnJ
δAð1ÞδAð2ÞAð1ÞAð2Þ

�

þ
�
1

2

�
δKð1; 3Þ
δAð2Þ þ δKð2; 3Þ

δAð1Þ
�
Að1ÞAð2ÞAð3Þ

�

þ
�
1

4

δKð3; 4Þ
δAð1ÞδAð2ÞAð1ÞAð2ÞAð3ÞAð4Þ

�

¼
�
1

2

δ2 lnJ
δAð1ÞδAð2Þ

�
hAð1ÞAð2Þi þ � � � ;

where the expectation value is taken with the trial measure,
Eq. (14), and the dots indicate higher orders in the loop
counting scheme. To leading loop order, we can therefore
replace the kernel K½A� by the average curvature on the
gauge orbit2,

Kab
μνðx; yÞ → χabμνðx; yÞ≡−

�
δ2 lnJ

δAa
μðxÞδAb

νðyÞ
�
: (21)

In total, this approximation then yields the formula [24]

lnJ ½A� ≈ − 1

2

Z
ddðx; yÞχabμνðx; yÞ · Aa

μðxÞAb
νðyÞ (22)

which differs, on average, from the exact expression (19)
only by a higher-loop effect.3 However, the omitted higher-
loop terms need not be negative definite and we cannot
guarantee that our approximate effective action is always a
strict upper bound to the true effective action.Wewill refer to
Eq. (22) in the following as the curvature approximation.
The salient point of this approximation is now that the

curvature Eq. (21) is easier to compute than the expectation
value of the full Faddeev-Popov determinant. As shown in
Sec. IV C, the curvature can be related to the ghost
propagator (although we do not explicitly introduce ghosts),
which in turn can be evaluated from a Dyson equation that
involves the kernel ω and the full ghost-gluon vertex. In the
rainbow-ladder approximation, this full vertex is replaced
by the bare one and χ becomes a well-defined function of
the ghost propagator and the variation parameters ω and α;
for further details cf. Sec. IV C. This approximation is
further supported by the fact that the ghost-gluon vertex in
Landau gauge is not renormalized [41] and shows little
dressing in lattice simulations [42], i.e. the radiative
corrections to the vertex tend to cancel.
We can now use the curvature approximation Eq. (22)

directly in the trial measure (14). From global color and
Lorentz symmetry of our variational Ansatz (in the func-
tional formulation without an external classical fieldA), the

expectation value in the definition Eq. (21) entails that
the curvature has the same simple Lorentz structure as the
variation kernel

χabμνðx; yÞ ¼ δabtμνðkÞχðkÞ; (23)

where χðkÞ is known as the scalar curvature. The trial
measure Eq. (14) thus depends on the curvature and the
parameter α only in the combination

ω̄ðkÞ≡ ωðkÞ þ ð1 − 2αÞχðkÞ: (24)

This has the same effect as putting α ¼ 1
2
and replacing

ω → ω̄ in Eq. (14), i.e. the Faddeev-Popov determinant
drops out from our variational Ansatz within the curvature
approximation which then becomes a simple Gaussian
with kernel ω̄ðkÞ, and hence results in the gluon propagator
[cf. Eq. (16)],

Dab
μνðkÞ ¼ δabt−1μν ðkÞ

1

ω̄ðkÞ : (25)

This observation greatly simplifies the computation of
expectation values, since we then have Wick’s theorem
at our disposal. It must be stressed, however, that the
variation is still with respect to ωðkÞ, not ω̄ðkÞ, because the
curvature χðkÞ is, in principle, a dependent quantity.
So far, we have mainly discussed the unconstrained

measure for the functional approach, when no external
classical fieldA is prescribed. As discussed in Appendix B,
this is entirely sufficient to investigate the propagators,
since these agree in the functional and linear response
approach. Although we will not study the nontrivial vertex
corrections arising in the linear response formulation in any
detail, we still want to showat least how thevariation problem
can be set up in this case: First, we have to adjust the trial
measures introduced above to comply with the constraint
hAi ¼ A imposed by the classical field. This can always
be achieved by shifting the gauge field Aμ → Aμ −Aμ

in the (full) density ρðAÞ of the trial measure.4 In the
present case, the density ρðAÞ is Gaussian after applying the
curvature approximation to Eq. (14), so that the final form

2Besides being defined in d ¼ 4 Euclidean dimensions, the
curvature χ introduced in Eq. (21) differs from the one defined in
Ref. [24] by a factor of 2; the same is true for the kernel ω.

3In Ref. [24], it was shown by explicit calculation that
Eq. (22) is, in fact, exact up to including two loops in the
effective action.

4This statement is not restricted to Gaussian measures: since
the full density ρðAÞ multiplies, by definition, the flat measure
dA, the proposed shift in ρðAÞ leads to

hAi ¼
Z

dAρðAÞ · A →
Z

dAρðA −AÞ · A

¼ð�Þ
Z

dAρðAÞ · AþA
Z

dAρðAÞ

¼ hAi þA; (26)

where we used the translation invariance of the flat measure in
ð�Þ. In the absence of a classical field, Lorentz invariance entails
hAi ¼ 0, and the constraint hAi ¼ A follows.
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of our trial probability measure for the linear response
approach is

ρðAÞ ¼ Det

�
ω̄

2π

�1
2

exp

�
− 1

2

Z
ddðx; yÞðAa

μðxÞ

−Aa
μðxÞÞω̄ab

μνðx; yÞðAb
νðyÞ −Ab

νðyÞÞ
�
: (27)

It should be emphasized again that the optimal kernel ω̄A
determined from Eq. (27) will depend implicitly on the
classical field A, which is externally prescribed and thus
arbitrary. As a consequence, we can no longer assume the
simple color and Lorentz structure (15) valid in the
functional approach; instead we would have to deal with
the full matrix gap equation in position space, cf.
Appendix C.

IV. THE EFFECTIVE ACTION
OF YANG-MILLS THEORY

We are now in a position to determine the effective action
of Yang-Mills theory from the variational principle using
the trial probability measure (27).

A. The free action

To evaluate the free action of the trial measure (27), we
first expand the classical Yang-Mills Lagrangian including
the gauge fixing term,

Lgf ¼
1

2
Aa
μ½−□δμν þ ð1 − ξ−1Þ∂μ∂ν�Aa

ν

þ gfabcð∂μAa
νÞAb

μAc
ν þ

g2

4
fabcfadeAb

μAc
νAd

μAe
ν:

The relevant correlators in the measure Eq. (27) can easily
be worked out using Wick’s theorem,

hAa
μðxÞiμ ¼ Aa

μðxÞ
hAa

μðxÞAb
νðyÞiμ ¼ Aa

μðxÞAb
νðyÞ þ ½ω̄−1�abμνðx; yÞ

hAa
μðxÞAb

νðyÞAc
αðzÞiμ ¼ ð½ω̄−1�abμνðx; yÞAc

αðzÞ þ 2 perm:Þ þAa
μðxÞAb

νðyÞAc
αðzÞ

hAa
μðxÞAb

νðyÞAc
αðzÞAd

βðuÞiμ ¼ ð½ω̄−1�abμνðx; yÞ½ω̄−1�cdαβðz; uÞ þ 2 perm:Þ þ ð½ω̄−1�abμνðx; yÞAc
αðzÞAd

βðuÞ þ 5 perm:Þ
þAa

μðxÞAb
νðyÞAc

αðzÞAd
βðuÞ: (28)

