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We present explicit hyper-Kähler metrics induced from well-separated SUð2Þmonopole walls which are
equivalent to monopoles on T2 × R. The metrics are explicitly obtained due to Manton’s observation by
using monopole solutions. These are doubly periodic and have the modular invariance with respect to the
complex structure of the complex torus T2. We also derive metrics from monopole walls with Dirac-type
singularities.
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I. INTRODUCTION

Hyper-Kähler manifolds have played important roles in
the study of supersymmetric quantum field theories and
string theories, especially in the context of the string
compactifications, duality tests, and so on. Except for
trivial examples, the explicit metric on a compact hyper-
Kähler manifold is not known. On the other hand, explicit
forms of the noncompact hyper-Kähler metric have been
derived in several ways. Among them the most systematic
one is the hyper-Kähler quotient construction [1] (see also
[2]). In four dimensions, the hyper-Kähler metrics satisfy
the self-dual Einstein equations and arise as the gravita-
tional instanton solutions (see, e.g., [3]). These can be
classified into several categories: the asymptotically locally
Euclidean (ALE), asymptotically locally Flat (ALF), ALG
and ALH spaces [4] according to their asymptotic volume
growth. The ALG and ALH spaces are simple generaliza-
tions of the ALF space which asymptotically have triho-
lomorphic T2 and T3 actions, respectively [cf., Table I].
In the context of three-dimensional gauge theories,

hyper-Kähler metrics are obtained by considering well-
separated monopoles, which is due to Manton’s observa-
tion [5] that the dynamics of k well-separated BPS
monopoles can be approximated as a geodesic motion
on the asymptotic moduli space of the BPS k monopole if
the initial velocities of each monopole are substantially
small. In this paper we only consider the case with the
gauge group SU(2) or U(2).
For a nonperiodic BPS k monopole, the moduli space

can be written as Mk ¼ R3 × ðS1 × fM0
kÞ=Zk, where the

simply-connected part is denoted by fM0
k, and the degrees

ofR3 and S1 correspond to the center of mass and the gauge
degree of global U(1), respectively. The dimensions of the
k-monopole moduli Mk is equal to 4k. The moduli space
Mk can be identified with the moduli space of a vacuum on
the Coulomb branch of the three-dimensional SUðkÞ super
Yang-Mills theory with eight supercharges [6]. The relative

moduli space of the 2-monopole fM0
2 is known as the

Atiyah-Hitchin manifold [7] which is the ALF space with

S1 fibration over R3. In the case of well-separated BPS
monopoles, each monopole carries three moduli of the
position and a degree of the U(1) phase modulus. The latter
degree corresponds to the electric charge and hence we
should include the electrical degree of the dyon. The
effective dynamics of the k-dyon system can be described
by a sigma model Lagrangian whose target space is the
monopole moduli space. Hence the asymptotic metric of
the moduli space of the BPS k monopoles can be obtained
by calculating the Lagrangian of interactions of k well-
separated BPS monopoles (dyons). The metric is known as
the Gibbons-Manton metric [8].
For a periodic BPS k monopole on R2 × S1, which is

called the monopole chain [9–11], the moduli space is
identified with the moduli space of a vacuum on the
Coulomb branch of the four-dimensional SUðkÞ super
Yang-Mills theory compactified on S1 with eight super-

charges. The relative moduli space of the 2-monopole fM0
2

is the ALG space [10]. Since the periodicity is achieved by
a chain of monopoles, the total energy would diverge due to
the infinite number of monopoles. However, the Nahm
transform can be make well defined and the asymptotic
metric of the moduli space of monopole chains is obtained
in the same manner as the nonperiodic case [12]. The
geodesic motion is also discussed [13–16].
For a doubly periodic BPS k monopole on T2 ×R,

which is called the monopole sheet or wall [11,17] (see also
[18]), the moduli space is identified with the moduli space
of a vacuum on the Coulomb branch of the five-dimen-
sional SUðkÞ super Yang-Mills theory compactified on T2

