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A simple extension of the minimal left-right symmetric supersymmetric grand unified theory model is
constructed by adding two pairs of superfields. This naturally violates the partial Yukawa unification
predicted by the minimal model. After including supergravity corrections, we find that this extended model
naturally supports hilltop F-term hybrid inflation along its trivial inflationary path with only a very mild
tuning of the initial conditions. With a convenient choice of signs of the terms in the Kéhler potential, we
can reconcile the inflationary scale with the supersymmetric grand unified theory scale. All the current data
on the inflationary observables are readily reproduced. Inflation is followed by nonthermal leptogenesis via
the decay of the right-handed neutrinos emerging from the decay of the inflaton, and any possible washout
of the lepton asymmetry is avoided thanks to the violation of partial Yukawa unification. The extra
superfields also assist us in reducing the reheat temperature so as to satisfy the gravitino constraint. The
observed baryon asymmetry of the universe is naturally reproduced consistently with the neutrino

oscillation parameters.
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I. INTRODUCTION

One of the most natural and well-motivated inflationary
models is, certainly, the supersymmetric (SUSY) F-term
hybrid inflation (FHI) [1,2]. It is realized at (or close to) the
SUSY grand unified theory (GUT) scale Mgyt == 2.86 x
10'® GeV and can be easily linked to extensions [3] of the
minimal supersymmetric standard model (MSSM) which
provide solutions to a number of problems of the MSSM—
for some recent attempts see e.g. Ref. [4]. Namely, the p
problem of MSSM may be solved via a direct coupling of
the inflaton to the electroweak Higgs doublet superfields
[5] or via a Peccei-Quinn (PQ) symmetry [6,7], which also
solves [8] the strong CP problem. Also, baryon-number
conservation can be an automatic consequence [5] of an
R symmetry and the baryon asymmetry of the universe
(BAU) can be generated via nonthermal leptogenesis [9],
which takes place through the out-of-equilibrium decay of
the decay products of the inflaton.

Trying to embed SUSY FHI into a concrete SUSY GUT
model, we face the following challenges: (i) the possible
production of topological defects [10,11] during the GUT
phase transition at the end of FHI, which in the case of
magnetic monopoles or domain walls is cosmologically
disastrous, (ii) the mismatch [12] between the inflationary
scale and the SUSY GUT scale, and (iii) the possible
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washout of the generated lepton-number asymmetry due
to the smallness of the lightest right-handed neutrino mass
dictated by the various types of Yukawa unification (YU)
conditions predicted by some GUT models.

Here we present a model based on the left-right sym-
metric GUT gauge group Gig = SU(3), x SU(2), x
SU(2)g x U(1)g_,, which aims to surpass the problems
mentioned above. Let us clarify, in passing, that the term
GUT is used in the sense of gauge coupling unification,
although the gauge group is not simple. Note that such
models do emerge from string compactifications (see e.g.
Ref. [13]). The adopted GUT gauge group Gy does not
lead to production of magnetic monopoles as higher
gauge groups, such as the Pati-Salam group, do. Moreover,
invoking higher order terms in the Kihler potential with
a suitable arrangement of their signs, as done in Ref. [14],
we succeed to overcome the second of the aforementioned
difficulties of SUSY FHI. It is important to note that the
same form of the Kihler potential has been proposed in
order to reconcile the value of the scalar spectral index ng
obtained within SUSY FHI with the present data [15,16].

Finally and probably most importantly, the problem
(iii) is overcome by conveniently extending the superfield
content of the simplest—see e.g. Ref. [17]—GUT model
based on Gpy. Namely, we introduce a pair of SU(2); x
SU(2)g bidoublet superfields and a pair of SU(2) triplet
superfields, which lead to a sizable violation of the
neutrino-z (and top-bottom) YU predicted by the simplest
model. As a consequence, the lightest right-handed
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neutrino mass, which depends heavily on the lightest
neutrino Dirac mass, may become large enough so that
any washout of the pre-generated lepton asymmetry is
elegantly evaded. Moreover, the SU(2)g triplet super-
fields enter the inflationary sector of the model leading
to a variety of possible inflationary scenarios—see
Refs. [18-21]—as well as to extra contributions to the
radiative corrections on the inflationary paths used in these
scenarios. Here we choose to analyze FHI along the trivial
inflationary trajectory of this model. We should note that
these same triplet superfields assist us in reducing the
predicted reheat temperature to an acceptable level.

Imposing, in addition, a number of theoretical and
observational constraints originating from the data on the
inflationary observables, the boundedness below of the
inflationary potential, the observed BAU, the gravitino
constraint [22,23], and the data on the neutrino oscillation
parameters, we find a wide and natural allowed space of
parameters. The resulting FHI inflationary scenario is of
the hilltop type [24] requiring a mild tuning of the initial
conditions [25] to yield acceptable values of the scalar
spectral index and a rather large value of the gravitino mass
to fulfill the gravitino constraint. Note that a mild tuning of
one parameter in the Kéhler potential is also needed in
order to circumvent the well-known 7 problem of FHI
(see e.g. Refs. [1,26]).

In Sec. II, we present the basic ingredients of our model,
while in Sec. III we describe the inflationary scenario. We
then discuss the inflationary requirements and their impli-
cations for the model parameters in Sec. IV. Our next step
is to outline the mechanism of nonthermal leptogenesis in
Sec. V and update the constraints on the model parameters,

TABLE I. The superfield content of the model.
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taking into account the postinflationary requirements in
Sec. VI. We summarize our conclusions in Sec. VIL
Finally, in Appendix A, we present a numerical analysis
of the reheating process in our model.

II. THE SUSY LEFT-RIGHT SYMMETRIC MODEL

We will outline the salient features of our model in
Sec. II A and analyze the various parts of its superpotential
in Sec. II B. Finally, in Sec. I C, we will derive a set of
Yukawa quasi-unification conditions which play a key role
in our model.

A. Superfield content and symmetries

As already mentioned, we adopt the left-right symmetric
gauge group G g =SU(3).xSU(2);, xSU2)g xU(1)5_; -
This gauge group is broken down to the standard model
(SM) gauge group Ggy at a scale close to the SUSY GUT
scale M gyt through the vacuum expectation values (VEVs)
acquired by a conjugate pair of SU(2)g doublet left-handed
Higgs superfields ® and ® with B—L = 1, —1, respec-
tively. In this model, no magnetic monopoles [10] or
cosmic strings [11] are produced [27] at the end of inflation
and, therefore, we are not obliged to modify [28,29]
the standard realization of SUSY FHI to avoid monopole
production, or impose extra restrictions on the parameters—
as e.g. in Ref. [30].

The representations and transformations under Gy of
the various matter and Higgs superfields of the model
are presented in Table I (U, € SU(3),, Up € SU(2),,
Ugr € SU(2)g and T, ¥, and * stand for the transpose,
the Hermitian conjugate (H.c.), and the complex conjugate

Global Symmetries

Superfields Representations under Gyg Transformations under Gy R PO B
Matter Fields

I; (1,2,1,-1) LU} 1 -1 0
I (1,1,2,1) Ugls 1 0 0
qi (3,2,1,1/3) q; UL UT 1 —1 1/3
q¢ (3,1,2,—1/3) UsUxqs 1 0 -1/3
Higgs Fields

P (1,1,2,1) Uiy ® 0 0 0
) (1,1,2,—1) dUL 0 0 0
S (1,1,1,0) s 2 0 0
h (1,2,2,0) U hUY 0 1 0
N (1,1,1,0) N 1 —1 0
N (1,1,1,0) N 0 1 0
Extra Higgs Fields

b (1,2,2.0) U h'Ug 0 1 0
W (1,2,2,0) U UL 2 -1 0
T (1,1,3,0) UrTU} 0 0 0
T (1,1,3,0) URTU} 2 0 0

065032-2



INFLATION, LEPTOGENESIS, AND YUKAWA ...

of a matrix, respectively). The model also possesses three
global U(1) symmetries, namely a R symmetry, a PQ
symmetry, and the baryon-number (B) symmetry. The
corresponding charges are shown in Table I too. Note, in
passing, that such continuous global symmetries can effec-
tively arise [31] from the discrete symmetries emerging in
many compactified string theories (see e.g. Ref. [32]).

The lepton and quark superfields are /;, I{ and ¢q;, gf
(i=1, 2, 3), respectively; we follow here the same
representation of the superfields under SU(2); x SU(2)g
as in Ref. [33]. In the simplest version of the model with-
out the extra Higgs superfields in Table I, the electroweak
Higgs doublets H; and H, which couple to the down- and
up-type quarks, respectively, belong to the bidoublet super-
field h. So, as one can easily see, all the requirements [34]
for partial YU, i.e. the “asymptotic” (at Mgyrt) equality of
the Yukawa coupling constants of the ¢ and the b quark as
well as of the z-neutrino v, and the z-lepton 7, are fulfilled.
As already indicated, the breaking of Gy g down to Ggy; is
achieved by the superheavy VEVs (~Mgyr) of the con-
jugate pair of Higgs superfields ®, ® along their right-
handed neutrino type components (2§, 75 ). The model also
contains a gauge singlet S, which triggers the breaking of
G and a pair of gauge singlets N, N for solving [6] the u
problem of the MSSM via the PQ symmetry.

The partial YU between the b and the ¢ quark implied
by the simplest left-right symmetric model is not
compatible [33,35,36] with the constrained MSSM
(CMSSM), which is based on universal boundary con-
ditions for the soft SUSY breaking parameters. Actually,
a sizable violation of partial YU is required within the
context of the CMSSM, which we adopt here. In order to
achieve this violation, we extend the model by including
the extra Higgs superfields h', b/, T, and T, where the
barred superfields are included in order to give super-
heavy masses to the unbarred superfields. These extra
Higgs superfields together with their transformation
properties and charges are also included in Table I.
The superfield ' belongs to the (1,2, 2,0) representation
of Gir and, therefore, can couple to the fermions. The
triplet 7" acquires a superheavy VEV of order Mgy after
the breaking of Gy to Ggy. Its couplings with I, I,
and h then naturally generate a SU(2)g-violating mixing
of the SU(2), doublets in h and h' leading, thereby, to a
sizable violation of partial YU.

