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A simple extension of the minimal left-right symmetric supersymmetric grand unified theory model is
constructed by adding two pairs of superfields. This naturally violates the partial Yukawa unification
predicted by the minimal model. After including supergravity corrections, we find that this extended model
naturally supports hilltop F-term hybrid inflation along its trivial inflationary path with only a very mild
tuning of the initial conditions. With a convenient choice of signs of the terms in the Kähler potential, we
can reconcile the inflationary scale with the supersymmetric grand unified theory scale. All the current data
on the inflationary observables are readily reproduced. Inflation is followed by nonthermal leptogenesis via
the decay of the right-handed neutrinos emerging from the decay of the inflaton, and any possible washout
of the lepton asymmetry is avoided thanks to the violation of partial Yukawa unification. The extra
superfields also assist us in reducing the reheat temperature so as to satisfy the gravitino constraint. The
observed baryon asymmetry of the universe is naturally reproduced consistently with the neutrino
oscillation parameters.
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I. INTRODUCTION

One of the most natural and well-motivated inflationary
models is, certainly, the supersymmetric (SUSY) F-term
hybrid inflation (FHI) [1,2]. It is realized at (or close to) the
SUSY grand unified theory (GUT) scale MGUT ≃ 2.86 ×
1016 GeV and can be easily linked to extensions [3] of the
minimal supersymmetric standard model (MSSM) which
provide solutions to a number of problems of the MSSM—
for some recent attempts see e.g. Ref. [4]. Namely, the μ
problem of MSSM may be solved via a direct coupling of
the inflaton to the electroweak Higgs doublet superfields
[5] or via a Peccei-Quinn (PQ) symmetry [6,7], which also
solves [8] the strong CP problem. Also, baryon-number
conservation can be an automatic consequence [5] of an
R symmetry and the baryon asymmetry of the universe
(BAU) can be generated via nonthermal leptogenesis [9],
which takes place through the out-of-equilibrium decay of
the decay products of the inflaton.
Trying to embed SUSY FHI into a concrete SUSY GUT

model, we face the following challenges: (i) the possible
production of topological defects [10,11] during the GUT
phase transition at the end of FHI, which in the case of
magnetic monopoles or domain walls is cosmologically
disastrous, (ii) the mismatch [12] between the inflationary
scale and the SUSY GUT scale, and (iii) the possible

washout of the generated lepton-number asymmetry due
to the smallness of the lightest right-handed neutrino mass
dictated by the various types of Yukawa unification (YU)
conditions predicted by some GUT models.
Here we present a model based on the left-right sym-

metric GUT gauge group GLR ¼ SUð3Þc × SUð2ÞL×
SUð2ÞR × Uð1ÞB−L, which aims to surpass the problems
mentioned above. Let us clarify, in passing, that the term
GUT is used in the sense of gauge coupling unification,
although the gauge group is not simple. Note that such
models do emerge from string compactifications (see e.g.
Ref. [13]). The adopted GUT gauge group GLR does not
lead to production of magnetic monopoles as higher
gauge groups, such as the Pati-Salam group, do. Moreover,
invoking higher order terms in the Kähler potential with
a suitable arrangement of their signs, as done in Ref. [14],
we succeed to overcome the second of the aforementioned
difficulties of SUSY FHI. It is important to note that the
same form of the Kähler potential has been proposed in
order to reconcile the value of the scalar spectral index ns
obtained within SUSY FHI with the present data [15,16].
Finally and probably most importantly, the problem

(iii) is overcome by conveniently extending the superfield
content of the simplest—see e.g. Ref. [17]—GUT model
based on GLR. Namely, we introduce a pair of SUð2ÞL ×
SUð2ÞR bidoublet superfields and a pair of SUð2ÞR triplet
superfields, which lead to a sizable violation of the
neutrino-τ (and top-bottom) YU predicted by the simplest
model. As a consequence, the lightest right-handed

*roberta.armillis@epfl.ch
†lazaride@eng.auth.gr
‡kpallis@gen.auth.gr

PHYSICAL REVIEW D 89, 065032 (2014)

1550-7998=2014=89(6)=065032(22) 065032-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.065032
http://dx.doi.org/10.1103/PhysRevD.89.065032
http://dx.doi.org/10.1103/PhysRevD.89.065032
http://dx.doi.org/10.1103/PhysRevD.89.065032


neutrino mass, which depends heavily on the lightest
neutrino Dirac mass, may become large enough so that
any washout of the pre-generated lepton asymmetry is
elegantly evaded. Moreover, the SUð2ÞR triplet super-
fields enter the inflationary sector of the model leading
to a variety of possible inflationary scenarios—see
Refs. [18–21]—as well as to extra contributions to the
radiative corrections on the inflationary paths used in these
scenarios. Here we choose to analyze FHI along the trivial
inflationary trajectory of this model. We should note that
these same triplet superfields assist us in reducing the
predicted reheat temperature to an acceptable level.
Imposing, in addition, a number of theoretical and

observational constraints originating from the data on the
inflationary observables, the boundedness below of the
inflationary potential, the observed BAU, the gravitino
constraint [22,23], and the data on the neutrino oscillation
parameters, we find a wide and natural allowed space of
parameters. The resulting FHI inflationary scenario is of
the hilltop type [24] requiring a mild tuning of the initial
conditions [25] to yield acceptable values of the scalar
spectral index and a rather large value of the gravitino mass
to fulfill the gravitino constraint. Note that a mild tuning of
one parameter in the Kähler potential is also needed in
order to circumvent the well-known η problem of FHI
(see e.g. Refs. [1,26]).
In Sec. II, we present the basic ingredients of our model,

while in Sec. III we describe the inflationary scenario. We
then discuss the inflationary requirements and their impli-
cations for the model parameters in Sec. IV. Our next step
is to outline the mechanism of nonthermal leptogenesis in
Sec. V and update the constraints on the model parameters,

taking into account the postinflationary requirements in
Sec. VI. We summarize our conclusions in Sec. VII.
Finally, in Appendix A, we present a numerical analysis
of the reheating process in our model.

II. THE SUSY LEFT-RIGHT SYMMETRIC MODEL

We will outline the salient features of our model in
Sec. II A and analyze the various parts of its superpotential
in Sec. II B. Finally, in Sec. II C, we will derive a set of
Yukawa quasi-unification conditions which play a key role
in our model.

A. Superfield content and symmetries

As already mentioned, we adopt the left-right symmetric
gauge group GLR¼SUð3Þc ×SUð2ÞL×SUð2ÞR×Uð1ÞB−L.
This gauge group is broken down to the standard model
(SM) gauge group GSM at a scale close to the SUSY GUT
scaleMGUT through the vacuum expectation values (VEVs)
acquired by a conjugate pair of SUð2ÞR doublet left-handed
Higgs superfields Φ and Φ̄ with B − L ¼ 1, −1, respec-
tively. In this model, no magnetic monopoles [10] or
cosmic strings [11] are produced [27] at the end of inflation
and, therefore, we are not obliged to modify [28,29]
the standard realization of SUSY FHI to avoid monopole
production, or impose extra restrictions on the parameters–
as e.g. in Ref. [30].
The representations and transformations under GLR of

the various matter and Higgs superfields of the model
are presented in Table I (Uc ∈ SUð3Þc, UL ∈ SUð2ÞL,
UR ∈ SUð2ÞR and T, †, and * stand for the transpose,
the Hermitian conjugate (H.c.), and the complex conjugate

TABLE I. The superfield content of the model.

Global Symmetries

Superfields Representations under GLR Transformations under GLR R PQ B

Matter Fields
li ð1; 2; 1;−1Þ liU

†
L 1 −1 0

lci ð1; 1; 2; 1Þ U�
Rl

c
i 1 0 0

qi ð3; 2; 1; 1=3Þ qiU
†
LU

T
c 1 −1 1=3

qci ð3̄; 1; 2;−1=3Þ U�
cU�

Rq
c
i 1 0 −1=3

Higgs Fields
Φ ð1; 1; 2; 1Þ U�

RΦ 0 0 0
Φ̄ ð1; 1; 2;−1Þ Φ̄UT

R 0 0 0
S ð1; 1; 1; 0Þ S 2 0 0
h ð1; 2; 2; 0Þ ULhUT

R 0 1 0
N ð1; 1; 1; 0Þ N 1 −1 0
N̄ ð1; 1; 1; 0Þ N̄ 0 1 0

Extra Higgs Fields
h0 ð1; 2; 2; 0Þ ULh0UT

R 0 1 0
h̄0 ð1; 2; 2; 0Þ ULh̄0UT

R 2 −1 0
T ð1; 1; 3; 0Þ URTU

†
R 0 0 0

T̄ ð1; 1; 3; 0Þ URT̄U
†
R 2 0 0
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of a matrix, respectively). The model also possesses three
global U(1) symmetries, namely a R symmetry, a PQ
symmetry, and the baryon-number (B) symmetry. The
corresponding charges are shown in Table I too. Note, in
passing, that such continuous global symmetries can effec-
tively arise [31] from the discrete symmetries emerging in
many compactified string theories (see e.g. Ref. [32]).
The lepton and quark superfields are li, lci and qi, qci

(i ¼ 1, 2, 3), respectively; we follow here the same
representation of the superfields under SUð2ÞL × SUð2ÞR
as in Ref. [33]. In the simplest version of the model with-
out the extra Higgs superfields in Table I, the electroweak
Higgs doublets H1 and H2 which couple to the down- and
up-type quarks, respectively, belong to the bidoublet super-
field h. So, as one can easily see, all the requirements [34]
for partial YU, i.e. the “asymptotic” (at MGUT) equality of
the Yukawa coupling constants of the t and the b quark as
well as of the τ-neutrino ντ and the τ-lepton τ, are fulfilled.
As already indicated, the breaking of GLR down to GSM is
achieved by the superheavy VEVs (∼MGUT) of the con-
jugate pair of Higgs superfields Φ, Φ̄ along their right-
handed neutrino type components ðνcΦ; ν̄cΦÞ. The model also
contains a gauge singlet S, which triggers the breaking of
GLR and a pair of gauge singlets N, N̄ for solving [6] the μ
problem of the MSSM via the PQ symmetry.
The partial YU between the b and the t quark implied

by the simplest left-right symmetric model is not
compatible [33,35,36] with the constrained MSSM
(CMSSM), which is based on universal boundary con-
ditions for the soft SUSY breaking parameters. Actually,
a sizable violation of partial YU is required within the
context of the CMSSM, which we adopt here. In order to
achieve this violation, we extend the model by including
the extra Higgs superfields h0, h̄0, T, and T̄, where the
barred superfields are included in order to give super-
heavy masses to the unbarred superfields. These extra
Higgs superfields together with their transformation
properties and charges are also included in Table I.
The superfield h0 belongs to the (1; 2; 2; 0) representation
of GLR and, therefore, can couple to the fermions. The
triplet T acquires a superheavy VEV of order MGUT after
the breaking of GLR to GSM. Its couplings with h̄0, h0,
and h then naturally generate a SUð2ÞR-violating mixing
of the SUð2ÞL doublets in h and h0 leading, thereby, to a
sizable violation of partial YU.

