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We demonstrate the generation of the three-dimensional Chern-Simons–like Lorentz-breaking “mixed”
quadratic action via an appropriate Lorentz-breaking coupling of vector and scalar fields to the spinor field
and study some features of the scalar QED with such a term. We show that the same term emerges through
a nonperturbative method, namely the Julia-Toulouse approach of condensation of charges and defects.
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I. INTRODUCTION

The Lorentz symmetry breaking is intensively studied
now (for some observational results see [1]). One of the
most interesting lines of its investigation consists in
constructing the Lorentz-breaking extensions of the known
physical models. The first description of the possibilities
for these extensions was carried out in [2]. Further, many
examples of the new Lorentz-breaking terms were gen-
erated due to appropriate couplings of scalar, spinor, and
gravitational fields with the spinor ones. The most impor-
tant examples of such terms are, first, the four-dimensional
Lorentz-breaking Chern-Simons–like term originally intro-
duced by Jackiw and collaborators [3], second, the non-
Abelian generalization of this term [4,5], and third, the
gravitational Chern-Simons term [5,6]. We can note also
other manners of description of the Lorentz symmetry
breaking such as noncommutativity [7] and double special
relativity [8].
However, all these results are four-dimensional ones. At

the same time, the three-dimensional space-time represents
itself as a convenient laboratory for the study of many
physical effects. Themain reasons for it are the simpler form
and one-loop finiteness for almost all field theory models.
The main results achieved in the study of the Lorentz
symmetry breaking in three-dimensional space-time are,
first, the generation of many Lorentz-breaking terms as a
consequence of the spontaneousLorentz symmetrybreaking
in the three-dimensional bumblebeemodel througha tadpole
method with the use of the reducible representation of the
Dirac matrices [9], second, generalization of duality [10]
for the Lorentz-breaking models implying in the arising of
new couplings between scalar, spinor, and gauge fields [11],
and third, the obtaining of new terms via dimensional
reduction of the electrodynamics with the four-dimensional

Lorentz-breaking Chern-Simons–like term [12]. In all
these papers, a new mixed quadratic term involving both
scalar and electromagnetic fields was shown to arise. Some
possible applications of this term within the confinement
context were discussed in [13,14]. Therefore, the very
natural question consists in the possibility of generating
this term through simpler and more traditional mechanisms
of the Lorentz-breaking couplings of scalar and gauge fields
to the spinor one, which could be similar to [4,5], and
through the Julia-Toulouse approach [13,14].
The Julia-Toulouse approach (JTA) consists in a pre-

scription to obtain a low-energy effective field theory
describing a system where a condensation of topological
currents has occurred. Initially, these topological currents
are sparsely distributed through the system constituting the
diluted phase. Then, there is a proliferation of topological
currents due to a condensation mechanism that is beyond
the scope of JTA since in the Julia-Toulouse method the
condensation process is taken for granted. The original
proposal of this technique was done in the realm of
condensed matter physics in Ref. [15]; later, this procedure
was generalized to relativistic quantum fields in Ref. [16].
The original JTA relies on duality transformations, since
to apply the JTA the first step is to get the dual theory on
the diluted phase before applying the prescription and then
obtain the effective theory on the condensed regime on a
dual theory. The final step is to dualize again to finally find
the effective field theory of the original condensed phase.
However, this original procedure that depends on duality
tranformations can sometimes be cumbersome, and indeed
it is not necessary as shown in Refs. [13,14]. This new
procedure, dubbed the generalized Julia-Toulouse approach
(GJTA), is based on the JT rationale, and its cornerstone
uses the generalized Poisson identity. This identity makes
clear the physical content of the condensation of topologi-
cal currents, and this avoids the two dual transformations to
implement the original JTA. Another advantage of GJTA is
that it can be applied to models that do not admit a dual
theory [17]. For a comprehensive discussion of GJTAwith
applications, the reader is referred to [14].
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This manuscript is organized as follows: In Sec. II, two
different forms to get the “mixed” term are presented: one
via Feynman diagram methods (Sec. II A) and using the
proper-time approach (Sec. II B). In Sec. III, the GJTA is
briefly presented, and it is used to obtain the same mixed
term as before. The conclusions are present in Sec. IV, and
the corrections on the physical spectra due to the mixed
term are given in the Appendix.