B. Superpotential Terms

The superpotential W of our model can be split into four
parts:

W:WH+Wm+Wy+WNR, (1)
which are analyzed in the following.

(a) Wy is the part of the superpotential which is relevant
for the breaking of Gy to Ggy and is given by

PHYSICAL REVIEW D 89, 065032 (2014)
Wy = kS(®® — M?) — k7 ST? + M;TT + AT @ @,
(2)

where the mass parameters M and My are of order
Mgy, and k, k7, and A are dimensionless parameters.
Note that M, M, k, and A can be made real and
positive by field redefinitions. The third dimensionless
parameter k7, however, remains in general complex.
For definiteness, we choose this parameter to be real
too, but of any sign. The parameters are normalized
so that they correspond to the couplings between the
SM singlet components of the superfields.

The scalar potential obtained from Wy is given by

Vi = |k(®® — M?) — k7 T?> + |2,8ST — M, T)?
+ kS + AT2(|®* + |®?) + M T + 109
+ D-terms, (3)

where the complex scalar fields which belong to the
SM singlet components of the superfields are denoted
by the same symbols as the corresponding superfields.
Vanishing of the D-terms yields ®* = ¢?® (@, ® lie
in the vg, 1§ direction), where 9 is an arbitrary phase.
Performing appropriate R and gauge transformations,
we bring ® and S to the positive real axis, while ®
stays in general complex with a phase factor e~
We define a combination of the five real parameters of
the model

7KT12M2
ok MY

¢ “)

From the potential in Eq. (3), one can then show that,
under the assumption that £ < 1/4, the nearest to the
trivial flat direction (see below) SUSY vacuum, where
the system is most likely to end up after the end of
inflation, corresponds to 4 = 0 (for both signs of &)
and lies at

(5) = (T)=0. (33) =23, <T>=UT(1,1,%),

(5a)

where

Vyp 2_ 1 _ ﬁ
(_) fz—é(l—\/1—4§), vp=—dy . (5b)

M T

and o3 = diag(1,—1).
(b) W,, is the part of the superpotential which is
responsible for the mixing of the doublets in h
and h' and can be symbolically written as
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Wy = mh'h + m'Wh + A, Th'h + A/ Th',  (6)

where the mass parameters m and m’ are of order
Mgyt (made real and positive by field rephasing) and
Ar, A7 are dimensionless complex coupling constants.
Note that the two last terms in the right-hand side (rhs)
of Eq. (6) overshadow the corresponding ones from
the nonrenormalizable SU(2)g-triplet couplings origi-
nating from the symbolic couplings ®®h'h and
OPh'W (see Ref. [37]).
(c) Wy contains the Yukawa interactions of the fer-
mions and is given by

Wy = q;(yijoh + ¥ioh") g5 + Li(yijeh + vi; W),
(7

where y;jo and y;;; are, respectively, the Yukawa
coupling constants of the quarks and lepton with the
Higgs superfield h, while y;, and yj; are their
Yukawa coupling constants with h'.

Defining properly [33,37] the symbolic couplings in
the rhs of Eq. (6), we obtain the mass terms

A -
Wy = (m’ — i/;T> (W + a;h])eh)

Ao\ -
+ (m’+ if;>hﬁT€(h’z+azhz)+“w (8)

where € is the 2 x 2 antisymmetric matrix with
€, = 1, the ellipsis includes color nonsinglet compo-
nents of the superfields, and the complex dimension-
less parameters a; and a, are given by

o m—ﬂTUT/\/i 9
L L [y (%)
m —iT’UT/\/Z
o m+/1T7)T/\/§ 9b
ay = B ATU/VE (9b)
m +AT’U7‘/\/§

(d) Wyr is the part of W which contains its non-
renormalizable terms,

LI NP
+ Ay

M, M,

o

Wik = 4;;

N
2M,

(ﬂ.ﬂ[hlz +/1M/|}'D[h]/ +l””lh]/2) + e
(10)
where Mg =5 x 10!7 GeV is an effective scale com-

parable to the string scale. Here we have displayed
explicitly only the terms which are relevant for our

PHYSICAL REVIEW D 89, 065032 (2014)

analysis. The first term in the rhs of this equation is
responsible for generating intermediate scale Major-
ana masses for the right-handed neutrinos after the
breaking of Gy g. These masses together with the Dirac
neutrino masses in Eq. (15¢) lead to the light neutrino
masses via the seesaw mechanism. The same term
is important for the decay of the inflaton system after
the end of inflation to right-handed neutrinos and
sneutrinos, whose subsequent decay can lead to
nonthermal leptogenesis. The fact that this term is
suppressed by Mg guarantees a sufficiently low reheat
temperature which is useful for a successful lepto-
genesis (see Sec. V). Finally, the second and third
term provide the y term of MSSM along the lines
of Ref. [6].

C. Yukawa quasiunification conditions

It is obvious from Eq. (8) that we obtain two pairs of
superheavy doublets:

W,H, and H), I, (11a)

where

oo W, + a,h,
VAR

(no summation over the repeated index r is implied). The
electroweak doublets H,, which remain massless at the
GUT scale, are orthogonal to the H), directions:

r=1,2 (11b)

—aih. +h
H, _ T TR (12)

V1o

Solving Egs. (11b) and (12) with respect to h, and k)., we
obtain

. _ H,+aH, —a,.H, + H,
" Vi V1+le P

The superheavy doublets H). must have zero VEVs, which
gives

and h) = (13)

<[h]r> _ <Hr> and _ar<Hr>

VIt VIt

From Eqgs. (7) and (14), we can readily derive the mass
matrices of the up- and down-type quarks (m;;;; and m;;p,
respectively), as well as the Dirac mass matrix ijy of the
neutrinos and the mass matrix m; ;g of the charged leptons:

() = (14)

_ Vijo — @Yo

my = (15a)
T 1+ Py

V2 = Yiju 2,
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/
yHQ —apy:; .
Mmijp = Ui;JlQUl =Yijp?1 (15b)
(1 +fa]?)2
VijL — @Y
p _ Yij L _ oD
ijv = 1+ |a2|2)% U2 = DYij b, (15¢)
VijL — YL o
miig = e VijEV1s (15d)

(14 o )2

where v, = (H,), 9y and j/BD are, respectively, the
effective Yukawa coupling constants of the up-type
quarks and the neutrinos with H,, and y;;p and J;;¢ are,
respectively, the effective Yukawa coupling constants of
the down-type quarks and the charged leptons to H.

In the absence of the superfields 7 and 7 which generate
the SU(2)g-violating mixing of the doublets in h and I,
Egs. (9a) and (9b) imply that @; = a,. This means that

Yiju=Jiyp and ID, = I (16)

i.e. exact asymptotic YU between the up- and down-type
quarks as well as between the neutrinos and the charged
leptons not only for the third one, but for all three families
of fermions. In particular, there is no mixing in the quark
sector. So the presence of the T and T superfields is
absolutely vital for the phenomenological viability of
the model.

Our present analysis is very similar to the analysis in
Refs. [33,35,37-40], where a set of generalized or monop-
arametric asymptotic Yukawa quasi-unification conditions
have been obtained. There are, however, two important
differences. In these references, only the third generation
of fermions has been considered and the gauge group was
larger than the left-right symmetric gauge group Gy used
here, yielding a relation between the quark and lepton
Yukawa coupling constants too and allowing the desired
mixing of the SU(2); Higgs doublets even with just a pair
of SU(2)g Higgs singlets. In this paper, the quark and
lepton sectors are completely independent as one can see
from Egs. (15a), (15b), (15c), and (15d). We will not
consider further the quark sector here. We will rather
concentrate on the lepton sector since this sector is
important for the scenario of nonthermal leptogenesis,
which is discussed in Sec. V.

III. THE INFLATIONARY SCENARIO

In Sec. III A, we describe the inflationary trajectory and,
in Secs. Il B and III C, we present the radiative and
supergravity (SUGRA) corrections incorporated in the
inflationary potential. Finally, in Sec. III C, we extract
the inflationary observables.

PHYSICAL REVIEW D 89, 065032 (2014)

A. The inflationary trajectory

The superpotential terms which are relevant for infla-
tion constitute Wy in Eq. (2). From the derived F-term
scalar potential in Eq. (3), we can deduce that the model
under discussion possesses the following classically flat
directions:

(i) the trivial one, which lies at

~i

=0 (17a)
with potential energy density

VO = k2M*, (17b)
This is a valley of local minima in the ®, ® directions
for

IS| > S. =M, (17¢)
but, for |S| < S,, is destabilized in the (& + &*)//2
direction. Let us note, in passing, that, under some
circumstances, this trajectory, for |S| < S, gives its
place to a classically nonflat valley of minima on
which new smooth FHI can take place along the lines
of Ref. [19]. The 4_>< 4 mass—s_quared matrix M%T of
the scalar fields 7, T, T*, and T* has determinant and
trace

Det(M?;) = M3(M7 + 2kkypM?) (M7 — 27 M?)
(17d)
and
Tr(MZ;) = 4(M7} + 2x357), (17e)

respectively. It can be easily shown that the mass-
squared matrix M ;T of the scalar 7, T system has four
positive eigenvalues for

M? 2
lier| < —ZKA} = [¢] 22 (17f)

and, thus, the trivial flat direction is an honest
candidate inflationary trajectory since it is stable
in the T, T scalar field directions for all the values
of S. On the contrary, violation of the bound in
Eq. (17f) implies that at least one of the eigenvalues
of the mass-squared matrix M2TT is negative and,
thus, this direction is a path of saddle points for all
the values of the field S. In this case, another
inflationary path comes into existence, namely the
semi-shifted one.
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TABLE II.
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The mass spectrum of the model along the inflationary trajectory in Eq. (17a).

Superfields of origin Real scalars Masses Weyl spinors Masses

o, O 2x4 my, = k(|S)? £ M*)!/? 2x2 My, = +«|S|

T, T 3x2 myy = (m% + /D)2 3x2 Msy = £x7|S| + /M7 + 2| S|?
3x2 iz, = (m% £+ /D_)'/?