B. Superpotential Terms

The superpotentialW of our model can be split into four
parts:

W ¼ WH þWm þWY þWNR; (1)

which are analyzed in the following.
(a) WH is the part of the superpotential which is relevant

for the breaking of GLR to GSM and is given by

WH ¼ κSðΦ̄Φ −M2Þ − κTST2 þMTT̄T þ λT̄ Φ̄ Φ;

(2)

where the mass parameters M and MT are of order
MGUT, and κ, κT , and λ are dimensionless parameters.
Note that M, MT , κ, and λ can be made real and
positive by field redefinitions. The third dimensionless
parameter κT, however, remains in general complex.
For definiteness, we choose this parameter to be real
too, but of any sign. The parameters are normalized
so that they correspond to the couplings between the
SM singlet components of the superfields.
The scalar potential obtained from WH is given by

VH ¼ jκðΦ̄Φ −M2Þ − κTT2j2 þ j2κTST −MTT̄j2
þ jκSþ λT̄j2ðjΦj2 þ jΦ̄j2Þ þ jMTT þ λΦ̄Φj2
þ D-terms; (3)

where the complex scalar fields which belong to the
SM singlet components of the superfields are denoted
by the same symbols as the corresponding superfields.
Vanishing of the D-terms yields Φ̄� ¼ eiϑΦ (Φ, Φ̄ lie
in the νcΦ, ν̄

c
Φ direction), where ϑ is an arbitrary phase.

Performing appropriate R and gauge transformations,
we bring Φ and S to the positive real axis, while Φ̄
stays in general complex with a phase factor e−iϑ.
We define a combination of the five real parameters of
the model

ξ ¼ κTλ
2

κ

M2

M2
T
: (4)

From the potential in Eq. (3), one can then show that,
under the assumption that ξ < 1=4, the nearest to the
trivial flat direction (see below) SUSY vacuum, where
the system is most likely to end up after the end of
inflation, corresponds to ϑ ¼ 0 (for both signs of ξ)
and lies at

hSi ¼ hT̄i ¼ 0; hΦ̄Φi ¼ v2Φ; hTi ¼ vT

�
1; 1;

σ3ffiffiffi
2

p
�
;

(5a)

where

�vΦ
M

�
2 ¼ 1

2ξ
ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4ξ
p

Þ; vT ¼ −λ v2Φ
MT

; (5b)

and σ3 ¼ diagð1;−1Þ.
(b) Wm is the part of the superpotential which is

responsible for the mixing of the doublets in h
and h0 and can be symbolically written as
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Wm ¼ mh̄0hþm0h̄0h0 þ λTTh̄0hþ λT
0Th̄0h0; (6)

where the mass parameters m and m0 are of order
MGUT (made real and positive by field rephasing) and
λT , λT 0 are dimensionless complex coupling constants.
Note that the two last terms in the right-hand side (rhs)
of Eq. (6) overshadow the corresponding ones from
the nonrenormalizable SUð2ÞR-triplet couplings origi-
nating from the symbolic couplings Φ̄Φh̄0h and
Φ̄Φh̄0h0 (see Ref. [37]).

(c) WY contains the Yukawa interactions of the fer-
mions and is given by

WY ¼ qiðyijQhþ y0ijQh
0Þqcj þ liðyijLhþ y0ijLh

0Þlcj ;
(7)

where yijQ and yijL are, respectively, the Yukawa
coupling constants of the quarks and lepton with the
Higgs superfield h, while y0ijQ and y0ijL are their
Yukawa coupling constants with h0.
Defining properly [33,37] the symbolic couplings in
the rhs of Eq. (6), we obtain the mass terms

Wm ¼
�
m0 − λT

0vTffiffiffi
2

p
�
ðh0T1 þ α1hT1 Þϵh̄02

þ
�
m0 þ λT

0vTffiffiffi
2

p
�
h̄0T1 ϵðh02 þ α2h2Þ þ � � � ; (8)

where ϵ is the 2 × 2 antisymmetric matrix with
ϵ12 ¼ 1, the ellipsis includes color nonsinglet compo-
nents of the superfields, and the complex dimension-
less parameters α1 and α2 are given by

α1 ¼
m − λTvT=

ffiffiffi
2

p

m0 − λT
0vT=

ffiffiffi
2

p ; (9a)

α2 ¼
mþ λTvT=

ffiffiffi
2

p

m0 þ λT
0vT=

ffiffiffi
2

p · (9b)

(d) WNR is the part of W which contains its non-
renormalizable terms,

WNR ¼ λij
Φ̄ Φ̄ lci l

c
j

Ms
þ λN

N2N̄2

Ms

þ N2

2Ms
ðλμh2 þ λμ

0hh0 þ λμ
00h02Þ þ � � � ;

(10)

where MS ≃ 5 × 1017 GeV is an effective scale com-
parable to the string scale. Here we have displayed
explicitly only the terms which are relevant for our

analysis. The first term in the rhs of this equation is
responsible for generating intermediate scale Major-
ana masses for the right-handed neutrinos after the
breaking ofGLR. These masses together with the Dirac
neutrino masses in Eq. (15c) lead to the light neutrino
masses via the seesaw mechanism. The same term
is important for the decay of the inflaton system after
the end of inflation to right-handed neutrinos and
sneutrinos, whose subsequent decay can lead to
nonthermal leptogenesis. The fact that this term is
suppressed byMS guarantees a sufficiently low reheat
temperature which is useful for a successful lepto-
genesis (see Sec. V). Finally, the second and third
term provide the μ term of MSSM along the lines
of Ref. [6].

C. Yukawa quasiunification conditions

It is obvious from Eq. (8) that we obtain two pairs of
superheavy doublets:

h̄01; H
0
2 and H0

1; h̄
0
2; (11a)

where

H0
r ¼

h0r þ αrhrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jαrj2

p ; r ¼ 1; 2 (11b)

(no summation over the repeated index r is implied). The
electroweak doublets Hr, which remain massless at the
GUT scale, are orthogonal to the H0

r directions:

Hr ¼
−α�rh0r þ hrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jαrj2
p · (12)

Solving Eqs. (11b) and (12) with respect to hr and h0r, we
obtain

hr ¼
Hr þ α�rH0

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jαrj2

p and h0r ¼
−αrHr þH0

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jαrj2

p · (13)

The superheavy doublets H0
r must have zero VEVs, which

gives

hhri ¼
hHriffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jαrj2

p and hh0ri ¼
−αrhHriffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jαrj2

p · (14)

From Eqs. (7) and (14), we can readily derive the mass
matrices of the up- and down-type quarks (mijU and mijD,
respectively), as well as the Dirac mass matrix mD

ijν of the
neutrinos and the mass matrix mijE of the charged leptons:

mijU ¼ yijQ − α2y0ijQ
ð1þ jα2j2Þ12

v2 ≡ ŷijUv2; (15a)
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mijD ¼ yijQ − α1y0ijQ
ð1þ jα1j2Þ12

v1 ≡ ŷijDv1; (15b)

mD
ijν ¼

yijL − α2y0ijL
ð1þ jα2j2Þ12

v2 ≡ ŷDijνv2; (15c)

mijE ¼ yijL − α1y0ijL
ð1þ jα1j2Þ12

v1 ≡ ŷijEv1; (15d)

where vr ¼ hHri, ŷijU and ŷDijν are, respectively, the
effective Yukawa coupling constants of the up-type
quarks and the neutrinos with H2, and ŷijD and ŷijE are,
respectively, the effective Yukawa coupling constants of
the down-type quarks and the charged leptons to H1.
In the absence of the superfields T and T̄ which generate

the SUð2ÞR-violating mixing of the doublets in h and h0,
Eqs. (9a) and (9b) imply that α1 ¼ α2. This means that

ŷijU ¼ ŷijD and ŷDijν ¼ ŷijE; (16)

i.e. exact asymptotic YU between the up- and down-type
quarks as well as between the neutrinos and the charged
leptons not only for the third one, but for all three families
of fermions. In particular, there is no mixing in the quark
sector. So the presence of the T and T̄ superfields is
absolutely vital for the phenomenological viability of
the model.
Our present analysis is very similar to the analysis in

Refs. [33,35,37–40], where a set of generalized or monop-
arametric asymptotic Yukawa quasi-unification conditions
have been obtained. There are, however, two important
differences. In these references, only the third generation
of fermions has been considered and the gauge group was
larger than the left-right symmetric gauge group GLR used
here, yielding a relation between the quark and lepton
Yukawa coupling constants too and allowing the desired
mixing of the SUð2ÞL Higgs doublets even with just a pair
of SUð2ÞR Higgs singlets. In this paper, the quark and
lepton sectors are completely independent as one can see
from Eqs. (15a), (15b), (15c), and (15d). We will not
consider further the quark sector here. We will rather
concentrate on the lepton sector since this sector is
important for the scenario of nonthermal leptogenesis,
which is discussed in Sec. V.

III. THE INFLATIONARY SCENARIO

In Sec. III A, we describe the inflationary trajectory and,
in Secs. III B and III C, we present the radiative and
supergravity (SUGRA) corrections incorporated in the
inflationary potential. Finally, in Sec. III C, we extract
the inflationary observables.

A. The inflationary trajectory

The superpotential terms which are relevant for infla-
tion constitute WH in Eq. (2). From the derived F-term
scalar potential in Eq. (3), we can deduce that the model
under discussion possesses the following classically flat
directions:
(i) the trivial one, which lies at

Φ ¼ Φ̄ ¼ T ¼ T̄ ¼ 0 (17a)

with potential energy density

V0
tr ¼ κ2M4: (17b)

This is a valley of local minima in the Φ, Φ̄ directions
for

jSj > Sc ≡M; (17c)

but, for jSj < Sc, is destabilized in the ðΦþ Φ̄�Þ= ffiffiffi
2

p
direction. Let us note, in passing, that, under some
circumstances, this trajectory, for jSj < Sc, gives its
place to a classically nonflat valley of minima on
which new smooth FHI can take place along the lines
of Ref. [19]. The 4 × 4 mass-squared matrix M2

TT̄ of
the scalar fields T, T̄, T�, and T̄� has determinant and
trace

DetðM2
TT̄Þ ¼ M4

TðM2
T þ 2κκTM2ÞðM2

T − 2κκTM2Þ
(17d)

and

TrðM2
TT̄Þ ¼ 4ðM2

T þ 2κ2TS
2Þ; (17e)

respectively. It can be easily shown that the mass-
squared matrixM2

TT̄ of the scalar T, T̄ system has four
positive eigenvalues for

jκT j <
M2

T

2κM2
⇒ jξj < λ2

2κ2
(17f)

and, thus, the trivial flat direction is an honest
candidate inflationary trajectory since it is stable
in the T, T̄ scalar field directions for all the values
of S. On the contrary, violation of the bound in
Eq. (17f) implies that at least one of the eigenvalues
of the mass-squared matrix M2

TT̄ is negative and,
thus, this direction is a path of saddle points for all
the values of the field S. In this case, another
inflationary path comes into existence, namely the
semi-shifted one.
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(ii) The semi-shifted path found at Φ ¼ Φ̄ ¼ 0 and

T ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− κ

κT
M2 −M2

T

2κ2T

s
; T̄ ¼ 2κT

MT
ST (18a)

with

jκT j > M2
T=ð2κM2Þ (18b)

and potential energy density

V0
ssh ¼ −M4

T þ 4κκTM2
TM

2

4κ2T
· (18c)

On this path, the left-right symmetric gauge group
GLR is broken to GSM × Uð1ÞB−L and a semi-shifted
FHI can occur as shown in Ref. [21].

