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The issue of electric charges in interaction with partially reflective surfaces is addressed by means of
field theoretic methods. We propose an enlarged Maxwell Lagrangian, describing the electromagnetic field
in the presence of a semitransparent surface, and its corresponding photon propagator is computed exactly.
The amended Green function reduces to the one for a perfect conductor in the appropriate limit and leads to
the interaction between charges and surfaces with varying degrees of transparency, featured by a
phenomenological parameter. The interaction found via the image method is recovered, in the limiting case
of a perfect mirror, as a testimony to the validity of the model.
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I. INTRODUCTION

The empty scenario underlying the processes in classical
physics has acquired a rich structure in quantum field
theory. The vacuum is now the arena where the interaction
potential takes place by means of the exchange of virtual
particles, which are characterized by their propagators;
therefore, its functional form determines the interaction
energy of the system.
Modifications in the photon propagator due to boundary

conditions have been a long-standing issue in regards to the
Casimir effect (see for instance [1,2], and references cited
therein). The first field theoretic treatment of this effect for
infinitesimally thin perfect conductors was devised in [3].
Recently Parashar, Milton, Shajesh and Schaden carried out
a detailed analysis clarifying the controversies involving
different models of boundary conditions and studied
the Casimir-Polder interaction between an atom and a
δ-function plate, among other things [4]. The important
issue of atoms and charges in interaction with material
boundaries has generated renewed interest for both prac-
tical and theoretical reasons [5–8]. In this context Eberlein
and Zietal devised a remarkable method [9]—closely
related to the electrostatic image method [10]—to deal
with a wide range of physical setups.
Besides, δ-like potentials coupled to quantum fields have

been widely used to describe partially reflective surfaces in
order to investigate the Casimir effect [1,2,11–15]. This
same kind of potential was also used to show that the scalar
boson propagator undergoes a modification in such a way
that the interaction between a point charge and the surface

of an infinitesimally thin mirror becomes equal to the one
obtained by employing the image method [16]. In spite of
their success, these methods cannot be used to describe the
behavior of the electromagnetic field in the presence of a
reflective surface due to its gauge invariance.
To overcome this challenge, in this paper we propose an

enlarged Maxwell Lagrangian which can describe the
electromagnetic field in the presence of a δ-like semitrans-
parent mirror. This is achieved by introducing a new term
that modifies the propagator according to this anisotropic
setup. A similar approach has been developed by Fosco,
Lombardo and Mazzitelli in [17], where the authors couple
the gauge field to the mirror setting a new term in the
action.
Specifically, in this work we deal with a vector

field Aμ in (1þ 3) dimensions and spacetime metric
ημν ¼ diagðþ;−;−; ;−Þ. In Sec. II we define an amended
Maxwell Lagrangian, adding a new term suitable to
describe a δ-like uniaxial dielectric surface, and we find
the modification undergone by the free photon propagator
due to the presence of this term. The interaction between
the surface and a point charge is investigated in Sec. III.
The general result obtained turns out to be the exact
analytical expression for the interaction energy between
pointlike charges and the semitransparent mirror, explicitly
exhibiting its dependence on the surface degree of
transparency. Section IV is devoted to final remarks.

II. THE MODIFIED PHOTON PROPAGATOR

To model the electromagnetic field in the presence of a
δ-like mirror, we start off by imposing, in an ad hoc
manner, an additional term in the Maxwell Lagrangian with
the usual covariant gauge fixing. From now on, and with no
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loss of generality, we will consider a semitransparent plate
perpendicular to the x3 axis and located at position
a ¼ ð0; 0; aÞ; therefore, the normal vector to the surface
is Sγ ¼ ηγ3, and the model reads

L ¼ −
1

4
ðFÞ2 − 1

2ξ
ð∂AÞ2 − 1

m

�
1

2
SμϵμναβFαβ

�
2

δðx3 − aÞ:
(1)

Note that, as it stands in the Lagrangian, it is the dual field-
strength tensor, ~Fμν ¼ 1

2
ϵμναβFαβ, that is contracted with the

normal vector to the surface.
The constant m ≥ 0 has dimension of mass in natural

units and is introduced as a measure of the mirror degree of
transparency. That it is a function of the electromagnetic
properties of the material can be clearly seen from its
relation to the electric permitivity ϵij and inverse magnetic
permeability ðμ−1Þij of the model (1),

ϵij ¼ δij þ 2

m
δðx3 − aÞðδi1δj1 þ δi2δj2Þ;