(ii) The semi-shifted path found at ® = ® = 0 and

T—+ —£M2—M—%, 7= 2Tgr  (18a)
Kt 2x3. My
with
k7| > M7/ (2kM?) (18b)
and potential energy density
o M7 + 4 MIM* (186)

2
4k

On this path, the left-right symmetric gauge group
Gr is broken to Ggy x U(1),_; and a semi-shifted
FHI can occur as shown in Ref. [21].

(iii) The shifted path, which appears at

- (K24 222)MF + dkkp At M?

OP = , (19
4 22 (2 + 22) (192)
KMy - kS
=—— T=—— 19b
2Kt A (19b)
with potential energy density
2 M2 —4 /12M2 2
yo KMy — dip M) (19¢)

16x272 (k> + 22)

%)

e _ |R2(1/4E = D1+ (k4 207)/466) + (6 +0r) /80| 2

This trajectory is analogous to the one used for the
new shifted FHI of Ref. [18]. Along this direction,
G is broken to Ggy;.

In our subsequent discussion, we will impose the
condition in Eq. (17f)and concentrate on the first case
above, where the semi-shifted flat direction in Eq. (18a)
does not exist. Writing the potential energy density VY, in
Eq. (19¢) in the form

2 2 o
nsh — K'2 + /12 (4_5 - 1) Vtrv (20)
we can show that
Vgsh > Vo 21
for
! <Eé< ! (22)
401 —VikE+22/2) 40+ ViE+22)2)

Under these circumstances, it is more likely that the system
will eventually settle down on the trivial rather than the new
shifted flat direction and will undergo FHI of the standard type
along the trivial path. In the opposite case, where V0, < V9,
we better ensure that the critical value S,. of S on the new
shifted path in Eqs. (19a) and (19b) is larger than the critical S
on the trivial path given in Eq. (17c¢). In this case, the system,
after the end of inflation along the trivial path in Eq. (17a),
is expected to fall directly into the SUSY vacuum without
being trapped in the shifted path, where it could undergo a
second stage of inflation. Taking into account the findings
of Ref. [18], we see that the last prerequisite is achieved if

<|

B. Radiative corrections

The constant tree-level potential energy density
Vo = VO, which drives inflation along the trivial
trajectory, causes SUSY breaking leading [2] to the
generation of one-loop radiative corrections, which pro-
vide a logarithmic slope along the inflationary path. To
calculate these corrections, we construct the mass spec-
trum of the theory on the inflationary path in Eq. (17a).

2k (K2 + 22)(2(1 4+ 1/4E)K> + 212/ €)

(23)

Our results are summarized in Table II, where we have
defined

m% = M3 + ke M? + 263|S[? (24a)
and

D = 13(4MZ|S|> + (kM? £+ 2k7|S|*)?).  (24b)
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As we anticipated in the first item of Sec. III A, we see,
from Table II, that the mass-squared matrix of the scalar
components of the ® and ® superfields develops a negative
eigenvalue as |S| crosses below its critical value S, whereas
the system of the scalar components of the T and T is
completely stable for all values of S provided that the
condition in Eq. (17f) is satisfied.

Inserting the spectrum shown in Table II in the well-
known Coleman-Weinberg formula [41], we find that the
one-loop radiative correction to Vyg is

Viie = Vo + Vir, (25)
where
2 m3, M3,
Voo = @1;_ <2mg, In =3 —2M3; In F) (262)
and
3 2 ~ 2 M2
Vir=g 3 Z: <m3,1n P31 4 nd,in 231 A2 —2M3%;In Ag’)
(26b)

with A being a renormalization scale. In the relations
above, we have taken into account that the dimensionality
of the representations to which ®, ® and T, T belong is 2
and 3, respectively (see Table I). It is important to note that

> (2m3, —2M3) = 4ctm? (27a)
I=+,—
and
> (miy + Y —2M3) = 8AG M (27b)

I=+,—

are S independent, which implies that the slope of the
inflationary trajectory is A independent and the scale A,
which remains undetermined, does not enter the infla-
tionary observables. Moreover, we can show that, in the
limit x = |S|?/M? > 1, the potential V. in Eq. (25) can
be well approximated by

Vi = VHIO(ZKZfrc(sz) + 6K%‘frc(4’<%"x))’ (28a)
where
fule) =y n 23 (2sb)
T T2 A2 T2

As can be easily deduced from these formulas, Vi is
independent of A and the sign of k7 and, to a considerable
degree, of My too.

PHYSICAL REVIEW D 89, 065032 (2014)

C. Supergravity corrections

The F-term tree-level SUGRA scalar potential VIS—I(I}O
of our model on the trivial path is obtained from Wy in
Eq. (2) and the Kihler potential K by applying the standard
formula

K/m3 apyak |WH1|2
VHIO = e/ | KYFiF; —3——— (29a)
P
with
2
K _ _
K3 = 87 KO‘/’Kﬁ7 =047, (29b)
Op*Op*P
and
K
=W O W‘“, (29¢)
op*  0p* m

where mp is the reduced Planck scale and ¢* denotes the
complex scalar fields of the model with ¢*® being their
complex conjugates. The K&hler potential is a real function
of the complex scalar fields and their complex conjugates
and must respect all the symmetries of the model presented
in Table I (including the R symmetry). We consider here a
generic form of the Kdhler potential, which, however, does
not deviate very much from the canonical one and can, thus,
be expanded as follows:

1 S|+

= [S]* + |®|* + |<I>|2+Tr|T|2+Tr|T|2+ k45| |

mp
L N N T N Nis
+6k65—4+8k —+E 10s—P+E 125710
T, (30)

where kyg, keg, kgg, kios, and kj,g are real positive or
negative constants of order unity and the ellipsis represents
terms of higher order involving only the inflaton field S as
well as terms of higher order in the waterfall fields ®, D, T,
and T and any order in S. We neglect the latter terms since,
as we will now show, they are irrelevant on the trivial
inflationary path (the minimal terms for the waterfall fields
are also irrelevant during inflation, but we include them in
the expansion since they are necessarily present).

To prove this statement, observe from Table I that the
symmetries of the model do not allow terms in K which
are linear in the waterfall fields. So the only terms in K
involving these fields are quadratic or of higher order in
these fields. From Eq. (29¢), we then see that these terms
do not contribute to F, evaluated on the trivial path.
The only way for terms in K involving waterfall fields
to contribute to the potential on the trivial path is then
via K%. However, even this does not happen for the
following reason. It is clear that K ;3 vanishes on the trivial
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inflationary trajectory if just one of its indices corresponds
to a waterfall field, which implies the same property for
K% too. Consequently, the terms in K involving waterfall
fields could influence the inflationary potential only via
K% with both its indices corresponding to waterfall fields.
However, these are multiplied by F, with a corresponding
to waterfall fields, which are zero on the trivial trajectory as
one can see from Egs. (2) and (29c¢).

Using Egs. (2), (29a), and (30), the SUGRA scalar
potential VIS{?O on the trivial trajectory can be expanded as
follows:

5 v
Viiio = Vo (1 +> (e ( Vg@) ) 31)

v=1

where ¢ = /28 is the real inflaton field which is canoni-
cally normalized (neglecting terms of order |S|* or higher
which multiply the kinetic term of S) with S being rotated
on the real axis by an appropriate R transformation. Here

Cox = kyg, (32a)
1 7k 3k
c4K:§—%+kﬁs—%, (32b)
2 3k TKg 10kgg

+ ki + — Bkyskes + 2kss,

‘k="3T3 T4

3
(32¢)
3 Skis  13kys | 41K Tkl e 13kgs
BT QT 24 33 4 STy
143kyskes  OK3skes  9KZ  39kgs
- - by,
T > 4 g I taskes
(32d)
2 3% k 13k2
Clok = 15 + 510s + kg + ﬁ — Skygskas — 244S
Alkls This s | Skes  29kuskes
32 4 s 3 6
10342 .k, 27ky k2
lzs S _ 6k skes — Skig + 74:5 65+ Sk
67kyck
— %85 + 6k gkgs — Okgskss. (32e)

In the sum which appears in the rhs of Eq. (31), we have
kept only the first five terms, i.e. the terms up to the tenth
order in o, which is consistent with the expansion of the
Kihler potential K in Eq. (30) up to the twelfth order in |S].
Note that, although the inflationary observables have a non-
negligible dependence only on the two or three lower terms
in the sum in the rhs of Eq. (31), we included some of the
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higher terms too since these terms control the asymptotic
behavior of the potential and are, thus, needed in order to
guarantee that the potential is bounded below at large
values of |S]| (see Sec. IV).

The overall inflationary potential Vi on the trivial path
is found by adding the SUGRA inflationary potential V3,
in Eq. (31) and the one-loop radiative correction Vi in
Eq. (25):

Vi = Vi + Vi (33)

IV. CONSTRAINING THE MODEL PARAMETERS

We will now describe, in Sec. IV A, the inflationary
constraints which we will impose on the resulting cosmo-
logical scenario, and delineate, in Sec. IV B, the parameter
space of our model which is allowed by these constraints.

A. Inflationary requirements

We assume that (i) the observed curvature perturbation
is solely due to the inflaton field o, (ii) £ < 1/4 and the
restrictions in Eqgs. (17f) and (21) or (23) are fulfilled, and
(iii) the FHI is followed by damped coherent oscillations
about the SUSY vacuum until reheating after which
radiation dominates leading eventually to matter domi-
nance. Under these hypotheses, the parameters of our
model can be further restricted by imposing the following
requirements:

(a) The number of e-foldings Ny, that the pivot scale
k, = 0.05/Mpc undergoes during FHI has to lead
to a solution of the horizon and flatness problems of
standard big bang cosmology. Employing standard
methods [12,15,26], we can derive the relevant

condition,
o do Vi 2 Vll-l/lg
Ny = | = 2=1944Zp 2HO
I A m2 Vi T3 TGev
1 T
—1 h_ 34
T3 T Gev 4

where o is the value of ¢ at the end of FHI, o, is the
value of ¢ when the pivot scale k, crosses outside the
horizon during FHI, the prime in this section denotes
derivation with respect to o, and Ty, is the reheat
temperature after FHI. The value o can be found, in
the slow-roll approximation [26], from the condition

max{e(oy), |n(oy)|} =1, (35a)
where
2 ! 2 V//
ez@< HI) and p=mi-H  (35b)
2 \Vu Vi

or the saturation of the bound in Eq. (17c¢).
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(b) The amplitude A, of the power spectrum of the
curvature perturbation which is generated during
FHI and calculated at k, as a function of o, is to be
consistent with the present data [15,16], i.e.

