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The superflow in a superfluid is bounded from above by Landau’s critical velocity. Within a microscopic
bosonic model, I show that below this critical velocity there is a dynamical instability that manifests itself in
an imaginary sound velocity and that is reminiscent of the two-stream instability in electromagnetic
plasmas. I compute the onset of this instability and its full angular structure in a relativistic, uniform
superfluid for all temperatures. At weak coupling, the instability only operates in a very small region in the
phase diagram of temperature and superflow. Varying the coupling of the model suggests that the effect is
more prominent at strong coupling and thus could be important for superfluids in compact stars and in the
laboratory.
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I. INTRODUCTION

Many hydrodynamic properties of superfluids can be
understood in terms of the two-fluid picture [1–5]. In this
picture, the superfluid consists of a single fluid at zero
temperature, and is a mixture of a superfluid and a normal-
fluid component at nonzero temperatures below the critical
temperature. One of the consequences is the existence of
a second sound mode.
Landau has argued that a superfluid dissipates energy

even at zero temperature if the velocity of the superfluid, for
instance with respect to a capillary, is sufficiently large. The
resulting critical velocity manifests itself in the onset of
negative quasiparticle energies. At nonzero temperatures,
this argument is valid even in an infinite system, i.e.,
without any interaction with the walls of the capillary. Now
there is a second relevant rest frame, the one of the normal
fluid. If the relative velocity between the two fluid
components becomes sufficiently large, the quasiparticle
energies become negative and one thus finds a temperature-
dependent critical velocity.
In this paper, I discuss an additional critical velocity that

manifests itself in complex sound velocities, indicating an
exponentially growing amplitude of one of the sound
waves. The sound modes are computed in the dissipation-
less limit and with the help of the linearized hydrodynamic
equations. Therefore, the calculation will only indicate the
onset of the instability, not its temporal evolution or any
damping, for which nonlinear effects and dissipation would
have to be taken into account. One of the main results will
be the identification of the unstable regions in the phase
diagram. The microscopic model is given by a field theory
for a complex scalar field φ with a φ4 interaction, whose
parameters are the boson mass and the coupling constant.
The calculations are performed within the self-consistent
two-particle irreducible formalism (2PI) [6–8] in the

Hartree approximation, following Ref. [9]. Besides the
parameters in the Lagrangian, the system will be charac-
terized by chemical potential, temperature, and the relative
flow between superfluid and normal fluid. This flow is
assumed to be uniform.
It turns out that the instability is analogous to the so-called

two-stream instability that plays an important role in electro-
magnetic plasmas and which, in that context, is sometimes
called Farley-Buneman instability [10–13]. The relevance of
the two-stream instability for superfluids has been pointed
out in Ref. [14]. Of particular interest for the present work is
the relativistic discussion of the two-stream instability in
Ref. [15]. In this reference, the instability is discussed in
a general two-fluid formalism, making no reference to
superfluidity or to any microscopic model. I will show that
in the present field-theoretical calculation, some of the
qualitative features of these general results are reproduced.
Relativistic superfluids are likely to be present in

compact stars. In this extreme high-density environment,
nuclear matter can become a superfluid via Cooper pair
condensation of neutrons. Moreover, if quark matter is
present in the core of the star, it may be superfluid in the
color-flavor-locked phase [16,17], where quarks of all three
colors and flavors form Cooper pairs and which sponta-
neously breaks the global Uð1Þ associated with baryon
number conservation. Consequently, the superfluid two-
stream instability discussed here may be important for the
physics of compact stars, for instance in the context of
pulsar glitches [14]. The present work is not restricted to
high-energy superfluids, since the model can continuously
extrapolate between ultrarelativistic and nonrelativistic
limits by varying the boson mass. Therefore, the results
may also be interesting for superfluids in cold atomic gases,
where second sound [18] and critical velocities [19] have
been measured, or for superfluid helium, where experi-
ments have shown that dissipationless superfluidity is lost
for superfluid velocities far below Landau’s critical veloc-
ity, for instance through vortex nucleation [20,21].*aschmitt@hep.itp.tuwien.ac.at
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The paper is organized as follows. In Sec. II, I will
briefly explain the calculation of the sound velocities and
the microscopic model. The two-stream instability is
analyzed in detail in Sec. III, with various aspects being
discussed in the subsections of this part: the absence of the
instability at zero temperature, Sec. III A; the typical
manifestation of the two-stream instability in the upstream
direction for an intermediate temperature, Sec. III B; the
full angular dependence of the instability, Sec. III C; the
dependence on the boson mass and the coupling strength,
Sec. III D; and the phase diagram in the plane of temper-
ature and superfluid velocity, Sec. III E. I give some
conclusions in Sec. IV.

II. SETUP

A. Sound modes in a superfluid with superflow

The sound modes can be computed by starting from the
hydrodynamic equations,

0 ¼ ∂μjμ; 0 ¼ ∂μsμ; 0 ¼ sμð∂μΘν − ∂νΘμÞ: (1)

In this formulation, the two-fluid nature of the superfluid is
obvious: there are two conserved currents, the charge
current jμ which is conserved due to the Uð1Þ symmetry
of the underlying microscopic theory, and the entropy
current sμ, which is conserved because dissipation is
neglected. Each current has an associated conjugate
momentum: the conjugate momentum for the charge
current can be written as ∂μψ , while the conjugate
momentum for the entropy current is denoted by Θμ.
Here, the scalar field ψ is the phase of the order parameter
for superfluidity—the Bose-Einstein condensate—and the
conjugate momentum is related to the superfluid four-
velocity

vμ ¼ ∂μψ

σ
; (2)

where the Lorentz scalar σ ≡ ð∂μψ∂μψÞ1=2 is identical to
the chemical potential measured in the rest frame of the
superfluid. For each of the conjugate momenta there is
a vorticity equation. However, the vorticity related to ∂μψ
vanishes trivially, ∂μ∂νψ − ∂ν∂μψ ¼ 0. The third equation
in (1) is the vorticity equation for Θμ, whose temporal
component is the temperature T.