II. PERTURBATIVE APPROACH

A. Feynman diagram methods

Let us consider the model of fermions interacting
with scalar field ϕðxÞ and vector one AμðxÞ, where the
Lorentz symmetry violation is implemented via a constant
vector aμ. We consider the Lagrangian involving the
Lorentz-breaking generalization of the Yukawa coupling
[18] (we note that this coupling is renormalizable; see the
discussion of the renormalizability of the Lorentz-breaking
theories in [19]),

Lf ¼ −
1

4
FμνFμν −

1

2
ϕð□þM2Þϕ

þ ψ̄ði∂ −m − eA − gaϕÞψ : (1)

We note that, unlike the four-dimensional theory (see, for
example, [4]) where the Lorentz symmetry breaking has
been introduced through an additive term bγ5, with bμ a
Lorentz-breaking pseudovector; in three dimensions this

manner of implementing the Lorentz symmetry breaking
is the most adequate one since the γ5 matrix now is
simply a unit matrix. Thus, the impact of this additive
term can be completely removed through an appropriate
redefinition of the Aμ field. Integrating out the spinor
fields, we arrive at their following complete one-loop
effective action:

Γð1Þ ¼ iTr ln ði∂ −m − eA − gaϕÞ: (2)

Within this paper, our aim consists in calculating the
one-loop Chern-Simons–like mixed effective action of
the form

Γ ¼
Z

d3xϵμνλaμFνλϕ: (3)

Some issues related to this effective action were dis-
cussed in [9,11–14]. It is natural to suggest that in the
momentum space it can be represented as

Γ ¼
Z

d3q
ð2πÞ3 ϕð−qÞΠ

μðqÞAμðqÞ; (4)

with ΠμðqÞ as the self-energy tensor. We note that in this
theory also other quadratic contributions to the action are
generated, for example, the Chern-Simons term; how-
ever, here we concentrate only on the mixed term (3).

Applying the following Feynman rules:

where the dot denotes the Lorentz-breaking insertion in the
vertex, we arrive at the following diagram that contributes
to the two-point mixed function of the scalar and vector
fields:

Here the dashed line is for the propagator of the ψ field, the
wavy line is for the external Aμ field, and the single line is
for the external ϕ field.
The contribution of this diagram evidently looks like

I¼−egTr
Z

d3p
ð2πÞ3

Z
d3k
ð2πÞ3Að−pÞðkþmÞϕðpÞaðkþpþmÞ

×
1

ðk2−m2Þ½ðkþpÞ2−m2�: (5)

To obtain the term (3) proportional to the Levi-Cività
symbol we must take into account the products of three
Dirac matrices only,

I ¼ −egmTr
Z

d3p
ð2πÞ3 A

μð−pÞϕðpÞaν

×
Z

d3k
ð2πÞ3

γμγαγνkα þ γμγνγαðkα þ pαÞ
ðk2 −m2Þ½ðkþ pÞ2 −m2� : (6)

We choose the signature diagðþ − −Þ, the corres-
ponding Dirac matrices are ðγ0Þαβ ¼ σ2;
ðγ1Þαβ ¼ iσ1; ðγ0Þαβ ¼ iσ3, and they satisfy relations
fγμ; γνg ¼ 2ημν, trðγμγνγλÞ¼ 2iϵμνλ. Using these relations,
we can simplify the expression for the contribution
above,
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I ¼ −2iϵαμνegm
Z

d3p
ð2πÞ3 p

αAμð−pÞϕðpÞaν

×
Z

d3k
ð2πÞ3

1

ðk2 −m2Þ½ðkþ pÞ2 −m2� : (7)

After Wick rotation and integration over momenta we
arrive at

I ¼ ϵαμνeg
m

4πjmj
Z

d3p
ð2πÞ3 p

αAμð−pÞϕðpÞaν: (8)

Carrying out the inverse Wick rotation and inverse Fourier
transform, we find after some simple transformations

I ¼ −eg
m

8πjmj
Z

d3xϵαμνFαμaνϕ: (9)

This is a desired mixed term (3). It possesses a restricted
gauge invariance (cf. [11]); i.e., it is invariant under the
gauge transformations δAμ ¼ ∂μξ, where the scalar ϕ stays
untouched. We note that the dependence of this result
on the sign of the mass m originates from the ambiguity
of choice of the direction of the Lorentz-breaking
vector aμ [20].