3/2
A1 Vidle)
2V/3am; [Vig(0.)]

(c) The scalar spectral index ng, its running

a, = dng/dIn k, and the scalar-to-tensor ratio r,
which are given by

=4.685x 107,  (36)

ng =1—6¢, + 21,, (37a)

ag =2(4n? — (ng—1)%)/3 = 2¢,, r = 16e,,

(37b)

where & = mgVi, Viy/ Vi and all variables with the
subscript * are evaluated at ¢ = o,, should lie in the
following 95% confidence level (C.L.) ranges [15,16]
based on the ACDM model:

ng = 0.9603 £ 0.014 = 0.945 < ny 0975, (38a)

a; = —0.0134 £0.018, and r<O0.11. (38b)
Limiting ourselves to a,’s consistent with the assump-
tions of the power-law ACDM cosmological model,
we have to ensure that |a,| remains negligible. Since,
within the cosmological models with running spectral
index, |a,|’s of order 0.01 are encountered [15,16], we
impose the following upper bound:

|| < 0.01. (39)

(d) The mass My, of the charged SU(2); gauge bosons
(W3), which are the only Gy nonsinglet superheavy
gauge bosons in our case, should take the value
dictated by the unification of the MSSM gauge
coupling constants. Using Ref. [21], we then infer that

My, =g\/vg +205=2x10"° GeV with g=0.7

(40)

being the value of the unified gauge coupling constant.
(e) The inflationary potential must be bounded below as
|S| = oo to avoid the possibility of a disastrous
runaway of the system to infinite values of the inflaton
field. This requirement also facilitates the possibility
that the system may eventually undergo an infla-
tionary expansion under generic initial conditions.
(f) The expansion of V{5, in Eq. (31) is expected to
converge at least up to ¢ ~ ... This can be ensured if,
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for ¢ ~ 0,, each successive term in this expansion
(and the expansion of K in Eq. (30)) is smaller than
the previous one. In practice, this objective can be
easily accomplished if the k’s in Eq. (30) are
sufficiently small.

(g) In our model, we were not able to obtain monotonic
inflationary potentials. The potentials rather develop
a maximum and a minimum. So the FHI turns out to
be of the hilltop type [24] with ¢ rolling from the
region of the maximum of the potential down to
smaller values. In this case, a mild tuning of the
initial conditions is required [25] in order to obtain
acceptable ng’s. In particular, the lower the n, we
want to obtain the closer we must set 6, t0 Gy,
where o,,,, is the value of ¢ at which the maximum
of Vy lies. To quantify the amount of this tuning of
the initial conditions, we define [25] the quantity:

Apy, = Tmax =% (41)

Gmax

The naturalness of the attainment of the hilltop FHI
increases with A ,. So we must at least require that
A, is not unnaturally small. Moreover, one should
avoid the possibility that the system is trapped near the
minimum of the inflationary potential and, conse-
quently, no FHI takes place. Probably an era of eternal
inflation prior to FHI could be useful [24] for solving
the naturalness problem of the initial conditions for
the hilltop FHL

B. Results

As it can be easily seen collecting the relevant expres-
sions above, our inflationary model depends on the
parameters

A, M, My, kig, kes, kgs, kiss.

K, K, klOS9

The first five of these parameters appear in the
superpotential—see Eq. (2)—while the others appear in
the Kihler potential [see Eq. (30)]. We concentrate on a
realization of FHI which attains the fulfillment of Eq. (40),
as suggested first in Ref. [14] and further exemplified in
Ref. [12]. As a consequence of this equation, M is fixed
as a function of the other superpotential parameters. In our
computation, we use k7, M, and 1 as input parameters and
restrict « and o, so that Egs. (34) and (36) are satisfied. The
restrictions on ng from Eq. (38a) can be met by adjusting
conveniently k,g and kqg, whereas the last three parameters
of the Kihler potential assure that the function Vyy is
bounded below. We take kgg = 1, ko5 = —1, and k5 = 0
throughout the calculation and verify that the values of
these quantities play no crucial role in the inflationary
dynamics. Finally, using Eq. (37b), we extract o and r.
The crucial difference between our approach and the one
of Refs. [25,42] is, however, the sign of ¢, = k45, Which

065032-9



R. ARMILLIS, G. LAZARIDES, AND C. PALLIS

here is negative (cf. Refs. [12,14]). As a consequence, the
fulfillment of Eq. (38a) requires negative c,x and, thus,
positive kqg [see Eq. (32b)]. Note that, with this choice of
signs, «, is somewhat enhanced. More explicitly, the
potential Vi, which is given by Egs. (25), (31), and
(33), can be approximated as

02 64
Vi = Ve + VHIO<1 + \k4s|ﬁ— |C4K|m
P P

06 08
~leex| 2 o), 42
|cok| 8mt + [eskl 16m1§> 42)

where the formula for the potential Vi, should be taken
from Eq. (28a) and the fact that cgx and cgg turn out to be
positive for the values of the parameters chosen here is
taken into account. As a consequence, Vy unavoidably
develops a nonmonotonic behavior. Employing the expres-
sion in Eq. (42), we can show that Vyy reaches a local
maximum at the value of the inflaton field

_ mP\/ﬂ|k4S| + /M kg + (K2 + 363 |cak|

Omax = (43a)
" V27| cyk
and a local minimum at
\/3|C6K| + \/96%1( + 32|cag co|
Omin = Mp . (43b)

2y |lesk ]

In deriving Eq. (43a), we kept terms until the fourth power
of ¢ in the expansion in the rhs of Eq. (42), whereas, for
Eq. (43b), we focused on the last three terms of this
expansion and dropped V.. This is the reason why the rhs
of the latter formula is independent of V. and cyg.

The structure of Vi is visualized in Fig. 1, where we
display the variation of Vi as a function of /M for
k= 0.001, x; =0.01, 1=0.1, M; =2.5x10'° GeV,
kys = —0.0215, and kgg = 10.9. These parameters yield
M =26x10'% GeV, n,=0.96, a,=00013, and
r=2.25x10"7. The maximum of Vy; is located at
Omax/M = 3.4{3.7}, whereas its minimum lies at
Omin/M = 56{66.5}—the values obtained via the approxi-
mate Eqgs. (43a) and (43b) are indicated in curly brackets.
The values of ¢,/M =271 and o;/M = 1.41 are also
depicted in Fig. 1. The naturalness parameter of the hilltop
FHI turns out to be A, = 0.2.

Confronting FHI with the constraints of Sec. IV A, we
can delineate the allowed (lightly gray shaded) region in
the « — (—kyg) [k — kgs] plane (see Figs. 2(a) and 2(c)
[Figs. 2b and 2d]). We take xr = 0.01, A =0.1, and
My =25x10'° GeV for panels a;, a, or k7 = 0.005,
A =0.05, and M; = 3 x 10'% GeV for panels b;, b,. The
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FIG. 1. The variation of Vyy; as a function of ¢ for x = 0.001,
kr =001, 1=0.1, M;=25x10'"° GeV, k,; =—0.0215,
kGS = 109, kgs = 1, klOS = —1, and klZS =0 (resulting to
ng = 0.960). The values o,, of, 0., and oy, of o are also
depicted.

convention adopted for the various lines is also shown in
the figure. In particular, the gray dashed [dot-dashed]
lines correspond to ny = 0.975 [ny, = 0.946], whereas the
gray solid lines have been obtained by fixing n, = 0.96
[see Eq. (38a)].

We observe that, as x increases, there is a remarkable
augmentation of a, which saturates the bound in Eq. (39)
on the thick black solid lines at the right end of the allowed
regions. The inequalities in Egs. (21) and (23) are violated
to the left of the black dotted lines. The first of these
inequalities, though, can remain valid at even smaller
values of k if we take smaller values of x; and A and
larger values of M, and, thus, the dotted line is shifted to
the left in this case as one can easily deduce by comparing
Figs. 2c and 2d with Figs. 2a and 2b. This behavior can
be understood by the fact that, for such values of the
parameters, the potential VO, which is given by
Eq. (19c)-or Eq. (20)-, increases and so the bound in
Eq. (21) is saturated at smaller values of k. Note that this
bound can become totally irrelevant for our calculation if
we use k7 < 0, since, in this case, the lower bound on £ in
Eq. (22) becomes extremely small and, thus, it is auto-
matically satisfied for natural values of « and A (of order
0.1). Had we used k7 < 0 with absolute value equal to its
values used in Fig. 2, the required values of k;g and kgg
would have been similar to those found for k7 > 0 for most
of the allowed values of « in this figure, but smaller values
of k would have also been possible. However, since the
achievement of the observational constraints of Sec. IV A
pushes kg to rather high values and A, to too small values
for such small values of «, it is not worth continuing the
exploration of the parameter space in the region of such
very small «’s.