with eight supercharges [19]. One of the examples of the
correspondence between the monopole moduli and the
vacuum moduli of the five-dimensional super Yang-Mills
theory is that the number of the Dirac-type singularity
corresponds to that of the matter flavor. Asymptotically the
relative moduli space of the monopole walls is expected to
be the ALH space with T3k−3 fibration over Rk−1. As far as
we know, there are no examples of ALH hyper-Kähler
metrics in the literature except for the classical metric
derived from the effective action of the N ¼ 1 super
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Yang-Mills theory on R3 × T2 by Haghighat and Vandoren
[19]. Furthermore, the doubly periodic monopoles have
rich properties on the D-brane interpretation, string duality,
and M-theoretic interpretation via the various S,T-duality
transformations [20]. Therefore the analysis of the moduli
metric would be applied to various situation of the
corresponding super Yang-Mills theory, string theory and
M-theory.
In this paper, we derive some asymptotic metrics of the

monopole walls on T2 ×R by calculating the effective
sigma model Lagrangian of k well-separated BPS walls
following Manton’s observation. In our calculation, the
BPS wall is assumed to be a doubly periodic superposition
of BPS monopoles in flat three-space. In the nonperiodic
direction, the walls are assumed to be well separated from
each other compared with the thickness of the monopole
wall so that the fields can be well approximated by
superpositions of linearized monopole walls. The metric
computed in this paper is for the case of two identical
non-Abelian monopole walls, including in the presence of
Dirac singularities as well. We prove that the induced
metrics actually have the modular invariance with
respect to a complex structure τ of the complex torus T2

in addition to the expected periodicity. We also present the
metrics of monopole walls with Dirac-type singularities.
We see that when we consider k-monopole walls, the
maximum number of singularities is 2k by a simple
analysis using the Newton polygon. This is consistent
with the fact that in the SUðkÞ super Yang-Mills theory
the number of the matter flavor has the upper bound 2k.
This bound is due to the requirement that the super
Yang-Mills theory is either conformal or asymptotically
free. When the bound is saturated the theory has conformal
invariance.
The present metrics would be the most explicit ones

of the ALH type derived from the solutions of monopole
walls including the case with the Dirac-type singularities.
The symmetry and other properties are consistent
with the one in the corresponding super Yang-Mills
theory [19].

II. SETUP

Let xα ≔ ðx; y; zÞ (α ¼ 1; 2; 3) be the coordinates of the
three-dimensional space T2 ×R in which x and y are
periodic: x ∼ xþ 1; y ∼ yþ 1. The Higgs field ϕ and the
gauge field A satisfy the Bogomolny equation

�DAϕ ¼ −F; (1)

where DAϕ ≔ dϕþ ½A;ϕ� and F ≔ dAþ A∧A. We put a
condition that the asymptotic behavior of the Higgs field of
an SUð2Þ solution must be [20]

EigValϕ ¼ 2πiQ�zþOð1Þ as z → �∞;

where the constants Q� ∈ Z are called the monopole-wall
charges. These are topological charges which are related to
the Chern number as

Q� ¼
Z
Tz

c1ðE�Þ ¼
i
2π

Z
Tz

trF�;

where Tz is the complex torus at z and E� are the line
bundles defined at z → �∞, respectively, where the
monopole vector bundle E splits into eigenvalues of the
Higgs field as Ejz ¼ Eþ⊕E− [20]. Numerical solutions
of the SU(2) monopole walls are studied for ðQ−; QþÞ ¼
ð1; 1Þ and (0, 1) [11,17]. The detailed analysis of the
boundary conditions and the moduli space are summa-
rized in [20].
Let us introduce a standard complex structure τ ≔ τ1 þ

iτ2 (τ1; τ2 ∈ R) at the torus T2 and introduce a holomorphic
coordinate ξ ≔ xþ τy. The periodicity is now represented
by ξ ∼ ξþmþ τn (m; n ∈ Z). By using the vector nota-
tion x ≔ ðξ; zÞ, the metric on T2 ×R is represented as
follows,

dx · dx ≔
ν

τ2
ðdx2 þ 2τ1dxdyþ jτj2dy2Þ þ dz2

¼ ν

τ2
jdξj2 þ dz2 ≕ gαβdxαdxβ; (2)

where the volume of the torus is denoted by ν ≔
ffiffiffiffiffiffiffiffiffi
det g

p
(g ≔ ðgαβÞ). Note that the two-dimensional metric has
three independent components and we have traded them
with τ1; τ2, and ν. One of the crucial features of our
construction of ALH hyper-Kähler metrics in the following
is the invariance of the metric under the modular trans-
formation,

ξ ↦
ξ

cτ þ d
; τ ↦

aτ þ b
cτ þ d

; τ2 ↦
τ2

jcτ þ dj2 ; (3)

where ð a b
c d Þ ∈ SLð2;ZÞ.