ðμ−1Þij ¼ δij þ 2

m
δðx3 − aÞðδi3δj3Þ: (2)

These are the same kind of electromagnetic properties
used in [4] to analyze semitransparent δ-function plates.
Accordingly, the principal susceptibilities χii that can be
read off from the first equation in (2) show that the
Lagrangian (1) describes an uniaxial dielectric surface.
It is worth mentioning that because the Levi-Civita

tensor is totally antisymmetric, the derivatives in the last
term in (1) are taken only in the parallel space to the
surface, that is,

�
1

2
ημ3ϵμναβF

αβ

�
2

¼ ϵ3αβνϵ3ρτ
νð∂α

∥A
βÞð∂ρ

∥A
τÞ;

where we defined the differential operator
∂α
∥ ¼ ð∂0; ∂1; ∂2; 0Þ.
The model exhibits a δ-type discontinuity on the mirror,

and the influence of this discontinuity on the fields can
readily be understood from the equation of motion,

∂μFμν þ
2

m
δðx3 − aÞVν ¼ Jν; (3)

where

Vν ¼ ∂αFαν þ ∂3F3ν þ η3ν∂αFα3: (4)

It is this vector that dictates the behavior of the fields
exactly on the boundary x3 ¼ a. This subject can be
clarified by writing Eq. (3) for ν ¼ 0, 1, 2, 3, which
leads to

∇ ·

�
Eþ 2

m
δðx3 − aÞE∥

�
¼ J0;

∇×

�
Bþ 2

m
δðx3 − aÞB⊥

�
¼ Jþ ∂

∂t
�
Eþ 2

m
δðx3 − aÞE∥

�

(5)

where we defined the vectors perpendicular and parallel
to the plate, namely, E∥ ¼ ðE1; E2; 0Þ, B⊥ ¼ ð0; 0; B3Þ.
Using Eq. (2) we have

Di ¼
X
j

ϵijEj ⇒ D ¼ Eþ 2

m
δðx3 − aÞE∥;

Hi ¼
X
j

ðμ−1ÞijBj ⇒ H ¼ Bþ 2

m
δðx3 − aÞB⊥; (6)

so that Eq. (5) can be rewritten in the form

∇ · D ¼ J0; ∇ ×H ¼ Jþ ∂D
∂t : (7)

Once the polarization and magnetization vectors are
defined by D ¼ Eþ P and H ¼ B −M, respectively,
from (6) we see that

P ¼ 2

m
δðx3 − aÞE∥; M ¼ −

2

m
δðx3 − aÞB⊥; (8)

showing that the δ-type discontinuities are entirely con-
tained in the polarization and magnetization vectors,
defined only on the plate.
Despite the δ-type discontinuity, it turns out that the

propagator is well defined all over the space, as we will see.
This is closely related to the absence of any kind of ad hoc
boundary condition, in the sense that we do not require any
constraint on the gauge fields to describe the material
surface. The new term in (1) is enough to set the necessary
conditions at x3 ¼ a. The same approach has been used
in [17] where the authors start from an action that includes
an interaction term coupling the gauge field to the mirror,
without resorting to ad hoc boundary conditions.
By setting the Feynman gauge (ξ ¼ 1) in (1) and

bringing it out to the usual quadratic form, we can find
the operator we are interested in,

L ¼ 1

2
AμOμνAν

¼ 1

2
Aμ

�
ημν□þ 2

m
δðx3 − aÞðημν□∥ − ∂μ

∥∂ν
∥Þ
�
Aν; (9)

where □∥ ¼ ∂α
∥∂∥α.

For the sake of simplicity in the calculations that follow,
let us split the above differential operator into two parts:
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Oμν ¼ Oð0Þμν þ ΔOμν; (10)

where

Oð0Þμν ¼ ημν□; ΔOμν ¼ 2

m
δðx3 − aÞðημν□∥ − ∂μ

∥∂ν
∥Þ:
(11)

We will also write Gð0Þμν for the free photon propagator
that, in coordinate space, is defined by the relation
Oð0ÞμνðxÞGð0Þ

νλ ðx; yÞ ¼ ημλδ
ð4Þðx − yÞ.