We can express the hydrodynamic equations solely in
terms of ∂μψ and sμ with the help of the relations

jμ ¼ nn
s
sμ þ ns

σ
∂μψ ; Θμ ¼ − nn

s
∂μψ þ w

s2
sμ; (3)

where s is the entropy density, and w≡ μnn þ sT the
enthalpy density of the normal fluid with the chemical
potential μ ¼ ∂0ψ (s, T, μ all measured in the normal-fluid
rest frame). Moreover, nn and ns are the normal-fluid and
superfluid charge densities, measured in their respective
rest frames. They can be computed from the three-current j,

ns ¼ −σ∇ψ · j
ð∇ψÞ2 ; nn ¼ n − μ

σ
ns; (4)

where n ¼ j0 is the total charge density (measured in the
normal-fluid rest frame), and μ=σ ¼ ð1 − v2Þ−1=2 is the
usual Lorentz factor, with v≡ jvj being the modulus of the
superfluid three-velocity v ¼ −∇ψ=μ. The decomposition
(3) translates the formulation in terms of the conserved
currents into a formulation in terms of normal-fluid and
superfluid components (whose currents are not separately
conserved).
Sound waves in the linear approximation are small

oscillatory deviations from equilibrium. Thus, for
instance for the chemical potential, one writes μðx; tÞ ¼
μþ δμðx; tÞ, where μ is the equilibrium value, and the
deviations δμðx; tÞ are kept to linear order. Analogously,
the superfluid three-velocity is vðx; tÞ ¼ v þ δvðx; tÞ, tak-
ing into account the nonvanishing equilibrium superflow. In
contrast, the normal-fluid three-velocity is written as
vnðx; tÞ ¼ δvnðx; tÞ because the equilibrium calculation
is performed in the normal-fluid rest frame. With the help
of ∂0ψ ¼ μ and the thermodynamic relation

dP≃ ndμþ sdT − ns
σ
∇ψ · d∇ψ ; (5)

where P is the pressure, one derives two wave equations for
the two deviations δμðx; tÞ and δTðx; tÞ from the above
hydrodynamic equations. The details of this derivation
can be found in Appendix D of Ref. [22]. Assuming
harmonic oscillations, one writes δμðx; tÞ ¼ δμ0eiðωt−k·xÞ,
δTðx; tÞ ¼ δT0eiðωt−k·xÞ, where δμ0, δT0 are the amplitudes
and ω and k are energy and wave vector of the sound wave.
Then, the two equations for δμ0, δT0 can be written as

�
u2a1 þ ½a2 þ a4ðk̂ · ∇ψÞ2� þ ua3k̂ · ∇ψ u2b1 þ b2 þ ub3k̂ · ∇ψ
u2A1 þ ½A2 þ A4ðk̂ ·∇ψÞ2� þ uA3k̂ ·∇ψ u2B1 þ B2 þ uB3k̂ ·∇ψ

��
δμ0
δT0

�
¼ 0; (6)

where u ¼ ω=k is the sound speed. The various coefficients
are functions of T, μ, and j∇ψ j and are evaluated in
equilibrium. In the presence of a superflow they are
complicated; their explicit form is given in the

Appendix. Nontrivial solutions for δμ0, δT0 require the
determinant of the above 2 × 2 matrix to vanish. This
condition yields a quartic polynomial for the sound speed
of the form
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0 ¼ u4Qð4Þ þ u3Qð3Þk̂ · ∇ψ þ u2½Qð2Þ
1 þQð2Þ

2 ðk̂ · ∇ψÞ2�
þ u½Qð1Þ

1 þQð1Þ
2 ðk̂ ·∇ψÞ2�k̂ · ∇ψ

þ ½Qð0Þ
1 þQð0Þ

2 ðk̂ ·∇ψÞ2�; (7)

where all angular dependence is written explicitly. Again,
the coefficients of this polynomial can be found in the
Appendix. Obviously, the sound velocities will depend on
the angle θ between the superfluid velocity v ∝ −∇ψ and
the direction of the sound wave k̂. If uðkÞ is a solution,
Eq. (7) shows that −uð−kÞ is also a solution. Conse-
quently, if there are two solutions u1ðkÞ and u2ðkÞ that are
positive for all angles, there will be two corresponding
negative solutions for any angle that can be discarded. In
general, the solutions can become complex. If u is a
solution, the complex conjugate u� is also a solution
because all coefficients of the polynomial are real. There-
fore, in that case, δμ0, δT0 ∝ e−γt, where γ ¼ kImðuÞ
assumes a positive value for one sound mode and the
negative value with the same magnitude for the other sound
mode: one mode decays, one mode wants to explode. This
is exactly the kind of instability that has been discussed in a
general two-fluid system in Ref. [15], where it has been
identified with the two-stream instability known from
plasma physics.
In order to analyze the instability it is also useful to

discuss the amplitudes of the sound waves. The ratio of the
amplitudes in chemical potential and temperature can
obviously be computed through