TABLE I. The correspondence of the periodicity of monopole, super Yang-Mills theory and the asymptotic behavior of hyper-Kähler
metric.

Periodicity of monopole Super Yang-Mills theory Asymptotic behavior (4d topology)

R3 (nonperiodic) N ¼ 4 SYM on R3 ALF : S1 fibration on R3

S1 × R2 (periodic) N ¼ 2 SYM on R3 × S1 ALG : T2 fibration on C
T2 × R (doubly periodic) N ¼ 1 SYM on R3 × T2 ALH : T3 fibration on R
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III. ASYMPTOTIC BEHAVIOR OF SU(2)
MONOPOLE WALLS

For the purpose of calculating the effective Lagrangian
for well-separated monopole walls, we should derive the
asymptotic form of the SU(2) monopole walls. Let us
consider k well-separated monopole walls sitting at the
points aj ≔ ðξj; zjÞ (j ¼ 1; � � � ; k). Here each monopole
wall has the charge ðQ−; QþÞ ¼ ð0; 1Þ. It can be regarded
as a smooth SU(2) monopole arranged per unit cell [17]. (It
is not clear that the multimonopole walls have the moduli of
the separations; however, at least the case of ðQ−; QþÞ ¼
ð1; 1Þ has four moduli [11].) If the separations jzj − zij are
large enough compared with the thicknesses of each
monopole wall, the fields are well approximated by
superpositions of linearized monopole walls:

ϕðxÞ ¼ vþ
Xk
j¼1

ϕjðx − ajÞ; (4)

AξðxÞ ¼ bþ
Xk
j¼1

Aj
ξðx − ajÞ; AzðxÞ ¼ 0; (5)

where v and b are the vacuum expectation value of the
Higgs field and the background gauge field, respectively.
Then we can estimate the asymptotic Higgs field of
each monopole wall as a superposition of linearized
’t Hooft–Polyakov monopoles arranged in a finite
ð2M þ 1Þ × ð2N þ 1Þ rhombic lattice,

ϕjðxÞ ¼ 1

4π

XM
m¼−M

XN
n¼−N

−gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jξ −m − nτj2 þ z2

p ; (6)

where g is the magnetic charge of the ’t Hooft–Polyakov
monopoles. The summation would diverge in the limit
ofM and N to infinity. Such divergence can be avoided in a
similar way to the case of periodic monopoles [12].
Namely, the asymptotic form of ϕjðxÞ for large jzj can
be written as [21]

ϕjðxÞ ¼ g
2
jzj − gCM;N; (7)

where CM;N is a positive constant diverging linearly in the
limit M;N → ∞. By substituting (7) into (4), we obtain

ϕðxÞ ¼ vren þ
g
2

Xk
j¼1

jz − zjj; (8)

where vren ≔ v − kgCM;N , which can be kept finite with v
diverging at the same order as CM;N . We note that the
configuration is not localized in the periodic directions.
This implies that the superposition of doubly periodic

monopoles is represented as a constituent monopole wall in
the asymptotic region.
The asymptotic gauge field can also be derived from the

Bogomolny equation with (7),

Aj
ξðxÞ ¼

iνg
8τ2

signðzÞξ̄; Aj
zðxÞ ¼ 0; (9)

where

signðzÞ ≔
�þ1 ðz > 0Þ

−1 ðz < 0Þ :

In order to make the gauge field doubly periodic for
ξ → ξþmþ τn, we have to perform appropriate gauge
transformations. This means our U(1) bundle over the
complex torus is nontrivial. Accordingly we have to impose
the following twisted boundary condition where the phase
θ of any functions in the fundamental representation of the
gauge group shifts as follows (cf., Eq. (12) in [11]):

θ ↦ θ þ νg
4
signðzÞy when ξ ↦ ξþ 1; (10)

θ ↦ θ −
νg
4
signðzÞx when ξ ↦ ξþ τ: (11)

For later convenience we introduce the following pair of
the harmonic function and the Dirac potential on T2 ×R,

uðzÞ ¼ 1

2
jzj − CM;N; wðxÞ ¼ iν

8τ2
signðzÞξ̄; (12)

which satisfy uðzÞ ¼ uð−zÞ and wðxÞ ¼ wð−xÞ. Note that
uðzÞ is a harmonic function on R with a δ-function source
at the origin.