Next, we have to insert this into hSgfi and combine it with
the relative entropy (cf. Eq. (32) below) to obtain the free
action Fðω;AÞ. The resulting expressions are, however,
rather complicated because the kernel ω̄ in the linear
response approach does not have the color and Lorentz
symmetry Eq. (15). On the other hand, this complication is
unnecessary: as argued in Appendix B, it is sufficient to use
the functional approach with A ¼ 0 and the symmetric
kernel Eq. (15), as long as we are only interested in the
propagators of the theory. For completeness, we present
the full expression for the free action Fðω;AÞ as well as the
ensuing gap equation in Appendix C, but we do

not investigate the resulting vertex corrections in more
detail.
For the remainder of this paper, we therefore concentrate

on the propagators, i.e. we set A ¼ 0 and use translational
invariance to transform to momentum space as in Eq. (15).
The global color symmetry ω̄ab ∼ δab combined with the
antisymmetry of the structure constants fabc then allows to
perform all color traces by means of the SUðNÞ relations

fabcfabd ¼ Nδcd ⇒ fabcfabc ¼ NðN2 − 1Þ:

The result for the average classical action is

hSgfiω̄ ≡ hSgfiω̄;A¼0 ¼ SgfðA ¼ 0Þ þ 1

2
VdðN2 − 1Þb0

Z
ddk
ð2πÞd

k2

ω̄ðkÞ

þ g2

4
VdNðN2 − 1Þ

�
b1Ω2 − b2

Z
ddðp; kÞ
ð2πÞ2d

ðp · kÞ2
p2k2

1

ω̄ðpÞω̄ðkÞ
�
: (29)

Here, Vd is the spacetime volume and the numerical factors are

b0 ¼ dξ

b1 ¼ d2 − 3dþ 3þ 2ðd − 2Þξþ ξ2

b2 ¼ ð1 − ξÞ2; (30)
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where the symbol dξ in the first line means d for all
ξ ≠ 0, and ðd − 1Þ for ξ ¼ 0. The kernel ω̄ appears in
Eq. (29) both explicitly and also within the momentum-
independent expressions

Ωμν ≡
Z

ddk
ð2πÞd

kμkν
k2

1

ω̄ðkÞ ;

Ω≡Ωμμ ¼
Z

ddk
ð2πÞd

1

ω̄ðkÞ : (31)

Next we need the entropy of the Gaussian measure, which
can be calculated in the same way as for the ϕ4 case (cf.
Appendix B). The additional color indices on the kernel ω̄ in
the measure simply yield an overall factor of N2 − 1, so that

W ¼ 1

2
Tr

�
1 − ln

�
ω

2πℏ

��

¼ − 1

2
ðN2 − 1ÞVd

Z
ddk
ð2πÞd

× tr ln

��
δμν − kμkν

k2
ð1 − ξ−1Þ

�
ω̄ðkÞ

�
þ const; (32)

where the trace tr is with respect to the Lorentz indices. For
ξ ≠ 0 we can now use the following identity for ðd × dÞ
matrices,

tr lnðtμν · ω̄Þ ¼ ln detðω̄ · tμνÞ ¼ lnðω̄d · det tμνÞ
¼ d ln ω̄þ ln det tμν: (33)

The last term is ω independent and may thus be dropped,
so that5

W ¼ −ðN2 − 1Þ 1
2
dξVd

Z
ddk
ð2πÞd ln ω̄ðkÞ þ const: (34)

This is the full entropy of the measure Eq. (27) with A ¼ 0
and the symmetric kernel ω̄. As pointed out earlier, the free
action in the YM case must, however, be based on the
relative entropy W̄ Eq. (12), which differs from Eq. (34) by
the expectation value of the Faddeev-Popov determinant

W̄¼−ðN2−1Þ1
2
dξVd

Z
ddk
ð2πÞd lnω̄ðkÞþhlnJ iω̄: (35)

We will later treat the last term in curvature approximation,
but for now we keep it general. Eventually, we find the free
action as the difference between the average action Eq. (29)
and the relative entropy Eq. (35),

Fðω̄Þ ¼ hSgfiω̄ − W̄ðω̄Þ: (36)

B. The gap equation

Our task is to minimize the free action Eq. (36) with
respect to the kernel ωðkÞ. From Eq. (24) and the fact that
the curvature χðkÞ is, in principle, a ω-dependent quantity,
we have

δ

δωðkÞ ¼
δ

δω̄ðkÞ þ ð1 − 2αÞ
Z

dp
δχðpÞ
δωðkÞ ·

δ

δω̄ðpÞ : (37)

The second term describes the implicit change of the
curvature with the variation kernel. While an integral type
of equation for this quantity can, in principle, be written
down, it represents a higher order effect and will thus be
neglected within the present approximation scheme. It also
vanishes for α ¼ 1

2
. Since we will later find that the effective

action depends only on ω̄ and is thus independent of α we
can safely put α ¼ 1

2
. The remaining derivative acting on

Eq. (36) gives the gap equation in the form

0 ¼ δF
δω̄ðkÞ ¼ − Vd

ð2πÞd
1

2ω̄ðkÞ2 ·
�
ðN2 − 1Þdξ½k2 − ω̄ðkÞ�

þ g2C2

Z
ddp
ð2πÞd

�
b1 − b2

ðk · pÞ2
k2p2

�
1

ω̄ðpÞ
�

− δ

δω̄ðkÞ hlnJ iω̄: (38)

For the last term, we resort again to the curvature
approximation Eq. (22). With the correlators from
Eq. (28), we have

hlnJ iω̄ ≈ − 1

2

Z
dðx; yÞχabμνðx; yÞhAa

μðxÞAb
νðyÞiω̄;A

¼ − 1

2

Z
dðx; yÞχabμνðx; yÞ

�
Aa

μðxÞAb
νðyÞ

þ½ ω̄−1�abμνðx; yÞ
�

¼A¼0 − 1

2
VddξðN2 − 1Þ

Z
ddp
ð2πÞd χðkÞω̄ðkÞ

−1: (39)

Taking the derivative with respect to ω̄ðkÞ and neglecting
again the implicit dependence of χ on ω̄, we obtain

− δ

δω̄ðkÞ hlnJ iω̄ ≈ − 1

2

Vd

ð2πÞd dξðN
2 − 1Þ · χðkÞ

ω̄ðkÞ2 : (40)

We can now use this result in Eq. (38) and finally obtain the
gap equation in the form

ω̄ðkÞ ¼ k2 þ χðkÞ þ Ng2

dξ

Z
ddp
ð2πÞd

×

�
b1 − b2

ðk · pÞ2
k2p2

�
1

ω̄ðpÞ : (41)5The formula also holds for Landau gauge ξ ¼ 0 if the factor of
d is replaced by ðd − 1Þ.
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When the solution of Eq. (41) is used in the traditional
way to compute Schwinger functions and eventually the
effective action, the result must be

ΓðAÞ ¼ 1

2

Z
dðx; yÞAa

μðxÞAb
νðyÞ · ω̄ab

μνðx; yÞ; (42)

because the gluon propagator at A ¼ 0 is ω̄−1 according to
Eq. (28), and the functional approach has no higher
vertices.
Due to the Lorentz invariance of our approach at A ¼ 0,

the kernel ω̄ðpÞ is a function of jpj only and does not single
out a direction, so that

Z
ddp
ð2πÞd

pμpν

p2

1

ω̄ðpÞ ¼
δμν
d

Z
ddp
ð2πÞd

1

ω̄ðpÞ :

The gap equation (41) can now bewritten in a very compact
form,

ω̄ðkÞ ¼ k2 þM2 þ χðkÞ; (43)

where the gluon mass is dynamically generated through the
nonlinear integral equation,

