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We construct a noncommutative version of a general renormalizable SO(10) GUT with Higgses in the
210, 126, 45, 10 and 120 irreps of SO(10) and a Peccei-Quinn symmetry. Thus, we formulate the
noncommutative counterpart of a nonsupersymmetric SO(10) GUT which has recently been shown to be
consistent with all the physics below MGUT. The simplicity of our construction—the simplicity of the
Yukawa terms, in particular—stems from the fact that the Higgses of our GUT can be viewed as elements of
the Clifford algebra Cl10ðCÞ; elements on which the SO(10) gauge transformations act by conjugation. The
noncommutative GUT we build contains tree-level interactions among different Higgs species that are
absent in their ordinary counterpart as they are forbidden by SO(10) and Lorentz invariance. The existence
of these interactions helps to clearly distinguish noncommutative Minkowski space-time from ordinary
Minkowski space-time.
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I. INTRODUCTION

It has recently been shown in Ref. [1] that a non-
supersymmetric SO(10) GUTwith Higgses in the 210, 126,
45 and 10 irreps of SO(10)—and with an intermediate
breaking to the Patti-Salam group by the 210—is compat-
ible with all the experimental data currently available, if the
naturalness paradigm is put aside. A salient feature of this
GUT is that the amount of dark matter that has been
observed is accounted for by the existence of an axion
which results from the spontaneously broken Peccei-Quinn
symmetry of the theory. Under this global U(1) symmetry
some Higgses are charged, others are not.
It is almost 15 years [2] since it became well established

that ordinary Minkowski space-time might have to be
replaced with its noncommutative counterpart as one
probes shorter distances. Hence, it is interesting to see
whether there can be constructed on noncommutative
space-time a field theory which can be considered to be
a noncommutative version of the phenomenologically
relevant SO(10) GUT of Ref. [1]. The purpose of this
paper is to show that, indeed, a noncommutative counter-
part of the ordinary GUT in Ref. [1] can be formulated. We
shall actually enlarge, for the sake of generality, the Higgs
content of that GUT with a Higgs in the 120 irrep of SO
(10), for the latter naturally occurs in the most general
ordinary SO(10) Yukawa term for fermions in the 16.
Ordinary SO(10) GUTs with Higgses only in the 210, 126,
45, 10 and 120 are very suitable for their generalization to
GUTs on noncommutative space-time, for the Higgses they
involve can naturally be understood as elements of the
Clifford algebraCl10ðCÞ and SO(10) acts on these elements

by conjugation. This feature of the Higgses—which is very
appealing from the noncommutative geometry standpoint
[3]—is lost if one considers Higgses in the 16 or 54 irreps
of SO(10), another popular Higgs irreps in SO(10) model
building.
The formulation of the noncommutative counterpart of

the SO(10) GUTof Ref. [1] will be carried out with the help
of the enveloping-algebra formalism. This formalism was
put forward in Refs. [4–6]. The enveloping-algebra frame-
work was employed afterwards to build the noncommuta-
tive standard model [7], a noncommutative deformation of
the ordinary standard model with no new degrees of
freedom—see Refs. [8,9] for alternative noncommutative
extensions of the ordinary standard model. The formulation
of the gauge and fermionic sectors of noncommutative
GUTs with SU(5) and SO(10) as gauge groups was tackled,
within the enveloping-algebra framework, in Ref. [10]. The
nontrivial issue of constructing noncommutative Yukawa
terms with the help of the enveloping-algebra formalism
was addressed in Ref. [11]. Outside the enveloping-algebra
framework, the formulation of noncommutative gauge
theories for SO(N) groups was discussed in Ref. [12].
In the enveloping-algebra framework, the noncommuta-

tive gauge fields are elements of the universal enveloping
algebra of the Lie algebra of the ordinary gauge group and
the Seiberg-Witten map defines those noncommutative
fields in terms of the corresponding ordinary fields.
When the Seiberg-Witten map is defined as a formal power
series in the noncommutativity matrix parameter ωμν, the
action of the noncommutative theory is a formal power
series in ωμν with coefficients that are integrated poly-
nomials in the ordinary fields and their derivatives. Quite a
few theoretical properties—e.g., renormalizability [13–19],
gauge anomalies [20,21], existence of noncommutative*carmelop@fis.ucm.es
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deformations of ordinary instantons and monopoles
[22–24]—of the noncommutative gauge theories so defined
have been analyzed by considering the first few terms of the
corresponding ωμν-expanded actions. Some phenomeno-
logical properties of the noncommutative gauge theories at
hand have been studied in Refs. [25–32].
The UV/IR mixing effects [33] that are a feature of the

ωμν-unexpanded U(N) noncommutative field theories can-
not be exhibited in a noncommutative gauge theory built
with the help of the Seiberg-Witten map, when this map is
defined as a series expansion in ωμν. To uncover such UV/
IR effects in this ωμν-expanded theories some kind of
resummation of an infinite number of terms that are powers
of ωμν must be worked out: a daunting task. Fortunately, for
the enveloping-algebra formalism to work [6] it is not a
must that the Seiberg-Witten be given by a formal series
expansion in ωμν. Indeed, the enveloping-algebra frame-
work works equally well if the Seiberg-Witten map is
defined by expanding in the number of ordinary fields, thus
leaving its dependence on ωμν exact. Hence, to study
noncommutative UV/IR effects in theories defined within
the enveloping-algebra formalism one should use this ωμν-
exact Seiberg-Witten map. This was done for the first time
in Ref. [34] where it was shown, in the U(1) case with
fermions in the adjoint, that if the ωμν dependence of the
Seiberg-Witten is handled exactly, then, there is an UV/IR
mixing phenomenon in the noncommutative theory defined
within the enveloping-algebra formalism. The analysis of
the UV/IR mixing effects was later extended [35] to
fermions in the fundamental representation coupled to U
(1) gauge fields. Very recently the complete one-loop
photon and neutrino propagators have been worked out
and its full UV/IR mixing structure unveiled—see
Ref. [36]. The UV/IR mixing in the one-loop propagator
of adjoint fermions coupled to U(1) fields and its very
relevant implications on neutrino physics have been studied
in Refs. [37–40]—see Ref. [41] for a review. Finally, let us
stress that the cohomological techniques developed in
Refs. [42,43]—see also [44]—are extremely useful [45]
when computing the (ωμν-exact) expansion of the Seiberg-
Witten map in the number of ordinary fields.
As we said at the beginning of this Introduction, the