IV. ASYMPTOTIC METRIC
FROM SU(2) MONOPOLE WALLS

As mentioned in the introduction, the interaction of
nonstatic monopoles involves not only the relative coor-
dinates but also the relative phases. The relative phase
factor gives rise to nonvanishing electric charges and hence
converts monopoles into dyons. The interaction term of the
Lagrangian can be obtained from the analysis of the forces
between BPS monopoles. The fact that there is no force
between well-separated BPS monopoles with the same
charge implies the existence of a long-range interaction
caused by the Higgs field which becomes massless in the
BPS limit. This is also the case for dyons. Thus the
Lagrangian of the lth monopole wall can be written as

Ll ¼ −ðg2 þ q2lÞ1=2ϕð1 − V2
lÞ1=2

þ qlVl · A − qlA0 þ gVl · ~A − g ~A0; (13)
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where ðg2 þ q2lÞ1=2, ql and Vl ≔ ð_ξl; _zlÞ are the scalar
charge, the electric charge, and the velocity of the lth
monopole wall, respectively. Note that all the particles have
the same magnetic charge g, while the electric charges ql
may change particle by particle in general. The first term of
the Lagrangian gives rise to the scalar interaction due to the
Higgs field. The second and the third terms are the ordinary
Lorentz force. The remaining terms describe the dual
magnetic interaction to the electric Lorentz force. The
relevant field is the dual potential ð ~A; ~A0Þ which satisfies
~F ¼ �F. The background fields ϕ, A, A0, ~A; and ~A0 are
generated by the remaining ðk − 1Þ moving dyons, which
can be obtained from the solutions derived in the previous
section. For j ≠ l, the asymptotic fields of the jth dyonic
monopole wall at rest can be derived in the same way as the
nonperiodic monopoles,

ϕjðxÞ ¼ ðg2 þ q2jÞ1=2uðzÞ; (14)

Aj
ξðxÞ ¼ gwðxÞ; ~Aj

ξðxÞ ¼ −qjwðxÞ; Aj
zðxÞ ¼ 0;

~Aj
zðxÞ ¼ 0; Aj

0ðxÞ ¼ −qjuðzÞ; ~Aj
0ðxÞ ¼ −guðzÞ;

(15)

where uðzÞ and wðxÞ for the monopole wall are given by
(12). Then the fields for a moving monopole can be
obtained by the Lorentz boost. Keeping the terms of order
q2j , qjVj and V2

j , we find

ϕjðxÞ≃ ðg2 þ q2jÞ1=2uðzÞð1 − V2
jÞ1=2; (16)

Aj
ξðxÞ≃ −qjuðzÞVjξ þ gwðxÞ;

Aj
zðxÞ≃ −qjuðzÞVjz;

Aj
0ðxÞ≃ −qjuðzÞ þ gðwVξ

j þ w̄V ξ̄
jÞ;

~Aj
ξðxÞ≃ −guðzÞVjξ − qjwðxÞ;
~Aj
zðxÞ≃ −guðzÞVjz;

~Aj
0ðxÞ≃ −guðzÞ − qjðwVξ

j þ w̄V ξ̄
jÞ; (17)

where the scalar potentials are replaced by the Liénard-
Wiechert potentials with the approximation of the distance
ðr2 − jr × Vj2 þOðV2ÞÞ1=2 by r.
Substituting (17) into the Lagrangian for k ¼ 2 and

keeping terms of the second order in q1, V1, q2, and V2, we
obtain

L2 ¼ −m2 þ
1

2
m2V2

2 þ q2ðbVξ
2 þ b̄V ξ̄

2Þ

þ g2

2
uðz2 − z1ÞðV2 − V1Þ2 −

1

2
uðz2 − z1Þðq2 − q1Þ2

þ gðq2 − q1Þfw21ðVξ
2 − Vξ

1Þ þ w̄21ðV ξ̄
2 − V ξ̄

1Þg; (18)

where mj ≔ vðgþ qjÞ1=2 is the rest mass of the jth

monopole wall and wji ≔ wðxj − xiÞ. Furthermore,
expanding mj and making symmetrization, we obtain the
total Lagrangian L21 as