M2 ¼ C · Ng2
Z

ddp
ð2πÞd

1

p2 þM2 þ χðpÞ ; (44)

with C≡ ðb1 − b2=dÞ=dξ. The gap equation (43) is very
transparent: the dynamical mass M2 is generated from the
4-gluon vertex, while the curvature χðkÞ describes the
coupling to the Faddeev-Popov ghost fields. As we will
see shortly χðkÞ is just the ghost loop, see Eq. (51) below.
In fact the gap equation can be interpreted as the dispersion
relation of a relativistic particle with mass M and a
self-energy given by the curvature χðkÞ.
Let us finally emphasize that the functional approach and

the gap equation (43) can be interpreted in a slightly
different way: If we go back to the general definition Eq. (5)
of the effective action, but this time constrain the gluon
propagator hAa

μð−pÞAb
νðpÞi ¼ δabtμνðpÞω̄ðpÞ−1 instead of

the gluon field itself, we can set A ¼ 0 in our trial measure
Eq. (27) and interpret the variational parameter ω̄ as the
classical value for the inverse gluon propagator. The free
action Fðω̄Þ from Eq. (36) therefore coincides with the
effective action Γðω̄Þ for the (inverse) gluon propagator.
This entails that the optimal value for ω̄ is given by
δΓ=δω̄ ¼ δFðω̄Þ=δω̄ ¼ 0, which is exactly Eq. (41) and
hence the gap Eq. (43). Thus, the gap equation yields the
best match with the exact gluon propagator (in the sense of
the effective action) which can be achieved within our
variational Ansatz. No such argument exists for the vertex
corrections in the linear response approach, i.e. while this
formulation is able to produce radiative corrections for
higher-order Green functions (even with a Gaussian

measure), a realistic description of higher vertices presum-
ably requires to go beyond the Gaussian Ansatz [38]. We
will therefore restrict our investigations to the propagators
of the theory.

C. Ghost DSE and the curvature

The gap equation (43) contains the curvature χðkÞ (21),
which is nothing but the ghost loop and will be calculated
below. The ghost propagator is the expectation value (in our
trial measure) of the inverse Faddeev-Popov operator

G−1 ¼ −D̂μ∂μ ¼ −ð∂μ þ gÂμÞ∂μ ≡G−1
0 − h; (45)

where G0 ¼ −□ is the free ghost propgator and h ¼ gÂ∂
describes the interaction with the gluon.6 From the usual
resolvent identities, we obtain first G ¼ G0 þ G0hG and
thus

hGi ¼ G0 þ G0hhGi ≕ G0 þG0ΣhGi; (46)

where we have introduced the ghost self energy
−Σ ¼ hGi−1 −G−1

0 . Following Ref. [23] one can derive
for Σ the expression

ΣhGi≡ hhGi ¼
Z

DΓ0hGiΓ; (47)

which involves the gluon propagator D from Eq. (25)
as well as the free (Γ0) and full ghost-gluon vertex Γ
defined by

hGΓ0Gi ¼ hGiΓhGi: (48)

From Dyson-Schwinger and flow equation approaches to
Yang-Mills theory in Landau gauge, it is well known that
the dressing of the full ghost-gluon vertex is a subleading
effect, so that the full vertex in the last equation can be
replaced by the bare one (rainbow-ladder approximation).
This has the advantage that the ghost self-energy Σ (and
thus the full ghost propagator G) can be expressed through
the kernel ω̄ alone. To do so, we introduce the ghost form
factor η via

hGi ¼ G0 · η: (49)

Note that both G0 and hGi are color diagonal, so that
η ¼ ηðx; yÞ has no color index. Using Eq. (46), it is easy to
see that η−1 ¼ 1 − ΣG0. If we now use the rainbow-ladder
approximation in Eq. (47) for Σ and re-express hGi through
the form factor via Eq. (49), we obtain a closed integral
equation for the ghost form factor in momentum space,

6Unless stated otherwise, all operators in this subsection are
adjoint color and spacetime matrices, for instanceG ¼ Gabðx; yÞ.
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ηðkÞ−1 ¼ 1 − Ng2IηðkÞ

≡ 1 − Ng2
Z

ddq
ð2πÞd ½1 − ðk̂ · q̂Þ2� ηðk − qÞ

ðk − qÞ2ω̄ðqÞ ;

(50)

where the explicit form Eq. (25) of the gluon propagator
was inserted.
As for the curvature Eq. (21), taking two functional

derivatives of ðlnJ Þ ¼ Tr lnG−1 and using Eq. (48) yields

χabμνðx; yÞ ¼ −Tr½hGiΓa
μðxÞhGi½Γ0�bνðyÞ�: (51)

Using the rainbow-ladder approximation again and con-
tracting Lorentz indices and colors, we can express the
scalar curvature Eq. (23) in momentum space through the
ghost form factor,

χðkÞ ¼ Ng2IχðkÞ

≡ Ng2 ·
1

d − 1

Z
ddq
ð2πÞd ½1 − ðk̂ · q̂Þ2� ηðk − qÞηðqÞ

ðk − qÞ2
(52)

The DSE (50) for the ghost form factor depends explicitly
on the kernel ω̄ of the trial measure (27), determinated by
the gap equation (43). Eqs. (52), (50), (44) and (43) form a
closed system to determine the ghost form factor ηðkÞ, the
curvature χðkÞ, the massM, and the variational kernel ω̄ðkÞ.

V. RENORMALIZATION

A. Counterterms

To complete our analysis, we have to determine the high
momentum behavior of our Green functions and renorm-
alize the corresponding integral equations. We begin with
the ghost DSE (50). For large momenta, ω̄ðkÞ ∼ k2 and
ηðkÞ ∼ 1 (up to logarithmic corrections), so that dimen-
sional analysis implies for the logarithmic divergence in
IηðkÞ (50)

η−1ðkÞ ¼ 1 − ΣG0 ¼ 1 − Ng2IηðkÞ
¼ 1 − Ng2½a0 lnðΛ2=M2Þ þ finite�;

where Λ is a suitable UV cutoff and a0 a finite numerical
constant that depends on the cutoff procedure. Since
G0ðkÞ ¼ 1=k2, the corresponding counterterm δΣ for the
ghost self-energy is proportional to k2, i.e. it is a ghost field
renormalization. (No ghost mass term is induced by the
theory.) The same conclusion could be reached if we
introduced explicit ghost fields fc; c̄g, because hc̄ci ¼
hGi ¼ G0η and the field renormalization c →

ffiffiffiffiffi
Zc

p
c is

equivalent to η → Zcη. To the given loop order, this field
renormalization leads to

1

ηðkÞ ¼ 1 − Ng2IηðkÞ − δZc þ two loops:

In terms of explicit ghost fields, the counterterm δZc ¼
ðδΣÞG0 (or δΣ ¼ k2δZc) would hence correspond to the
local expression

δZc

Z
d4x∂μc̄∂μc (53)

in the exponent of the trial measure (27). We can now adjust
the finite pieces in δZc such that

1 − δZc ¼ ηðμÞ−1 þ Ng2IηðμÞ (54)

where ηðμÞ is an arbitrary finite constant, because Eq. (54)
is independent of k and the (logarithmic) Λ-divergences on
both sides agree. This prescription leads directly to the
renormalized ghost equation