purpose of this paper is to show that there is indeed a
noncommutative counterpart of the SO(10) GUT of
Ref. [1]. We shall give the complete action of the non-
commutative SO(10) GUT: its Yukawa and Higgs parts, in
particular. The action will be expressed in terms of
noncommutative fields whose noncommutative gauge
transformations are the natural generalization of the
corresponding ordinary gauge transformations. That this
strategy works for the Yukawa and Higgs terms of our SO
(10) GUT is a consequence of the fact that the ordinary
Higgses of our theory can be viewed as elements ofCl10ðCÞ
and that the gauge transformations act on these objects by
conjugation. An important by-product of this Clifford

algebra construction is that the noncommutative Higgs
action naturally contains terms which cannot occur when
space-time is commutative and there is Lorentz invariance.
These distinct noncommutative terms give rise to tree-level
interactions among different species of Higgses and gauge
fields, and if experimentally detected will send a clear
signal that space-time is noncommutative at short enough
distances.
At this point, the reader may rightly ask why should

anyone seriously consider the task of formulating the
SO(10) model of Ref. [1] on noncommutative space-time.
I shall answer the reader’s question as follows. It is quite
possible that space-time ceases to be a smooth manifold—a
set of points, in particular—as one probes short enough
distances. Now, noncommutative manifolds are geometri-
cal objects that generalize the notion of smooth manifold in
the sense that the former are not made out of points. The
natural, and easiest, noncommutative generalization of our
old Minkowski space-time is noncommutative Minkowski
space-time, a noncommutative manifold which occurs in
string theory. It is therefore very advisable to study what are
the effects on the physics of elementary particles of
replacing ordinary Minkowski space-time with its non-
commutative counterpart. Since no signal of having to deal
with a noncommutative manifold has come out of the LHC
as yet, it seems likely that the noncommutative character of
space-time will reveal itself at energies where grand
unification effects are relevant. Hence, the noncommutative
counterparts of phenomenologically relevant grand unifi-
cation models must be formulated and studied. It cannot be
denied that the model of Ref. [1] has very appealing
features from the point of phenomenology; further, its
field content is also very appealing from the standpoint of
generalizing the model to a model on noncommutative
space-time. Indeed, as we said above, the Higgs fields of
the model can be thought as elements of the algebra
Cl10ðCÞ and on those elements—and this is a key fact—
the gauge transformations act by conjugation. By using this
fact, as we shall see below, natural noncommutative
generalizations of the Yukawa terms and Higgs potential
can be formulated. This is not so for other SO(10) GUTs as
they contain Higgses—e.g., Higgses in the 16, the 54…—
that cannot be viewed as elements of Cl10ðCÞ and, there-
fore, would demand the introduction of contrived Higgs
potential terms involving noncommutative fields that are
the image of composite ordinary operators.
All in all, the reader should bear in mind that, in general,

the ωμν-exact noncommutative models constructed by
using the enveloping-algebra formalism are to be under-
stood as effective field theories—they will not describe
physics above a certain energy scale—since they fail to be
renormalizable and they are not UV complete due to the
famous noncommutative UV/IR mixing effects. This com-
ment applies, of course, to the noncommutative model
introduced below.
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The layout of this paper is as follows. In Sec. II, we
display the field content and gauge transformations of the
ordinary SO(10) GUT whose noncommutative version we
shall construct afterwards. The noncommutative fields of
our SO(10) GUT, along with the Seiberg-Witten map
equations that define them in terms of their ordinary
counterparts, are given in Sec. III. The action of the
Peccei-Quinn symmetry on the noncommutative fields is
discussed in Sec. IV. Section V is devoted to the con-
struction of the action of our noncommutative SO(10)
GUT. Some future research directions are given Sec. VI.
We include an Appendix where the ω-exact Seiberg-Witten
map for the Higgs fields viewed as elements of Cl10ðCÞ is
given up to order 2 in the number of gauge fields.

II. THE FIELD CONTENT OF THE ORDINARY
SO(10) GUT AND ITS GAUGE INVARIANCE

Let us list the matter field content of our ordinary SO(10)

GUT, a particular instance of which is the SO(10) GUT of

Ref. [1]. First, three—one for each family in the standard

model—left-handed fermionic fields ψ ð16Þf
α ; f ¼ 1; 2; 3,

transforming under the 16 irrep of SO(10) and the (1/

2,0) representation of the Lorentz group. Each ψ ð16Þf
α

contains the fermionic fields of a family of the standard

model plus the degrees of freedom corresponding a right-

handed neutrino. Second, five Higgs fields, namely,

φð210Þ
i1i2i3i4

;φð10Þ
i1

;φð45Þ
i1i2

;φð126Þ
i1i2i3i4i5

, and φð120Þ
i1i2i3

, carrying, respec-

tively, the 210, the 10, the 45, the 126 and the 120 irreps of

SO(10). The indices i1; i2;… run from 1 to 10, and φð210Þ
i1i2i3i4

,

φð126Þ
i1i2i3i4i5

and φð120Þ
i1i2i3

are totally antisymmetric, with regard to

its i1; i2;… indices, SO(10) tensors. Further, φð126Þ
i1i2i3i4i5

satisfies the following duality equation:

φð126Þ
i1i2i3i4i5

¼ þ i
5!
ϵi1i2i3i4i5i6i7i8i9i10φ

ð126Þ
i6i7i8i9i10

: (2.1)

The symbol φðHÞ
I , I ¼ 1…dimH, H ¼ 210; 10; 45; 126

and 120, will stand for the independent components of

φð210Þ
i1i2i3i4

;φð10Þ
i1

;φð45Þ
i1i2

;φð126Þ
i1i2i3i4i5

;φð126Þ
i1i2i3i4i5

, and φð120Þ
i1i2i3

, respec-
tively. dimH is the dimension of the representation H.
The gauge field content of our GUT is furnished by the