Interestingly  enough, the allowed regions in
Figs. 2a and 2b almost perfectly coincide with the allowed
regions in Figs. 2c and 2d in their common range of . This
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FIG. 2. The (shaded) regions allowed by Eqs. (21) or (23) as well as Egs. (34), (36), (38a), (39), and (40) in the x — (—k4g) plane
(panels a, c) and the x — kgg plane (panels b, d). We take kgg =1 and kjog = —1 as well as «; = 0.01, 1 =0.1, and M; =
2.5 x 10'® GeV for panels a, b, or k7 = 0.005, A = 0.05, and M; = 3 x 10'® GeV for panels c, d. The requirements in the paragraphs e,
f, and g of Sec. IV A are also satisfied in these regions. The value of n; on the various lines is indicated.

signals the fact that the SUGRA corrections to Vi
originating from the two first terms in the sum in the
rhs of Eq. (31) dominate over the radiative corrections in
Eq. (25). The discrepancy between the various lines ranges
from 2% to 10%. For both sets of values of the input
parameters, we see that the required values of |k,g| increase
with k, whereas the values of kqg drop. Also the mass scale
M increases with x and My. As we show in Sec. VI B,
where the ranges of parameters are further restricted, «’s
lower than about 0.001 are more preferable from the point
of view of nonthermal leptogenesis and the G constraint.
Focusing on the values of the input parameters used in
Figs. 2c and 2d, which ensure a broader allowed space, and
taking n, = 0.96, we find

K
0008 <-—— <21, 264<-—— <285 (44
1027 101 GeV (442)
115 < 1_0f§ <47, 0.65S ke <25, (44b)
—0 _ r
0014553 27x10 < pFs25 (4o

In this region, the naturalness parameter A, of the hilltop
FHI ranges between 0.05 and 0.29. From the data used
in Fig. 2, one sees that A, increases with k. The Kihler
potential parameter —k,g is restricted to somewhat small
values in order to avoid the # problem of FHI. This fact
signals a second mild tuning, which is however encoun-
tered in many models of FHI (see e.g. Ref. [3]). On the
other hand, no tuning is needed as regards kgg since it takes
values of order unity for most x’s.

V. NONTHERMAL LEPTOGENESIS

In this section, we discuss the inflaton decay and the
reheating of the universe after inflation (Sec. V A). We
also describe the scenario for generating the observed BAU
in our model via a primordial nonthermal leptogenesis
(Sec. V B) consistently with the gravitino (G) constraint
[22,23] and the low energy neutrino data [43,44] (Sec. V C).

A. The decay of the inflaton

Right after the termination of FHI, the inflaton field S
crosses S, the trivial inflationary path in Eq. (17a) is
destabilized in the (® 4 ®*)/+/2 direction and the system
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is driven towards the SUSY vacuum in Eq. (5a). Soon
afterwards, the system settles into a phase of damped
oscillations about the SUSY vacuum and eventually decays
reheating the universe. The constitution of the oscillating
inflaton system (IS) can be found by constructing the
neutral scalar particle spectrum at the SUSY vacuum in
Eq. (5a). To this end, we expand Vy in Eq. (3) up to terms
of quadratic order in the fluctuations of the fields about the
vacuum and find that

Vi = (6% 6T )M2<5<I)+>
H + 1 ST
_ oT
+ (8T 55*)M§(5S>+---, (45)

where the (complex) deviations of the fields S, ®, ®, T, and
T from their values in the vacuum are denoted as 8S, 6@,
6®, T, and 6T respectively and we have defined the
complex scalar fields

5B, = (60 + 5D)/V2. (46)

Note that the combination 0®_ does not acquire mass from
Vu in Eq. (3) as it is the Goldstone boson absorbed by
the supermassive neutral gauge boson of the model. Recall
that these complex scalar fields belong to the SM singlet
components of the various superfields. The mass-squared
matrices M7 and M3 in Eq. (45) are given by

2(k% + A%)v2 D
M%:<( s 1 ) @7
D, M3 + 4x30%
with
Dl = \/E(lMT — 2KKT’UT)1}(I, (47b)
and
M2 + 2022 D
M2 — ( AT 2 ) (47¢)
D, 4k3vf + 26205
with
Dz = —2K'TMT’UT + 2’(/11}%@- (47d)

To find the mass eigenstates of the IS, we have to
diagonalize the matrices above. As it turns out, these
matrices have the same eigenvalues. So, the diagonalization
can be achieved via two orthogonal matrices U, as
follows:

U MU =

U,M3UT = diag(m?_,m}.),  (48)

where
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m?, = (m* + D)/2 (492)

with
= M3 + 43 + 2(> + 1) v3, (49b)
D? = in* — 8(kMy + 2x7Avy) (49¢)

The matrices which diagonalize M? and M3 can be cast
in the form

Vius/Nuy 1/N, .
U,,z( /Ny 1Y *) with n=1,2, (50a)
Vo./N,_. 1/N,_
where
C,tD
V= D, and N, =/1+ Vfl i (50b)
Here we use the abbreviations
C) = —M3 — 4iGv7 + 2(k> + 12)v3, (50c)
C, = M2 —4KTUT 2(x? —/12) (50d)

One can show that D? = 4D2 + C? for n = 1, 2, which
implies that D? is positive and, thus, D in Eq. (49a) is a real
number taken positive. Also, it is evident that the second
term in rhs of Eq. (49¢) is negative and, thus, the masses-
squared in Eq. (49a) are both positive.

Inserting unity (1 = U,U} = U}U,) on both sides of
M3 and M3 in Eq. (45), the potential Vi can be brought
into the form

=S m3 (1, + 5,12 + - 51)
r=+

where the complex fields ¢, and S, are given by

6T + V. 6P 88 +V,, 6T
q)i:& and Si:“g—i_;Zi. (52)
Nlj: NZi

Solving Eq. (52) with respect to 6@, 6T, 6T, and &S,
we find

Ni_o_—N.P
5, =— ot (53a)
Vie=Vi,
(ST — _Nl—Vl-'r@— + N1+V1—@+ (53b)

Vie=Vi,

and
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- N,_S_—N,.S
6T = 22— 245+ (54a)
Voo = Vo
—N> Vo S_+Noy Vo S,

oS =
Voo = Vo

(54b)

After the end of FHI, each of the four complex scalar fields
®, and S oscillates about the SUSY vacuum and decays
into a pair of right-handed sneutrinos (¢§) or neutrinos
(y,<). The masses of these (s)neutrinos are generated, after
the Ibreaking of Gy, by the first term in the rhs of Eq. (10)
and turn out to be

M. = 2/1iu"vc21>/Ms' (55)

Here we assumed that the superfields [{ have been rotated
in the family space so that the coupling constant matrix 4;;
in Eq. (10) becomes diagonal with real and positive
eigenvalues A;,c. This is the so-called [45] right-handed
neutrino basis, where the right-handed neutrino masses are
diagonal, real, and positive. The first coupling in the rhs of
Eq. (10) together with the superpotential terms in Eq. (2)
also leads to the decay of the IS into a pair of right-handed
neutrinos or sneutrinos. In particular, from this coupling,
we obtain the following Lagrangian term (note that the
decay of T via the two last terms in the rhs of Eq. (6) is
kinematically blocked):

v
Lor = =V 2y ﬁﬁ’ﬂl/u;%g +H.c.
S

= =4 _re Py, +He., (562)
r==+
where
A = V2hyeve/ M, (56b)
and
—N Vi_-V for r = +
Yor = { 1/ (V) 1+) (56¢)
N /(Vi- = Vi) for r = —,

as one finds using Eq. (53a).

Moreover, from the F-term (OWy/0®)*(OWyr/0®) +
H.c. with Wiy and WyR in Egs. (2) and (10), respectively,
we obtain the Lagrangian terms

? (kS* + AT*)616 + H.c.

S

EST = _21}@}“11/ M

= -] Z}/S,S myviv$ + H.c.,
r=+

(57a)

where the yg,’s can be derived from Egs. (54a) and (54b)
and turn out to be
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\/§U<I>(KN2+ V,_ —AN,.)
Vs+ = ; (57b)
my (Voo = Vo)
205 (—KkN,_V AN,_
vs. = \/_UCI’( KNy 2+ + 2 ) (57C)

mi_ (Voo — V)

For my. > M, the Lagrangians Lg; and Lg7 in
Egs. (56a) and (57a) give rise to a common decay width
Iy T for @ into a pair of right-handed neutrinos Wy and
S, into a pair of right-handed sneutrinos +¢ and a different
common decay width I'__,c for ®_ into a pair of right-
handed neutrinos y,. and S_ into a pair of right-handed
sneutrinos v{: l

1 1
Eﬁyéimli on —Myim. (58)

Fli—»vf =
The inflaton subsystem consisting of ®, and S, will be
called the I, subsystem, while the one consisting of ®_ and
S_ will be called the I_ subsystem. We checked numeri-
cally that the widths of the SUGRA-induced [46] decay
channels of the IS are negligible in our model for the
values of v4 and my_ obtained in Sec. IV B and, therefore,
we do not include these channels in our calculation. Since
the decay width of the produced v§ is much larger than
I _,.—see below—the reheating temperature 7 is
exclusively determined by the decay of the IS and is
given by [47]

72 1/4
T, — <T> V/mpl'_,  where I, = ZF&—W;‘-
i

57°9.
(59)

Here g, counts the effective number of relativistic degrees
of freedom at temperature 7, and we assumed that
I'_ < TIY,. For the MSSM spectrum plus the particle
content of the superfields N and N, we find

that g, = 228.75 + 4(1 4+ 7/8) = 236.25.

B. Lepton Asymmetry and Gravitino Abundance

The implementation of nonthermal leptogenesis requires
that the right-handed (s)neutrinos which emerge at reheat-
ing decay out-of-equilibrium [48] into light particles.
This condition is automatically satisfied provided that
Ty < M. The superfield ¢ decays into a right-handed
Higgs superfield and a SU(2); doublet right-handed
antilepton superfield via the tree-level Yukawa couplings
derived from the second term in the rhs of Eq. (7).
Interference between tree-level and one-loop diagrams
generates a lepton-number asymmetry €; per vf decay
[48] provided that CP is violated. The resulting overall
lepton-number asymmetry Y; = n; /s (n; is the lepton-
number density and s the entropy density) after reheating
is given by
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and can be partially converted via electroweak sphaleron
effects into baryon-number asymmetry which, in MSSM, is
estimated to be

Yp =—-0.35Y;. (60b)
The factor 2 in the rhs of Eq. (60a) comes from the fact that
each decaying inflaton gives two right-handed (s)neutrinos,
whereas the factor (5/4) is consistent with the calculation
of Ty, in Ref. [47], which leads to Eq. (59). Finally, the
numerical factor in the rhs of Eq. (60b) originates [49] from
the electroweak sphaleron effects.