(iii) The shifted path, which appears at

Φ̄Φ ¼ κ
ðκ2 þ 2λ2ÞM2

T þ 4κκTλ
2M2

4κTλ
2ðκ2 þ λ2Þ ; (19a)

T ¼ − κMT

2λκT
; T̄ ¼ − κS

λ
(19b)

with potential energy density

V0
nsh ¼

κ2ðκM2
T − 4κTλ

2M2Þ2
16κ2Tλ

2ðκ2 þ λ2Þ : (19c)

This trajectory is analogous to the one used for the
new shifted FHI of Ref. [18]. Along this direction,
GLR is broken to GSM.

In our subsequent discussion, we will impose the
condition in Eq. (17f)and concentrate on the first case
above, where the semi-shifted flat direction in Eq. (18a)
does not exist. Writing the potential energy density V0

nsh in
Eq. (19c) in the form

V0
nsh ¼

λ2

κ2 þ λ2
ð 1
4ξ

− 1Þ2V0
tr; (20)

we can show that

V0
nsh > V0

tr (21)

for

1

4ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ λ2

p
=λÞ < ξ <

1

4ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ λ2

p
=λÞ : (22)

Under these circumstances, it is more likely that the system
will eventually settle down on the trivial rather than the new
shifted flat directionandwill undergoFHIof the standard type
along the trivial path. In the opposite case, where V0

nsh < V0
tr,

we better ensure that the critical value Snc of S on the new
shifted path in Eqs. (19a) and (19b) is larger than the critical S
on the trivial path given in Eq. (17c). In this case, the system,
after the end of inflation along the trivial path in Eq. (17a),
is expected to fall directly into the SUSY vacuum without
being trapped in the shifted path, where it could undergo a
second stage of inflation. Taking into account the findings
of Ref. [18], we see that the last prerequisite is achieved if

Snc
M

≡
���� κλ2ð1=4ξ − 1Þð2κ2ð1þ ðκ þ 2κTÞ=4ξκÞ þ ðκ þ κTÞλ2=ξκÞ

2κTðκ2 þ λ2Þð2ð1þ 1=4ξÞκ2 þ λ2=ξÞ
����1=2 > 1: (23)

B. Radiative corrections

The constant tree-level potential energy density
VHIO ≡ V0

tr, which drives inflation along the trivial
trajectory, causes SUSY breaking leading [2] to the
generation of one-loop radiative corrections, which pro-
vide a logarithmic slope along the inflationary path. To
calculate these corrections, we construct the mass spec-
trum of the theory on the inflationary path in Eq. (17a).

Our results are summarized in Table II, where we have
defined

m2
� ≡M2

T � κκTM2 þ 2κ2T jSj2 (24a)

and

D� ≡ κ2Tð4M2
T jSj2 þ ðκM2 � 2κT jSj2Þ2Þ: (24b)

TABLE II. The mass spectrum of the model along the inflationary trajectory in Eq. (17a).

Superfields of origin Real scalars Masses Weyl spinors Masses

Φ, Φ̄ 2 × 4 m2� ¼ κðjSj2 �M2Þ1=2 2 × 2 M2� ¼ �κjSj
T̄, T 3 × 2 m3� ¼ ðm2þ � ffiffiffiffiffiffiffi

Dþ
p Þ1=2 3 × 2 M3� ¼ �κT jSj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

T þ κ2T jSj2
p

3 × 2 m̄3� ¼ ðm2− � ffiffiffiffiffiffiffi
D−

p Þ1=2
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As we anticipated in the first item of Sec. III A, we see,
from Table II, that the mass-squared matrix of the scalar
components of the Φ and Φ̄ superfields develops a negative
eigenvalue as jSj crosses below its critical value Sc, whereas
the system of the scalar components of the T and T̄ is
completely stable for all values of S provided that the
condition in Eq. (17f) is satisfied.
Inserting the spectrum shown in Table II in the well-

known Coleman-Weinberg formula [41], we find that the
one-loop radiative correction to VHIO is

VHIc ¼ VΦ̄Φ þ VT̄T; (25)

where

VΦ̄Φ ¼ 2

64π2
X
I¼þ;−

�
2m4

2I ln
m2

2I

Λ2
− 2M4

2I ln
M2

2I

Λ2

�
(26a)

and

VT̄T ¼
3

64π2
X
I¼þ;−

�
m4

3I ln
m2

3I

Λ2
þ m̄4

3I ln
m̄2

3I

Λ2
− 2M4

3I ln
M2

3I

Λ2

�

(26b)

with Λ being a renormalization scale. In the relations
above, we have taken into account that the dimensionality
of the representations to which Φ, Φ̄ and T, T̄ belong is 2
and 3, respectively (see Table I). It is important to note thatX

I¼þ;−
ð2m4

2I − 2M4
2IÞ ¼ 4κ4M4 (27a)

and X
I¼þ;−

ðm4
3I þ m̄4

3I − 2M4
3IÞ ¼ 8κ2κ2TM

4 (27b)

are S independent, which implies that the slope of the
inflationary trajectory is Λ independent and the scale Λ,
which remains undetermined, does not enter the infla-
tionary observables. Moreover, we can show that, in the
limit x ¼ jSj2=M2 ≫ 1, the potential VHIc in Eq. (25) can
be well approximated by

VHIc ≃ VHIOð2κ2frcðκ2xÞ þ 6κ2Tfrcð4κ2TxÞÞ; (28a)

where

frcðzÞ ¼
1

16π2
ðln zM2

Λ2
þ 3

2
Þ· (28b)

As can be easily deduced from these formulas, VHIc is
independent of λ and the sign of κT and, to a considerable
degree, of MT too.

C. Supergravity corrections

The F-term tree-level SUGRA scalar potential VSG
HIO

of our model on the trivial path is obtained from WH in
Eq. (2) and the Kähler potential K by applying the standard
formula

VSG
HIO ¼ eK=m

2
P

�
KᾱβF�̄αFβ − 3

jWHIj2
m2

P

�
(29a)

with

Kαβ̄ ¼
∂2K

∂ϕα∂ϕ�β̄ ; KᾱβKβγ̄ ¼ δᾱγ̄ ; (29b)

and

Fα ¼
∂WHI

∂ϕα þ ∂K
∂ϕα

WHI

m2
P
; (29c)

where mP is the reduced Planck scale and ϕα denotes the
complex scalar fields of the model with ϕ�ᾱ being their
complex conjugates. The Kähler potential is a real function
of the complex scalar fields and their complex conjugates
and must respect all the symmetries of the model presented
in Table I (including the R symmetry). We consider here a
generic form of the Kähler potential, which, however, does
not deviate very much from the canonical one and can, thus,
be expanded as follows:

K ¼ jSj2 þ jΦj2 þ jΦ̄j2 þ TrjTj2 þ TrjT̄j2 þ 1

4
k4S

jSj4
m2

P

þ 1

6
k6S

jSj6
m4

P
þ 1

8
k8S

jSj8
m6

P

þ 1

10
k10S

jSj10
m8

P
þ 1

12
k12S

jSj12
m10

P

þ � � � ; (30)

where k4S, k6S, k8S, k10S, and k12S are real positive or
negative constants of order unity and the ellipsis represents
terms of higher order involving only the inflaton field S as
well as terms of higher order in the waterfall fields Φ, Φ̄, T,
and T̄ and any order in S. We neglect the latter terms since,
as we will now show, they are irrelevant on the trivial
inflationary path (the minimal terms for the waterfall fields
are also irrelevant during inflation, but we include them in
the expansion since they are necessarily present).
To prove this statement, observe from Table I that the

symmetries of the model do not allow terms in K which
are linear in the waterfall fields. So the only terms in K
involving these fields are quadratic or of higher order in
these fields. From Eq. (29c), we then see that these terms
do not contribute to Fα evaluated on the trivial path.
The only way for terms in K involving waterfall fields
to contribute to the potential on the trivial path is then
via Kᾱβ. However, even this does not happen for the
following reason. It is clear that Kαβ̄ vanishes on the trivial
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inflationary trajectory if just one of its indices corresponds
to a waterfall field, which implies the same property for
Kᾱβ too. Consequently, the terms in K involving waterfall
fields could influence the inflationary potential only via
Kᾱβ with both its indices corresponding to waterfall fields.
However, these are multiplied by Fα with α corresponding
towaterfall fields, which are zero on the trivial trajectory as
one can see from Eqs. (2) and (29c).
Using Eqs. (2), (29a), and (30), the SUGRA scalar

potential VSG
HIO on the trivial trajectory can be expanded as

follows:

VSG
HIO ≃ VHIO

�
1þ

X5
ν¼1

ð−1Þνc2νK
�

σffiffiffi
2

p
mP

�
2ν
�
; (31)

where σ ¼ ffiffiffi
2

p
S is the real inflaton field which is canoni-

cally normalized (neglecting terms of order jSj2 or higher
which multiply the kinetic term of S) with S being rotated
on the real axis by an appropriate R transformation. Here

c2K ¼ k4S; (32a)

c4K ¼ 1

2
− 7k4S

4
þ k24S − 3k6S

2
; (32b)

c6K ¼ − 2

3
þ 3k4S

2
− 7k24S

4
þ k34S þ

10k6S
3

− 3k4Sk6S þ 2k8S;

(32c)

c8K ¼ 3

8
− 5k10S

2
− 13k4S

24
þ 41k24S

32
− 7k34S

4
þ k44S − 13k6S

4

þ 143k4Sk6S
24

− 9k24Sk6S
2

þ 9k26S
4

− 39k8S
8

þ 4k4Sk8S;

(32d)

c10K ¼ − 2

15
þ 32k10S

5
þ 3k12S þ

k4S
24

− 5k10Sk4S − 13k24S
24

þ 41k34S
32

− 7k44S
4

þ k54S þ
5k6S
3

− 29k4Sk6S
6

þ 103k24Sk6S
12

− 6k34Sk6S − 5k26S þ
27k4Sk26S

4
þ 5k8S

− 67k4Sk8S
8

þ 6k24Sk8S − 6k6Sk8S: (32e)

In the sum which appears in the rhs of Eq. (31), we have
kept only the first five terms, i.e. the terms up to the tenth
order in σ, which is consistent with the expansion of the
Kähler potential K in Eq. (30) up to the twelfth order in jSj.
Note that, although the inflationary observables have a non-
negligible dependence only on the two or three lower terms
in the sum in the rhs of Eq. (31), we included some of the

higher terms too since these terms control the asymptotic
behavior of the potential and are, thus, needed in order to
guarantee that the potential is bounded below at large
values of jSj (see Sec. IV).
The overall inflationary potential VHI on the trivial path

is found by adding the SUGRA inflationary potential VSG
HIO

in Eq. (31) and the one-loop radiative correction VHIc in
Eq. (25):

VHI ¼ VSG
HIO þ VHIc: (33)

IV. CONSTRAINING THE MODEL PARAMETERS

We will now describe, in Sec. IV A, the inflationary
constraints which we will impose on the resulting cosmo-
logical scenario, and delineate, in Sec. IV B, the parameter
space of our model which is allowed by these constraints.