ηðkÞ−1 ¼ ηðμÞ−1 − Ng2½IηðkÞ − IηðμÞ�; (55)

which could also be obtained by simply subtracting the
bare equation (50) at k ¼ μ. Notice that Eq. (54) may be a
rather unusual field normalization, but any other prescrip-
tion for Zc can only differ by a finite constant. Notice also
that the renormalized Eq. (55) is independent of g, as can be
seen e.g. by rescaling η → ~η≡ gη.
Next, we study the mass and curvature equations (44)

and (52), respectively, which are quadratically divergent by
power counting,

M2 ¼ Ng2½a1Λ2 þ b1M2 lnðΛ2=M2Þ þ finite�
χðkÞ ¼ Ng2½a2Λ2 þ b2M2 lnðΛ2=M2Þ

þ ck2 lnðΛ2=M2Þ þ finite�; (56)

with numerical factors ai, bi and c that depend on the cutoff
procedure.7 The subtraction is a bit more complicated in
this case because of the sub-leading logarithmic diver-
gence. We begin by subtracting the k-independent con-
tributions with counterterms for M2 and χðkÞ, respectively,

δM2
1 ≡−Ng2½a1Λ2 þ b1M2 lnðΛ2=M2Þ þ finite�

δχ1 ≡−Ng2IχðμÞ þ χfin; (57)

7In particular, the coefficients ai could vanish in a gauge-
invariant regularization scheme such as proper time or dim. reg.
This does not mean, however, that the divergence would be
absent, and the local counterterm for the gluon will always be of
the form (61) below. Since the counterterms modify the trial
measure (27) rather than the Yang-Mills action, gauge invariance
of the regularization is not an issue, and we will later use anOð4Þ-
invariant cutoff for our numerical procedure. Equation (56) is also
consistent with Ref. [43], where the divergencies of the Faddeev-
Popov determinant were identified within a gradient expansion.
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where χfin is an arbitrary finite constant. The mass
equation (44) is now finite with a dynamically induced
mass M2 whose absolute value is undetermined because of
the finite pieces in the corresponding counterterm δM2

1. As
a consequence, we do not need to solve Eq. (44) but rather
takeM2 as a finite parameter that can be chosen at will. The
subtracted curvature equation takes the form

χðkÞ ¼ Ng2½IχðkÞ − IχðμÞ� þ χfin: (58)

This is not yet finite because the difference of the two
integrals contains the subleading logarithmic divergence
[cf. Eq. (56)]

½IχðkÞ − IχðμÞ� ¼ cðk2 − μ2Þ lnðΛ2=μ2Þ þ finite: (59)

We must therefore add a second, k-dependent counterterm
δχ2ðkÞ which equals the negative of the divergence on
the rhs of Eq. (59). In order to associate these subtractions
with local terms in the exponent of the trial measure
Eq. (27), we isolate the k-dependent pieces in δχ2ðkÞ
and write the total curvature counterterm as δχðkÞ≡ δχ1 þ
δχ2ðkÞ ¼ δχ0 þ k2δZA with

δχ0 ≡−Ng2IχðμÞ þ cμ2 lnðΛ2=μ2Þ þ χfin

δZA ≡−Ng2c lnðΛ2=μ2Þ þ zðμÞ; (60)

where zðμÞ is again an arbitrary finite piece that can be
added to the counterterm. If we now replace χðkÞ → χðkÞ þ
δχðkÞ as well as M2 → M2 þ δM2

1, Eqs. (44) and (52) will
be finite. From the gap equation (43), it is clear that the
k-independent subtractions can be combined to a gluon mass
counterterm δM2 ¼ δχ0 þ δM2

1, while the k-dependent
counterterm k2δZA rescales the kinetic energy, i.e. it
represents a gluon field renormalization. These subtractions
correspond to local gluon counterterms

1

2
δM2

Z
d4xðAa

μÞ2 þ
1

4
δZA

Z
d4xð∂μAa

ν − ∂νAa
μÞ2: (61)

It should be emphasized once again that these counterterms
modify the trial measure used to compute expectation
values, i.e. they add to the exponent of Eq. (27) (with
A ¼ 0), not to the Yang-Mills action. As a consequence,
soft BRST breaking mass terms as the ones observed on the
lattice are allowed (cf. Sec. VI B), as well as counterterms
for them.
The renormalized curvature equation is now

χðkÞ ¼ Ng2½IχðkÞ − IχðμÞ − cðk2 − μ2Þ lnðΛ2=μ2Þ�
þ zðμÞðk2 − μ2Þ þ χðμÞ; (62)

where χðμÞ ¼ χfin þ zðμÞμ2 is finite.
Equation (62) is not very suitable for numerical inves-

tigations. To put it in a manageable form, we need to
determine the constant c and devise a way to perform
the necessary subtractions under the integral IχðkÞ.
Unfortunately, IχðkÞ and hence the factor c depend on the
ghost profile ηðkÞ and its derivatives, which are only known
numerically. Thus,weproceed as follows:At any stage in the
iterative solution of the integral equation system,we perform
the angular integration in IχðkÞ with the current solution of
the ghost form factor ηðqÞ to find an expression

IχðkÞ ¼
Z

Λ

0

dq fðk; qÞ; (63)

with a complicated function f only known numerically. Our
construction of the counterterms above translates into the
asymptotics

fðk; qÞ − fðμ; qÞ→q→∞ ðk2 − μ2Þ
q

· cþOðq−2Þ: (64)

This can be verified numerically: in the left panel of
Fig. 1, we have plotted q½fðk; qÞ − fðμ; qÞ� as a function of
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FIG. 1. Left panel: The scaled integrand q½fðk; qÞ − fðμ; qÞ� of the subtracted loop integral IχðkÞ as a function of q, cf. Eq. (64). Right
panel: The asymptotic value of the subtracted integrand in IχðkÞ, as a function of k, cf. Eq. (65).
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q and observe that it approaches a constant value8 for large
q. The value of that constant depends on k in the expected
way: in the right panel of Fig. 1, we have plotted the value

q
k2 − μ2

½fðk; qÞ − fðμ; qÞ�jq¼Λ (65)

as a function of k and observe that this quantity is
independent of k, as expected from Eq. (64). The constant
value is exactly the factor c used in Eq. (62) above. Thus, at
any stage of the iterative solution with the current form of
ηðkÞ, we first perform the angle integrations in IχðkÞ to
obtain the integrand fðk; qÞ in Eq. (63) and then evaluate
the curvature χðkÞ from Eq. (62) written in the form

χðkÞ¼Ng2
Z

∞

0

dq
h
fðk;qÞ−fðμ;qÞ−Λ

q
½fðk;ΛÞ−fðμ;ΛÞ�

i

þzðμÞðk2−μ2ÞþχðμÞ: (66)

This procedure determines the counterterm coefficient c
from Eq. (62) iteratively and renders the system of integral
Eqs. (43), (55) and (66) finite. It also leads to a stable
solution which is numerically independent of the cutoff Λ if
the latter is chosen large enough. The system involves four
renormalization constants ηðμÞ, χðμÞ, zðμÞ and M2 which
could even be defined at different scales μ. One of the
constants is, however, redundant because finite changes in
χðμÞ can be absorbed in M2 as discussed above. In fact,
only the gluon mass parameter9 M2

AðμÞ≡M2 þ χðμÞ −
zðμÞμ2 will appear in the renormalized equations, and we
can therefore drop either χðμÞ or M2 in favor of the other
without loss of generality. The remaining renormalization
constants ηðμÞ and zðμÞ fix the prefactor of the kinetic
energy for ghost and gluon, respectively, i.e. they fix the
scale of the ghost and gluon field. (No vertex renormaliza-
tion is induced by the theory.)
The three independent counterterms are also summarized

in Table I. Clearly, the gauge and ghost fields are multi-
plicatively renormalized, and the same is true for the gluon
mass term, if we formally introduce such a mass in the bare
kernelω (which we are entitled to do since we never have to
specify the bare kernel explicitly). In this sense, our
approach is multiplicatively renormalizable.