As in the scalar field case [16], it is easy to check that the
modified photon propagatorGμνðx; yÞ—due to the presence
of the mirror—or the operator that inverts (10), can be given
recursively in integral form as

Gμνðx; yÞ ¼ Gð0Þ
μν ðx; yÞ

−
Z

d4zGμγðx; yÞΔOγσðzÞGð0Þ
σν ðz; yÞ: (12)

For convenience, let us Fourier transform the Green
functions in the coordinates parallel to the mirror in order to
get the reduced Green functions from

Gμνðx; yÞ ¼
Z

d3p∥

ð2πÞ3 Gμνðx3; y3;p∥Þe−ip∥ðx∥−y∥Þ: (13)

With the above equation, the free reduced propagator is
easily found as

Gð0Þ
μν ðx3; y3;p∥Þ ¼ −ημν

Z
dp3

2π

eip
3ðx3−y3Þ

p∥ − ðp3Þ2 ¼ ημν
e−σjx3−y3j

2σ
;

(14)

where we defined σ ¼
ffiffiffiffiffiffiffiffiffi
−p2

∥

q
.

Substituting the last definition in (11) into (12), trans-
forming the result according to (13) and using (14), after
some straightforward integrations we find the modified
photon propagator we are searching for,

Gμνðx3; y3;p∥Þ ¼ ημν
e−σjx3−y3j

2σ
þ 2

m
Gμγðx3; a;p∥Þp2

∥

×

�
η∥

γ
ν −

pγ
∥p∥ν

p2
∥

�
e−σja3−y3j

2σ
; (15)

where we defined η∥
μν ¼ ημν þ ημ3ην3 and

pγ
∥ ¼ ðp0; p1; p2; 0Þ.
Even though the above equation still defines the reduced

propagator recursively, it is possible to find out its func-
tional form employing an approach that is a little tricky. To
accomplish this task, first note that we can exploit the fact
that it explicitly exhibits its dependence on the mirror
position, so that we can write the propagator from an

arbitrary point to the mirror setting y3 ¼ a, and isolate the
terms containing it, which allows us to write

Gμγðx3; a;p∥Þ
�
ηγν −

1

mσ
p2
∥

�
η∥

γ
ν −

pγ
∥p∥ν

p2
∥

��
¼ ημν

e−σjx3−aj

2σ
:

(16)

Multiplying both sides by the operator that inverts the term
in brackets yields

Gμνðx3;a;p∥Þ¼
e−σjx3−aj

2σ

�
ημν−

1

m
σ

ð1þ σ
mÞ
�
η∥μν−

p∥μp∥ν

p2
∥

��
:

(17)

Substituting Eq. (17) in (15) and using Eq. (13), the
photon propagator modified due to the presence of the
mirror assumes the form

Gμνðx; yÞ ¼
Z

d3p∥

ð2πÞ3
�
ημν

e−σjx3−y3j

2σ

−
1

2

e−σðjx3−ajþjy3−ajÞ

mþ σ

�
η∥μν −

p∥μp∥ν

p2
∥

��

× e−ip∥ðx∥−y∥Þ: (18)

It is noteworthy that this propagator is continuous and
well defined all over the space, as can readily be seen. As
an important check we point out that by placing one of
the plates at infinity in the propagator that describes
the Casimir effect for perfect conductors [3], we get the
propagator (18) with m ¼ 0 after the transformation
Γ ¼ iσ, just to make the notation equivalent. This crucial
validation shows that both propagators are the same in the
appropriate limit of a single perfect conductor.
The first term on the right-hand side in the above

expression is just the usual photon propagator. The cor-
rection comes from the second one, but since it depends on
both the distance between two points and the location of the
mirror, this anisotropy prevents us from transforming the
propagator to momenta space as usual. In order to over-
come this difficulty and verify that this new propagator
enjoys the desired properties, we can resort to classical
external sources to describe pointlike charges [18] instead
of scattering methods.

III. THE IMAGE METHOD

In this section, we show how the above propagator leads
to the correct interaction between a static charge and the
plane mirror, exploiting the expression for the total energy
of the system in terms of the functional generator of
connected Green functions, i.e.
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E ¼ lim
T→∞

1

2T

Z
d4x

Z
d4yJμðxÞGμνðx; yÞJνðyÞ: (19)

The presence of a pointlike charge is accomplished by
the external source

JμðxÞ ¼ qημ0δð3Þðx − bÞ; (20)

where b is a constant vector standing for the charge
position that will be taken to be b ¼ ð0; 0; bÞ, for the sake
of simplicity.
Substituting the current (20) in (19) and integrating the

delta functions yields

E ¼ lim
T→∞

q2

2T

Z
T=2

−T=2
dx0

Z
d2p∥

ð2πÞ2 G00ðb; b;p0 ¼ 0;p∥Þ:

(21)

Noting that the first term on the right-hand side of
Eq. (18) is just the free propagator and therefore does not
contribute to the interaction energy between the mirror
and the charge [19], we can use the remaining part of the
propagator to write Eq. (21) as

Eint ¼ −
q2

4

Z
d2p∥

ð2πÞ2
e−2σjb−aj

mþ σ
: (22)

The above expression is the form of the interaction energy
between a static charge q, located at b ¼ ð0; 0; bÞ, and the
mirror. Defining R ¼ jb − aj, changing to polar coordi-
nates and using the differential operator, we obtain

EintðR;mÞ ¼ −
q2

4

Z
drdθ
ð2πÞ2

re−2rR

mþ r

¼ q2

16π

∂
∂R

Z
∞

0

dr
e−2rR

mþ r
: (23)

This expression can be brought to a convenient form by
performing the change of variable s ¼ rþm, so that

Eint ¼
q2

16π

∂
∂R

�
e2mR

Z
∞

m
ds

e−2sR

s

�
: (24)

The integral above is the well-known exponential inte-
gral function Eiðu; vÞ [20]. So, we can write the energy as

EintðR;mÞ ¼ q2

16π

∂
∂R ½e2mREið1; 2mRÞ�

¼ −
q2

16πR
½1 − 2mRe2mREið1; 2mRÞ�: (25)

Equation (25) is the exact result for the interaction energy
of a point charge and a partially reflective surface,
described by model (1). The second term in the second

line accounts for the correction due to the partial reflec-
tivity. This term vanishes in the limit m → 0, which
corresponds to the field subjected to boundary conditions
imposed by a perfectly conducting plate. In this case the
energy (25) reads

lim
m→0

EintðR;mÞ ¼ −
q2

16πR
: (26)

Therefore, the Lagrangian (1) describes exactly the inter-
action obtained via image method in the limit of a perfect
mirror. In the opposite case, when m → ∞, the energy (25)
goes to zero as expected. Also, for a fixed distance R, it
decreases as m increases.
The behavior of the energy as a function of the distance

R can be seen in Fig. 1, where we show a plot of Eq. (25)
for two different values of m.
The force between the mirror and the charge is

F ¼ −
∂
∂REintðR;mÞ

¼ −
q2

16πR
½1 − 2mRþ ð2mRÞ2e2mREið1; 2mRÞ�: (27)

Note that this expression is monotonic in R and m, and is
always negative, which denotes an attractive force.

IV. FINAL REMARKS

In conclusion, we proposed an enlarged Maxwell
Lagrangian amended by a new gauge invariant term and
featured by a free parameter to gauge the degree of
transparency of a δ-like surface, with the optical properties
of an uniaxial dielectric. We also found the modification
undergone by the photon propagator due to the presence of
the δ-like surface, and computed the interaction energy

FIG. 1. Interaction energy as a function of the distance,
Eq. (25), for q ¼ 1, m ¼ 10 (dashed line) and m ¼ 0 (solid line).

F. A. BARONE AND F. E. BARONE PHYSICAL REVIEW D 89, 065020 (2014)

065020-4



between a static charge and the semitransparent mirror.
It turns out that, in the appropriate limit, the obtained
propagator reduces to the one for a perfect conducting
plate. This allowed us to show that the interaction between
a static charge and a perfectly reflective surface that arises
from this Lagrangian is exactly the same as the one
obtained via the classical image method in the limit of a
perfect mirror.
This effective Lagrangian had to be devised in order to

achieve a field theoretic treatment of the electromagnetic
field in the presence of a partially reflective surface, since
the usual methods based on external potentials coupled
to fields, widely used to study the behavior of the scalar
and fermionic fields under boundary conditions, cannot
be employed without destroying the gauge invariance.
Furthermore, if the Lagrangian (1) can lead directly to
the Casimir effect in setups where realistic properties must

be taken into account, this is another point of interest that
must be addressed, although it is not a simple one [21].
Moreover, since δ-like external sources can describe

charges and multipole distributions along branes of arbi-
trary dimensions in several different scenarios [18,23,24],
we hope that the model presented here can advance the
endeavor of better understanding some interesting physical
signatures–not only about the long-standing issue of atoms
in interaction with different kinds of surfaces, but also
regarding the interaction between dissimilar surfaces and
multilayered materials (see for instance [22]).
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