45 gauge fields aijμ , with aijμ ¼ −ajiμ and i; j ¼ 1…10,
which constitute the 45 irrep of SO(10).
Let Γi denote the Hermitian Dirac matrices in 10

Euclidean dimensions. These matrices generate the
Clifford algebra Cl10ðCÞ. We shall see later that non-
commutative counterparts of the Yukawa terms and some
Higgs potential terms of our ordinary SO(10) GUT can be
formulated very neatly by using the Cl10ðCÞ Clifford
algebra valued Higgs fields:

ϕð210Þ ¼ Γi1Γi2Γi3Γi4ϕð210Þ
i1i2i3i4

; ϕð10Þ ¼ Γi1ϕð10Þ
i1

;

ϕð45Þ ¼ iΓi1Γi2φð45Þ
i1i2

; ϕð ¯126Þ ¼ Γi1Γi2Γi3Γi4Γi5ϕð ¯126Þ
i1i2i3i4i5

;

ϕð120Þ ¼ iΓi1Γi2Γi3φð120Þ
i1i2i3

; (2.2)

rather than the SO(10) tensor fields φð210Þ
i1i2i3i4

, φð10Þ
i1

, φð45Þ
i1i2

,

φð126Þ
i1i2i3i4i5

and φð120Þ
i1i2i3i4

, which give rise to the former.
From now on, the symbol aμ will stand for the following

gauge field taking values in the in the Lie algebra of SO(10)
in the 16⨁1̄6 representation:

aμ ¼
1

2
Σijaijμ ; Σij ¼ 1

4i
½Γi;Γj�; i; j ¼ 1…10:

(2.3)

The real fields aijμ carry the 45 irrep of SO(10) and has been
introduced above. Notice that aμ is an element of the
Clifford algebra Cl10ðCÞ. Besides, aμ ¼ ðaμÞ†.
Let MðHÞ

ij , i < j, i; j ¼ 1…10, be the Hermitian gener-

ators of SO(10) in the representation carried by φðHÞ
I ,

I ¼ 1…dimH. Then, the matrix gauge field aðHÞ
μ is given

by

aðHÞ
μ ¼ 1

2
aijμM

ðHÞ
ij ; ðaðHÞ

μ Þ† ¼ aðHÞ
μ : (2.4)

Let us now introduce the Becchi-Rouet-Stora (BRS)
transformations that constitute the gauge symmetry of our
GUT. Let s denote the BRS operator, c ¼ 1

2
Σijcij the ghost

field associated to aμ and cðHÞ ¼ 1
2
MðHÞ

ij cij the ghost field

associated to aðHÞ
μ ; then, we have the following BRS

transformations:

sc ¼ −icc; saμ ¼ Dμc ¼ ∂μcþ i½aμ; c�;
scðHÞ ¼ −icðHÞcðHÞ;

saðHÞ
μ ¼ DμcðHÞ ¼ ∂μcðHÞ þ i½aðHÞ

μ ; cðHÞ�;
sψ ð16Þf

α ¼ −icψ ð16Þf
α ; sφðHÞ ¼ −i½c;φðHÞ�;

sϕðHÞ ¼ −icðHÞϕðHÞ: (2.5)

Using the condition ðcijÞ� ¼ cij, one concludes that

sðψ ð16Þf
α Þ† ¼ iðψ ð16Þf

α Þ†c; sðϕðHÞÞ† ¼ −i½c; ðϕðHÞÞ†�;
sðφðHÞÞ† ¼ iðφðHÞÞ†cðHÞ:

In the previous equations, and in the sequel, ψ ð16Þf
α is

viewed as the projection of a 32 Dirac spinor onto the 16
dimensional Weyl spinor subspace that carries 16 irrep of
SO(10). This projection is carried out by the operator
Pþ ¼ 1=2ð1þ Γ11Þ, Γ11 ¼ i5Γ1Γ2…Γ10.
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To construct the Yukawa terms, one also introduces the
following fermionic field:

~ψ ð16Þf
α ¼ ðψ ð16Þf

α Þ⊤B; B ¼
Y
i¼odd

Γi: (2.6)

Taking into account that ðΣijÞ⊤B ¼ −BΣij, one easily

deduces that the BRS transformation of ~ψ ð16Þf
α is given by

s ~ψ ð16Þf
α ¼ i ~ψ ð16Þf

α c: (2.7)

III. INTRODUCING THE NONCOMMUTATIVE
FIELDS OF THE NONCOMMUTATIVE

SO(10) GUT

Within the enveloping-algebra framework of Refs. [4–6],
one introduces at least a noncommutative field for each
ordinary field. Each noncommutative field is a function—
called the Seiberg-Witten map—of its ordinary counterpart,
the ordinary gauge field and the noncommutativity matrix
ωμν. This function—i.e., the Seiberg-Witten map—maps
infinitesimal gauge orbits of the ordinary fields into non-
commutative gauge orbits of their noncommutative coun-
terparts. We shall assume—as suits the Feynman-diagram
language—that the Seiberg-Witten map in momentum
space is given by a formal power series expansion in the
ordinary fields.
Let us first introduce the noncommutative gauge field,

which we shall denote by Aμ½aν;ω�, which is the counter-
part of the ordinary field aμ in (2.3). Aμ½aν;ω� is a solution
to the following set of Seiberg-Witten map equations:

sncC½aμ; c;ω� ¼ sC½aμ; c;ω�;
sncAμ½aν;ω� ¼ sAμ½aν;ω�; C½aμ; c;ω ¼ 0� ¼ c;

Aμ½aν;ω ¼ 0� ¼ aμ; ðC½aμ; c;ω�Þ† ¼ C½aμ; c;ω�;
ðAμ½aν;ω�Þ† ¼ Aμ½aν;ω�; (3.1)

where C½aμ; c;ω� is the noncommutative ghost field, s is
the ordinary BRS operator in (2.5) and snc is the non-
commutative BRS operator defined as follows:

sncC ¼ −iC⋆C; sncAμ ¼ ∂μCþ i½Aμ; C�⋆: (3.2)

Here, C ¼ C½aμ; c;ω� and Aμ ¼ Aμ½aν;ω�. The noncom-
mutative field Aμ½aν;ω� is an element of the universal
enveloping algebra of the Lie algebra of S0(10) in the
representation induced by the Dirac matrices Γi,
i ¼ 1…10; Aμ½aν;ω� is, therefore, an element of Cl10ðCÞ.
Next, aðHÞ