B. Numerical treatment

Let us briefly comment on the numerical treatment of
the integral equation system, and in particular on the role
of the various renormalization constants. First, we note that
the coupling constant g can be eliminated from all
equations by rescaling ~η ¼ gη. If we insert the curvature
equation (66) directly into the gap equation (43) and further
introduce the gluon mass parameterM2

AðμÞ≡M2 þ χðμÞ −
zðμÞμ2 as before, we obtain the renormalized system

ω̄ðkÞ ¼ ½1þ zðμÞ�k2 þM2
AðμÞ

þ N½IχðkÞ − IχðμÞ − cðk2 − μ2Þ lnðΛ2=μ2Þ�
~ηðkÞ−1 ¼ ~ηð0Þ−1 − N½I ~ηðkÞ − I ~ηð0Þ�: (67)

Recall that the coefficient c in the first equation is
determined during the iterative solution of the system such
that it becomes cutoff-independent.
Ideally, we would choose the renormalization point μ for

the gluon and ghost field at a large Euclidean scale μ ≫ 1
far away from possible singularities, where asymptotic
freedom provides natural renormalization conditions.
Unfortunately, such a procedure does not lead to a stable
numerical solution in the deep infrared, because the system
has a family of solutions which are qualitatively different at
low momenta, but cannot be discriminated in the ultra-
violet. In order to stabilize the integration and bring the
distinct solutions to the fore we must, at least for the ghost
equation, choose a renormalization point in the deep
infrared, or even at μ ¼ 0, which we did in all numerical
investigations. The gluon renormalization scale μ, by
contrast, can be chosen finite and arbitrary, and we use
it to rationalize all dimensionfull quantities within our
numerical treatment. Thus, we find that the shape of the
rescaled (dimensionless) integral equation system only
depends on the three dimensionless parameters ~ηð0Þ−1,
zðμÞ, and MAðμÞ=μ.
We have already mentioned above that the first of these

three parameters, ~ηð0Þ−1, discriminates between the scaling
and decoupling solutions. By imposing a condition on
~ηð0Þ−1, we are thus enforcing a specific type of solution by
hand, as is done in all other functional approaches.
However, the variational method allows, in principle, to
determine the correct solution from first principles, because
the true form of the propagators is the one which leads to
minimal effective action. This investigation is fairly

TABLE I. Renormalization of the final system of integral
equations.

Renormalization Counterterm Renormalization constant

Gluon field δZA zðμÞ
Gluon mass δM2 ¼ δχ0 þ δM2

1 M2
AðμÞ

Ghost field δZc ηðμÞ

8There are still small deviations from a constant due to
numerical issues that prevent us from going to very large cutoffs
while preserving sufficient accuracy in the iterative solution
of the integral equation system. However, extracting c as in
Eq. (65) yields finite iterative solutions that become cutoff-
independent long before the numerics become delicate.

9To avoid problems with possible infrared singularities,
we renormalize the gluon propagator at μ > 0 so that
M2

AðμÞ ¼ M2 þ χðμÞ − zðμÞμ2 is merely a renormalization con-
stant without a direct interpretation as a mass. If the curvature
(and thus the gluon propagator) happens to be finite at k ¼ 0, the
intercept ω̄ð0Þ ¼ M2 þ χð0Þ ¼ M2

Að0Þ can be interpreted as a
(constitutent) gluon mass.
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complex and we have left it for future studies; below, we
will instead compare to lattice data to determine which of
the possible solutions is realized.
The second parameter MAðμÞ=μ has no effect on the

infrared behavior of the scaling solution, while it deter-
mines the k ¼ 0 limit of the gluon propagator for the
decoupling solution, i.e. the constitutent gluon mass.
Finally, the gluon field renormalization factor zðμÞ changes
the overall size of the kernel ω̄ðkÞ. More precisely, any
change zðμÞ → z0ðμÞ for the scaling type of solution simply
leads to an overall rescaling

ω̄0ðkÞ ¼ 1þ z0

1þ z
ω̄ðkÞ; ~η0ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0

1þ z

r
~ηðkÞ: (68)

For the decoupling solution, this simple rescaling also
holds if we simultaneously change the finite renormaliza-
tion constant ~η−1ð0Þ as in Eq. (68).

VI. RESULTS

A. Infrared analysis

The infrared analysis of the renormalized system of
integral equations (67) can be carried out much as in the
Coulomb gauge case [44,45], see also Ref. [2] and [46]. If
we assume a power-like behavior in the infrared,

ω̄ðkÞ ∼ ðk2Þα; ηðkÞ ∼ ðk2Þ−β (69)

the nonrenormalization of the ghost-gluon vertex [41]
implies the sum rule

−αþ 2β ¼ d
2
− 1: (70)

Furthermore, if ω̄ is infrared divergent it follows from the
gap equation (43) that the curvature χðkÞ (52) also has the
same infrared exponent α. Depending on the choice of our
finite renormalization constants we obtain two different
types of solutions:
(i) Implementing the horizon condition [47] η−1ð0Þ ¼ 0

we find the so-called critical or scaling solution with
the infrared exponents

β ¼ 1

98
ð93∓ ffiffiffiffiffiffiffiffiffiffi

1201
p

ÞÞ ≈ f0.5954; 1.3025g; (71)

which both entail α > 0, i.e. an infrared vanishing
gluon propagator. These are the same infrared ex-
ponents found from the one loop DSEs in Landau
gauge [2]. Only the first of these scaling solutions
could be found in our numerical calculation, cf.
Sec. VI B. It should also be mentioned that the value
of the gluon mass parameter M2

AðμÞ is irrelevant, as
long as the curvature χðkÞ is infrared divergent, i.e. as

long as β > 1=2, which is the case for both exponents
given in Eq. (71).

(ii) Assuming an infrared finite ghost form factor
η−1ð0Þ > 0, i.e. β ¼ 0, the sum rule (70) would yield
α ¼ −1. However, in this case a nonzero mass
parameter M2

AðμÞ in the gap equation dominates the
infrared behavior, which invalidates the sum rule.
For fixed mass parameter MAðμÞ=μ and fixed gluon
wave function renormalization zðμÞ, we obtain a one-
parameter family of solutions labeled by the ghost
renormalization constant η−1ð0Þ ≠ 0. These are the so-
called subcritical or decoupling solutions already
found from the DSEs in Landau gauge [2]. The
intercept ω̄ð0Þ ¼ M2 þ χð0Þ can be interpreted as a
constituent gluon mass.

In the special case M2
AðμÞ ¼ 0 there is also a solution with

an infrared finite ghost form factor ηðkÞ and an infrared
vanishing gluon kernel ω̄ðkÞ, which formally obeys the sum
rule with α ¼ −1 and β ¼ 0. This solution is, however,
definitely ruled out by all existing lattice data, in which the
ghost form factor always diverges at k → 0. This leaves us
with just the two type of solutions listed above. In the next
subsection we compare these solution with high-precision
lattice results.