δT0

δμ0
¼ − u2a1 þ ½a2 þ a4ðk̂ · ∇ψÞ2� þ ua3k̂ · ∇ψ

u2b1 þ b2 þ ub3k̂ · ∇ψ ; (8)

where u is a solution of Eq. (7). It is useful to define the
mixing angle [9]

α≡ arctan
δT0

δμ0
: (9)

If u ∈ R, then also α ∈ R, and the mixing angle says
whether a given sound mode is a pure chemical potential
wave (α ¼ 0) or a pure temperature wave (jαj ¼ π

2
) or some

mixture of both. The sign of α determines whether chemical
potential and temperature oscillate in phase (α > 0) or out
of phase (α < 0). Complex values of u lead to a nontrivial
phase factor between chemical potential and temperature
oscillations.
The two sound speeds for vanishing superflow as a

function of temperature are shown in Fig. 1 [9]. In this case,
u1, u2 ∈ R, and no instability occurs. This result is
obtained within the microscopic model that I will now
describe.

B. Microscopic model and self-consistent formalism

I use the same model and formalism as in Refs. [9,22].
All details can be found in these references, and here I only
briefly summarize the ingredients of the calculation. The
starting point is the following Uð1Þ symmetric Lagrangian
for a complex scalar field φ,

L ¼ ∂μφ∂μφ� −m2jφj2 − λjφj4; (10)

with the boson mass m > 0 and the coupling constant
λ > 0. Superfluidity occurs through a Bose-Einstein con-
densate hφi. To this end, one needs to introduce a chemical
potential μ > m. And, to investigate the hydrodynamics of
the superfluid, one has to make the condensate move, i.e.,
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FIG. 1 (color online). Left panel: speeds of first and second sound as a function of temperature in the absence of a superflow, v ¼ 0,
where there are no instabilities, i.e., u1, u2 ∈ R. Right panel: corresponding mixing angles, showing that first and second sound reverse
their roles, the first (second) sound evolving from a pure μ (pure T) wave at small temperatures to an almost pure T (pure μ) wave at large
temperatures. The results are obtained with the parameters m ¼ 0 and λ ¼ 0.05 (since the shown quantities are all dimensionless, the
chemical potential μ drops out and does not have to be specified). In the ultrarelativistic limit without superflow, m ¼ v ¼ 0, one finds
u1 ¼ 1=

ffiffiffi
3

p
for all temperatures, and the mixing angles become particularly simple, α1 ¼ arctanðT=μÞ, α2 ¼ − arctanðn=sÞ [9].
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introduce a superfluid velocity v. Both is done with the help
of the phase of the condensate, hφi ¼ ρeiψ , with ψ being
the scalar field introduced above, see Eq. (2). The super-
fluid three-velocity v and the modulus of the condensate ρ
are assumed to be constant in space and time. Together with
the temperature T, μ and v are the externally given
parameters. They are all measured in the rest frame of
the normal fluid, in which the field-theoretical calculation
is performed. Employing this uniform ansatz and taking the
dissipationless limit are important assumptions because
they significantly simplify the calculation. Nevertheless, for
possible resolutions, damping, or time evolution of the two-
stream instability discussed later, releasing one or both of
these assumptions will be interesting extensions of the
present work for the future.
As shown in the previous subsection, the microscopic

calculation needs to provide the thermodynamic equilib-
rium properties of the system. They are computed as
follows. I start from the 2PI effective action, truncated
at two-loop order, and work in the Hartree approximation
in which the self-energy is momentum-independent.
Minimizing the effective action, one obtains self-consistent
equations for the condensate and the boson propagator. The
result of these equations can be reinserted into the effective
action to obtain the pressure, and thus, via taking deriv-
atives of the pressure, all thermodynamic quantities that are
needed.
There are various theoretical obstacles in this approach.

First, in the given truncation, the Goldstone theorem is
violated [23–25]. Therefore, I implement the existence
of an exactly massless mode by a modification of the
stationarity equations, keeping the effective action
unchanged. As a consequence, the effective action is
evaluated not at the minimum, but at a point away from
that minimum. This particular modification to the statio-
narity equations, explained in detail in Ref. [9], was already
used in Ref. [26]; a similar, but not identical, modification
has been suggested in Ref. [27], where the minimum in the
subspace constrained by the requirement of a massless
mode is determined.
Second, the renormalization of the approach is non-

trivial. This is due to the resummation of a certain class of
diagrams that contains all orders in the coupling constant,
and due to the use of the Hartree approximation. I follow
the renormalization procedure that has been developed in
the literature for this approach [25,28–31]. However, the
presence of a nonzero superflow further complicates this
procedure because the pressure shows an ultraviolet diver-
gence that depends explicitly on the superflow [9].
Therefore, the usual vacuum subtraction, corresponding
to a standard renormalization condition, cannot be applied.
This problem apparently induces an ambiguity in the
dependence of physical quantities on the superflow. I will
not attempt to solve this problem in this paper, but rather
restrict myself to small values of the coupling strength

where this problem is not relevant. The reason is that at
sufficiently small values of the coupling constant, the
subleading terms that are sensitive to the renormalization
procedure (and depend on the renormalization scale) can be
neglected [9].
Thirdly, in the Hartree approximation, the transition to

the nonsuperfluid phase (at vanishing superflow) is of first
order, while a more complete treatment shows a second-
order phase transition [32–34]. This problem is also
circumvented by the restriction to the weakly coupled
regime because then the discontinuity of the condensate at
the critical point is very small. Nevertheless, as one can see
in Fig. 1, the speed of second sound does not exactly
go to zero at the critical temperature, as it should in
a second-order phase transition.