μ in (2.4) gives rise to a noncommutative gauge

field, which we shall denote by AðHÞ
μ ½aðHÞ

ν ;ω�. AðHÞ
μ ½aðHÞ

ν ;ω�
solves the following set of Seiberg-Witten map equations:

sncCðHÞ½aðHÞ
μ ; cðHÞ;ω� ¼ sCðHÞ½aðHÞ

μ ; cðHÞ;ω�;
sncA

ðHÞ
μ ½aðHÞ

ν ;ω� ¼ sAðHÞ
μ ½aðHÞ

ν ;ω�;
CðHÞ½aðHÞ

μ ; cðHÞ;ω ¼ 0� ¼ cðHÞ;

AðHÞ
μ ½aðHÞ

ν ;ω ¼ 0� ¼ aðHÞ
μ ;

ðCðHÞ½aðHÞ
μ ; cðHÞ;ω�Þ† ¼ CðHÞ½aðHÞ

μ ; cðHÞ;ω�;
ðAðHÞ

μ ½aðHÞ
ν ;ω�Þ† ¼ AðHÞ

μ ½aðHÞ
ν ;ω�; (3.3)

where CðHÞ½aðHÞ
μ ; cðHÞ;ω� is the noncommutative ghost field

and snc is the noncommutative BRS operator defined in

(3.2), but now C¼CðHÞ½aðHÞ
μ ;c;ω� and Aμ ¼ AðHÞ

μ ½aðHÞ
ν ;ω�.

The noncommutative field AðHÞ
μ ½aðHÞ

ν ;ω� is an element of
the universal enveloping algebra of the Lie algebra of
S0(10) in the representation induced the representation
carried by φðHÞ. Recall that H labels the representation and
that H ¼ 210; 10; 45; 126 and 120.
We shall need the noncommutative field strengths,

Fμν½aμ; θ� and FðHÞ
μν ½aμ; θ�, to define the Yang-Mills action

on noncommutative space-time for our noncommutative
S0(10) GUT. We define

Fμν½aρ; θ� ¼ ∂μAν − ∂νAμ þ i½Aμ; Aν�⋆;
Aμ ¼ Aμ½aν;ω�;

FðHÞ
μν ½aðHÞ

ρ ; θ� ¼ ∂μAν − ∂νAμ þ i½Aμ; Aν�⋆;
Aμ ¼ AðHÞ

μ ½aðHÞ
ν ;ω�: (3.4)

Notice that Fμν½aρ; θ� belongs to Cl10ðCÞ and FðHÞ
μν ½aρ; θ�

takes values in the universal enveloping algebra of de Lie
algebra of SO(10) in the representation induced by the
representation H of the latter.
Using (3.2), one can show that

sFμν½aρ; θ� ¼ i½Fμν½aρ; θ�; C�⋆ ¼ sncFμν½aρ; θ�; (3.5)

if C ¼ C½aμ; c;ω�. The same equation holds for

FðHÞ
μν ½aðHÞ

ρ ; θ�, mutatis mutandis.
The noncommutative fermionic fields will be denoted

by Ψð16Þf
α ½aμ;ψ ð16Þf

α ; θ� and ~Ψð16Þf
α ½aμ; ~ψ ð16Þf

α ;ω�. These
noncommutative fermionic fields satisfy the following
equations:

sncΨ
ð16Þf
α ½aμ;ψ ð16Þf

α ;ω� ¼ sΨð16Þf
α ½aμ;ψ ð16Þf

α ; θ�;
Ψð16Þf

α ½aμ; ~ψ ð16Þf
α ;ω ¼ 0� ¼ ψ ð16Þf

α ;

snc ~Ψ
ð16Þf
α ½aμ; ~ψ ð16Þf

α ;ω� ¼ s ~Ψð16Þf
α ½aμ; ~ψ ð16Þf

α ;ω�;
~Ψð16Þf
α ½aμ; ~ψ ð16Þf

α ;ω ¼ 0� ¼ ~ψ ð16Þf
α : (3.6)
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The ordinary BRS operator, s, acts on the ordinary
fermionic fields as given in (2.5) and (2.7).
The action of noncommutative BRS operator, snc, on

Ψð16Þf
α ½aμ;ψ ð16Þf;ω� and ~Ψð16Þf

α ½aμ; ~ψ ð16Þf;ω� is given by the
formulas:

sncΨα ¼ −iC⋆Ψα; snc ~Ψα ¼ i ~Ψα⋆C; (3.7)

with C ¼ C½aμ; c;ω�, Ψα ¼ Ψð16Þf
α ½aμ;ψ ð16Þf;ω� and ~Ψα ¼

~Ψð16Þf
α ½aμ; ~ψ ð16Þf;ω�.
The noncommutative Higgs field which is the non-

commutative counterpart of the ordinary Higgs multiplet
φðHÞ, H ¼ 210; 10; 45; 126; 120, introduced below (2.1),
will be denoted by ϕ̂ðHÞ½aðHÞ

μ ;ϕðHÞ;ω�. ϕ̂ðHÞ½aðHÞ
μ ;ϕðHÞ;ω�

solves the following equations:

sncϕ̂
ðHÞ½aðHÞ

μ ;ϕðHÞ;ω� ¼ sϕ̂ðHÞ½aðHÞ
μ ;ϕðHÞ;ω�;

ϕ̂ðHÞ½aðHÞ
μ ;ϕðHÞ;ω ¼ 0� ¼ ϕðHÞ; (3.8)

where, by definition,

sncϕ̂
ðHÞ½aðHÞ

μ ;ϕðHÞ;ω� ¼ −iC⋆ϕ̂ðHÞ½aðHÞ
μ ;ϕðHÞ;ω�;

C ¼ CðHÞ½aðHÞ
μ ; cðHÞ;ω�: (3.9)