B. Numerical results

As discussed above the discriminating criterion for the
two type of solutions is whether we choose the ghost form
factor ηð0Þ finite (decoupling solutions) or infinite (scaling
solution). Let us briefly describe our numerical findings for
both type of solutions:
Scaling solution: With ηð0Þ−1 ¼ 0 we have enforced an

IR diverging ghost form factor. In our numerical solution
we could only find the less divergent of the two possible
exponents determined in the IR analysis Eq. (71). The best
fit to our numerical data suggests β ¼ 0.595ð3Þ for the
ghost form factor and α ¼ 0.191 for the gluon kernel ω̄,
which are both in excellent agreement with the analytic
results Eq. (71). Furthermore the sum rule Eq. (70) is
satisfied numerically to better than 10−3 accuracy. To
compare with lattice data, we have to adjust the finite
gluon wave function renormalization zðμÞ at an arbitrary
scale μ > 0 to match the overall scale of the propagator.
The remaining renormalization parameter M2

AðμÞ is imma-
terial since it has no effect on the final solution. (This is
because the IR diverging curvature dominates all constant
terms in the gap equation at k → 0.) In Fig. 2, the critical
solution is compared to high-precision lattice data taken
from Ref. [7]. It is obvious that the scaling type of solution
describes the UV behavior fairly well, but it severely
deviates in the deep infrared.
Decoupling solutions: These solutions have no scaling

behavior, and instead exhibit the emergence of a soft
BRST breaking mass scale in the deep infrared, so that
all Green’s functions remain finite at k → 0. In this case, the
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renormalization constant M2
AðμÞ obviously matters as it

dominates the gluon propagator in the deep infrared. In
addition, we can also adjust the intercept ηð0Þ for the ghost
form factor, and the overall scale zðμÞ of the gluon
propagator at some nonzero scale μ > 0. (The combination
of M2

AðμÞ and zðμÞ determines the slope of the gluon
propagator in the transition region around k ¼ μ.) The
decoupling solution is shown in Fig. 3, along with lattice
data [7] for comparison. As can be seen from the plot, this
type of solution is in good agreement with the lattice data
for the entire momentum range. In particular, the agreement
with the ghost data is almost perfect.10

Unfortunately, the critical and subcritical solution differ
only at very low momenta (which is the reason for the
numerical instability when imposing renormalization con-
ditions at large scales), and it requires large lattices to
definitely rule out one or the other. As explained above, the

available lattice data now clearly favors the decoupling
solution. Analytical approaches, by contrast, always exhibit
both kind of solutions, and it becomes a matter of “boundary
conditions” η−1ð0Þ to select one or the other. In Dyson-
Schwinger or functional renormalization group approaches,
there is no compelling reason to prefer one boundary
condition over the other. This is different in our variational
approach, since it is always the solution with the lowest
effective action that must be realized. To determine the
correct solution, we would thus have to insert the various
(numerical) solutions ω̄ðkÞ in the free action F from
Eq. (36). This procedure requires first a full renormalization
of the effective (or free) action, which is left for future work.

VII. SUMMARY AND CONCLUSIONS

In this paper, we have investigated the low-order Green’s
functions in SUðNÞ Yang-Mills theory, using Landau
gauge and a covariant variational principle based on the
effective action. The formalism leads to a set of integral
equations which, after proper renormalization, could be
solved numerically over a wide range of momenta. We
obtain the two types of solutions also found in other
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FIG. 2. Critical solution for the gluon propagator (left panel) and the ghost form factor (right panel) for SU(2) Yang-Mills theory in
Landau gauge. The crosses denote the lattice results from Ref. [7].
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FIG. 3. Subcritical solution for the gluon propagator (left panel) and the ghost form factor (right panel) for SUð2ÞYang-Mills theory in
Landau gauge. The crosses denote the lattice results from Ref. [7].

10We have optimized the renormalization parameters in the
ghost sector, which incurs slight deviations for the gluon
propagator in the transition region k ≈ μ, cf. Fig. 3. This could
be mitigated by a more balanced approach that tries to optimize
the parameters for both propagators on average.
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functional approaches: (i) a critical or scaling solution in
which the ghost form factor diverges in the infra-red by a
power law with an exponent β ¼ 0.5953 while the gluon
propagator vanishes with a weak infrared exponent
α ¼ 0.191, and (ii) a subcritical or decoupling solution
where both quantities remain finite at low momenta. Recent
high-precision lattice data compares favorably with both
solutions in the UVand into the transition region, although
detailed studies prefer the subcritical (decoupling) solution
in the infrared. Our numerical treatment is on par with the
best analytical studies, and our decoupling solution, in
particular, agrees very well with the available lattice data
over the entire momentum range. In addition, the varia-
tional principle used here offers a physical criterion to
distinguish between the two type of solutions which is not
based on arbitrary boundary conditions, namely the sol-
ution with the lowest free action must be realized. This
question will be studied in a future investigation.
The method presented here works with Euclidean

path integrals only, so that it naturally generalizes to all
extensions that can be formulated within a path integral. In
particular, we can include fermions and study finite temper-
atures and chemical potentials without conceptual prob-
lems. These issues will also be subject to future work.
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APPENDIX A: THE QUANTUM
EFFECTIVE ACTION

We want to show that the effective action defined by the
variational principle (6) coincides with the traditional
generating functional for 1PI proper functions. We fix
φðxÞ and start directly from the definition (6). First, we
have the following upper bound for arbitrary currents jðxÞ,

ΓðφÞ≡ð6Þ inf
μ
½hSiμ − ℏWðμÞjhϕiμ ¼ φ�

¼ inf
μ
½hSiμ − ℏWðμÞ þ ðj; hφ − ϕiμÞjhϕiμ ¼ φ�

≥ inf
μ
½hSiμ − ℏWðμÞ þ ðj; hφ − ϕiμÞ�

¼ ðj;φÞ þ infμ½hS − ðj;ϕÞiμ − ℏWðμÞ�
≡ ðj;φÞ −WðjÞ: (A1)

(The inequality follows because the constrained minimum
is always larger than the unconstrained one.) Next we want
to show that ΓðφÞ is in fact the smallest upper bound, i.e.
the supremum,

ΓðφÞ ¼ sup
j
½ðj;φÞ −WðjÞ�: (A2)

To see this, it is sufficient to find a current j ¼ jφ for
which the bound in Eq. (A1) is saturated,

ΓðφÞ ¼ ðjφ;φÞ −WðjφÞ; (A3)

because then the upper bound in Eq. (A1) is a maximum
(and hence a supremum). From the derivation of Eq. (A1),
it is clear that jφ should be chosen such as to obey the
constraint hϕiμj ¼ φ for the Gibbs measure μj that solves
the minimization problem on the rhs of Eq. (A1). This is
because the unconstrained minimum happens to obey the
constraint and is therefore also the constrained minimum;
i.e., the inequality in the third line of Eq. (A1) becomes an
equality. The relevant equation hϕiμj ¼ φ for j ¼ jφ is,
however, merely the extremality condition

0 ¼ δ

δjðxÞ ½ðj;φÞ −WðjÞ� ¼ φðxÞ − δW
δjðxÞ

¼ φðxÞ − ℏ
δZ=δjðxÞ
ZðjÞ ¼ φðxÞ − hϕðxÞiμj ;

which we assume to always have a solution.11 Thus, the
effective action ΓðφÞ defined by the variational principle (6)
is the Legendre transformation of the functional WðjÞ
defined in the last line of Eq. (A1).
It remains to show that WðjÞ agrees with the generating

functional of connected Green’s functions. To see this,
recall that the Gibbs measure Eq. (1) is the unique solution
of the unconstrained variational principle Eq. (2), irrespec-
tive of the actual form of the action. Since we have an
additional linear term in the action for the μminimization in
the definition of WðjÞ Eq. (A1), the solution of this μ
minimization must be a modified Gibbs measure with the
additional linear term in the action,

dμjðϕÞ ¼ ZðjÞ−1dϕ expf−ℏ−1ðSðϕÞ − ðj;ϕÞÞg (A4)