III. SOUND MODE INSTABILITIES

A. Zero-temperature limit

For infinitesimally small temperatures, T → 0, the two
sound velocities can be computed analytically in the weak-
coupling approximation. (At exactly T ¼ 0 there is only
one fluid and thus only one sound mode.) Setting the boson
mass to zero, m ¼ 0, i.e., working in the ultrarelativistic
limit, the sound velocities become [22]

u1ðT → 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − v2ð1þ 2 cos2 θÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
þ 2v cos θ

3 − v2
;

(11a)

u2ðT → 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ð1 − v2Þð1 − 3v2Þ þ v2 cos2 θ

p
þ v cos θ

9ð1 − v2Þ :

(11b)

These expressions show that there is a critical point at
v ¼ 1ffiffi

3
p , where the speed of first sound becomes negative

for θ ¼ π, and the speed of second sound becomes complex
for θ ¼ π

2
.

In general, Landau’s critical velocity is given by the
point where the quasiparticle excitations, in the presence of
a superflow, become negative,

ϵkðvÞ < 0: (12)

In the formalism used here, ϵk is computed from the poles
of the self-consistently determined propagator. The relevant
pole corresponds to the Goldstone mode (while there is also
a massive mode which is negligible at low temperatures). In
the zero-temperature, weak-coupling limit, the low-energy
dispersion of the Goldstone mode is given by the speed of
first sound, ϵkðvÞ ¼ u1k. Therefore, in this limit, Landau’s
critical velocity and the velocity at which the speed of
second sound becomes complex, are identical. The follow-
ing results will show that this is no longer true at nonzero
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temperatures. There, (12) sets in for larger values of the
superfluid velocity than the one at which a sound mode
becomes complex, opening up a window for the two-stream
instability.

B. Upstream direction

At nonzero temperatures, the self-consistent calculation
does not allow for simple analytical results, and one has to
proceed numerically. The derivatives of the pressure that
are needed for the sound wave equation are all computed in
a semi-analytical way, by taking the derivatives of the
various integrands analytically and then performing the
three-momentum integrals numerically. Importantly, this
reduces the possible sources for numerical errors tremen-
dously because there is no need to work with finite
differences or any other numerical methods to compute
derivatives. I exactly follow the calculation of Ref. [9],
where more details can be found.
A typical manifestation of the instability is shown in

Fig. 2. This figure shows real and imaginary parts of the
two sound speeds as a function of the superflow, for a fixed
temperature T ¼ 0.4Tc, where Tc is the critical temperature
in the absence of a superflow. The parameters of the
Lagrangian are chosen to be m ¼ 0 and λ ¼ 0.05, which
corresponds to the ultrarelativistic and weak-coupling
limits. I will work with these values throughout the paper
except for Sec. III D, where the dependence of the results
on m and λ is discussed. The critical velocity vcðTÞ is
determined numerically by computing the onset of negative
quasiparticle energies. The plots show the sound speeds
below, but very close to, that critical velocity, and focus on
a single direction of the sound wave, namely antiparallel to
the superflow (“upstream”). In the chosen temperature
regime, this is the most interesting direction because the

instabilities occur in this direction first (¼ for the lowest
superfluid velocities).
One can see that there is a certain superfluid velocity at

which both sound speeds become complex, their values
being complex conjugate to each other, as discussed above.
The plots are qualitatively similar to Fig. 1 in Ref. [15],
where the sound modes have been computed for a general
two-fluid system and show the same instability in a certain
parameter regime. In that reference, certain parameters such
as the entrainment coefficient are varied by hand, while
here they become functions of T, μ, and v, once the
parameters m and λ of the microscopic theory are fixed.
Following Ref. [15], the instability seen here can be
identified with the two-stream instability which is known
from plasma physics and which applies to superfluids
because of their two-fluid nature [14].
It is crucial that there is a coupling between the two

fluids in order for the two-stream instability to occur. Such
a coupling can be characterized by the entrainment coef-
ficient that relates the two currents jμ and sμ to the
conjugate momentum of the other current. This entrainment
coefficient has been computed in the present model, and it
was found that, in the absence of a superflow, it vanishes for
zero temperature and increases monotonically with increas-
ing temperature [9]. This is in accordance with the absence
of the instability at zero temperature. However, the cou-
pling between the two fluids that is relevant for the sound
modes is not only given by the entrainment coefficient: a
covariant two-fluid description can be formulated in terms
of a generalized energy density Λ that depends on the
Lorentz scalars j2, s2, and j · s. A term proportional to j · s
gives rise to a nonzero entrainment coefficient, which is
given by the first derivative ∂Λ

∂ðj·sÞ. A coupling is also

induced by a term proportional to j2s2, giving rise to a
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FIG. 2 (color online). Real parts (left) and imaginary parts (right) of the two sound speeds for sound waves propagating opposite to the
superflow, θ ¼ π, at a temperature T ¼ 0.4Tc with Tc being the critical temperature in the absence of a superflow. The superflow is a
background relative flow between superfluid and normal fluid on top of which the sound modes propagate. The parameters of the model
are chosen as m ¼ 0, λ ¼ 0.05. The superfluid velocity v is given in units of vcðTÞ, the critical velocity beyond which the Goldstone
dispersion becomes negative (Landau’s critical velocity). Instabilities in the form of nonzero imaginary parts of the sound modes set in
slightly below vcðTÞ. The horizontal scale ends at the point beyond which there is a mode with u > 1.