B. The Schwinger proper-time method

Alternatively, we can also calculate the same term via the
proper-time method. To do it, we study the expression (2).
First, we can rewrite this expression in the form
Tr lnð□þMÞ, adding to the right-hand side of (2) a
constant iTr ln ði∂ þmÞ, similar to [5]. As a result, the
one-loop effective action (2) takes the form

Γð1Þ ¼ iTr lnð−□ −m2 − eAði∂ þmÞ − gϕaði∂ þmÞÞ;
(10)

We can expand this expression up to the first order in aμ,
which looks like

Γð1Þ
1 ¼ igTr½½□þm2 þ eAði∂ þmÞ�−1ϕaði∂ þmÞ�: (11)

Now, we can use the Schwinger proper-time representation
A−1 ¼ i

R
∞
0 eisAds,

Γð1Þ
1 ¼ −gTr

�Z
∞

0

dseisð□þm2þeAði∂þmÞÞϕaði∂ þmÞ
�
: (12)

To evaluate the exponential, we use the Hausdorf formula
whose sufficient form in our case is eAþB ¼ eAeBe−

½A;B�
2 .

Thus, taking into account only the first derivatives of Aμ

and using the cyclic property of the trace, we find

Γð1Þ
1 ¼ −gTr

�Z
∞

0

dseism
2

eiseAði∂þmÞe−es2ð∂μAÞði∂þmÞ∂μϕaði∂ þmÞeis□
�
: (13)

The derivatives act on all on the right. Now, we can keep in this expression only the first order in Aμ,

Γð1Þ
1 ¼ −egTr

�Z
∞

0

dseism
2ðisAði∂ þmÞ − s2ð∂μAÞði∂ þmÞ∂μÞϕaði∂ þmÞeis□

�
: (14)

It remains to calculate a trace. To obtain a desired term, we must take into account only contributions involving exactly three
Dirac matrices and involving an even number of the derivatives acting on eis□. As trðγμγνγλÞ ¼ 2iϵμνλ, we arrive at

Γð1Þ
1 ¼ −2egm

Z
d3x

Z
∞

0

dsseism
2

ϵμνλAμð∂νϕÞaλeis□δ3ðx − x0Þjx¼x0 : (15)

After the Fourier transform and Wick rotation we arrive at

Γð1Þ
1 ¼−2egm

Z
d3x

Z
d3k
ð2πÞ3

Z
dsse−sm

2

ϵμνλAμð∂νϕÞaλe−sk2 :

(16)

The calculation of the integrals over momenta and, then,
over s is straightforward, and we again arrive at

I ¼ −eg
m

8πjmj
Z

d3xϵαμνFαμaνϕ: (17)

This result is identical to the one obtained using the
Feynman diagram approach. It is very natural since this
contribution is superficially finite and hence does not
involve any ambiguities.

III. LORENTZ-BREAKING MIXED TERM AND
THE JULIA-TOULOUSE APPROACH

In the previous sections we have showed that the mixed
quadratic term can be successfully generated within the
traditional perturbative approach. In this section, we show
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how the same term can be generated within an alternative,
nonperturbative technique, that is, the Julia-Toulouse
method.
To proceed with the Julia-Toulouse approach [14], we

start with the Lagrangian (1), at the zero mass, and
introduce the corresponding generating functional in the
diluted phase,

Zd½jμ� ¼
Z

DAμDϕ exp

�
−i

Z
d3x

�
−
1

4
FμνFμν −

1

2
ϕ□ϕ

þ ð−eAμ þ gϕaμÞjμ
��

; (18)

where we absorbed the fermionic coupling into the current
jμ. We choose the current to be of the form jμ ¼ ϵμνα∂νχα,
to be topologically conserved. The vector χα is called the
Chern kernel [14]. Then, following [14], we add a so-called
activation term