We should, however, keep in mind that, if the lightest
right-handed neutrino mass M, is less than about 107,
Y, can be partly washed out due to v mediated inverse
decay and AL =1 scattering processes—this possibility is
analyzed in Ref. [50]. In order to avoid the computational
complications related to this washout, we limit ourselves to
cases with M, 2 10T, so that no washout of the non-
thermally produced Y; occurs. Moreover, Y; is not erased
by AL = 2 scattering processes [51] at all temperatures T
between 100 GeV and T, since Y, is automatically
protected by SUSY [49] for 107 GeV < T < Ty, and for
T < 107 GeV these processes are well out of equilibrium
provided that the mass of the heaviest light neutrino is
smaller than about 10 eV. This constraint, however, is
overshadowed by a more stringent restriction induced by
the current data [16,52] (see Sec. VI).

The reheat temperature 7'y, must be compatible with the
constraint on the G abundance Y; at the onset of big
bang nucleosynthesis (BBN). This abundance is estimated
to be [23]

Ye =19 x 10"2T, /GeV, 61)

where we assume that G is much heavier than the gauginos.
Note that nonthermal G production is [46] also possible
within SUGRA. However, we adopt here the conservative
estimate of Y in Eq. (61) since this nonthermal production
of gravitinos depends on the mechanism of SUSY break-
ing. It is important to mention that Egs. (60b) and (61) give
the correct values of baryon asymmetry and G abundance
provided that no entropy production occurs at 7 < Th,.
This requirement can be very easily achieved within our
setting.

The mass spectrum of the N-N system—see second
term in Eq. (10)—consists of a saxion and an axion
corresponding, respectively, to the real and the imaginary
part of the complex scalar field N_ = (6N —6N)//2,
an axino w_ = (wy —wy)/V2, two extra real Higgs
fields corresponding to the real and the imaginary
part of N, = (6N +6N)/+/2, and an extra Higgsino
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wyy = (wy +wy)/v2 all with masses of order 1 TeV
except, of course, the axion which is very light (0N, SN are,
respectively, the complex deviations of N, N from their
VEVs and y denotes a Weyl spinor).

The extra Higgs fields and the extra Higgsino can decay,
if this is kinematically allowed, to ordinary Higgs fields and
Higgsinos before dominating the universe [53]. However,
under certain conditions, the extra Higgsino can contribute
to the cold dark matter (CDM) in the universe [54].

Regarding the saxion in N_, we can assume that its
decay mode to axions is suppressed with respect to its
decay modes into gluons, Higgses, and Higgsinos [55,56]
and the initial amplitude of its oscillations is approximately
equal to the axion decay constant f, = 10'> GeV. Under
these circumstances, the saxion can [55] decay before
dominating the universe and the stringent upper bound on
T,, from the limit on the effective number of neutrinos at
BBN is alleviated [56]. As a consequence of the relatively
large decay temperature of the saxion, the resulting lightest
sparticles (LSPs) are likely to be thermalized and, therefore,
no upper bound on the saxion abundance and, thus, 7', is
obtained [56].

The axions could in principle contribute to dark matter,
but we should keep in mind that they generate isocurvature
perturbations—see e.g. Refs. [53,57]—which are strongly
restricted by the present data from the Planck satellite [15].
Indeed, since in our model the PQ symmetry must be
broken during FHI— see Ref. [53]—the axion acquires
quantum fluctuations as all the almost massless degrees of
freedom. At the QCD phase transition, these fluctuations
turn into isocurvature perturbations in the axion energy
density, which means that the partial curvature perturbation
in axions is different than the one in photons. Therefore,
a large axion contribution to CDM is disfavored within
our model.

Finally, the axino cannot be the LSP because its large
expected mass and the relatively high T, s encountered
here would then lead [58] to an unacceptably large CDM
abundance. Nonetheless, the axino may [58] enhance
nonthermally the abundance of a neutralino LSP which
is a successful CDM candidate.

C. Leptogenesis and low energy neutrino data

As mentioned above, the decay of a right-handed
sneutrino v§ or neutrino y,. emerging from the IS decay
at reheating can generate a llepton asymmetry ¢; due to the
interference between the tree-level and the one-loop decay
diagrams as well as the violation of the CP symmetry. The
generated ¢; can be expressed in terms of the Dirac mass
matrix m> of the neutrinos defined in the right-handed
neutrino basis,

Im{[(my" mP %/'
& = 28 2{[;2( D-}-)b}) (Fy(xi;) + Fs(xi)),
T of my my);

(62a)

14
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where

X = Mive (62b)
M,
and (H,) = 174 GeV assuming large tan f. Also Fy and
Fg represent, respectively, the contributions from the vertex
and self-energy diagrams and, in SUSY theories, are given
[59] by

Fy(x) =—xIn(1+x72), (62c)

2x
x2—1

Fg(x) =— (62d)
Note that Egs. (62a), (62c), and (62d) hold provided that
the right-handed neutrinos are far from being degenerate,
which is true in our case. In particular, for strongly
hierarchical M;’s with x;; > 1, j# i, we obtain the
well-known approximate result [50,60]

3
2
i

FV+FS=_ (63)

The Dirac mass matrix m? in Eq. (62a) is diagonalized in
the so-called [45] weak basis, in which the lepton Yukawa
couplings and the SU(2), interactions are diagonal in the
generation space. In particular, we have

U'mPU" = dP = diag(m?, mY, mY), (64)

where m?, mY, and mY are real and positive and U and U®
are 3 x 3 unitary matrices which relate /; and v¢ in the right-
handed neutrino basis with /; and v{’ in the weak basis as
follows:

I'=1U and v =U°"". (65)

Here, we write the left-handed SU(2); doublet lepton
superfields as row 3-vectors in family space and the
right-handed SU(2); singlet antilepton superfields as
column three-vectors. The matrix m>mP in Eq. (62a) then
becomes a function of d° and U¢. Namely,

my mP = UctdP P ue. (66)

The nonthermal leptogenesis scenario depends on the
low energy neutrino data via the seesaw formula, which
gives the light-neutrino mass matrix m,, in terms of m? and
M. In the right-handed neutrino basis, the seesaw
formula becomes

m, = —mPd (mP)T, (67a)

where
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dye = diag(Mly”v My, MBU‘) (67b)

with M, < My,c < M3, real and positive. Solving
Eq. (64) with respect to m> and inserting the resulting
expression in Eq. (67a), we find that the light neutrino mass
matrix in the weak basis is given by

m, = U'm,U* = —d°U°d;' UTdP. (68)

This mass matrix can be diagonalized by the unitary
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix U,

U;rmuUV = diag(mlw myy, m3u)v (69)

with m,, m,,, and m;, being the real and positive light
neutrino mass eigenvalues and the PMNS matrix U,
parametrized as follows:

—id

C12€13  S12€13 S13€
U=\ Uy, Uy spcy |-P (70)
Usi, Uz, €23C13
Here
_ is
Uiy = —Ca3812 — 503€12813€", (71a)
_ is
Uy = c23¢10 — 5238128 13€", (71b)
_ is
Uiy = 523812 — €23C10813€", (71¢)
_ is
Usyy = —$23C12 — c3812513€", (71d)

where ¢;; = cos 0;;, s;; = sin 0;; with 8;; being the appro-
priate mixing angles and ¢ is the CP-violating Dirac phase.
The two CP-violating Majorana phases ¢; and ¢, are
contained in the matrix

P = diag(e=#1/2, e=i02/2 1). (72)

Following a bottom-up approach along the lines of
Refs. [50,60], we find m, via Eq. (69) using as input
parameters the low energy neutrino observables for various
values of m, and the CP-violating Majorana phases ¢ and
¢, and adopting the normal or inverted hierarchical scheme
of light neutrino masses (see Sec. VI A). Taking also mP as
input parameters, we construct the complex symmetric
matrix

W = —(dP)~'in, (d°)~! = Ud) UT (73)
—see Eq. (68)—which we can extract d,- as follows:

d? = U WWTUe. (74)
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Note that WWT is a 3 x 3 complex, Hermitian matrix and
is diagonalized following the algorithm described in
Ref. [61] so as to determine the elements of U¢ and the
M,,’s. We then compute mPTm? through Eq. (66) and the
g;’s via Eq. (62a).

VI. UPDATING THE CONSTRAINTS ON THE
MODEL PARAMETERS

The parameters of our model can be further restricted if,
in addition to the inflationary requirements mentioned in
Sec. IV A, we impose extra constraints arising from the
postinflationary evolution predicted by our model. These
constraints are outlined in Sec. VI A, whereas, in Sec. VI B,
we derive the overall allowed parameter space of
our model.

A. Post-inflationary requirements

We summarize below the requirements which guarantee
a successful postinflationary evolution in our scheme:
(a) We require the following bounds on M,,.:

2
Mil/"' S 7111‘)47@, Mlb" z IOTrh, and my_ > 2M1yr.

S

(75)

The first bound ensures that the coupling constants 4;,.
in Egs. (10) and (55) acquire perturbative values, i.e.
/1,2“ /4 < 1. The second inequality is applied in order
to protect the generated lepton asymmetry Y; against
any possible washout by v{-mediated inverse decay
and AL =1 scattering processes as mentioned in
Sec. V B (see Ref. [50]). Finally, the last bound
ensures that the decay of the IS into a pair of 1{’s is
kinematically allowed for at least one species of
the 1¢’s.