Next, φðHÞ½aμ;φðHÞ;ω�, H ¼ 210; 10; 45; 126; 120 will
stand for the noncommutative counterparts of the ordinary
Higgs fields ϕðHÞ in (2.2). The Seiberg-Witten map
equations that solve φðHÞ½aμ;φðHÞ;ω� read

sncφðHÞ½aμ;φðHÞ;ω� ¼ sφðHÞ½aμ;φðHÞ;ω�;
φðHÞ½aμ;φðHÞ;ω ¼ 0� ¼ φðHÞ; (3.10)

where snc is given by

sncφðHÞ½aμ;φðHÞ;ω� ¼ i½φðHÞ½aμ;φðHÞ;ω�; C�⋆;
C ¼ C½aμ; c;ω�: (3.11)

We shall need later the noncommutative covariant
derivatives of the noncommutative matter fields, which
are given by

Dμ½A�Ψð16Þf
α ¼ ∂μΨ

ð16Þf
α þ iAμ⋆Ψð16Þf

α ;

Dμ½A� ~Ψð16Þf
α ¼ ∂μ

~Ψð16Þf
α − i ~Ψð16Þf

α ⋆Aμ;

Dμ½AðHÞ�φ̂ðHÞ ¼ ∂μφ̂
ðHÞ þ iAðHÞ

μ ⋆φ̂ðHÞ;

Dμ½AðHÞ�φðHÞ ¼ ∂μφðHÞ þ i½Aμ;φðHÞ�⋆; (3.12)

with Ψð16Þf
α ¼ Ψð16Þf

α ½aμ;ψ ð16Þf;ω�, ~Ψð16Þf
α ¼ ~Ψð16Þf

α ½aμ;
~ψ ð16Þf;ω�, ϕ̂ðHÞ ¼ ϕ̂ðHÞ½aðHÞ

μ ;ϕðHÞ;ω�, φðHÞ ¼ φðHÞ½aμ;
φðHÞ;ω�, AðHÞ

μ ¼ AðHÞÞ
μ ½aðHÞ

ν ;ω� and Aμ ¼ Aμ½aν;ω�.

IV. THE PECCEI-QUINN CHARGES OF THE
NONCOMMUTATIVE FIELDS

The need to solve the strong CP problem and to explain
why dark matter exists in the observed amount demands [1]
that the ordinary SO(10) GUT of Ref. [1] should have a
spontaneously broken Peccei-Quinn symmetry—see also
Refs. [46,47]. This spontaneously broken global symmetry
gives rise to a particle, called the axion, that may constitute
the dark matter of the Universe.
The Peccei-Quinn symmetry is a global U(1) symmetry

of the action of the ordinary theory. The invariance of the
ordinary Yukawa terms under the Peccei-Quinn symmetry
imposes the following transformation laws on the ordinary

fields ψ ð16Þ
α , ϕð10Þ, ϕð126Þ and ϕð120Þ:

ψ ð16Þ
α → eiQθψ ð16Þ

θ ; ϕð10Þ → e−i2Qθϕð10Þ;

ϕð126Þ → e−i2Qθϕð126Þ; ϕð120Þ → e−i2Qθϕð120Þ;

where we have chosen the Peccei-Quinn charge, Q, of the
fermionic multiplet as the unit of the Peccei-Quinn charge.
Notice that the Higgs fields ϕð10Þ, ϕð120Þ must be chosen to
be non-Hermitian, thus giving rise to two irreps of SO(10)
each. In Ref. [1], it has been shown that ϕð45Þ cannot be
neutral under the Peccei-Quinn U(1), but with charge
Q0 ≠ Q:

ϕð45Þ → eiQ
0θϕð45Þ:

All the other fields of the SO(10) GUT are chosen to be
neutral under the Peccei-Quinn symmetry.
We shall be conservative and impose that global sym-

metries of the action are not modified by the noncommu-
tative character of space-time. Hence, we shall choose
Seiberg-Witten maps such that the Peccei-Quinn charge of
each noncommutative field is well defined and agrees with
that of its ordinary counterpart, i.e.,

Ψð16Þ
α ½aμ;eiQθψ ð16Þ

α ;ω�¼eiQαΨð16Þ
α ½aμ;ψ ð16Þ

α ;ω�;
φð10Þ½aμ;e−i2Qθϕð10Þ;ω�¼e−i2Qθφð10Þ½aμ;ϕð10Þ;ω�;

φð126Þ½aμ;e−i2Qθϕð120Þ;ω�¼e−i2Qθφð126Þ½aμ;ϕð126Þ;ω�;
φð120Þ½aμ;e−i2Qθϕð120Þ;ω�¼e−i2Qαφð120Þ½aμ;ϕð120Þ;ω�;

φð45Þ½aμ;eiQ0θϕð45Þ;ω�¼ei2Q
0αφð45Þ½aμ;ϕð45Þ;ω�;

φ̂ð10Þ½að10Þμ ;e−i2Qθφð10Þ;ω�¼e−i2Qθφ̂ð10Þ½að10Þμ ;φð10Þ;ω�;
φ̂ð126Þ½að126Þμ ;e−i2Qθφð120Þ;ω�¼e−i2Qθφ̂ð126Þ½að126Þμ ;φð126Þ;ω�;
φ̂ð120Þ½að120Þμ ;e−i2Qθφð120Þ;ω�¼e−i2Qθφ̂ð120Þ½að120Þμ ;φð120Þ;ω�;

φ̂ð45Þ½að45Þμ ;eiQ
0θφð45Þ;ω�¼ei2Q

0θφ̂ð45Þ½að45Þμ ;φð45Þ;ω�:
(4.1)

That there are Seiberg-Witten maps satisfying the trans-
formation laws in (4.1) is a consequence of the fact that the

SO(10) GUTS WITH LARGE TENSOR REPRESENTATIONS … PHYSICAL REVIEW D 89, 065018 (2014)

065018-5



Seiberg-Witten map for the matter fields can always be
chosen so that it is linear in the corresponding ordinary
fields. See Ref. [45] and the Appendix, for further details.