A. Inflationary requirements

We assume that (i) the observed curvature perturbation
is solely due to the inflaton field σ, (ii) ξ < 1=4 and the
restrictions in Eqs. (17f) and (21) or (23) are fulfilled, and
(iii) the FHI is followed by damped coherent oscillations
about the SUSY vacuum until reheating after which
radiation dominates leading eventually to matter domi-
nance. Under these hypotheses, the parameters of our
model can be further restricted by imposing the following
requirements:

(a) The number of e-foldings NHI� that the pivot scale
k� ¼ 0.05=Mpc undergoes during FHI has to lead
to a solution of the horizon and flatness problems of
standard big bang cosmology. Employing standard
methods [12,15,26], we can derive the relevant
condition,

NHI� ≡
Z

σ�

σf

dσ
m2

P

VHI

V 0
HI
≃ 19:4þ 2

3
ln

V1=4
HIO

1 GeV

þ 1

3
ln

Trh

1 GeV
; (34)

where σf is the value of σ at the end of FHI, σ� is the
value of σ when the pivot scale k� crosses outside the
horizon during FHI, the prime in this section denotes
derivation with respect to σ, and Trh is the reheat
temperature after FHI. The value σf can be found, in
the slow-roll approximation [26], from the condition

maxfϵðσfÞ; jηðσfÞjg ¼ 1; (35a)

where

ϵ≃m2
P

2

�
V 0
HI

VHI

�
2

and η≃m2
P
V 00
HI

VHI
; (35b)

or the saturation of the bound in Eq. (17c).

R. ARMILLIS, G. LAZARIDES, AND C. PALLIS PHYSICAL REVIEW D 89, 065032 (2014)

065032-8



(b) The amplitude As of the power spectrum of the
curvature perturbation which is generated during
FHI and calculated at k� as a function of σ� is to be
consistent with the present data [15,16], i.e.

A1=2
s ¼ 1

2
ffiffiffi
3

p
πm3

P

V3=2
HI ðσ�Þ

jV 0
HIðσ�Þj

≃ 4.685 × 10−5: (36)

(c) The scalar spectral index ns, its running
αs ≡ dns=d ln k, and the scalar-to-tensor ratio r,
which are given by

ns ¼ 1 − 6ϵ� þ 2η�; (37a)

αs ¼ 2ð4η2� − ðns − 1Þ2Þ=3 − 2ξ�; r ¼ 16ϵ�;

(37b)

where ξ≃m4
PV

0
HIV

000
HI=V

2
HI and all variables with the

subscript * are evaluated at σ ¼ σ�, should lie in the
following 95% confidence level (C.L.) ranges [15,16]
based on the ΛCDM model:

ns ¼ 0.9603� 0.014 ⇒ 0.945≲ ns ≲ 0.975; (38a)

αs ¼ −0.0134� 0.018; and r < 0.11: (38b)

Limiting ourselves to αs’s consistent with the assump-
tions of the power-law ΛCDM cosmological model,
we have to ensure that jαsj remains negligible. Since,
within the cosmological models with running spectral
index, jαsj’s of order 0.01 are encountered [15,16], we
impose the following upper bound:

jαsj ≪ 0.01: (39)

(d) The massMWR
of the charged SUð2ÞR gauge bosons

(W�
R), which are the onlyGSM nonsinglet superheavy

gauge bosons in our case, should take the value
dictated by the unification of the MSSM gauge
coupling constants.UsingRef. [21],we then infer that

MWR
¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Φþ2v2T

q
≃2×1016 GeV with g≃0.7

(40)

being the value of the unified gauge coupling constant.
(e) The inflationary potential must be bounded below as

jSj → ∞ to avoid the possibility of a disastrous
runawayof the system to infinitevalues of the inflaton
field. This requirement also facilitates the possibility
that the system may eventually undergo an infla-
tionary expansion under generic initial conditions.

(f) The expansion of VSG
HIO in Eq. (31) is expected to

converge at least up to σ ∼ σ�. This can be ensured if,

for σ ∼ σ�, each successive term in this expansion
(and the expansion of K in Eq. (30)) is smaller than
the previous one. In practice, this objective can be
easily accomplished if the k’s in Eq. (30) are
sufficiently small.

(g) In our model, we were not able to obtain monotonic
inflationary potentials. The potentials rather develop
a maximum and a minimum. So the FHI turns out to
be of the hilltop type [24] with σ rolling from the
region of the maximum of the potential down to
smaller values. In this case, a mild tuning of the
initial conditions is required [25] in order to obtain
acceptable ns’s. In particular, the lower the ns we
want to obtain the closer we must set σ� to σmax,
where σmax is the value of σ at which the maximum
of VHI lies. To quantify the amount of this tuning of
the initial conditions, we define [25] the quantity:

Δm� ¼
σmax − σ�

σmax
: (41)

The naturalness of the attainment of the hilltop FHI
increases with Δm�. So we must at least require that
Δm� is not unnaturally small. Moreover, one should
avoid the possibility that the system is trapped near the
minimum of the inflationary potential and, conse-
quently, no FHI takes place. Probably an era of eternal
inflation prior to FHI could be useful [24] for solving
the naturalness problem of the initial conditions for
the hilltop FHI.

B. Results

As it can be easily seen collecting the relevant expres-
sions above, our inflationary model depends on the
parameters

κ; κT; λ; M; MT; k4S; k6S; k8S; k10S; k12S:

The first five of these parameters appear in the
superpotential—see Eq. (2)—while the others appear in
the Kähler potential [see Eq. (30)]. We concentrate on a
realization of FHI which attains the fulfillment of Eq. (40),
as suggested first in Ref. [14] and further exemplified in
Ref. [12]. As a consequence of this equation, M is fixed
as a function of the other superpotential parameters. In our
computation, we use κT ,MT , and λ as input parameters and
restrict κ and σ� so that Eqs. (34) and (36) are satisfied. The
restrictions on ns from Eq. (38a) can be met by adjusting
conveniently k4S and k6S, whereas the last three parameters
of the Kähler potential assure that the function VHI is
bounded below. We take k8S ¼ 1, k10S ¼ −1, and k12S ¼ 0
throughout the calculation and verify that the values of
these quantities play no crucial role in the inflationary
dynamics. Finally, using Eq. (37b), we extract αs and r.
The crucial difference between our approach and the one

of Refs. [25,42] is, however, the sign of c2K ¼ k4S, which
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here is negative (cf. Refs. [12,14]). As a consequence, the
fulfillment of Eq. (38a) requires negative c4K and, thus,
positive k6S [see Eq. (32b)]. Note that, with this choice of
signs, αs is somewhat enhanced. More explicitly, the
potential VHI, which is given by Eqs. (25), (31), and
(33), can be approximated as

VHI ≃ VHIc þ VHIO

�
1þ jk4Sj

σ2

2m2
P
− jc4Kj

σ4

4m4
P

− jc6Kj
σ6

8m6
P

þ jc8Kj
σ8

16m8
P

�
; (42)

where the formula for the potential VHIc should be taken
from Eq. (28a) and the fact that c6K and c8K turn out to be
positive for the values of the parameters chosen here is
taken into account. As a consequence, VHI unavoidably
develops a nonmonotonic behavior. Employing the expres-
sion in Eq. (42), we can show that VHI reaches a local
maximum at the value of the inflaton field

σmax ≃
mP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πjk4Sj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2k24S þ ðκ2 þ 3κ2TÞjc4Kj

pq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πjc4Kj

p (43a)

and a local minimum at

σmin ≃mP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3jc6Kj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9c26K þ 32jc4Kc6Kj

qr
2

ffiffiffiffiffiffiffiffiffiffijc8Kj
p · (43b)

In deriving Eq. (43a), we kept terms until the fourth power
of σ in the expansion in the rhs of Eq. (42), whereas, for
Eq. (43b), we focused on the last three terms of this
expansion and dropped VHIc. This is the reason why the rhs
of the latter formula is independent of VHIc and c2K .
The structure of VHI is visualized in Fig. 1, where we

display the variation of VHI as a function of σ=M for
κ ¼ 0.001, κT ¼ 0.01, λ ¼ 0.1, MT ¼ 2.5 × 1016 GeV,
k4S ¼ −0.0215, and k6S ¼ 10:9. These parameters yield
M ≃ 2.6 × 1016 GeV, ns ¼ 0.96, αs ≃ 0.0013, and
r≃ 2.25 × 10−7. The maximum of VHI is located at
σmax=M ¼ 3.4f3.7g, whereas its minimum lies at
σmin=M ¼ 56f66:5g—the values obtained via the approxi-
mate Eqs. (43a) and (43b) are indicated in curly brackets.
The values of σ�=M ≃ 2.71 and σf=M ≃ 1.41 are also
depicted in Fig. 1. The naturalness parameter of the hilltop
FHI turns out to be Δm� ≃ 0.2.
Confronting FHI with the constraints of Sec. IV A, we

can delineate the allowed (lightly gray shaded) region in
the κ − ð−k4SÞ [κ − k6S] plane (see Figs. 2(a) and 2(c)
[Figs. 2b and 2d]). We take κT ¼ 0.01, λ ¼ 0.1, and
MT ¼ 2.5 × 1016 GeV for panels a1, a2 or κT ¼ 0.005,
λ ¼ 0.05, and MT ¼ 3 × 1016 GeV for panels b1, b2. The

convention adopted for the various lines is also shown in
the figure. In particular, the gray dashed [dot-dashed]
lines correspond to ns ¼ 0.975 [ns ¼ 0.946], whereas the
gray solid lines have been obtained by fixing ns ¼ 0.96
[see Eq. (38a)].
We observe that, as κ increases, there is a remarkable

augmentation of αs, which saturates the bound in Eq. (39)
on the thick black solid lines at the right end of the allowed
regions. The inequalities in Eqs. (21) and (23) are violated
to the left of the black dotted lines. The first of these
inequalities, though, can remain valid at even smaller
values of κ if we take smaller values of κT and λ and
larger values of MT and, thus, the dotted line is shifted to
the left in this case as one can easily deduce by comparing
Figs. 2c and 2d with Figs. 2a and 2b. This behavior can
be understood by the fact that, for such values of the
parameters, the potential V0

nsh, which is given by
Eq. (19c)–or Eq. (20)–, increases and so the bound in
Eq. (21) is saturated at smaller values of κ. Note that this
bound can become totally irrelevant for our calculation if
we use κT < 0, since, in this case, the lower bound on ξ in
Eq. (22) becomes extremely small and, thus, it is auto-
matically satisfied for natural values of κ and λ (of order
0.1). Had we used κT < 0 with absolute value equal to its
values used in Fig. 2, the required values of k4S and k6S
would have been similar to those found for κT > 0 for most
of the allowed values of κ in this figure, but smaller values
of κ would have also been possible. However, since the
achievement of the observational constraints of Sec. IV A
pushes k6S to rather high values andΔm� to too small values
for such small values of κ, it is not worth continuing the
exploration of the parameter space in the region of such
very small κ’s.
Interestingly enough, the allowed regions in

Figs. 2a and 2b almost perfectly coincide with the allowed
regions in Figs. 2c and 2d in their common range of κ. This
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FIG. 1. The variation of VHI as a function of σ for κ ¼ 0.001,
κT ¼ 0.01, λ ¼ 0.1, MT ¼ 2.5 × 1016 GeV, k4S ¼ −0.0215,
k6S ¼ 10:9, k8S ¼ 1, k10S ¼ −1, and k12S ¼ 0 (resulting to
ns ¼ 0.960). The values σ�, σf , σmax, and σmin of σ are also
depicted.
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signals the fact that the SUGRA corrections to VHI
originating from the two first terms in the sum in the
rhs of Eq. (31) dominate over the radiative corrections in
Eq. (25). The discrepancy between the various lines ranges
from 2% to 10%. For both sets of values of the input
parameters, we see that the required values of jk4Sj increase
with κ, whereas the values of k6S drop. Also the mass scale
M increases with κ and MT . As we show in Sec. VI B,
where the ranges of parameters are further restricted, κ’s
lower than about 0.001 are more preferable from the point
of view of nonthermal leptogenesis and the ~G constraint.
Focusing on the values of the input parameters used in
Figs. 2c and 2d, which ensure a broader allowed space, and
taking ns ≃ 0.96, we find

0.008≲ κ

10−2
≲ 2.1; 2.64≲ M

1016 GeV
≲ 2.85; (44a)

1.15≲ −k4S
10−2

≲ 4.7; 0.65≲ k6S ≲ 25; (44b)

0.014≲ −αs
10−2

≲ 1; 2.7 × 10−5 ≲ r
10−4

≲ 2.5: (44c)

In this region, the naturalness parameter Δm� of the hilltop
FHI ranges between 0.05 and 0.29. From the data used
in Fig. 2, one sees that Δm� increases with κ. The Kähler
potential parameter −k4S is restricted to somewhat small
values in order to avoid the η problem of FHI. This fact
signals a second mild tuning, which is however encoun-
tered in many models of FHI (see e.g. Ref. [3]). On the
other hand, no tuning is needed as regards k6S since it takes
values of order unity for most κ’s.