SUPERFLUID TWO-STREAM INSTABILITY IN A … PHYSICAL REVIEW D 89, 065024 (2014)

065024-5



nonzero second derivative ∂2Λ
∂j2∂s2. Both kinds of couplings

enhance the two-stream instability [15].
Figure 2 shows that the instability appears to vanish

again for sufficiently large superfluid velocities. However,
as will be discussed in Sec. III C, sound modes in other
directions (other than θ ¼ π) become unstable too, and the
instability persists up to larger superfluid velocities than the
result for the upstream direction suggests. Eventually,
going even closer to the critical velocity vcðTÞ, the sound
speed of one of the sound modes becomes larger than one,
i.e., larger than the speed of light. The horizontal axis in
Fig. 2 stops at the point where this happens. (Beyond the
given scale, there is a divergence of the sound speed at
v=vcðTÞ≃ 0.9984.) I have checked that for all superfluid
velocities smaller than vcðTÞ, including the regime where
there is a sound speed larger than one, all thermodynamic
quantities such as entropy, superfluid density, etc. behave
regularly. It is thus not clear whether this curious behavior
indicates another physical instability or a problem with the
calculation. Due to the semi-analytical evaluation of the
thermodynamic functions described above, the numerics
are very stable and a numerical error as a source for this
behavior is thus very unlikely. As mentioned above,
however, there are several approximations used in the
appraoch such as the Hartree approximation and the way
the Goldstone theorem is implemented. It would be there-
fore be interesting to see whether the same observations are
made after going beyond these approximations or in a
completely different microscopic model.
Some better understanding of the two-stream instability

can be gained by computing the mixing angle α defined in
Eq. (9). Its value for the two sound modes is shown in
Fig. 3. Before reaching the unstable regime, first and
second sound can be distinguished by the sign of α; i.e.,

the first sound is an in-phase oscillation of μ and T, while
the second sound is an out-of-phase oscillation. Just before
the critical regime, first sound is, for this particular temper-
ature, almost a pure temperature oscillation, while second
sound is predominantly an oscillation in chemical potential.
At some point, just before the instability sets in, the second
sound undergoes a dramatic change: it turns from a
predominant μ, out-of-phase oscillation into a predominant
T, in-phase oscillation and thus becomes indistinguishable
from first sound. This is the point where the instability
sets in.

C. All directions

A study of the full angular dependence shows that the
upstream direction is not the only direction where the two-
stream instability occurs. In Fig. 4, the sound velocities are
plotted for all directions. The temperature is the same as
above, T ¼ 0.4Tc, and each panel corresponds to one value
of the superfluid velocity. The picture that emerges is as
follows: as the superflow is increased, the downstream
velocities increase while the upstream velocities decrease,
as one might expect. This effect is barely visible for the first
sound, and more pronounced for the second sound. In
particular, the second sound speed for sound propagation
exactly opposite to the superflow “wants” to become zero as
v is getting larger. Since the calculation is performed in the
normal-fluid rest frame, this means that the second sound
“wants” to move together with the normal fluid. Eventually,
one might expect that the superflow is strong enough to
“drag” both the downstream and the (initially) upstream
modes into the same direction, seen from the normal fluid
rest frame. In other words, in this scenario, therewould exist
a sound mode that, seen from the normal fluid rest frame,
propagates in the opposite direction as seen from the
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FIG. 3 (color online). Mixing angle α for the sound modes shown in Fig. 2, i.e., for T ¼ 0.4Tc. In addition to the modes propagating
antiparallel to the superflow (θ ¼ π, solid lines), the mixing angle is also plotted for the sound modes parallel to the superflow
(θ ¼ 0, thin dashed lines). The left panel shows α for all superfluid velocities from v ¼ 0 up to Landau’s critical velocity vcðTÞ; the right
panel zooms into the unstable region close to vcðTÞ. In the unstable region, where the real parts of the sound velocities coincide, the plot
shows arctan½Reðδμ0=δT0Þ�.
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superfluid rest frame. This scenario never occurs. Maybe
one way to interpret the instability is to say that it prevents
this scenario. When the speed of second sound has reached
itsminimum in the upstreamdirection, it becomes extremely
sensitive to further changes of the superflow. A tiny change
in v dramatically increases u2 until it reaches the speed of
first sound. This is the point where one of the modes
becomes unstable, and the other is damped. The angular
plots show that this instability extends from the exact
upstream direction to almost all backward directions
θ ∈ ½π