L21 ¼
vg
2
ðV2

2 þV2
1Þ þ

g2

2
uðz2 − z1ÞðV2 −V1Þ2

−
v
2g

ðq22 þ q21Þ−
1

2
uðz2 − z1Þðq2 − q1Þ2

þ bðq2Vξ
2 þ q1V

ξ
1Þ þ gw21ðq2 − q1ÞðVξ

2 −Vξ
1Þ

þ b̄ðq2V ξ̄
2 þ q1V

ξ̄
1Þ þ gw̄21ðq2 − q1ÞðV ξ̄

2 −V ξ̄
1Þ: (19)

The Lagrangian may look ill defined due to the diverging v;
however, it can be replaced by vren which remains finite
[cf., (7), (8), and (12)]. Then the Lagrangian can be divided
into the two parts: L21 ¼ LCM þ Lrel, where

LCM ¼ vg
4
ðV2 þ V1Þ2 −

v
4g

ðq2 þ q1Þ2

þ b
2
ðq2 þ q1ÞðVξ

2 þ Vξ
1Þ þ

b̄
2
ðq2 þ q1ÞðV ξ̄

2 þ V ξ̄
1Þ;
(20)

Lrel¼
g2

2

�
vren
2g

þ1

2
jz2−z1j

�
ðV2−V1Þ2

−
1

2

�
vren
2g

þ1

2
jz2−z1j

�
ðq2−q1Þ2

þ
�
b
2
þ iνg
8τ2

signðz2−z1Þðξ̄2− ξ̄1Þ
�
ðq2−q1ÞðVξ

2−Vξ
1Þ

þ
�
b̄
2
−
iνg
8τ2

signðz2−z1Þðξ2−ξ1Þ
�
ðq2−q1ÞðV ξ̄

2−V ξ̄
1Þ:

(21)

The center of mass Lagrangian LCM would diverge while
the relative Lagrangian Lrel would converge in the limit of
M;N → ∞. The asymptotic metric of the moduli space can
be read from the relative Lagrangian. For convenience, we
introduce relative variables by ξ ≔ ξ2 − ξ1, z ≔ z2 − z1,
V ≔ V2 − V1 and q ≔ q2 − q1 and further replace the
electric charge q in Lrel by the relative phase θ via the
Legendre transformation,

L0
rel ¼ Lrel þ q_θ: (22)

As we will see shortly the coefficient of q_θ can be fixed so
that the asymptotic metric has the double periodicity. After
the Legendre transformation, we obtain the asymptotic
metric of the moduli space in the form of the Gibbons-
Hawking ansatz [22],

1

g
ds2 ¼ Udx · dxþ 1

U
ðdθ þW · dxÞ2; (23)
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where

U ¼ vren
2

þ g
2
jzj; Wξ ¼

b
2
þ iνg
8τ2

signðzÞξ̄;

W ξ̄ ¼ W̄ξ; Wz ¼ 0: (24)

At first sight the metric seems to have a constant shift when
we go around the closed cycles on T2, since Wξ explicitly
depends on the coordinate ξ̄. However we can confirm the
double periodicity of the metric by observing that the
constant shift ofWξ can be cancelled by the phase shift due
to the necessary U(1) gauge transformation in the twisted
boundary conditions (10) and (11), which also determines
the coefficient of q_θ in (22). Furthermore, we can also
easily check the invariance of the metric under the modular
transformation (3). Thus our metric (23) is well defined on
T3 ×R with local coordinates ðθ; ξ; zÞ. Finally the hyper-
Kähler metric (23) allows the following local isometries
with parameters ðα; β; γÞ:

θ → θ þ αþ νg
4
signðzÞðβy − γxÞ;

x → xþ β; y → yþ γ: (25)

It is straightforward to extend the above computation for
k ¼ 2 to the case of general k. The total Lagrangian of

the k well-separated monopole walls can be obtained by
generalizing (19) as follows:

Lk ¼
vg
2

Xk
j¼1

V2
j þ

g2

2

X
1≤i<j≤k

uðzj − ziÞðVj − ViÞ2

−
v
2g

Xk
j¼1

q2j −
1

2

X
1≤i<j≤k

uðzj − ziÞðqj − qiÞ2

þ b
Xk
j¼1

qjV
ξ
j þ

X
1≤i<j≤k

gwjiðqj − qiÞðVξ
j − Vξ

i Þ

þ b̄
Xk
j¼1

qjV
ξ̄
j þ

X
1≤i<j≤k

gw̄jiðqj − qiÞðV ξ̄
j − V ξ̄

i Þ: (26)