V. NONTHERMAL LEPTOGENESIS

In this section, we discuss the inflaton decay and the
reheating of the universe after inflation (Sec. V A). We
also describe the scenario for generating the observed BAU
in our model via a primordial nonthermal leptogenesis
(Sec. V B) consistently with the gravitino ( ~G) constraint
[22,23] and the low energy neutrino data [43,44] (Sec. V C).

A. The decay of the inflaton

Right after the termination of FHI, the inflaton field S
crosses Sc, the trivial inflationary path in Eq. (17a) is
destabilized in the ðΦþ Φ̄�Þ= ffiffiffi

2
p

direction and the system
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FIG. 2. The (shaded) regions allowed by Eqs. (21) or (23) as well as Eqs. (34), (36), (38a), (39), and (40) in the κ − ð−k4SÞ plane
(panels a, c) and the κ − k6S plane (panels b, d). We take k8S ¼ 1 and k10S ¼ −1 as well as κT ¼ 0.01, λ ¼ 0.1, and MT ¼
2.5 × 1016 GeV for panels a, b, or κT ¼ 0.005, λ ¼ 0.05, andMT ¼ 3 × 1016 GeV for panels c, d. The requirements in the paragraphs e,
f, and g of Sec. IV A are also satisfied in these regions. The value of ns on the various lines is indicated.
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is driven towards the SUSY vacuum in Eq. (5a). Soon
afterwards, the system settles into a phase of damped
oscillations about the SUSY vacuum and eventually decays
reheating the universe. The constitution of the oscillating
inflaton system (IS) can be found by constructing the
neutral scalar particle spectrum at the SUSY vacuum in
Eq. (5a). To this end, we expand VH in Eq. (3) up to terms
of quadratic order in the fluctuations of the fields about the
vacuum and find that

VH ≃ ð δΦ�þ δT� ÞM2
1

�
δΦþ
δT

�

þ ð δT̄� δS� ÞM2
2

�
δT̄

δS

�
þ � � � ; (45)

where the (complex) deviations of the fields S, Φ, Φ̄, T, and
T̄ from their values in the vacuum are denoted as δS, δΦ,
δΦ̄, δT, and δT̄ respectively and we have defined the
complex scalar fields

δΦ� ¼ ðδΦ� δΦ̄Þ=
ffiffiffi
2

p
: (46)

Note that the combination δΦ− does not acquire mass from
VH in Eq. (3) as it is the Goldstone boson absorbed by
the supermassive neutral gauge boson of the model. Recall
that these complex scalar fields belong to the SM singlet
components of the various superfields. The mass-squared
matrices M2

1 and M2
2 in Eq. (45) are given by

M2
1 ¼

�
2ðκ2 þ λ2Þv2Φ D1

D1 M2
T þ 4κ2Tv

2
T

�
(47a)

with

D1 ¼
ffiffiffi
2

p
ðλMT − 2κκTvTÞvΦ (47b)

and

M2
2 ¼

�
M2

T þ 2λ2v2Φ D2

D2 4κ2Tv
2
T þ 2κ2v2Φ

�
(47c)

with

D2 ¼ −2κTMTvT þ 2κλv2Φ: (47d)

To find the mass eigenstates of the IS, we have to
diagonalize the matrices above. As it turns out, these
matrices have the same eigenvalues. So, the diagonalization
can be achieved via two orthogonal matrices U1;2 as
follows:

U1M2
1U

T
1 ¼ U2M2

2U
T
2 ¼ diagðm2

Iþ; m
2
I−Þ; (48)

where

m2
I� ¼ ðm̄2 �DÞ=2 (49a)

with

m̄2 ¼ M2
T þ 4κ2Tv

2
T þ 2ðκ2 þ λ2Þv2Φ; (49b)

D2 ¼ m̄4 − 8ðκMT þ 2κTλvTÞ2v2Φ: (49c)

The matrices which diagonalize M2
1 and M2

2 can be cast
in the form

Un ¼
�
Vnþ=Nnþ 1=Nnþ
Vn−=Nn− 1=Nn−

�
with n ¼ 1; 2; (50a)

where

Vn� ¼ Cn �D
2Dn

and Nn� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ V2

n�
q

: (50b)

Here we use the abbreviations

C1 ¼ −M2
T − 4κ2Tv

2
T þ 2ðκ2 þ λ2Þv2Φ; (50c)

C2 ¼ M2
T − 4κ2Tv

2
T − 2ðκ2 − λ2Þv2Φ: (50d)

One can show that D2 ¼ 4D2
n þ C2

n for n ¼ 1, 2, which
implies thatD2 is positive and, thus,D in Eq. (49a) is a real
number taken positive. Also, it is evident that the second
term in rhs of Eq. (49c) is negative and, thus, the masses-
squared in Eq. (49a) are both positive.
Inserting unity (1 ¼ UnUT

n ¼ UT
nUn) on both sides of

M2
1 and M2

2 in Eq. (45), the potential VH can be brought
into the form

VH ≃X
r¼�

m2
IrðjΦrj2 þ jSrj2Þ þ � � � ; (51)

where the complex fields Φ� and S� are given by

Φ� ¼ δT þ V1�δΦþ
N1�

and S� ¼ δSþ V2�δT̄
N2�

: (52)

Solving Eq. (52) with respect to δΦþ, δT, δT̄, and δS,
we find

δΦþ ¼ N1−Φ− − N1þΦþ
V1− − V1þ

; (53a)

δT ¼ −N1−V1þΦ− þ N1þV1−Φþ
V1− − V1þ

(53b)

and
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δT̄ ¼ N2−S− − N2þSþ
V2− − V2þ

; (54a)

δS ¼ −N2−V2þS− þ N2þV2−Sþ
V2− − V2þ

· (54b)

After the end of FHI, each of the four complex scalar fields
Φ� and S� oscillates about the SUSY vacuum and decays
into a pair of right-handed sneutrinos (νci ) or neutrinos
(ψνci

). The masses of these (s)neutrinos are generated, after
the breaking of GLR, by the first term in the rhs of Eq. (10)
and turn out to be

Miνc ¼ 2λiνcv2Φ=Ms: (55)

Here we assumed that the superfields lci have been rotated
in the family space so that the coupling constant matrix λij
in Eq. (10) becomes diagonal with real and positive
eigenvalues λiνc . This is the so-called [45] right-handed
neutrino basis, where the right-handed neutrino masses are
diagonal, real, and positive. The first coupling in the rhs of
Eq. (10) together with the superpotential terms in Eq. (2)
also leads to the decay of the IS into a pair of right-handed
neutrinos or sneutrinos. In particular, from this coupling,
we obtain the following Lagrangian term (note that the
decay of T via the two last terms in the rhs of Eq. (6) is
kinematically blocked):

LΦT ¼ − ffiffiffi
2

p
λiνc

vΦ
Ms

δΦþψνci
ψνci

þ H:c:

¼ −λi
X
r¼�

γΦrΦrψνci
ψνci

þ H:c:; (56a)

where

λi ¼
ffiffiffi
2

p
λiνcvΦ=Ms (56b)

and

γΦr ¼
�−N1þ=ðV1− − V1þÞ for r ¼ þ
N1−=ðV1− − V1þÞ for r ¼ −; (56c)

as one finds using Eq. (53a).
Moreover, from the F-term ð∂WH=∂Φ̄Þ�ð∂WNR=∂Φ̄Þ þ

H:c: with WH and WNR in Eqs. (2) and (10), respectively,
we obtain the Lagrangian terms

LST̄ ¼ −2vΦλiνc vΦMs
ðκS� þ λT̄�Þνci νci þ H:c:

¼ −λi
X
r¼�

γSrSrmIrν
c
i ν

c
i þ H:c:; (57a)

where the γSr’s can be derived from Eqs. (54a) and (54b)
and turn out to be

γSþ ¼
ffiffiffi
2

p
vΦðκN2þV2− − λN2þÞ
mIþðV2− − V2þÞ

; (57b)

γS− ¼
ffiffiffi
2

p
vΦð−κN2−V2þ þ λN2−Þ
mI−ðV2− − V2þÞ

: (57c)

For mI� ≫ Miνc, the Lagrangians LΦT and LST̄ in
Eqs. (56a) and (57a) give rise to a common decay width
ΓIþ→νci

for Φþ into a pair of right-handed neutrinos ψνci
and

Sþ into a pair of right-handed sneutrinos νci and a different
common decay width ΓI−→νci

for Φ− into a pair of right-
handed neutrinos ψνci

and S− into a pair of right-handed
sneutrinos νci :

ΓI�→νci
≃ 1

32π
λ2i γ

2
Φ�mI� ¼ 1

32π
λ2i γ

2
S�mI�: (58)

The inflaton subsystem consisting of Φþ and Sþ will be
called the Iþ subsystem, while the one consisting ofΦ− and
S− will be called the I− subsystem. We checked numeri-
cally that the widths of the SUGRA-induced [46] decay
channels of the IS are negligible in our model for the
values of vΦ and mI− obtained in Sec. IV B and, therefore,
we do not include these channels in our calculation. Since
the decay width of the produced νci is much larger than
ΓI�→νci

—see below—the reheating temperature Trh is
exclusively determined by the decay of the IS and is
given by [47]

Trh ¼
�

72

5π2g�

�
1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffi

mPΓI−
p

; where ΓI� ¼
X
i

ΓI�→νci
:

(59)

Here g� counts the effective number of relativistic degrees
of freedom at temperature Trh and we assumed that
ΓI− ≪ ΓIþ. For the MSSM spectrum plus the particle
content of the superfields N and N̄, we find
that g� ≃ 228:75þ 4ð1þ 7=8Þ ¼ 236:25.