R
d3x jμjμ

2Λ to the classical action (that is, the
argument of the exponential) to introduce a defect con-
densation. The parameter Λ is related to the density of the
condensate. It is a free parameter of the procedure, and it
can be fixed after comparing the effective field theory
obtained by the JTA to the same theory computed by other
methods [13,14,16,21,22]. In particular, for the three-
dimensional quantum electrodynamics (QED) with mag-
netic monopoles, this parameter is fixed to maintain the
consistency of this theory [13,14]. Thus, the generating
functional is modified, and we arrive at the new generation
functional Zc describing the condensed phase:

Zc½jμ� ¼
X
fχαg

Z
DAμDϕ exp

�
−i

Z
d3x

�
−
1

4
FμνFμν

−
1

2
ϕ□ϕþ ð−eAμ þ gϕaμÞϵμνα∂νχα

þ ϵμνα∂νχαϵμλβ∂λχβ

2Λ

��
: (19)

Here we suggest the formal sum over the branes χα. Let us
promote their condensation. During this process, they
convert to a vector field Bα, which is formally described
by introducing the integral over Bα and the functional delta
function δðχα − BαÞ, so we have

Zc½jμ� ¼
X
fχαg

Z
DAμDϕDBαδðχα −BαÞ

× exp

�
−i

Z
d3x

�
−
1

4
FμνFμν −

1

2
ϕ□ϕ

þ ð−eAμ þ gϕaμÞϵμνα∂νχα þ
ϵμνα∂νχαϵμλβ∂λχβ

2Λ

��
;

(20)

which is equivalent to

Zc½jμ�¼
X
fχαg

Z
DAμDϕDBαδðχα−BαÞ

×exp

�
−i

Z
d3x

�
−
1

4
FμνFμν−

1

2
ϕ□ϕ

þð−eAμþgϕaμÞϵμνα∂νBαþ
ϵμνα∂νBαϵμλβ∂λBβ

2Λ

��
;

(21)

where the sum is taken over the branes. Then we use
a generalized Poisson identity [14]

X
fχαg

Z
DBαδðχα −BαÞ ¼

X
fΩμνg

exp

�
2πi

Z
d3xϵμνρΩμνBρ

�
;

(22)

where Ωμν is a magnetic vortex over the condensate [14],
and arrive at

Zc½jμ� ¼
X
fΩμνg

Z
DAmDϕDBα exp

�
−i

Z
d3x

�
−
1

4
FμνFμν

−
1

2
ϕ□ϕþ ð−eAμ þ gϕaμÞϵμνα∂νBα

þ ϵμνα∂νBαϵμλβ∂λBβ

2Λ
þ 2πϵμνρΩμνBρ

��
: (23)

It remains only to integrate over the field Aμ. Since it is
gauge invariant, we add to the argument of the exponential
the Feynman gauge fixing term − 1

2
ð∂μAμÞ2, after which the

integral over Aμ turns out to be straightforward, by the rule

Z
DAμ exp

�
i

�
−
1

2
Aμ□Aμ þ Aνjν

��

¼ exp

�
i

�
1

2
jμ□−1jμ

��
: (24)

Then, we redefine Bμ →
ffiffiffiffi
Λ

p
Bμ and arrive at

Zc½jμ� ¼
X
fΩμνg

Z
DϕDBα

×exp

�
−i

Z
d3x

�
−
1

4
Fμν½B�

�
e2Λ
□

− 1

�
Fμν½B�

−
1

2
ϕ□ϕþ gϕ

ffiffiffiffi
Λ

p
aμϵμναFνα½B� þ 2πϵμνρΩμνBρ

��
;

(25)

where Fμν½B� ¼ ∂μBν − ∂νBμ. The last term vanishes since
one considers the phase where the magnetic vortices are
absent, which represents a complete condensed phase.
Notice also that the term − 1

4
Fμν½B� e2Λ□ Fμν½B� represents

NASCIMENTO et al. PHYSICAL REVIEW D 89, 065030 (2014)

065030-4



a gauge invariant mass term for Bμ that can be seen
straightforwardly performing integration by parts. Thismass
generating mechanism is a signature of the JTA. Hence, we
succeed in generating the mixed term gϕ

ffiffiffiffi
Λ

p
aμϵμναFνα½B�

via GJTA. Interestingly, for the four-dimensional QED
with Lorentz breaking, a very similar term, the Carrol-
Field-Jackiw term, is induced by GJTA [14].