(b) The Dirac masses m? selected for v; at Mgy need to
be consistent with the relations in Eqgs. (15¢) and
(15d). In order to reduce the number of free
parameters and simplify the relevant constraint,
we assume that y;; and y;-jL are simultaneously
diagonal in the weak basis with elements y;; and y/, ,
respectively. Under this assumption, we have to
check that the selected mP’s can be obtained
together with the masses m;r of the charged leptons
by a natural set of y;; ’s and y/, ’s with a; and a, of
order unity. In other words, the solution of the six by
six system of equations

YiL — az)’i'L vy = mP YiL — aly;L
V1t v V1

has to exist and be natural for a set of natural values
of a; and a,. Here we put v; = 174 cos # GeV and
v, = 174sin GeV, and m;; and mP are taken at

vy =mip (76)
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Myt assuming that the running from Mgy until the
scale of nonthermal leptogenesis A;, which is taken
to be A; = my_, is negligible. Working in the context
of MSSM with universal gaugino masses and
tan f = 50—favored by the recent results of LHC
[62] on the lightest Higgs boson mass—and taking
into account the SUSY threshold corrections, we
obtain [63]

(myg. mag. msg) = (0.39 —0.532,83.5 — 112.7,
1635 — 2400) MeV. (77)

(c) From the solar, atmospheric, accelerator, and reactor

neutrino experiments, we take as inputs in our
calculation the best-fit values [43] (see also
Ref. [44]),

Am}, = 7.62 x 1073 eV?, (78a)

Am3, = 2.55[-2.43] x 1073 V2,  (78b)

2

for the differences Amy; = mj,

light neutrino masses-squared,

—m3, between the

sin20,, = 0.32, (78¢)
sin26,; = 0.0246[0.025], (78d)
$in26,3 = 0.613[0.6] (78¢)

for the mixing angles, and
5 = 0.87[—0.037] (78f)

for the CP-violating Dirac phase in the case of normal
[inverted] neutrino mass hierarchy. In particular, two
of the m;,’s are determined in terms of the third one
using the relation

my, = \/m}, + Am3, (79a)

and either

my, = \/m3, + Am3, (79b)

for normally ordered (NO) m;,’s or

my, = \/m3, + |Am3,| (79¢)

for invertedly ordered (IO0) m;,’s. We also take into
account the fact that the sum of the m;,’s is bounded
above by the current data [16,52],
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kes = 10.9, and various neutrino mass schemes.

PHYSICAL REVIEW D 89, 065032 (2014)
TABLE III. Parameters yielding acceptable BAU for x = 0.001, x; =0.01, A =0.1, My =2.5x 10'° GeV, kys = —0.0215,

Cases

A B

C

D

E

F

G

Parameters Normally Ordered v Masses

Almost Degenerate v Masses

Invertedly Ordered v Masses

Low Energy Neutrino Parameters

my,/0.1 eV 0.01 0.1 0.5 0.7 0.7 0.5 0.49
m,,/0.1 eV 0.09 0.1 0.5 0.7 0.7 0.51 0.5
m3, /0.1 eV 0.5 0.5 0.7 0.86 0.5 0.1 0.05
> im, /0.1 eV 0.6 0.7 1.7 23 1.9 1.1 1
@1 /3 /2 0 /2 T —r/3 —r/2
@3 0 0 3z/4 /2 7 —r/2 —r/6
Mass Parameters at the Leptogenesis Scale
m? /0.1 GeV 4.7 4.1 15.5 10 7 9.5 7
m? /GeV 26 23 2 25 1.2 1.4 2
mP /10 GeV 12 12 5 8 0.4 12 1.5
M,c/10'0 GeV 59 22 4.9 1.4 0.67 1.7 1
M,,. /10" GeV 177 14 1 0.94 0.069 0.8 1.5
M;,. /10" GeV 342 45 1.9 5.3 0.007 51 1.7
Decay Channels of the Inflaton I with mass m;_
L - 1 Via Via Via Y23 Via Via
Resulting Baryon Asymmetry ’ '
1019 8.72 7.45 7.98 7.96 55 797 797
10y, 3 8.53 8.23 8.4 8.64 8.78 8.6 8.53
Resulting 7, and G Abundance
Ty/108 GeV 3.4 8 6.8 5.6 59 4.9 8.7
1083y, 0.7 1.5 1.3 1 1.1 0.9 1.65
me <0.28 TeV, (80) consequence, Yy in Eq. (60b) is enhanced, whereas T}, is
i kept sufficiently low, as can be deduced from Eqgs. (58) and
(59). Namely, we take x = 0.001, x; = 0.01, 1 =0.1,
at 95% C.L.

(d) The BAU Y must satisfy the constraint [52]

Yp=(855+0217) x 10" at95% C.L. (81)
(e) To avoid spoiling the success of the BBN, an upper
bound on Yz must be imposed depending on the G
mass mg and the dominant G decay mode. We
consider here the conservative case where G decays
with a tiny hadronic branching ratio. In this case, we

have [23]
10714 0.69 TeV
Ye < 10718 for mg = ¢ 10.6 TeV  (82)
10712 13.5 TeV.
B. Results

The inflationary requirements of Sec. III restrict k45 and
kes as functions of x for given A, xr, and M. We first
concentrate on a low value of x within its allowed range.
This ensures a low enough m;_ through Eq. (49a). As a

My =25x%x10'% GeV, k45 =—0.0215, and ke = 10.9
yielding m;_ = 2.94 x 10"* GeV.

Note that Ty, and Y depend also on the masses M, of
the v{’s into which I_ decays. In addition, Y depends
crucially on the low energy parameters related to neutrino
physics. Following a bottom-up approach, we find the
M;,c’s by using as input parameters the mP’s, the mass of
one of the v;’s—the m;, for NO m;,’s, or the ms, for 10
m;,’s—the two Majorana phases ¢; and ¢, of the PMNS
matrix, and the best-fit values [see Eqs. (78a)—(78f)] of the
low energy neutrino parameters. In our numerical code,
we run these best-fit values up to the scale of nonthermal
leptogenesis A; = m;_ following Ref. [64] and considering
the MSSM with tan f = 50 as an effective theory between
the soft SUSY-breaking scale Mgysy = 1.5 TeV and A;.
The so obtained M,,.’s clearly correspond to the scale A;.

Our results are displayed in Table III for some repre-
sentative values of the parameters which yield acceptable
Yp and Y, i.e. lying in the ranges shown in Egs. (81) and
(82). We consider strongly NO (cases A and B), almost
degenerate (cases C, D, and E) and strongly 1O (cases F and
G) neutrino masses. Note that the cases C and D correspond
to NO m;,’s with large m,, while the case E corresponds to
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10 m;,’s with large ms,. In all these cases, the current
limit— see Eq. (80)—on the sum of the m,,’s is safely met—
in the case D, this limit is almost saturated. Care is taken, in
addition, so that the first inequality of Eq. (75) is satisfied.
Our choice to use the effective scale Mg in Eq. (10) helps in
this direction. Indeed, had we chosen this effective scale to
be equal to mp, the case A in Table III would have been
excluded due to the violation of this inequality. We also
observe that with strongly NO or IO m;,’s the resulting
M,,’s are strongly hierarchical. With almost degenerate
m;,’s, though, the resulting M,,’s are closer to one another.
As a consequence, in this case, more I_-decay channels are,
generally, available. In the case A, only a single decay
channel is open. In all the other cases, the dominant
contribution to Yjp arises from e,-recall Egs. (60a) and
(60b). In Table III, we also display, for comparison, the B
abundance with (Y ) or without (V' %) taking into account
the renormalization group running of the low energy
neutrino data. We observe that the two results are in most
cases close to each other with the biggest discrepancy
encountered in the case E of almost degenerate 10 m,,’s.
Shown are also the values of T'y,, the majority of which are
close to 5 x 108 GeV, and the corresponding Y &S, which,
in most of the cases, are consistent with Eq. (82) only for
large values of mg 2 10 TeV. Thus, from the perspective
of the G constraint, the case A turns out to be the most
promising one.

As we emphasize in Sec. 11, the inclusion in our model of
the T and T superfields—which has various consequences
for the inflationary scenario (see Sec. III)—is of crucial
importance for the violation of the partial YU and the tight
constraint on the Dirac neutrino masses mP’s predicted by
the simplest left-right symmetric model. Indeed, in the
simplest model, where a; = a,, and for the central values
of the m;z’s in Eq. (77), we would have the following
values of the mP’s:

(m, md®, mdP) = (0.023,4.9,100) GeV.  (83)

However, in sharp contrast with Eq. (83), in all the cases
presented in Table III, m? 2 0.1 GeV. Such large values of
mY are necessary in order to be able to fulfill the second
inequality in Eq. (75), given that mP heavily influences
M. The extended left-right symmetric model described
in Sec. II gives us a much larger flexibility in selecting
appropriate mP’s with natural values of the Yukawa
coupling constants and @; # a, of order unity. To further
highlight this key issue of our work, we display in Table IV
solutions to Eq. (76) for the cases displayed in Table III,
central values of the input parameters in Eq. (77), a; = 1.2,
and a, =0.5. We see that all the Yukawa coupling
constants listed in this table take natural values without
any ugly hierarchy being necessary in any pair (y;z, Y}, ).

In order to extend our conclusions inferred from Table IIT
to the case of a variable x, we now examine how the central
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TABLE IV. Solutions to Eq. (76) for the cases displayed in
Table III, central values of the input parameters in Eq. (77),
ap = 12, and a, = 0.5.

Case YiL YiL Yar Va1 yaL YL

A 0.005 0.004 0.24 0.17 0.67 —-0.19
B 0.0044 0.0034 —-0.006 —0.042 0.67 —0.19
C 0.0017 0.0014 —-0.0094 —0.044 —-0.096 —-0.83
D 0.011 0.0088 —0.0039 —0.04 0.23 —-0.56
E 0.0075 0.0061 -0.018 —0.052 —0.6 —1.26
F 0.01 0.008 —-0.016 —0.05 0.67 —-0.19
G 0.0076 0.0061 —-0.009 —0.044 —-048 —1.15

value of Y in Eq. (81) can be achieved by varying one of
the mP’s as a function of x or my_. To this end, we fix n, to
its central value in Eq. (38a) and k7, 4, M7, kgg, kiog, and
kips to their values corresponding to Figs. 2¢ and 2d.
Consequently, the parameters kg and kgg vary with k along
the solid gray lines in these figures. Moreover, we set the
values of the m;,’s (by selecting m,, for NO m;,’s or m5, for
10 m;,’s), mP, m2, ¢, and ¢, equal to their values in the
cases B, D, or F of Table III. Since, in these cases, I_ decays
mainly into v§ with M5, > M, the value of M,, heavily
influences Y. In turn, the variation of M, is almost
exclusively due to the variation m? (see approximate
formulas of Ref. [50]).