B. Lepton Asymmetry and Gravitino Abundance

The implementation of nonthermal leptogenesis requires
that the right-handed (s)neutrinos which emerge at reheat-
ing decay out-of-equilibrium [48] into light particles.
This condition is automatically satisfied provided that
Trh ≪ Miνc . The superfield νci decays into a right-handed
Higgs superfield and a SUð2ÞL doublet right-handed
antilepton superfield via the tree-level Yukawa couplings
derived from the second term in the rhs of Eq. (7).
Interference between tree-level and one-loop diagrams
generates a lepton-number asymmetry ϵi per νci decay
[48] provided that CP is violated. The resulting overall
lepton-number asymmetry YL ≡ nL=s (nL is the lepton-
number density and s the entropy density) after reheating
is given by
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YL ¼ 2
5

4

Trh

mI−

X
i

ΓI−→νci

ΓI−
εi (60a)

and can be partially converted via electroweak sphaleron
effects into baryon-number asymmetry which, in MSSM, is
estimated to be

YB ¼ −0.35YL: (60b)

The factor 2 in the rhs of Eq. (60a) comes from the fact that
each decaying inflaton gives two right-handed (s)neutrinos,
whereas the factor (5=4) is consistent with the calculation
of Trh in Ref. [47], which leads to Eq. (59). Finally, the
numerical factor in the rhs of Eq. (60b) originates [49] from
the electroweak sphaleron effects.
We should, however, keep in mind that, if the lightest

right-handed neutrino mass M1νc is less than about 10Trh,
YL can be partly washed out due to νc1 mediated inverse
decay and ΔL ¼ 1 scattering processes–this possibility is
analyzed in Ref. [50]. In order to avoid the computational
complications related to this washout, we limit ourselves to
cases with M1νc ≳ 10Trh so that no washout of the non-
thermally produced YL occurs. Moreover, YL is not erased
by ΔL ¼ 2 scattering processes [51] at all temperatures T
between 100 GeV and Trh since YL is automatically
protected by SUSY [49] for 107 GeV≲ T ≲ Trh and for
T ≲ 107 GeV these processes are well out of equilibrium
provided that the mass of the heaviest light neutrino is
smaller than about 10 eV. This constraint, however, is
overshadowed by a more stringent restriction induced by
the current data [16,52] (see Sec. VI).
The reheat temperature Trh must be compatible with the

constraint on the ~G abundance Y ~G at the onset of big
bang nucleosynthesis (BBN). This abundance is estimated
to be [23]

Y ~G ≃ 1.9 × 10−22Trh=GeV; (61)

where we assume that ~G is much heavier than the gauginos.
Note that nonthermal ~G production is [46] also possible
within SUGRA. However, we adopt here the conservative
estimate of Y ~G in Eq. (61) since this nonthermal production
of gravitinos depends on the mechanism of SUSY break-
ing. It is important to mention that Eqs. (60b) and (61) give
the correct values of baryon asymmetry and ~G abundance
provided that no entropy production occurs at T < Trh.
This requirement can be very easily achieved within our
setting.
The mass spectrum of the N-N̄ system—see second

term in Eq. (10)—consists of a saxion and an axion
corresponding, respectively, to the real and the imaginary
part of the complex scalar field N− ¼ ðδN − δN̄Þ= ffiffiffi

2
p

,
an axino ψ− ¼ ðψN − ψ N̄Þ=

ffiffiffi
2

p
, two extra real Higgs

fields corresponding to the real and the imaginary
part of Nþ ¼ ðδN þ δN̄Þ= ffiffiffi

2
p

, and an extra Higgsino

ψNþ ¼ ðψN þ ψ N̄Þ=
ffiffiffi
2

p
all with masses of order 1 TeV

except, of course, the axion which is very light (δN, δN̄ are,
respectively, the complex deviations of N, N̄ from their
VEVs and ψ denotes a Weyl spinor).
The extra Higgs fields and the extra Higgsino can decay,

if this is kinematically allowed, to ordinary Higgs fields and
Higgsinos before dominating the universe [53]. However,
under certain conditions, the extra Higgsino can contribute
to the cold dark matter (CDM) in the universe [54].
Regarding the saxion in N−, we can assume that its

decay mode to axions is suppressed with respect to its
decay modes into gluons, Higgses, and Higgsinos [55,56]
and the initial amplitude of its oscillations is approximately
equal to the axion decay constant fa ≃ 1012 GeV. Under
these circumstances, the saxion can [55] decay before
dominating the universe and the stringent upper bound on
Trh from the limit on the effective number of neutrinos at
BBN is alleviated [56]. As a consequence of the relatively
large decay temperature of the saxion, the resulting lightest
sparticles (LSPs) are likely to be thermalized and, therefore,
no upper bound on the saxion abundance and, thus, Trh is
obtained [56].
The axions could in principle contribute to dark matter,

but we should keep in mind that they generate isocurvature
perturbations—see e.g. Refs. [53,57]—which are strongly
restricted by the present data from the Planck satellite [15].
Indeed, since in our model the PQ symmetry must be
broken during FHI— see Ref. [53]—the axion acquires
quantum fluctuations as all the almost massless degrees of
freedom. At the QCD phase transition, these fluctuations
turn into isocurvature perturbations in the axion energy
density, which means that the partial curvature perturbation
in axions is different than the one in photons. Therefore,
a large axion contribution to CDM is disfavored within
our model.
Finally, the axino cannot be the LSP because its large

expected mass and the relatively high Trh’s encountered
here would then lead [58] to an unacceptably large CDM
abundance. Nonetheless, the axino may [58] enhance
nonthermally the abundance of a neutralino LSP which
is a successful CDM candidate.

C. Leptogenesis and low energy neutrino data

As mentioned above, the decay of a right-handed
sneutrino νci or neutrino ψνci

emerging from the IS decay
at reheating can generate a lepton asymmetry εi due to the
interference between the tree-level and the one-loop decay
diagrams as well as the violation of the CP symmetry. The
generated εi can be expressed in terms of the Dirac mass
matrix mD

ν of the neutrinos defined in the right-handed
neutrino basis,

εi ¼
X
j≠i

Im½ðmD†
ν mD

ν Þ2ij�
8πhH2i2ðmD†

ν mD
ν Þii

ðFVðxijÞ þ FSðxijÞÞ; (62a)
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where

xij ≡Mjνc

Miνc
(62b)

and hH2i≃ 174 GeV assuming large tan β. Also FV and
FS represent, respectively, the contributions from the vertex
and self-energy diagrams and, in SUSY theories, are given
[59] by

FVðxÞ ¼ −x ln ð1þ x−2Þ; (62c)

FSðxÞ ¼ − 2x
x2 − 1

· (62d)

Note that Eqs. (62a), (62c), and (62d) hold provided that
the right-handed neutrinos are far from being degenerate,
which is true in our case. In particular, for strongly
hierarchical Miνc’s with xij ≫ 1, j ≠ i, we obtain the
well-known approximate result [50,60]

FV þ FS ≃− 3

x2ij
· (63)

The Dirac mass matrixmD
ν in Eq. (62a) is diagonalized in

the so-called [45] weak basis, in which the lepton Yukawa
couplings and the SUð2ÞL interactions are diagonal in the
generation space. In particular, we have

U†mD
ν Uc† ≡ dD ¼ diagðmD

1 ; m
D
2 ; m

D
3 Þ; (64)

where mD
1 , m

D
2 , and mD

3 are real and positive and U and Uc

are 3 × 3 unitary matrices which relate li and νci in the right-
handed neutrino basis with l0i and νc0i in the weak basis as
follows:

l0 ¼ lU and νc0 ¼ Ucνc: (65)

Here, we write the left-handed SUð2ÞL doublet lepton
superfields as row 3-vectors in family space and the
right-handed SUð2ÞL singlet antilepton superfields as
column three-vectors. The matrix mD†

ν mD
ν in Eq. (62a) then

becomes a function of dD and Uc. Namely,

mD†
ν mD

ν ¼ Uc†dD†dDUc: (66)

The nonthermal leptogenesis scenario depends on the
low energy neutrino data via the seesaw formula, which
gives the light-neutrino mass matrix mν in terms of mD

i and
Miνc . In the right-handed neutrino basis, the seesaw
formula becomes

mν ¼ −mD
ν d−1νc ðmD

ν ÞT; (67a)

where

dνc ¼ diagðM1νc ;M2νc ;M3νcÞ (67b)

with M1νc ≤ M2νc ≤ M3νc real and positive. Solving
Eq. (64) with respect to mD

ν and inserting the resulting
expression in Eq. (67a), we find that the light neutrino mass
matrix in the weak basis is given by

m̄ν ¼ U†mνU� ¼ −dDUcd−1νc UcTdD: (68)

This mass matrix can be diagonalized by the unitary
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix Uν,

UT
ν m̄νUν ¼ diagðm1ν; m2ν; m3νÞ; (69)

with m1ν, m2ν, and m3ν being the real and positive light
neutrino mass eigenvalues and the PMNS matrix Uν

parametrized as follows:

Uν ¼

0
B@

c12c13 s12c13 s13e−iδ

U21ν U22ν s23c13
U31ν U32ν c23c13

1
CA · P: (70)

Here

U21ν ¼ −c23s12 − s23c12s13eiδ; (71a)

U22ν ¼ c23c12 − s23s12s13eiδ; (71b)

U31ν ¼ s23s12 − c23c12s13eiδ; (71c)

U32ν ¼ −s23c12 − c23s12s13eiδ; (71d)

where cij ≡ cos θij, sij ≡ sin θij with θij being the appro-
priate mixing angles and δ is the CP-violating Dirac phase.
The two CP-violating Majorana phases φ1 and φ2 are
contained in the matrix

P ¼ diagðe−iφ1=2; e−iφ2=2; 1Þ: (72)

Following a bottom-up approach along the lines of
Refs. [50,60], we find m̄ν via Eq. (69) using as input
parameters the low energy neutrino observables for various
values ofm1ν and theCP-violatingMajorana phases φ1 and
φ2 and adopting the normal or inverted hierarchical scheme
of light neutrino masses (see Sec. VI A). Taking also mD

i as
input parameters, we construct the complex symmetric
matrix

W ¼ −ðdDÞ−1m̄νðdDÞ−1 ¼ Ucd−1νc UcT (73)

—see Eq. (68)—which we can extract dνc as follows:

d−2νc ¼ Uc†WW†Uc: (74)
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Note that WW† is a 3 × 3 complex, Hermitian matrix and
is diagonalized following the algorithm described in
Ref. [61] so as to determine the elements of Uc and the
Miνc’s. We then compute mD†

ν mD
ν through Eq. (66) and the

εi’s via Eq. (62a).

VI. UPDATING THE CONSTRAINTS ON THE
MODEL PARAMETERS

The parameters of our model can be further restricted if,
in addition to the inflationary requirements mentioned in
Sec. IV A, we impose extra constraints arising from the
postinflationary evolution predicted by our model. These
constraints are outlined in Sec. VI A, whereas, in Sec. VI B,
we derive the overall allowed parameter space of
our model.

A. Post-inflationary requirements

We summarize below the requirements which guarantee
a successful postinflationary evolution in our scheme:

(a) We require the following bounds on Miνc :

Miνc ≲ 7.1
v2Φ
Ms

; M1νc ≳ 10Trh; and mI− ≥ 2M1νc :

(75)

The first bound ensures that the coupling constants λiνc
in Eqs. (10) and (55) acquire perturbative values, i.e.
λ2iνc=4π ≤ 1. The second inequality is applied in order
to protect the generated lepton asymmetry YL against
any possible washout by νc1-mediated inverse decay
and ΔL ¼ 1 scattering processes as mentioned in
Sec. V B (see Ref. [50]). Finally, the last bound
ensures that the decay of the IS into a pair of νci ’s is
kinematically allowed for at least one species of
the νci ’s.