IV. CONCLUSIONS

In this manuscript, we generated the mixed quadratic
term involving both scalar and vector fields in a traditional
way, similar to [4], based on the explicitly Lorentz-
breaking coupling of the scalar, vector, and spinor fields.
This term is naturally finite. Then, it turns out to possess a
“restricted” gauge invariance, that is, it is invariant if only
the vector field suffers gauge transformations. However,
this situation is common in many theories obtained via
the dual embedding procedure (see, e.g., [10,11]). Also, we
succeeded in generating this term through the proper
application of the Julia-Toulouse methodology. Finally,
we studied the dispersion relations in the electrodynamics
involving this term as an additive one.
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APPENDIX: THE PHYSICAL SPECTRA
OF THE MIXED MODEL

As an application of the perturbative methods discussed
in Sec. II, the one-loop corrected effective Lagrangian of Aμ

and ϕ being the sum of the classical Lagrangian of these
fields [see (1) with the one-loop correction given by (17)]
looks like

Leff ¼ −
1

4
FμνFμν −

1

2
ϕð□þM2Þϕþ ϵαμνFαμvνϕ; (A1)

where vν ¼ −eg m
8πjmj aν.

Notice that the above effective Lagrangian is not the
complete model as there are other terms that can potentially
contribute to Eq. (A1). In this manuscript these terms are
neglected since we are only interested in the influence of
this mixed term on the physical spectra.

Let us briefly discuss the physical spectra of this mixed
model. This theory is a partial case of the theory considered
in [11,12] arising through a dimensional reduction of
the electrodynamics with the Carroll-Field-Jackiw term.
Therefore the propagator and, consequently, dispersion
relations in our case are similar to the propagator and
dispersion relations found in [11,12] (however, unlike [12],
we have here M2 ≠ 0; i.e. the scalar field is massive, but,
unlike [11], we have m ¼ 0; i.e. there is no Chern-Simons
term). So, we can merely quote the results from [11], which
allows us to write the propagators in the form

hAμAνi ¼ ðΔ11Þμν ¼ ½ð□ −M2ÞMμν − TμTν�−1ð□ −M2Þ;
hϕϕi ¼ Δ22 ¼ ½ð□ −M2ÞMμν − TμTν�−1Mμν;

hAμϕi ¼ −hϕAμi ¼ Δμ
12 ¼ −Δμ

21

¼ −Tν½ð□ −M2ÞMμν − TμTν�−1: (A2)

Therefore, the problem is reduced to finding the operator
Δμν¼ ½ð□−M2ÞMμν−TμTν�−1 (withMμν ¼□θμνþ□

ξ ωμν),
which we do with the use of a special ansatz [11,23]

Δνα¼a1θναþa2ωναþa3Sναþa4Λναþa5TνTα

þa6Qναþa7Qανþa8Σναþa9Σανþa10Φναþa11Φαν;

(A3)

where Sμν ¼ ϵμλν∂λ, Tν ¼ Sμνvμ, ωμν ¼ ∂μ∂ν
□

is a longi-
tudinal projector, θμν ¼ ημν − ωμν is a transverse projector,
Qμν ¼ vμTν, Λμν ¼ vμvν, Σμν ¼ vμ∂ν, Φμν ¼ Tμ∂ν, and
λ ¼ vμ∂μ. These coefficients were found in [11] for m ≠ 0
and reduce in our case to

a1 ¼ a2 ¼
1

□ð□ −M2Þ ;

a3 ¼ a4 ¼ 0; a5 ¼
1

□ð□ −M2ÞR ; a6 ¼ a7 ¼ 0;

a8 ¼ a9 ¼ a10 ¼ a11 ¼ 0: (A4)

Here we denoted R ¼ □ð□ −M2Þ − T2. Proceeding in a
manner similar to [11,12], besides the usual dispersion
relations E2 ¼ ~p2 and E2 ¼ ~p2 þM2 we also find
ðE2 − ~p2ÞðE2 − ~p2 −M2 þ v2Þ þ ð~v · ~p − v0EÞ2 ¼ 0. The
last relation can be physical only if vμ is spacelike.
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