ZðjÞ ¼
Z

dϕ expf−ℏ−1ðSðϕÞ − ðj;ϕÞÞg: (A5)

The corresponding value of the minimum in Eq. (A1) is
then given by the modified partition function with a linear
term in the action,

−WðjÞ≡ inf
μ
½hS − ðj;ϕÞiμ − ℏWðμÞ�

¼ hS − ðj;ϕÞiμj − ℏWðμjÞ ¼ −ℏ lnZðjÞ: (A6)

11This assumption is implicit in the traditional definition of the
generating functional, and we do not touch the more subtle
question of what happens if no such jφ exists and the supremum
(A2) is not a maximum.
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Clearly, this identifies WðjÞ as the usual generating func-
tional of connected Green’s functions and hence the
Legendre transform Eq. (A2) as the generator of 1PI proper
functions. The inverse Legendre transformation

WðjÞ ¼ sup
φ
½ðj;φÞ − ΓðφÞ� (A7)

implies δΓ=δφðxÞ ¼ jφðxÞ. Finally, Eqs. (A2) and (A7)
entail that both functionals WðjÞ and ΓðφÞ must be convex.

APPENDIX B: THE VARIATION
PRINCIPLE FOR ϕ4 THEORY

In this appendix, we will sketch the application of the
variational principle to ϕ4 theory. This is a standard
application of the variational method and dates back at
least to Ref. [48], but we will repeat it here within our
formulation to clearify the distinction between the func-
tional and linear response approach. We start with the
Lagrangian (in Euclidean space)

L ¼ 1

2
ð∂μϕÞ2 þ

m2

2
ϕ2 þ λ

4!
ϕ4: (B1)

Our trial measures will be Gaussians characterized by a
variation kernel ωðx; yÞ,

ρðφÞ ∼ exp

�
− 1

2

Z
dd dðx; yÞðφðxÞ − ϕðxÞÞωðx; yÞ

× ðφðyÞ − ϕðyÞÞ
�
: (B2)

We have centered the Gaussian at the classical field φðxÞ in
order to obey the constraint hϕi ¼ φ for the linear response
approach; in the functional approach based on the uncon-
strained free action, we can set φ ¼ 0, cf. Sec. II. Next, we
compute the average action given by

hSiμ ¼
Z

ddx

�
1

2
ð−□x þm2ÞhϕðxÞ2iμ þ

λ

4!
hϕðxÞ4iμ

�
:

The relevant correlators can easily worked out using
Wick’s theorem

hϕðxÞiμ ¼ φðxÞ
hϕðxÞϕðyÞiμ ¼ φðxÞφðyÞ þ ℏω−1ðx; yÞ

hϕðxÞ4iμ ¼ φðxÞ4 þ 6ℏω−1ðx; xÞφðxÞ2 þ 3ℏ2ω−2ðx; xÞ:
(B3)

The average action thus takes the form12

hSiμ ¼ SðφÞ þ ℏ
2

Z
ddx

�
−□x þm2 þ λ

2
φðxÞ2

�
ω−1ðx; xÞ

þ ℏ2λ

8

Z
ddxω−2ðx; xÞ: (B4)

The calculation of the entropy is slightly more involved.
From the explicit form of the Gaussian measure and the
definition, Eq. (3), we have formally

WðμÞ ¼ h− ln ρiμ
¼

Z
dμðϕÞ

�
lnZ þ 1

2ℏ

Z
ddðx; yÞðϕðxÞ − φðxÞÞ

× ωðx; yÞðϕðyÞ − φðyÞÞ
�

¼ 1

2
ln det

�
ω

2πℏ

�
þ 1

2ℏ

Z
ddðx; yÞ½ωðx; yÞ

× hϕðxÞϕðyÞiμ − 2φðxÞωðx; yÞhϕðyÞiμ
þ φðxÞωðx; yÞφðyÞ�:

(An implicit regularization is understood.) Using Wick’s
theorem for the correlators, all dependence on the classical
field φ drops out,13

WðμÞ ¼ 1

2
Tr

�
1 − ln

�
ω

2πℏ

��
: (B5)

The free action (2) for the Gaussian measure in ϕ4 theory is
now Fðω;φÞ ¼ hSiμ − ℏWðμÞ with Eqs. (B4) and (B5)
providing the details. At this point, the functional and linear
response approach start to deviate.

1. The functional approach

As explained in Sec. II, we simply take the unconstrained
free action Fðω;φ ¼ 0Þ and vary with respect to the kernel
ω, or rather, its inverse. After a short calculation, one finds

δFðω;φ ¼ 0Þ
δω−1ðx; yÞ ¼ ℏ

2

�
−□x þm2 þ ℏλ

2
ω−1ðx; yÞ

�
δðx; yÞ

− ℏ
2
ωðy; xÞ¼! 0: (B6)

Due to the absence of a classical field, the solution of
this gap equation in the functional approach has global
translation and rotation invariance, i.e. the kernel has the
Fourier representation

ωðx; yÞ ¼
Z

ddk
ð2πÞd e

−ik·ðx−yÞωðkÞ; (B7)

12The action of the Laplace operator is understood as
□xω

−1ðx; xÞ≡ ∂x
μ∂y

μω−1ðx; yÞjy¼x.

13This is expected since the entropy encodes the available
phase space for quantum fluctuations, which is not affected by the
field shift φ.
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where ωðkÞ depends only on the modulus k ¼ jkμj. The gap
equation in momentum space takes the simple form

ωðkÞ ¼ k2 þm2 þ ℏλ
2

Z
ddp
ð2πÞp

1

ωðpÞ : (B8)

The solution is the covariant dispersion relation for a free
boson of a dynamically generated mass,

ωðkÞ ¼ k2 þM2; (B9)

whereM is implicitly determined by the nonlinear equation

M2 ¼ m2 þ ℏλ
2

Z
ddk
ð2πÞd

1

k2 þM2
: (B10)

Finally, we can now compute all connected Green functions
of the solving Gaussian measure, construct a generating
functional WðjÞ and Legendre transform to obtain the
effective action ΓðφÞ. Obviously, all proper vertices vanish
and we get

ΓðφÞ ¼
Z

ddx

�
1

2
ð∂μφÞ2 þ

M2

2
φ2

�
: (B11)

It should finally be noted that the p0 integration in the
covariant mass equation (B10) can be performed explicitly.
For d ¼ 4, we obtain

M2 ¼ m2 þ ℏ
λ

4

Z
d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p ; (B12)

which coincides exactly with the result of the traditional
variational approach in the Hamiltonian picture based on a
Gaussian wave functional.

2. The linear response approach

In this case, we have to retain the classical field in order
to comply with the constraint hϕi ¼ φ. From the variation
of the constrained free action Fðω;φÞ, we obtain the
modified gap equation

2

ℏ
δFðω;φÞ
δω−1ðx; yÞ ¼

�
−□x þm2 þ λ

2
φðxÞ2 þ ℏλ

2
ω−1ðx; yÞ

�

× δðx; yÞ − ωðy; xÞ ¼ 0: (B13)

As expected in the linear response approach, the optimal
kernel ωφ determined from this equation depends implicitly
on the classical field φ, while the effective action is simply
ΓðφÞ ¼ Fðωφ;φÞ. Since the external fields are arbitrary, the
implicit φ-dependence of the optimal kernel ωφ spoils the
translational or rotational invariance. As a consequence, we
cannot go to momentum space as we did in Eq. (B7) within
the functional approach, which complicates the solution of
Eq. (B13) considerably.