(b) The Dirac massesmD
i selected for νi atMGUT need to

be consistent with the relations in Eqs. (15c) and
(15d). In order to reduce the number of free
parameters and simplify the relevant constraint,
we assume that yijL and y0ijL are simultaneously
diagonal in the weak basis with elements yiL and y0iL,
respectively. Under this assumption, we have to
check that the selected mD

i ’s can be obtained
together with the masses miE of the charged leptons
by a natural set of yiL’s and y0iL’s with a1 and a2 of
order unity. In other words, the solution of the six by
six system of equations

yiL − α2y0iLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jα2j2

p v2 ¼ mD
i ;

yiL − α1y0iLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jα1j2

p v1 ¼ miE (76)

has to exist and be natural for a set of natural values
of a1 and a2. Here we put v1 ¼ 174 cos β GeV and
v2 ¼ 174 sin β GeV, and miE and mD

i are taken at

MGUT assuming that the running from MGUT until the
scale of nonthermal leptogenesis ΛL, which is taken
to be ΛL ¼ mI−, is negligible. Working in the context
of MSSM with universal gaugino masses and
tan β≃ 50—favored by the recent results of LHC
[62] on the lightest Higgs boson mass—and taking
into account the SUSY threshold corrections, we
obtain [63]

ðm1E;m2E;m3EÞ ¼ ð0.39 − 0.532; 83:5 − 112:7;

1635 − 2400Þ MeV: (77)

(c) From the solar, atmospheric, accelerator, and reactor
neutrino experiments, we take as inputs in our
calculation the best-fit values [43] (see also
Ref. [44]),

Δm2
21 ¼ 7.62 × 10−3 eV2; (78a)

Δm2
31 ¼ 2.55½−2.43� × 10−3 eV2; (78b)

for the differences Δm2
ij ≡m2

iν −m2
jν between the

light neutrino masses-squared,

sin2θ12 ¼ 0.32; (78c)

sin2θ13 ¼ 0.0246½0.025�; (78d)

sin2θ23 ¼ 0.613½0.6� (78e)

for the mixing angles, and

δ ¼ 0.8π½−0.03π� (78f)

for the CP-violating Dirac phase in the case of normal
[inverted] neutrino mass hierarchy. In particular, two
of the miν’s are determined in terms of the third one
using the relation

m2ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1ν þ Δm2
21

q
(79a)

and either

m3ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1ν þ Δm2
31

q
(79b)

for normally ordered (NO) miν’s or

m1ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3ν þ jΔm2
31j

q
(79c)

for invertedly ordered (IO) miν’s. We also take into
account the fact that the sum of the miν’s is bounded
above by the current data [16,52],
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X
i

miν ≤ 0.28 TeV; (80)

at 95% C.L.
(d) The BAU YB must satisfy the constraint [52]

YB ≃ ð8.55� 0.217Þ × 10−11 at 95% C:L: (81)

(e) To avoid spoiling the success of the BBN, an upper
bound on Y ~G must be imposed depending on the ~G
mass m ~G and the dominant ~G decay mode. We
consider here the conservative case where ~G decays
with a tiny hadronic branching ratio. In this case, we
have [23]

Y ~G ≲

8>><
>>:

10−14

10−13

10−12
for m ~G ≃

8>><
>>:

0.69 TeV

10:6 TeV

13:5 TeV:

(82)

B. Results

The inflationary requirements of Sec. III restrict k4S and
k6S as functions of κ for given λ, κT , and MT . We first
concentrate on a low value of κ within its allowed range.
This ensures a low enough mI− through Eq. (49a). As a

consequence, YB in Eq. (60b) is enhanced, whereas Trh is
kept sufficiently low, as can be deduced from Eqs. (58) and
(59). Namely, we take κ ¼ 0.001, κT ¼ 0.01, λ ¼ 0.1,
MT ¼ 2.5 × 1016 GeV, k4S ¼ −0.0215, and k6S ¼ 10:9
yielding mI− ¼ 2.94 × 1013 GeV.
Note that Trh and YB depend also on the masses Miνc of

the νci ’s into which I− decays. In addition, YB depends
crucially on the low energy parameters related to neutrino
physics. Following a bottom-up approach, we find the
Miνc’s by using as input parameters the mD

i ’s, the mass of
one of the νi’s–the m1ν for NO miν’s, or the m3ν for IO
miν’s–,the two Majorana phases φ1 and φ2 of the PMNS
matrix, and the best-fit values [see Eqs. (78a)–(78f)] of the
low energy neutrino parameters. In our numerical code,
we run these best-fit values up to the scale of nonthermal
leptogenesis ΛL ¼ mI− following Ref. [64] and considering
the MSSM with tan β≃ 50 as an effective theory between
the soft SUSY-breaking scale MSUSY ¼ 1.5 TeV and ΛL.
The so obtained Miνc’s clearly correspond to the scale ΛL.
Our results are displayed in Table III for some repre-

sentative values of the parameters which yield acceptable
YB and Y ~G, i.e. lying in the ranges shown in Eqs. (81) and
(82). We consider strongly NO (cases A and B), almost
degenerate (cases C, D, and E) and strongly IO (cases F and
G) neutrino masses. Note that the cases C and D correspond
to NOmiν’s with largem1ν, while the case E corresponds to

TABLE III. Parameters yielding acceptable BAU for κ ¼ 0.001, κT ¼ 0.01, λ ¼ 0.1, MT ¼ 2.5 × 1016 GeV, k4S ¼ −0.0215,
k6S ¼ 10:9, and various neutrino mass schemes.

Cases

A B C D E F G

Parameters Normally Ordered ν Masses Almost Degenerate ν Masses Invertedly Ordered ν Masses

Low Energy Neutrino Parameters
m1ν=0.1 eV 0.01 0.1 0.5 0.7 0.7 0.5 0.49
m2ν=0.1 eV 0.09 0.1 0.5 0.7 0.7 0.51 0.5
m3ν=0.1 eV 0.5 0.5 0.7 0.86 0.5 0.1 0.05P

imiν=0.1 eV 0.6 0.7 1.7 2.3 1.9 1.1 1
φ1 π=3 π=2 0 π=2 π −π=3 −π=2
φ2 0 0 3π=4 π=2 π −π=2 −π=6
Mass Parameters at the Leptogenesis Scale
mD

1 =0.1 GeV 4.7 4.1 15.5 10 7 9.5 7
mD

2 =GeV 26 2.3 2 2.5 1.2 1.4 2
mD

3 =10 GeV 12 12 5 8 0.4 12 1.5
M1νc=1010 GeV 5.9 2.2 4.9 1.4 0.67 1.7 1
M2νc=1011 GeV 177 1.4 1 0.94 0.069 0.8 1.5
M3νc=1013 GeV 342 45 1.9 5.3 0.007 51 1.7
Decay Channels of the Inflaton I− with mass mI−
I− → νc1 νc1;2 νc1;2 νc1;2 νc1;2;3 νc1;2 νc1;2
Resulting Baryon Asymmetry
1011Y0

B 8.72 7.45 7.98 7.96 5.5 7.97 7.97
1011YB 8.53 8.23 8.4 8.64 8.78 8.6 8.53
Resulting Trh and ~G Abundance
Trh=108 GeV 3.4 8 6.8 5.6 5.9 4.9 8.7
1013Y ~G 0.7 1.5 1.3 1 1.1 0.9 1.65
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IO miν’s with large m3ν. In all these cases, the current
limit— see Eq. (80)—on the sum of themiν’s is safely met–
in the case D, this limit is almost saturated. Care is taken, in
addition, so that the first inequality of Eq. (75) is satisfied.
Our choice to use the effective scaleMS in Eq. (10) helps in
this direction. Indeed, had we chosen this effective scale to
be equal to mP, the case A in Table III would have been
excluded due to the violation of this inequality. We also
observe that with strongly NO or IO miν’s the resulting
Miνc’s are strongly hierarchical. With almost degenerate
miν’s, though, the resulting Miν’s are closer to one another.
As a consequence, in this case, more I−-decay channels are,
generally, available. In the case A, only a single decay
channel is open. In all the other cases, the dominant
contribution to YB arises from ε2–recall Eqs. (60a) and
(60b). In Table III, we also display, for comparison, the B
abundance with (YB) or without (Y0

B) taking into account
the renormalization group running of the low energy
neutrino data. We observe that the two results are in most
cases close to each other with the biggest discrepancy
encountered in the case E of almost degenerate IO miν’s.
Shown are also the values of Trh, the majority of which are
close to 5 × 108 GeV, and the corresponding Y ~G’s, which,
in most of the cases, are consistent with Eq. (82) only for
large values of m ~G ≳ 10 TeV. Thus, from the perspective
of the ~G constraint, the case A turns out to be the most
promising one.
As we emphasize in Sec. II, the inclusion in our model of

the T and T̄ superfields—which has various consequences
for the inflationary scenario (see Sec. III)—is of crucial
importance for the violation of the partial YU and the tight
constraint on the Dirac neutrino masses mD

i ’s predicted by
the simplest left-right symmetric model. Indeed, in the
simplest model, where α1 ¼ α2, and for the central values
of the miE’s in Eq. (77), we would have the following
values of the mD

i ’s:

ðm0D
1 ; m0D

2 ; m0D
3 Þ≃ ð0.023; 4.9; 100Þ GeV: (83)

However, in sharp contrast with Eq. (83), in all the cases
presented in Table III, mD

1 ≳ 0.1 GeV. Such large values of
mD

1 are necessary in order to be able to fulfill the second
inequality in Eq. (75), given that mD

1 heavily influences
M1νc . The extended left-right symmetric model described
in Sec. II gives us a much larger flexibility in selecting
appropriate mD

i ’s with natural values of the Yukawa
coupling constants and α1 ≠ α2 of order unity. To further
highlight this key issue of our work, we display in Table IV
solutions to Eq. (76) for the cases displayed in Table III,
central values of the input parameters in Eq. (77), a1 ¼ 1.2,
and a2 ¼ 0.5. We see that all the Yukawa coupling
constants listed in this table take natural values without
any ugly hierarchy being necessary in any pair ðyiL; y0iLÞ.
In order to extend our conclusions inferred from Table III

to the case of a variable κ, we now examine how the central

value of YB in Eq. (81) can be achieved by varying one of
the mD

i ’s as a function of κ or mI−. To this end, we fix ns to
its central value in Eq. (38a) and κT , λ, MT , k8S, k10S, and
k12S to their values corresponding to Figs. 2c and 2d.
Consequently, the parameters k4S and k6S vary with κ along
the solid gray lines in these figures. Moreover, we set the
values of themiν’s (by selectingm1ν for NOmiν’s orm3ν for
IO miν’s), mD

1 , m
D
3 , φ1, and φ2 equal to their values in the

cases B, D, or F of Table III. Since, in these cases, I− decays
mainly into νc2 withM2νc > M1νc , the value ofM2νc heavily
influences YB. In turn, the variation of M2νc is almost
exclusively due to the variation mD

2 (see approximate
formulas of Ref. [50]).
The resulting contours in the κ −mD

2 plane are presented
in Fig. 3; since the range of YB in Eq. (81) is very narrow,
the 95% C.L. width of these contours is negligible. The
convention adopted for these lines is also described in the
figure. In particular, we use solid, dashed, or dot-dashed
line for miν, mD

1 ,m
D
3 , φ1, and φ2 corresponding to the cases

B, D, or F of Table III, respectively. The lower limit on
these lines comes from the violation of Eqs. (21) and (23) as
in Figs. 2c and 2d. At the other end, these lines terminate at

TABLE IV. Solutions to Eq. (76) for the cases displayed in
Table III, central values of the input parameters in Eq. (77),
a1 ¼ 1.2, and a2 ¼ 0.5.