V. THE ACTION OF THE NONCOMMUTATIVE
SO(10) GUT

Let us first point out that we shall assume that Lorentz
indices are raised and lowered with the help of the
Minkowski metric ð−;þ;þ;þÞ.
The action, S, which gives the dynamics of our non-

commutative GUT, will be sum of integrated monomials
with regard to the ⋆ product of the noncommutative fields,
introduced in the previous section, and their derivatives. We
shall restrict the mass dimension of these monomials to be
less than or equal to 4, since we are interested in
constructing the noncommutative counterpart of a renor-
malizable ordinary SO(10) GUT. So, not considering
monomials with mass dimension bigger than 4 is the
simplest choice to start with. For the sake of simplicity,
we shall also assume that the dependence on ωμν of the
noncommutative action only occurs through the Seiberg-
Witten map and the ⋆ product. We shall demand that the
noncommutative action be invariant under the noncommu-
tative BRS transformations defined in (3.2), (3.7) and
(3.11) and the Peccei-Quinn transformations in (4.1). We
shall break the action into four parts:

S ¼ SYM þ Sfermionic þ SYukawa þ SHiggs (5.1)

and discuss each part separately below.

A. The noncommutative Yang-Mills action

In view of (3.5) and following Ref. [10], we shall define
the noncommutative Yang-Mills action, SYM, as follows:

SYM ¼ −κc
Z

d4xTrFμν½aρ;ω�⋆Fμν½aρ;ω�

−
X
H

κðHÞ
Z

d4xTrFðHÞ
μν ½aðHÞ

ρ ;ω�⋆FðHÞμν½aðHÞ
ρ ;ω�:

(5.2)

Fμν½aρ;ω� and FðHÞ
μν ½aðHÞ

ρ ;ω� are given in (3.4) and the real
constants κc, κH are constrained by the following equation:

1

g2YM
¼ 32kc þ

X
H

4I2ðHÞκH: (5.3)

gYM is the tree-level Yang-Mills coupling constant and
I2ðHÞ is the second order Dynkin index of the irrep H of
SO(10), i.e.,

TrMðHÞ
ij MðHÞ

kl ¼ I2ðHÞðδikδjl − δilδjkÞ:

Notice that (5.3) comes from the need to have the right
normalization of the free kinetic term of the gauge field.

Positivity of SYM for Euclidean signature puts further
constraints on the κ’s, which are automatically satisfied
if the κ’s are positive or vanish.
We should like to point out that there is no reason to set

to zero from the beginning any of the κ’s in (5.2), for one-
loop Higgs radiative corrections generate contributions—
see Ref. [16]—to the effective action of gauge field that are
of the type

Z
d4xTrFðHÞ

μν ½aðHÞ
ρ ;ω�⋆FðHÞμν½aðHÞ

ρ ;ω�:

B. The fermionic part of action

Furnished with the noncommutative fermionic fields
defined by (3.6) and their covariant derivatives in (3.12),
one constructs the fermionic part of the action, Sfermionic, of
our noncommutative GUT. We shall assume that Sfermionic is
quadratic in the noncommutative fermionic fields and linear
in the noncommutative gauge field. This is the simplest
choice for an Sfermionic. Sfermionic reads

Sfermionic ¼
X
f

�
κf

Z
d4xiΨf†

_α σ̄ _αα
μ Dμ½A�Ψf

α

− ~κf
Z

d4xiDμ½A� ~Ψfασμα _α
~Ψf† _α

�
;

where Ψf
α¼Ψð16Þf

α ½aμ;ψ ð16Þf
α ;ω�, ~Ψf

α¼ ~Ψð16Þf
α ½aμ; ~ψ ð16Þf

α ;ω�,
Ψf†

_α ¼ ðΨf
αÞ† and ~Ψf†

_α ¼ ð ~Ψf
αÞ†. The conventions on dotted

and undotted indices that we use are those of Ref. [48]. The
proper normalization of the free propagator of the fermions
demands that

κf þ ~κf ¼ 1:

C. The Yukawa terms

Let us recall—see, for instance, Ref. [47]—that the most
general Yukawa terms in a renormalizable ordinary SO(10)
GUT with only fermionic multiplets in the 16 irrep reads

X
ff0

Z
d4xðYð10Þ

ff0 ~ψ
ð16Þfαφð10Þψ ð16Þf0

α

þ Yð126Þ
ff0 ~ψ ð16Þfαφð126Þψ ð16Þf0

α

þ Yð120Þ
ff0 ~ψ ð16Þfαφð120Þψ ð16Þf0

α þ H:c:Þ:
Recall that ϕð10Þ, φð126Þ and ϕð120Þ have been defined in
(2.2) and ~ψ ð16Þfα has been introduced in (2.6). It is apparent
that the simplicity and beauty of the previous expression
comes from the fact that Higgs fields which occur in it can
be interpreted as elements of Cl10ðCÞ. It is also this feature
of the Higgs fields in the ordinary Yukawa terms above that
enables us to introduce, in a natural way, the following
noncommutative Yukawa terms:
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SYukawa ¼
X
ff0

Z
d4xðYð10Þ

ff0
~Ψð16Þfα⋆φð10Þ⋆Ψð16Þf0

α

þ Yð126Þ
ff0

~Ψð16Þfα⋆φð126Þ⋆Ψð16Þf0
α

þ Yð120Þ
ff0

~Ψð16Þfα⋆φð120Þ⋆Ψð16Þf0
α þ H:c:Þ; (5.4)

where

~Ψð16Þf
α ¼ ~Ψð16Þf

α ½aμ; ~Ψð16Þf
α ;ω�;

Ψð16Þf
α ¼ Ψð16Þf

α ½aμ;Ψð16Þf
α ;ω�;

φðHÞ ¼ φðHÞ½aðHÞ
μ ;φðHÞ;ω�;

H ¼ 10; 126; 120

are Seiberg-Witten maps that solve (3.6) and (3.10). By
construction, SYukawa, in (5.4), is invariant under BRS
transformations of the ordinary fields and the correspond-
ing noncommutative BRS transformations in (3.7)
and (3.11).