2
; 3π
2
�, however never reaching the half-space of for-

ward directions. At some point, the instability is gone for the
antiparallel direction and only persists in some nontrivial
angular regime. The rapid increase of the upstream sound
speed from almost zero “through” the instability continues
until values larger than one are reached. This is particularly
obvious in the left panel of Fig. 2, where the two sound
speeds have the form of two crossing curves, only that the
crossing region is replaced by the instability.
Qualitatively, the picture of Fig. 4 is valid for all

temperatures except for very small temperatures. The

corresponding series of polar plots for such a small temper-
ature, T ¼ 0.009Tc, is shown in Fig. 5. This plot also serves
as a check for the numerics, because the low-temperature
results can be compared to the analytical T → 0 results from
Eqs. (11): the results show that the speed of first sound at
T ¼ 0.009Tc is indistinguishable from the T → 0 result,
while the speed of second sound is much more sensitive to
small changes in temperature, which is already clear from the
results without superflow (see Fig. 1). I have checked that
upon decreasing the temperature even further, the result for
u2 indeed approaches the zero-temperature result. The first
row of the figure is an extension of the results of Ref. [22]
(see Fig. 1 in that work) to nonzero temperatures. In
Ref. [22], a series expansion in T was performed. In this
series, higher powers in T appear together with higher
powers in 1=ð1 − 3v2Þ, and thus the expansion breaks down
close to the critical velocity v → 1ffiffi

3
p . Therefore, for large v,

only the limit T → 0 had been discussed.
The situation appears to be similar to larger temperatures

in that the speed of second sound approaches zero for the
upstream direction just before the onset of the instability.
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FIG. 4 (color online). Real part of the sound velocities for T ¼ 0.4Tc and 6 different values of the superfluid velocity v. The sound
speed for a given angle is given by the distance of the curve from the origin. The superfluid velocity v points to the right. The first row
shows stable configurations where the superflow “drags” the sound modes to the right. In the second row there is always an angular
regime where u1 and u2 have the same real part and thus must both have imaginary parts, equal in magnitude, but opposite in sign. The
last plot shows the point where one of the sound speeds reaches the speed of light.
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However, the difference to the scenario of Fig. 4 is that at
the point where u2ðθ ¼ πÞ → 0, there are certain angles
where the speeds of first and second sound are identical
(compare the upper right panels in Figs. 4 and 5 to see the
difference). It is at these points where the instabilities now
set in, while modes along the antiparallel direction remain
stable. The low-temperature instability occurs for super-
fluid velocities extremely close to vcðTÞ, pushing the
requirements for the accuracy of the numerical calculation.
I cannot completely exclude that numerical uncertainties
affect the results quantitatively in this very-close-to-critical
regime. However, the only nontrivial numerical operations
to be done here are solving the algebraic self-consistency
equations and performing (numerous) three-momentum
integrals, making the evaluation tedious, but numerically
very stable. There is no artifact from potentially negative
values of the Goldstone dispersion: the Goldstone mode in
the close-to-critical regime has a very flat low-energy
dispersion; but I have checked explicitly that the dispersion
is still positive for all momenta, as it should be—by
definition—for superfluid velocities below Landau’s
critical velocity.

Figure 6 shows the magnitude of the imaginary part of
the sound speeds. While at very low temperatures the
instability sets in for nontrivial angles, as just pointed out,
there is a temperature regime where the instability occurs
almost simultaneously for all angles, before, for T ≳ 0.2Tc,
the instability sets in first in the exact upstream direction.
Except for very low temperatures, the magnitude of the
instability (in terms of the magnitude of the imaginary part)
decreases monotonically with temperature (note the two
different color scales in Fig. 6, one for the upper panels, one
for the lower ones). Remember that γ ¼ kImðuÞ, where k is
the wave number of the sound mode, is the inverse time
scale for the exponential growth of the unstable mode. The
other trend that can be seen is the decreasing superfluid
velocity [relative to vcðTÞ] at which the instability sets in
(note that the upper and lower panels in Fig. 6 have
different offset values for the vertical scale, as explained in
the caption). Again, the low-temperature regime is an
exception from this trend. Finally, one can see that
u > 1, the onset of which is the upper boundary for each
of the panels, occurs when the two-stream instability is just
about to disappear.
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FIG. 5 (color online). Real parts of the sound speeds, as in Fig. 4, but for a very small temperature T ¼ 0.009Tc. The qualitative
difference to intermediate and large temperatures is that the sound modes antiparallel to the superflow do not acquire an imaginary part,
the instability rather occurs only at nontrivial angles (where the real parts of the two modes become identical). The dashed curve in the
upper panels is the analytical T → 0 result for u2 from Eq. (11). The T → 0 result for u1 is indistinguishable from the numerical result.
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D. Dependence on boson mass and coupling constant

The results of the previous sections were all obtained in
the ultrarelativistic limit m ¼ 0. Within the present
approach, the instabilities can be studied for all values
of the boson mass; i.e., one can continuously extrapolate
from the ultrarelativistic to the nonrelativistic limit. In the
nonrelativistic limit, m is very close to, but still below,
the chemical potential μ (only for m < μ there is

condensation). Here I do not attempt to present a study
of the whole parameter space, I will rather focus on one
nonzero value for the boson mass. In Fig. 7, real and
imaginary parts of the sound velocities in the upstream
direction for m ¼ 0.9μ are shown in comparison to the
ultrarelativistic result from Fig. 2. The modes for the two
different masses are plotted at the same relative temper-
ature [with respect to the critical temperature in the absence