One possible approach is to attempt a solution of
Eq. (B13) by expanding in powers of the classical field.
Upon comparing the two gap equations (B6) and (B13), we
conclude that

ωφ ¼ ωþOðφ2Þ; (B14)

where ω on the rhs is the translationally invariant solution
of Eq. (B6) found earlier. If we insert the expansion back
into the free action, we find the effective action

ΓðφÞ ¼
Z

ddx

�
1

2
ð∂μφÞ2 þ

M2

2
φ2 þOðφ4Þ

�
: (B15)

Notice that the quadratic pieces in Γ are identical for the
functional and linear response approach. This is generally
true because the Gaussian Ansatz for our trial measure is
already quadratic in the fields, and the kernels of the two
approaches agree at φ ¼ 0. Thus we arrive at the important
conclusion:

For Gaussian trial measures, the functional and linear
response approach always lead to the same quadratic
pieces in the effective action, i.e. to the same propagators.

Differences arise in the vertices, i.e. the higher powers of
the classical field: while all vertices vanish in the functional
approach, the linear response formulation allows forOðφ4Þ
pieces in Eq. (B15) even though we only used Gaussian
trial measures.
To examine the structure of these vertex corrections in

more detail, we can restrict our investigation to constant
classical fields whence the effective action reduces to the
effective potential. This has the benefit that Eq. (B11) will
again be translationally invariant and can thus be solved in
momentum space. In fact, we can simply repeat the
calculation of the functional approach with the replacement
m2 → m2 þ λ

2
φ2. To obtain the effective potential, we n

ow have to insert the expression for ωφ back into the free
action Fðω;φÞ. The resulting effective potential is rather
complicated and cannot be expressed in closed form,

UeffðφÞ ¼
m2

2
φ2 þ λ

4!
φ4 þ

Z
ddk
ð2πÞd

k2 þm2 þ λ
2
φ2

k2 þM2ðφÞ

þ ℏ2λ

8

�Z
ddk
ð2πÞd

1

k2 þM2ðφÞ
�
2

þ ℏ
2

Z
ddk
ð2πÞd ln½k2 þM2ðφÞ�; (B16)

where M2ðφÞ is the solution of

M2ðφÞ ¼ m2 þ λ

2
φ2 þ ℏ

λ

2

Z
ddk
ð2πÞd

1

k2 þM2ðφÞ : (B17)

All these fomulas are understood to be properly regu-
larized and subject to subsequent renormalization. (We will
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not discuss the necessary counterterms in more detail.)
The effective potential (B16) has an interesting structure:
The first two terms are the classical potential including the
bare φ4 vertex, while the remaining quantum corrections
contain all powers of ℏ and λ. When expanding in powers
of the fields, we obtain

UeffðφÞ ¼
M2

2
φ2 þ λ

4!
½1þOðℏÞ�φ4 þOðφ6Þ; (B18)

where M2 is the same field-independent dynamical
mass Eq. (B10) as in the functional approach. We will
not further investigate the vertex corrections and their
renormalization.

APPENDIX C: THE GAP EQUATION IN THE
LINEAR RESPONSE APPROACH

As mentioned in Sec. IVA, the optimal kernel ω̄A in the
linear response approach is no longer translationally
invariant and has no special color or Lorentz symmetry.
As a consequence, we cannot reduce the free action and the
ensuing gap equation to a system for a single-component
function ωðkÞ in momentum space. Instead, we have to
work with the complete matrix ω̄ab

μνðx; yÞ in position space.
The corresponding formulas are listed below for complete-
ness, although they are only necessary to compute radiative
corrections to higher vertices, which we do not consider.
The average action follows by inserting the correlators

(28) into the classical action. After some lengthy calcu-
lation, we obtain

hSgfiμ ¼ SgfðAÞ þ 1

2

Z
dðx; yÞω̄aa

μνðx; yÞ½−□xδμν þ ð1 − ξ−1Þ∂x
μ∂x

ν�δðx; yÞ

þ gfabc
Z

dðx; yÞδðx; yÞ∂x
μf½ω̄−1�abνμðx; yÞAc

νðyÞ þ ½ω̄−1�acννAb
μðyÞ þ ½ω̄−1�bcμνAa

νðxÞg

þ g2

4
fcabfcde

Z
dxf½ω̄−1�abμνðx; xÞ½ω̄−1�deμνðx; xÞ þ ½ω̄−1�adμμðx; xÞ½ω̄−1�beννðx; xÞ þ ½ω̄−1�aeμνðx; xÞ½ω̄−1�bdνμðx; xÞ

þ ½ω̄−1�abμνðx; xÞAd
μðxÞAe

νðxÞ þ ½ω̄−1�adμμðx; xÞAb
νðxÞAe

νðxÞ þ ½ω̄−1�aeμμðx; xÞAb
νðxÞAd

μðxÞ
þ ½ω̄−1�bdνμðx; xÞAa

νðxÞAe
μðxÞ þ ½ω̄−1�beνμðx; xÞAa

μðxÞAd
μðxÞ þ ½ω̄−1�deμνðx; xÞAa

μðxÞAb
νðxÞg: (C1)

To find the free action, we have to subtract the relative entropy, cf. Eqs. (32) and (39),

W̄¼1

2
Tr

�
1− ln

�
ω̄

2π

��
þhlnJ iω̄;A¼1

2
Tr

�
1− ln

�
ω̄

2π

��
−1

2

Z
dðx;yÞχabμνðx;yÞ½Aa

μðxÞAb
νðyÞþ½ω̄−1�abμνðx;yÞ�: (C2)

It is now straightforward, though very cumbersome, to derive the gap equation by minimizing F ¼ hSiμ − W̄ with respect
to the kernel ω̄, or rather its inverse. The result can be put in the form

ω̄ab
μνðx; yÞ ¼ δab½−□xδμν þ ð1 − ξÞ−1∂x

μ∂x
ν�δðx; yÞ þ χabμνðx; yÞ þ g2ffcabfcde½ω̄−1�deμνðx; xÞ

þ fcadfcbeðδμν½ω̄−1�deααðx; xÞ − ½ω̄−1�deμνðx; xÞÞgδðx; yÞ þ 2gfabcfð∂μAc
νðxÞÞ − ∂νAc

μðxÞ þ ∂αAc
αðxÞgδðx; yÞ

þ g2ffcabfcdeAd
μðxÞAe

νðxÞ þ fcadfcbeδμνAd
αðxÞAe

αðxÞgδðx; yÞ: (C3)

Notice that the derivatives in the third line also act on the δ function, except for the first term in the curly brackets, and the
curvature also enters with its full color and Lorentz structure.
Upon settingA ¼ 0, only the first two lines on the rhs of Eq. (C3) survive. This is just the position space equivalent to the

gap equation (41), to which it reduces when the symmetric form Eq. (15) is assumed for ω̄ and χ. An exact solution of
Eq. (C3) combined with the full curvature equation is not feasible. However, the A-dependent terms on the rhs are
independent of the kernel ω̄ and thus act like an inhomogeneity. This suggests and iterative solution by expanding in powers
of the classical field. When inserted back into the free action, the OðA2Þ correction to ω̄ gives rise to vertices up to OðA4Þ
etc. Thus, the computation of the vertex corrections should at least be feasible for the lowest nontrivial orders.
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