Case y1L y01L y2L y02L y3L y03L
A 0.005 0.004 0.24 0.17 0.67 −0.19
B 0.0044 0.0034 −0.006 −0.042 0.67 −0.19
C 0.0017 0.0014 −0.0094 −0.044 −0.096 −0.83
D 0.011 0.0088 −0.0039 −0.04 0.23 −0.56
E 0.0075 0.0061 −0.018 −0.052 − 0.6 −1.26
F 0.01 0.008 −0.016 −0.05 0.67 −0.19
G 0.0076 0.0061 −0.009 −0.044 −0.48 −1.15

10-4 10-3
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4

m
iν
, mD

1
, mD

3
, φ

1
, φ

2

as in Table III.
Case B     
Case D     
Case F       

m
D 2
 (

G
eV

)

κ

FIG. 3. Contours in the κ −mD
2 plane yielding the central YB

in Eq. (81) consistently with the inflationary requirements for
κT ¼ 0.005, λ ¼ 0.05,MT ¼ 3 × 1016 GeV, k8S ¼ 1, k10S ¼ −1,
k12S ¼ 0, ns ¼ 0.96, and the values of miν, mD

1 , m
D
3 , φ1, and φ2

which correspond to the cases B (solid line), D (dashed line), and
F (dot-dashed line) of Table III.
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the values of mD
2 beyond which the second inequality in

Eq. (75) is violated and, therefore, washout effects start
becoming significant. At these upper termination points
of the contours, we obtain Trh ≃ 2 × 109 GeV or Y ~G ≃
4 × 10−13 and so we expect that the constraint of Eq. (82)
will cut any possible extension of the curves beyond
these termination points that could survive the possible
washout of YL. Along the depicted contours, we
obtain 8×10−2≲ κ=10−3≲4, 2.3≲mI−=1012GeV≲200,
whereas the naturalness parameter of the hilltop FHI
Δm� ¼ 0.05–0.27. Also the resulting M2νc’s vary in the
range ð4–19Þ × 1010 GeV and M1νc remains close to
ð1–2Þ × 1010 GeV. The values of y2L, y02L selected in
Table III for the cases B, D, and F change also along
the displayed curves of Fig. 3, without any essential
modification though as regards their general features.

VII. CONCLUSIONS

We constructed a SUSY GUT model based on the
left-right symmetric gauge group GLR, which supports
FHI followed by successful reheating and nonthermal
leptogenesis. The lepton-number asymmetry is generated
via the decay of the right-handed neutrinos νci which
emerge from the decay of the inflaton system during the
reheating process. It is important that any possible washout
of the produced lepton asymmetry can be avoided. Our
proposal is tied to the addition of two pairs of superfields
(one pair consisting of bidoublets under SUð2ÞL × SUð2ÞR
and another consisting of triplets under SUð2ÞR)—see
Table I—which naturally leads to an adequately strong
violation of the asymptotic partial YU predicted by the
simplest left-right symmetric model of Ref. [17]. Confining
our discussion to the trivial inflationary path, we found that
the extra triplets play a crucial role (i) in the inflationary
scenario causing extra radiative corrections along the
inflationary path, and (ii) in the reheating process assisting
us in obtaining an acceptably low reheat temperature.
We expanded the Kähler potential—see Eq. (30)—up

to the twelfth order in powers of the various fields and
selected a convenient choice of signs which ensures that
the parameters of the superpotential of our model assume
values compatible with the requirement of gauge coupling
constant unification within MSSM with the inflationary
potential VHI remaining bounded below at least up to the
Planck scale mP. The FHI reproduces the current data on
the amplitude As of the power spectrum of the curvature
perturbation and the scalar spectral index ns within the
power-law ΛCDM cosmological model and generates
the number of e-foldings required for the resolution of
the horizon and flatness problems of the standard big bang
cosmological model.
Imposing additional constraints from the BAU, the

(unstable) gravitino abundance, and the neutrino oscillation
parameters, we concluded that, for the central value of
ns, κ ≃ 8 × 10−5 − 0.004 and mD

1 ≳ 0.1 GeV with the

remaining parameters of the superpotential of our model
taking more or less natural values, whereas the naturalness
parameter for the hilltop FHI Δm� ≃ 0.05–0.27. It is
gratifying that our model exhibits solutions with the
inflaton system decaying exclusively into the lightest of
the right-handed neutrinos νci . These solutions are the most
promising from the perspective of the gravitino constraint.

ACKNOWLEDGEMENTS

We would like to thank A. Pilaftsis for an enlightening
correspondence. This work was supported by the European
Union under the Marie Curie Initial Training Network
“UNILHC” PITN-GA-2009-237920. The work of R. A.
was supported by the Tomalla Foundation and C. P.
acknowledges support from the Generalitat Valenciana
under Grant No. PROMETEOII/2013/017.

APPENDIX: REHEATING PROCESS, LEPTON
ASYMMETRY, AND GRAVITINO ABUNDANCE

In this Appendix, we present a numerical description
of the postinflationary evolution of the various energy and
number densities involved in our scenario of nonthermal
leptogenesis.
In particular, the energy densities ρþ and ρ− of the Iþ and

I− subsystems respectively—see the definition of these
subsystems right after Eq. (58)—the energy density ρR of
the produced radiation, and the number densities nL of the
leptons and n ~G of the ~G’s satisfy the following Boltzmann
equations—cf. Refs. [23,25]:

_ρþ þ 3Hρþ þ ΓIþρþ ¼ 0; (A1a)

_ρ− þ 3Hρ− þ ΓI−ρ− ¼ 0; (A1b)

_ρR þ 4HρR −X
r¼�

ΓIrρr ¼ 0; (A1c)

_nL þ 3HnL −X
r¼�

2εLrΓIrnr ¼ 0; (A1d)

_n ~G þ 3Hn ~G − C ~GðneqÞ2 ¼ 0: (A1e)

Here the overdot denotes derivation with respect to the
cosmic time t, εLr ¼

P
iΓIr→νci

εi=ΓIr, and nr ¼ ρr=mIr.
Also, neq ¼ ζð3ÞT3=π2 is the equilibrium number density
of each bosonic relativistic species, C ~G is a collision term
for ~G production which, in the limit of massless MSSM
gauginos, turns out to be [23,65]

C ~G ¼ 3π

16ζð3Þm2
P

X3
i¼1

cig2i ln

�
ki
gi

�
; (A2)
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where ðciÞ ¼ ð33=5; 27; 72Þ, gi are the gauge coupling
constants of the MSSM, and ðkiÞ ¼ ð1.634; 1.312; 1.271Þ.
Finally, the Hubble expansion parameter H during this
period is given by

H ¼ 1ffiffiffi
3

p
mP

ðm ~Gn ~G þ ρ− þ ρþ þ ρRÞ1=2: (A3)

Clearly, in the limit of massless MSSM gauginos, the
resulting n ~G is practically m ~G independent. The temper-
ature T and the entropy density s are found from the
relations

ρR ¼ π2

30
g�T4 and s ¼ 2π2

45
g�T3: (A4)

The system of Eqs. (A1a)–(A1e) is solved under the
following initial conditions:

ρþð0Þ ¼ ρ−ð0Þ ¼ VHIO=2 (A5a)

and

ρRð0Þ ¼ n ~Gð0Þ ¼ nLð0Þ ¼ 0; (A5b)

where we assumed that the inflationary energy density is
equally distributed between the oscillatory subsystems Iþ
and I−. This is a reasonable assumption since the damped
oscillations of Iþ and I− commence immediately after the
termination of FHI as a consequence of the fact that mIþ
and mI− ≫ HIO ≡ ffiffiffiffiffiffiffiffiffiffi

VHIO
p

=
ffiffiffi
3

p
mP, the inflationary Hubble

parameter.
In Fig. 4, we illustrate the cosmological evolution of

the quantities log ρþ (dotted gray line), log ρ− (dashed gray
line), log ρR (gray line), log jYLj (black solid line), and
log jY ~Gj (black dashed line) as functions of logT for the
values of the parameters given in the first column of
Table III (case A). In particular, these parameters yield
mIþ ¼ 2.5 × 1016 and ΓIþ ¼ 4.1 × 1010 GeV for the Iþ
subsystem, whereas mI− ¼ 2.9×1013 and ΓI− ¼ 0.62GeV
for the I− subsystem. SinceHIO ≃ 1.65 × 1011 GeV ≪ mIþ
and mI−, we verify that the phase of the oscillations of Iþ
and I− starts immediately after the end of FHI.
From Fig. 4, we observe that FHI is followed by an

extended matter dominated era, where we have initially
the dominance of the oscillating and decaying Iþ and
I− subsystems. Due to the strong hierarchy between
ΓIþ and ΓI−, the decay of Iþ occurs very early at
T ¼ Tþ ≃ 7.2 × 1013 GeV–this temperature corresponds
to the intersection of the ρþ and ρR lines in Fig. 4. An
approximate estimate of this temperature can be obtained
from Eq. (59) by replacing ΓI− with ΓIþ. This estimate
is about 8.8 × 1013 GeV, which is quite close to the value

of Tþ found numerically. After the Iþ decay, the I−
subsystem continues its oscillations until ρ− meets ρR at
Trh ¼ 3.5 × 108 GeV. This numerical result is in excellent
agreement with the estimate obtained by using Eq. (59),
which is listed in the column A of Table III. After reheating,
the universe enters a conventional radiation dominated era.
Therefore, although our scenario involves two oscillatory
systems, Iþ and I−, the final Trh can be accurately
computed by Eq. (59) thanks to the strong hierarchy
encountered between ΓIþ and ΓI−.
In Fig. 4, we also depict the cosmological evolution of

the absolute values of the lepton abundance YL ¼ nL=s and
the gravitino abundance Y ~G ¼ n ~G=s. We see that jYLj and
jY ~Gj, immediately after the decay of the Iþ subsystem,
reach constant values equal to 3 × 10−9 and 2.6 × 10−8
respectively. However, they are later strongly diluted due to
the entropy release during the subsequent decay of the I−
subsystem. The lepton abundance YL at T ¼ Tþ originates
from the lepton asymmetry 2εLþ generated by the decay
of one Iþ inflaton–εLþ is defined just below Eq. (A1e).
However, the subsequent decay of the I− subsystem gives
rise to a new lepton asymmetry 2εL− per decaying inflaton.
Note that the sign of this new asymmetry, which survive for
T < Trh, is opposite to the sign of the earlier one which was
diluted. As a consequence of this cosmological evolution,
the present values of both YL and Y ~G are generated close
to T ≃ Trh. Numerically, we find that YL ¼ −2 × 10−10
and Y ~G ¼ 10−13, which are in good agreement with the
values obtained by using Eqs. (60b) and (61) in the case A
of Table III. Note that the corresponding YB turns out to
be 7.6 × 10−11. Therefore, we see that Eqs. (60b) and (61),
despite their simplicity, give a very accurate determination
of YB and Y ~G in our setup.
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FIG. 4. The evolution of the quantities log ρi with i ¼ þ (gray
dotted line), i ¼ − (gray dashed line), i ¼ R (gray line), log jYLj
(black solid line), and log jY ~Gj (black dashed line) as functions of
logT for the values of the parameters in the case A of Table III.
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