Let us point out that the noncommutative Higgses ϕ̂ðHÞ
I ,

I ¼ 1…dimH,H ¼ 10; 126; 120 defined by (3.8) are of no
help for constructing integrated cubic monomials, with
regard to the ⋆ product, of the noncommutative fields
~Ψð16Þf
α , Ψð16Þf

α and φ̂ðHÞ
I . Indeed, let T rIr0 be complex

numbers, then, the fact that the⋆ product is not commutative

and thatC½aμ; c;ω� andCðHÞ½aðHÞ
μ ; cðHÞ;ω� take values in the

enveloping algebra of SO(10), prevents the term

Z
d4xT rIr0 ~Ψð16Þfα

r ⋆ϕ̂ðHÞ
I ⋆Ψð16Þf

αr0 (5.5)

from being invariant under the noncommutative BRS trans-
formations in (3.7) and (3.9). This result holds whatever the
ordering of the fields in (5.5).
In view of the previous discussion the reader may ask

why we have introduced the noncommutative Higgs fields

φ̂ðHÞ
I . We shall answer this question in the next subsection.

D. The Higgs action

SHiggs in (5.1) contains only Higgs fields and gauge
fields. Let us begin by introducing the kinetic terms. These
we take to be quadratic in the noncommutative Higgs fields
and their covariant derivatives. We also assume that—as in
the ordinary field theory case—these terms are semipositive
definite after a Wick rotation has been performed. We thus
end up with the following gauge covariant kinetic terms for
the noncommutative Higgses:

KHiggs ¼ −
X
H

Z
d4xðsHðDμ½AðHÞ�ϕ̂ðHÞÞ†Dμ½AðHÞ�ϕ̂ðHÞ

þ tH TrððDμ½A�φðHÞÞ†Dμ½A�φðHÞÞÞ; (5.6)

where Dμ½AðHÞ�ϕ̂ðHÞ and Dμ½A�φðHÞ are given in (3.12) and
H ¼ 210; 10; 45; 126 and 120. The parameters sH and tH
are positive real numbers such that each free kinetic term
has the right normalization.
It is plain that the second summand of (5.6) is needed, for

the noncommutative Yukawa terms in (5.4) involve φðHÞ.
To provide the rationale for the first summand of (5.6), we
must discuss why the construction of a phenomenologically
sensible noncommutative Higgs potential seems to require
that the noncommutative fields φ̂ be added to the pool of
noncommutative Higgs fields.
In Ref. [49], it has been analyzed the classical vacuum

structure of an ordinary S0(10) GUTwith a Higgs in the 45
and another in the 16. It has been shown there that if the
monomial Trððφð45ÞÞ†φð45Þðφð45ÞÞ†φ45ÞÞ occurs in the Higgs
potential, then the monomial ðTrððφð45ÞÞ†φð45ÞÞÞ2 must be
also a summand of the Higgs potential. This result comes
from demanding boundedness from below of the Higgs
potential and absence of tachyons.
Now, it is true that the ordinary GUT corresponding to

our noncommutative GUT has a Higgs content more
involved than the one used in Ref. [49] and that no analysis
similar to that in the latter paper has been carried out for an
ordinary GUT with our Higgs content; so it cannot be
claimed that both types of monomials must necessarily
occur in the Higgs potential. However, until such a
complicated analysis is carried out in the ordinary case,
we shall play it safe and include in the noncommutative
Higgs potential noncommutative counterparts of both
TrððφðHÞÞ†φðHÞðφðHÞÞ†φHÞÞ and ðTrððφðHÞÞ†φðHÞÞÞ2, H ¼
210; 10; 45; 126 and 120.
It is plain that

Z
d4xTrðφðHÞÞ†⋆φðHÞ⋆ðφðHÞÞ†⋆φHÞÞÞ and

Z
d4xTrðφðHÞÞ†⋆ðφðHÞÞ†⋆φðHÞ⋆ðφðHÞÞ

are invariant under the noncommutative BRS transforma-
tions in (3.11), provided φðHÞ is given by a Seiberg-Witten
map. However,

Z
d4xðTrððφðHÞÞ†⋆φðHÞÞÞ2

is not invariant under the noncommutative BRS trans-
formations in (3.11), for—unlike the ordinary case—the
unintegrated monomial ðTrððφðHÞÞ†⋆φðHÞÞÞ2Þ is not invari-
ant under BRS transformations and, what is worse, its BRS
variation is not a total derivative. Hence, to construct the
noncommutative counterpart of the ordinary integrated
monomial

Z
d4xðTrððϕðHÞÞ†ϕðHÞÞÞ2; (5.7)
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we shall take into account that TrððϕðHÞÞ†ϕðHÞÞÞ ¼
sHðφðHÞÞ†IφðHÞ

I Þ, where sH is a real number—s210 ¼
32 × 4!; s10 ¼ 32; s45 ¼ 16;…—whose actual value is
irrelevant to our discussion, and use the noncommutative
scalar φ̂ðHÞ

I in (3.8), rather than φðHÞ, to define the non-
commutative counterpart of the integrated ordinary mono-
mial in (5.7) as follows:

Z
d4xððϕ̂ðHÞÞ†I⋆ϕ̂ðHÞ

I ÞÞ2:

Let QðHÞ stand for either φðHÞ or its Hermitian conjugate
ðφðHÞÞ†. Then, we are now ready to introduce the non-
commutative Higgs-potential term, V̂Higgs, of our non-
commutative SO(10) GUT:

V̂Higgs ¼
X
H

αHðϕ̂ðHÞÞ†I⋆ϕ̂ðHÞ
I þ

X
H1H2

βH1;H2
ððϕ̂ðH1ÞÞ†I⋆ϕ̂ðH1Þ

I Þ⋆ððϕ̂ðH2ÞÞ†I⋆ϕ̂ðH2Þ
I Þ þ γ210 Trφð210Þ

þ
X
H1H2

κH1H2
TrðQðH1Þ⋆QðH2ÞÞ þ

X
H1H2H3

γH1H2H3
TrðQðH1Þ⋆QðH2Þ⋆QðH3ÞÞ

þ
X

H1H2H3H4

λH1H2H3H4
TrðQðH1Þ⋆QðH2Þ⋆QðH3Þ⋆QðH4ÞÞ; (5.8)

where αH, βH1H2
, κH1H2

, γH1H2H3
λH1H2H3H4

are numbers;
which are real, if the monomial they go with is real.
Boundedness from below of V̂Higgs put constraints on the
couplings βH’s and λH1H2H3H4