FIG. 6 (color online). Imaginary part of the sound speeds u as a function of the superfluid velocity v and the angle θ ∈ ½π
2
; 3π
2
� in the

backward directions with respect to the superflow, for various temperatures. The scale for the superfluid velocity starts at v ¼
0.995vcðTÞ (upper row), v ¼ 0.985vcðTÞ (lower row), and terminates at the point above which u > 1. Note that the color scale is
different for first and second rows. The larger the imaginary part of the sound mode (for a given momentum of the wave), the faster the
unstable mode grows. In this sense, the most severe instability in these plots occurs at T ¼ 0.1Tc.
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FIG. 7 (color online). Real (left) and imaginary (right) parts of the sound velocities antiparallel to the superflow for two different boson
masses m ¼ 0 (thin dashed lines) and m ¼ 0.9μ (thick solid lines), at the same relative temperature T ¼ 0.4TcðmÞ and for a coupling
constant λ ¼ 0.05. The ultrarelativistic case suffers the instability already for smaller velocities relative to Landau’s critical velocity
vcðTÞ, but shows a somewhat milder instability (¼ smaller magnitude of the imaginary part).
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of a superflow TcðmÞ] versus the relative velocity [with
respect to Landau’s critical velocity vcðTÞ]. The critical
temperatures are TcðmÞ ¼ 7.71μ, 3.32μ, and the two
critical velocities vcð0.4TcðmÞÞ ¼ 0.527, 0.228, for
m ¼ 0, 0.9μ, respectively. Even for the larger mass, the
sound speeds are still sizable fractions of the speed of light,
i.e., in this sense m ¼ 0.9μ is still far from the non-
relativistic limit. It was shown in Ref. [9], however, that
already for m ¼ 0.6μ the sound modes show qualitative
features identical to a pure nonrelativistic calculation. The
results of Fig. 7 suggest that the nonrelativistic two-stream
instability sets in later, i.e., for larger (relative) superfluid
velocities, than the ultrarelativistic two-stream instability.
The magnitude of the imaginary part is larger in the case
m ¼ 0.9μ, i.e., the unstable mode grows faster in that case.
A similar comparison can be made for the coupling

strength. In Fig. 8, the real and imaginary parts of the sound

modes are shown for λ ¼ 0.005 and compared to the results
for the larger coupling λ ¼ 0.05 from the previous sections.
One can see that the stronger the coupling the more severe
the instability: for the smaller coupling, the instability sets
in later, i.e., for larger superflows, and the unstable modes
grow slower. This suggests that a larger microscopic
coupling also leads to a larger cross-coupling of the two
fluids.

E. Phase diagram

I will now go back to the parameters used before,m ¼ 0,
λ ¼ 0.05, and discuss the phase diagram in the plane of
(uniform) superfluid velocity and temperature. In Ref. [9],
such a phase diagram was discussed by computing
Landau’s critical velocity according to the condition
(12). The improvement of this phase diagram, by
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FIG. 8 (color online). Real (left) and imaginary (right) parts of the sound velocities antiparallel to the superflow for two different
coupling constants, λ ¼ 0.05 (thin dashed lines) and λ ¼ 0.005 (thick solid lines), at the same relative temperature T ¼ 0.4TcðλÞ, in the
ultrarelativistic limit m ¼ 0.
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FIG. 9 (color online). Phase diagram in the plane of superfluid velocity v and temperature T for m ¼ 0 and λ ¼ 0.05. The left panel
illustrates the smallness of the region where the two-stream instability occurs. The right panel zooms into that region and shows the
regime of the two-stream instability where there exists a mode with ImðuÞ ≠ 0 and the unphysical regime of a sound velocity larger than
the speed of light, u > 1. Landau’s critical velocity, where the Goldstone dispersion becomes negative, is denoted by vcðTÞ, and Tc is the
critical temperature in the absence of a superflow.
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computing the onset of the two-stream instability for all
temperatures, is shown in Fig. 9. The left panel illustrates
that the region covered by the instability is, for the chosen
value of the coupling constant, very small. For all temper-
atures, the uniform superfluid is stable for all superfluid
velocities smaller than about 98% of Landau’s critical
velocity. In order to study the unstable region in more
detail, the right panel zooms into this region. Note that the
curve vcðTÞ of the left panel is identical to the upper
horizontal border of the right panel. The region where the
two-stream instability operates [labelled by “ImðuÞ ≠ 0”] is
defined such that for any point in this region there exists at
least one spatial direction in which one sound mode is
unstable. At the lower critical line, which has to be crossed
to enter this region, this is the direction antiparallel to the
superflow for most temperatures, except for very small
temperatures, where the instability occurs for some non-
trivial angle, as discussed above. This qualitative difference
manifests itself in the phase transition line, which shows a
nonmonotonic behavior for T ≲ 0.1Tc. Also close to Tc,
the phase transition line is nonmonotonic. However, in this
regime, artifacts of the Hartree approximation may play an
important role, and thus this behavior should be taken with
some care.