This can be decomposed into the two parts Lk ¼
LCM þ Lrel, where

LCM ¼ vg
2k

�Xk
j¼1

Vj

�
2

−
v
2kg

�Xk
j¼1

qj

�
2

þ b
k

�Xk
j¼1

qj

��Xk
j¼1

Vξ
j

�
þ b̄

k

�Xk
j¼1

qj

��Xk
j¼1

V ξ̄
j

�
;

(27)

Lrel ¼
g2

2

X
1≤i<j≤k

�
vren
kg

þ 1

2
jzj − zij

�
ðVj − ViÞ2 −

1

2

X
1≤i<j≤k

�
vren
kg

þ 1

2
jzj − zij

�
ðqj − qiÞ2

þ
X

1≤i<j≤k

�
b
k
þ iνg
8τ2

signðzj − ziÞðξ̄j − ξ̄iÞ
�
ðqj − qiÞðVξ

j − Vξ
i Þ

þ
X

1≤i<j≤k

�
b̄
k
−
iνg
8τ2

signðzj − ziÞðξj − ξiÞ
�
ðqj − qiÞðV ξ̄

j − V ξ̄
i Þ: (28)

On the other hand, the Gibbons-Hawking ansatz for general
k can be written as

1

g
ds2 ¼ UIJdXI · dXJ þ U−1

IJ ðdΘI þWIK · dXKÞ

· ðdΘJ þWJL · dXLÞ; (29)

where I; J; K; L ¼ 1; � � � ; k − 1, and ΞJ ≔ ξJ − ξk,
ZJ ≔ zJ − zk, ΘJ ≔ θJ − θk and XJ ≔ ðΞJ; ZJÞ are relative
coordinates measured by the position of the kth monopole
wall. By comparing the coefficients of (28) and the
sigma model Lagrangian for the Gibbons-Hawking ansatz,
we find

UJJ ¼ ðk − 1Þ vren
k

þ g
2

X
I≠J

jZJ − ZIj;

UIJ ¼ −
vren
k

−
g
2
jZJ − ZIj; ðI ≠ JÞ

ðWξÞJJ ¼ ðk − 1Þ b
k
þ iνg
8τ2

X
I≠J

signðZJ − ZIÞðΞ̄J − Ξ̄IÞ;

ðWξÞIJ ¼ −
b
k
−
iνg
8τ2

signðZJ − ZIÞðΞ̄J − Ξ̄IÞ; ðI ≠ JÞ

ðW ξ̄ÞIJ ¼ ðW̄ξÞIJ; ðWzÞIJ ¼ 0: (30)

V. ASYMPTOTIC METRIC FROM U(2)
MONOPOLE WALLS WITH SINGULARITIES

Finally, we discuss the asymptotic metrics of monopole
walls with Dirac-type singularities. In the case of monopole
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chains with four moduli, it is proved that the maximum
number of Dirac singularities is four. Here we derive the
inequality for the maximum number of Dirac singularities
of monopole walls by using the spectral curves and the
Newton polygon [20]. A spectral curve of a monopole wall
is defined by Fx ≔ det, where VxðsÞ is an integral of ðDx þ
iϕÞψ ¼ 0 in the x-direction and s ≔ exp½2πðz − iyÞ�. The
spectral curve also induces a spectral polynomial
Gxðs; tÞ ≔ PðsÞFxðs; tÞ, where PðsÞ is a common denom-
inator of Fx. Then the Newton polygon Nx of Gxðs; tÞ can
be constructed as follows. First we mark points ða; bÞ
corresponding to the degree of each term satb ofGxðs; tÞ on
an integer lattice. Then the Newton polygon is a minimal
convex polygon including all the marks. For example, the
spectral curves of the SU(2) monopole walls can be written
as Fxðs; tÞ ¼ t2 −WxðsÞtþ 1, where WxðsÞ ≔ TrVxðsÞ,
which leads to the Newton polygon of an SU(2)
monopole wall with the charge ðQ−; QþÞ ¼ ð1; 1Þ as in
Fig. 1. In addition, the shape of the Newton polygon is
restricted by the boundary data. For example, the numbers
of points on top and bottom edges are equal to r�0 þ 1,
where r�0 are the number of positive and negative
Dirac singularities of a U(2) monopole wall. Moreover,
there is an important relation between the number of
internal points of the Newton polygon, IntNx, and the
dimension of the moduli space M of the corresponding
monopole walls:

dimM ¼ 4IntNx:

Keeping these in mind, the upper limit of the number of
singularities of U(2) monopoles can be easily obtained as
follows. For a given number of internal points, the
maximum Newton polygon of monopole walls with sin-
gularities must be a trapezoid, which has height 2 and has
length of top and bottom edges rþ0 and r−0, respectively
(Fig. 2). From the shape of the Newton polygon, the
maximum number of singularities obviously have a rela-
tion, rþ0 þ r−0 ¼ 2ðIntNx þ 1Þ (which can also be derived

by the Pick’s formula). Thus the total number of the
singularities r0 ≔ rþ0 þ r−0 is limited as

r0 ≤
1

2
dimMþ 2: (31)

Especially the maximum number of singularities of k well-
separated monopole walls is 2k because the dimension of
the relative moduli space is 4ðk − 1Þ. This is consistent with
the fact that the maximal number of the matter hyper-
multiplets in the fundamental representation is 2k in the
corresponding SUðkÞ super Yang-Mills theory with eight
super charges.
Here we restrict our calculation to the monopole walls

with four moduli, that is, for k ¼ 2. Then the maximal
number of the Dirac singularities is r0 ¼ 4. Since these
singularities are stationary and have no electric charge, the
metric can be obtained by simply replacing the vacuum
expectation value and the background field by vþPr0

l¼1 gluðrlz − zÞ and bþPr0
l¼1 glwðrl − xÞ, respec-

tively, where gl and rl ≔ ðrlξ; rlzÞ are the magnetic
charges and the positions of each singularity [12].
Substituting them into (24), we obtain

U ¼ v0ren
2

þ g
2
jzj þ 1

4

Xr0
l¼1

gl

����rlz − z
2

����þ 1

4

Xr0
l¼1

gl

����rlz þ z
2

����;
Wξ ¼

b
2
þ iνg
8τ2

signðzÞξ̄

þ iν
16τ2

Xr0
l¼1

glsign

�
rlz −

z
2

��
r̄lξ −

ξ̄

2

�

þ iν
16τ2

Xr0
l¼1

glsign

�
rlz þ

z
2

��
r̄lξ þ

ξ̄

2

�
;

W ξ̄ ¼ W̄ξ; Wz ¼ 0; (32)

where

FIG. 1. A Newton polygon of an SU(2) monopole wall with
charge Q� ¼ 1.

FIG. 2. The maximum Newton polygon Nx of a U(2) monopole
wall with rþ0 singularities and r−0 singularities.
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v0ren ≔ v −
�
2þ

Xr0
l¼1

gl
g

�
gCM;N; (33)

and we assume x1 þ x2 ¼ 0.
In the correspondence with N ¼ 1 super Yang-Mills

theory on R3 × T2, the function UðzÞ is identified with the
low-energy effective coupling or the second derivative of
the prepotential on the Coulomb modulus R>0.

VI. CONCLUSION

In this paper, we have obtained new hyper-Kähler
metrics whose asymptotic behavior is the ALH type from
the moduli space of monopole walls. The metric in four
dimensions is defined on a T2 × S1 fibration over R and
enjoys the modular invariance on T2. We have also derive
the maximal number of the Dirac singularities by using the
Newton polygon of the spectral curve.
One of the next challenges is the low-energy scattering of

the monopole walls as a geodesic motion on the moduli
space. In the present discussion, the monopoles are
assumed to be well separated and hence the collision
process is excluded.
In order to obtain a global metric on the moduli space of

monopole walls, we need some ideas such as the one for
the Atiyah-Hitchin metric [7] for nonperiodic BPS

SU(2),2-monopole. On the super Yang-Mills theory side,
the region of well-separated monopoles corresponds to the
weak coupling region of the moduli space of the Coulomb
branch, where the vacuum expectation values of the scalar
fields in the vector multiplets are large compared with the
dynamical scale of the theory. In order to obtain a global
metric which is valid on the whole Coulomb branch, the
inclusion of instanton corrections is crucial. A successful
example of such computation is the Ooguri-Vafa metric
[23]. See also [24] and [25] for recent developments.
In the periodic monopoles, the monopole scattering has

been successfully discussed by using the Nahm transform,
the spectral curve, and the corresponding Hitchin equa-
tion [13–15]. These methods could be applied to the doubly
periodic case.
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