The resulting contours in the k — mY plane are presented
in Fig. 3; since the range of Y in Eq. (81) is very narrow,
the 95% C.L. width of these contours is negligible. The
convention adopted for these lines is also described in the
figure. In particular, we use solid, dashed, or dot-dashed
line for m;,, mP, mY, ¢, and ¢, corresponding to the cases
B, D, or F of Table III, respectively. The lower limit on
these lines comes from the violation of Eqs. (21) and (23) as
in Figs. 2c and 2d. At the other end, these lines terminate at

3.4 T T
32H m,m%,m% 6,0, E
3.0F asin Table Il 3
28f CaseB -7 3
26f CaseD g E
%‘ 24 E
15} 22LF E
~ 20F E
[= K]
€ 18 E
6 =T E
14 - 3
12 = 3
1.0 bz’ L
10° 10°
K

FIG. 3. Contours in the k — mY plane yielding the central Yy
in Eq. (81) consistently with the inflationary requirements for
Ky = 0005,1 = 005, MT = 3 X 1016 GCV, kgs = 1, klOS = —1,
kias = 0, ng = 0.96, and the values of m;,, mP, mY, ¢, and ¢,
which correspond to the cases B (solid line), D (dashed line), and
F (dot-dashed line) of Table III.
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the values of m? beyond which the second inequality in
Eq. (75) is violated and, therefore, washout effects start
becoming significant. At these upper termination points
of the contours, we obtain T,, =2 x 10° GeV or Ye =
4 x 10713 and so we expect that the constraint of Eq. (82)
will cut any possible extension of the curves beyond
these termination points that could survive the possible
washout of Y;. Along the depicted contours, we
obtain 8x1072<k/1073 <4, 2.3<m;_/102GeV <200,
whereas the naturalness parameter of the hilltop FHI
AL, = 0.05-0.27. Also the resulting M,,.’s vary in the
range (4-19) x 10'° GeV and M. remains close to
(1-2) x 10'° GeV. The values of y,;, y,, selected in
Table III for the cases B, D, and F change also along
the displayed curves of Fig. 3, without any essential
modification though as regards their general features.

VII. CONCLUSIONS

We constructed a SUSY GUT model based on the
left-right symmetric gauge group Gpgr, which supports
FHI followed by successful reheating and nonthermal
leptogenesis. The lepton-number asymmetry is generated
via the decay of the right-handed neutrinos v which
emerge from the decay of the inflaton system during the
reheating process. It is important that any possible washout
of the produced lepton asymmetry can be avoided. Our
proposal is tied to the addition of two pairs of superfields
(one pair consisting of bidoublets under SU(2); x SU(2)g
and another consisting of triplets under SU(2)g)—see
Table I—which naturally leads to an adequately strong
violation of the asymptotic partial YU predicted by the
simplest left-right symmetric model of Ref. [17]. Confining
our discussion to the trivial inflationary path, we found that
the extra triplets play a crucial role (i) in the inflationary
scenario causing extra radiative corrections along the
inflationary path, and (ii) in the reheating process assisting
us in obtaining an acceptably low reheat temperature.

We expanded the Kihler potential—see Eq. (30)—up
to the twelfth order in powers of the various fields and
selected a convenient choice of signs which ensures that
the parameters of the superpotential of our model assume
values compatible with the requirement of gauge coupling
constant unification within MSSM with the inflationary
potential Vy; remaining bounded below at least up to the
Planck scale mp. The FHI reproduces the current data on
the amplitude A, of the power spectrum of the curvature
perturbation and the scalar spectral index ng within the
power-law  ACDM cosmological model and generates
the number of e-foldings required for the resolution of
the horizon and flatness problems of the standard big bang
cosmological model.

Imposing additional constraints from the BAU, the
(unstable) gravitino abundance, and the neutrino oscillation
parameters, we concluded that, for the central value of
ng, k=8x107—0.004 and m? > 0.1 GeV with the
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remaining parameters of the superpotential of our model
taking more or less natural values, whereas the naturalness
parameter for the hilltop FHI A, =0.05-0.27. It is
gratifying that our model exhibits solutions with the
inflaton system decaying exclusively into the lightest of
the right-handed neutrinos v§. These solutions are the most
promising from the perspective of the gravitino constraint.
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APPENDIX: REHEATING PROCESS, LEPTON
ASYMMETRY, AND GRAVITINO ABUNDANCE

In this Appendix, we present a numerical description
of the postinflationary evolution of the various energy and
number densities involved in our scenario of nonthermal
leptogenesis.

In particular, the energy densities p, and p_ of the I, and
I_ subsystems respectively—see the definition of these
subsystems right after Eq. (58)—the energy density pr of
the produced radiation, and the number densities n; of the
leptons and ng; of the G’s satisfy the following Boltzmann
equations—cf. Refs. [23,25]:

+3Hp, +Tp, =0, (Ala)
p_+3Hp_+T_p_ =0, (A1b)
pr +4Hpg — Zrlrpr =0, (Alc)
r==+
Ay +3Hn, = 2e,T,n, =0, (A1d)
r=+
hg + 3Hng — Ce(n*9)? = 0. (Ale)

Here the overdot denotes derivation with respect to the
cosmic time 1, &, = E Iy _cei/Ty, and n, = p,/my,.
Also, n® = ¢(3)T?/7* is the equilibrium number density
of each bosonic relativistic species, Cg is a collision term
for G production which, in the limit of massless MSSM
gauginos, turns out to be [23,65]

3
CG_16C m chgl 1n< >

P =1

(A2)
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where (c;) = (33/5,27,72), g; are the gauge coupling
constants of the MSSM, and (k;) = (1.634,1.312,1.271).
Finally, the Hubble expansion parameter H during this
period is given by

1
H=——mznz~+p_+p, +pp)2 (A3
\/gmp( Gl TP P+ PR) )

Clearly, in the limit of massless MSSM gauginos, the
resulting ng, is practically mg independent. The temper-
ature T and the entropy density s are found from the
relations
7’ 272
=—g¢T* and s==_gT.
PR = 309 and s 45 9
The system of Eqs. (Ala)—(Ale) is solved under the
following initial conditions:

p+(0) =p_(0) = Viio/2

(A4)

(A5a)
and

pr(0) = n5(0) = . (0) =0,

where we assumed that the inflationary energy density is
equally distributed between the oscillatory subsystems I,
and I_. This is a reasonable assumption since the damped
oscillations of I, and I_ commence immediately after the
termination of FHI as a consequence of the fact that my,
and my_ > Hio = /Vio/V/3mp, the inflationary Hubble
parameter.

In Fig. 4, we illustrate the cosmological evolution of
the quantities log p, (dotted gray line), log p_ (dashed gray
line), logpr (gray line), log|Y,| (black solid line), and
log |Y| (black dashed line) as functions of log T for the
values of the parameters given in the first column of
Table III (case A). In particular, these parameters yield
my, =2.5x 10" and T\, = 4.1 x 10'° GeV for the I,
subsystem, whereas m;_ =2.9 x 10'3 and I'_ = 0.62 GeV
for the I_ subsystem. Since Hjo = 1.65 x 10! GeV < my,
and my_, we verify that the phase of the oscillations of I,
and I_ starts immediately after the end of FHI.

From Fig. 4, we observe that FHI is followed by an
extended matter dominated era, where we have initially
the dominance of the oscillating and decaying I, and
I_ subsystems. Due to the strong hierarchy between
I', and I'l_, the decay of I, occurs very early at
T =T, =7.2x 10" GeV-this temperature corresponds
to the intersection of the p. and py lines in Fig. 4. An
approximate estimate of this temperature can be obtained
from Eq. (59) by replacing I';_ with I'r,. This estimate
is about 8.8 x 10'3 GeV, which is quite close to the value

(ASb)
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FIG. 4. The evolution of the quantities log p; with i = + (gray
dotted line), i = — (gray dashed line), i = R (gray line), log|Y |
(black solid line), and log |Y | (black dashed line) as functions of
log T for the values of the parameters in the case A of Table III.

of T, found numerically. After the I, decay, the I_
subsystem continues its oscillations until p_ meets pg at
T = 3.5 x 108 GeV. This numerical result is in excellent
agreement with the estimate obtained by using Eq. (59),
which is listed in the column A of Table III. After reheating,
the universe enters a conventional radiation dominated era.
Therefore, although our scenario involves two oscillatory
systems, I, and I_, the final 7 can be accurately
computed by Eq. (59) thanks to the strong hierarchy
encountered between Iy, and I'j_.

In Fig. 4, we also depict the cosmological evolution of
the absolute values of the lepton abundance Y; = n; /s and
the gravitino abundance Y = ng/s. We see that |Y, | and
|Y|, immediately after the decay of the I, subsystem,
reach constant values equal to 3 x 10~ and 2.6 x 1078
respectively. However, they are later strongly diluted due to
the entropy release during the subsequent decay of the 1_
subsystem. The lepton abundance Y; at 7 = T, originates
from the lepton asymmetry 2¢; . generated by the decay
of one I, inflaton—g;, is defined just below Eq. (Ale).
However, the subsequent decay of the [_ subsystem gives
rise to a new lepton asymmetry 2¢; _ per decaying inflaton.
Note that the sign of this new asymmetry, which survive for
T < Ty, 1s opposite to the sign of the earlier one which was
diluted. As a consequence of this cosmological evolution,
the present values of both Y, and Y are generated close
to T = Ty,. Numerically, we find that ¥, = —2 x 10710
and Yz = 1073, which are in good agreement with the
values obtained by using Egs. (60b) and (61) in the case A
of Table III. Note that the corresponding Y turns out to
be 7.6 x 10!, Therefore, we see that Eqgs. (60b) and (61),
despite their simplicity, give a very accurate determination
of Yp and Y in our setup.
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