IV. CONCLUSIONS

I have computed real and imaginary parts of the two
sound velocities in a relativistic, dissipationless superfluid,
using a microscopic field-theoretical model. This model
contains a complex scalar field with quartic self-interaction.
Most of the results have been computed in the ultra-
relativistic, weak-coupling limit. The microscopic calcu-
lation involves solving a self-consistent equation for the
Bose-Einstein condensate that spontaneously breaks the
Uð1Þ symmetry of the underlying Lagrangian. This self-
consistent equation, together with a Dyson-Schwinger
equation for the boson propagator, is obtained from the
two-particle-irreducible effective action. The sound veloc-
ities, derived from the linearized hydrodynamic equations,
are entirely determined by thermodynamic equilibrium
quantities, computed from the field theory. The thermody-
namic ensemble is given by temperature T, the chemical
potential μ associated to the Uð1Þ charge, and a uniform
superfluid velocity v. The superfluid velocity is the velocity
of the superfluid measured in the rest frame of the normal
fluid, in which the field-theoretical calculation is per-
formed. This externally given superflow is the crucial
ingredient because it gives rise to a two-stream system
whose two constituents interact.
The main result is the occurrence of nonzero imaginary

parts of the sound velocities. These imaginary parts have
opposite signs for the two sound modes, indicating one
exponentially growing mode whose existence can be
interpreted as the two-stream instability [15]. This dynami-
cal instability occurs for all nonzero temperatures and for

superfluid velocities very slightly below Landau’s critical
velocity, which is defined by the onset of negative
quasiparticle energies. As a consequence, there is a small
band in the T-v phase diagram where the two-stream
instability operates, its width varying from zero at zero
temperature up to about 2.5% of Landau’s critical velocity
at temperatures near Tc, the critical temperature in the
absence of a superflow. If the superfluid velocity is further
increased within the dynamically unstable region, one of
the sound speeds becomes larger than the speed of light.
Possibly, this indicates a problem with the underlying
formalism. Therefore, it would be interesting to repeat
the calculation in a more complete treatment, for instance
by going beyond the Hartree approximation or by imple-
menting the Goldstone theorem differently, or by using a
different microscopic model.
I have discussed the full angular dependence of the two-

stream instability, showing that it typically sets in first (¼ for
the lowest superflow) for sound modes propagating in the
exact upstream direction. In this direction, the speed of
second sound approaches zero, i.e., “wants” tomove together
with the normal fluid component, before the instability sets
in. In a way, the instability appears to prevent the upstream
sound wave to become a downstream sound wave, in which
case two observers in the two rest frames of normal fluid and
superfluid would see it propagate in opposite directions. At
small temperatures, a somewhat different behavior is
observed. For T ≲ 0.1Tc, the instability only operates at
some nontrivial backward angle, and no unstable mode is
seen in the exact upstream direction. In this particular
backward angle, first and second sound have the same
velocity, which suggests that there is some efficient energy
transfer from first to second sound that triggers the instability.
The present model allows us to extrapolate continuously

from the ultrarelativistic to the nonrelativistic limit by
varying the boson mass. For a larger mass the unstable
region in the phase diagram appears to become smaller
(relatively speaking, i.e., compared to the stable region),
but the instability seems to be slightly more severe since the
time scale for the growth of the unstable mode becomes
somewhat shorter. One can also vary the coupling constant
of the underlying microscopic field theory. The instability
becomes weaker for smaller coupling: both the size of the
unstable region of the phase diagram and the strength in
terms of the magnitude of the imaginary part of the sound
speed decrease for smaller coupling. It would thus be very
interesting to repeat the same calculation for larger cou-
pling strengths and see whether the phase diagram then is
covered by a more sizable unstable region. In the given
model, this would require to resolve the difficulties related
to the renormalization of the approach in the presence of a
nonzero superflow [9]. Another way of testing the strong-
coupling behavior would be the gauge/gravity duality. A
phase diagram including Landau’s critical velocity, but
without calculations of the sound modes that could reveal
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the two-stream instability, has recently been obtained in
such a holographic approach [35].
The results of this paper cannot predict the real-time

evolution of the superfluid two-stream instability and, due to
the restriction to weak coupling, are most likely not directly
applicable to realistic superfluids in compact stars or in the
laboratory. Extensions along both lines are therefore inter-
esting projects for the future. For a recent real-time simu-
lation in a general hydrodynamic multifluid setup, not
referring to a microscopic model, see Ref. [36]. In particular
in the astrophysical context, where superfluids in ultradense
quark or nuclear matter require a relativistic treatment, the
present calculation and its extensions may become relevant.
One can ask howa two-stream instabilitymanifests itself in a
compact star, whether and how it is damped, and whether it
may help to understand pulsar glitches [14].
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APPENDIX: POLYNOMIAL
FOR SOUND VELOCITIES

The coefficients appearing in Eq. (6) are given by

a1 ≡ w
s
∂n
∂T ; a2 ≡−nn;

a3 ≡ ns
σ
− w

s
∂ðns=σÞ

∂T þ nn
s
∂n
∂T − ∂n

∂μ − 2μ
∂n

∂ð∇ψÞ2 ;

a4 ≡ −
�
nn
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∂ðns=σÞ

∂T − ∂ðns=σÞ
∂μ − 2μ

∂ðns=σÞ
∂ð∇ψÞ2

�
; (A1a)

b1≡w
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∂T ; b2≡−s; b3≡nn
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∂μ− 2μ
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∂n
∂μþ T

∂n
∂T ; A2 ≡−n;
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�
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B1 ≡ μ
∂s
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The coefficients of the polynomial (7) are

Qð4Þ ¼ μw
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∂T

∂s
∂μ −

∂s
∂T

∂n
∂μ

�
(A2a)
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where I have used the abbreviations

d1ðxÞ≡ μ
∂x
∂μþ T

∂x
∂T ; d2ðxÞ≡ ∂x

∂μ −
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s
∂x
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