’s. H, H1, H2, H3 and H4

run over the set 210; 10; 45; 126; 126; 120. The mono-
mials TrðQðH1Þ⋆QðH2ÞÞ, TrðQðH1Þ⋆QðH2Þ⋆QðH3ÞÞ and
TrðQðH1Þ⋆QðH2Þ⋆QðH3Þ⋆QðH4ÞÞ satisfy the following con-
ditions: (i) The sum of the Peccei-Quinn charges of the
fields entering the monomial must vanish—thus, the action
will have a Peccei-Quinn symmetry; (ii) if a monomial
occurs, so does its Hermitian conjugate multiplied by the
appropriate complex conjugate coupling constant; and
(iii) monomials obtained by cyclic permutations of the
fields of a given monomial are dropped. Notice that, by
setting to zero the ordinary gauge fields in QðHÞ and φ̂ðHÞ

I ,
V̂Higgs in (5.8) yields the Higgs potential for the ordinary
Higgses on noncommutative space-time. This noncommu-
tative potential further reduces to the appropriate—a quartic

polynomial—Higgs potential on ordinary Minkowski
space-time by setting ωμν ¼ 0.
Finally, the BRS invariant noncommutative Higgs

action, SHiggs, reads

SHiggs ¼ KHiggs −
Z

d4xV̂Higgs;

where KHiggs and V̂Higgs are given in (5.6) and (5.8),
respectively.
Before closing this section we would like to point out

that there are monomials in VHiggs that vanish—due to SO
(10) invariance—at ωμν ¼ 0, but are nonvanishing other-
wise. These monomials yield intrinsically noncommutative
interactions—since they vanish at ωμν ¼ 0—between
Higgses of several species and the gauge field. Let us give
just one example:

Z
d4xTrðφð10ÞÞ†⋆φð10Þ⋆φð210Þ ¼ 4! × 16×

Z Y4
i¼1

d4pi

ð2πÞ4 ð2πÞ
4δð−p1 þ p2 þ p3 þ p4Þðϕð10ÞÞ�i1ðp1Þϕð10Þ

j1
ðp2Þak1k2μ1

× ðp3Þϕð210Þ
i1j1k1k2

ðp4Þ
�
−ei

2
ðp1−p3Þ∧p2Þωμ1μ2p1μ2

sinð1
2
p3∧p1Þ

p3∧p1

þ e
i
2
p1∧ðp2þp3Þωμ1μ2p2μ2

×
sinð1

2
p3∧p2Þ

p3∧p2

þe
i
2
p1∧p2ωμ1μ2p4μ2

sinð1
2
p3∧p4Þ

p3∧p4

�
þOða2μÞ:

The right-hand side (rhs) of the previous equation has been
derived with the help of the results presented in the
Appendix. Let us stress that terms like the one in the
previous equation describe the tree-level coupling between
different species of ordinary Higgses, and the ordinary
gauge field, as they move around in noncommutative
space-time. Tree-level couplings such as this are not
possible in ordinary Minkowski space-time, so its eventual

experimental detection will give a clear hint of the non-
commutative character of space-time. This strategy to
experimentally probe the possible noncommutative char-
acter of space-time was pioneered by the authors of
Ref. [50].
Another peculiarity of the noncommutative Higgs-

potential term in (5.8) is that it contains a contribution
that is proportional to Trφð210Þ. This term is not forbidden
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neither by gauge invariance nor by the Peccei-Quinn sym-
metry.Using the resultspresented in theAppendixoneshows
that Trφð210Þ vanishes at ωμν ¼ 0 and that the first nontrivial
contributioncoming from it occurs at order ðaμÞ2, thusgiving
rise to a non-Lorentz invariant coupling between two gauge
fields and the 210 Higgs. Notice that similar terms for the
other Higgses of the GUT will explicitly break the Peccei-
Quinn symmetry and this would not do.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have successfully formulated the
classical action of a noncommutative SO(10) GUT which
is the counterpart of the phenomenologically relevant
ordinary SO(10) GUT of Ref. [1]. The noncommutative
model presented here has two immediate distinct qualita-
tive phenomenological consequences: one is the possibility
of breaking particle Lorentz invariance by having non-
commutative coordinates while there are grand unification
effects at work; the other is the existence of tree-level
interactions between several Higgs species that do not
occur in the corresponding ordinary SO(10) of Ref. [1]:
those interactions vanish as ωμν → 0. The detection of these
noncommutative interactions will strongly support the idea
that space-time is not a smooth manifold at high enough
energies. A quantitative study of these two consequences
requires a separate paper.
An important issue that should be tackled without delay

is the analysis of the UV/IR mixing effects in this non-
commutative theory. We would like to stress that another
physical consequence of our formulation is that those UV/
IR mixing effects do not generally occur in the same type of
terms as in noncommutative U(N) theories. Indeed, for U
(N) theories, the UV/IR mixing phenomenon makes
the two point function of the effective action of the
ordinary field develop the following well-known IR diver-
gences [51]:

TraμðpÞ
~pμ ~pν

~p4
Traνð−pÞ;

TraμðpÞ lnð−p2 ~p2Þðp2ημν − pμpνÞTraνð−pÞ:

But these types of terms do not occur for simple gauge
groups since now Traμ ¼ 0. Recall that ~pμ ¼ ωμνpν. Of
course, in view of the calculations presented in Ref. [36] for
the U(1) case, the detailed computation of the UV/IR
structure of the model formulated here will involve very
lengthy and complicated computations.
An issue which should also be addressed is a compre-

hensive study of the set of classical vacua of our SO(10)
GUT and how it is modified at the quantum level. Of
course, the phenomenology that the SO(10) GUT presented
here gives rise to should be studied. In this regard the
analysis—perhaps, along the lines of Refs. [37–40]—of the
neutrino physics that our GUT yields looks particularly
interesting.
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APPENDIX

It has been discussed in Ref. [45] how to obtain
systematically θ-exact solutions to the Seiberg-Witten
map equations in (3.1), (3.3), (3.6) and (3.8). Here, we
shall show how to construct a θ-exact solution to (3.10).
Let us first point out that (3.1) holds in any number of

space-time dimensions whatever the value of noncommu-
tativity matrix ωij. Now, assume that we are in 4þ 1 space-
time dimensions and that ωij, i; j ¼ 0; 1; 2; 3; 4 is such that
ωμ4 ¼ 0, μ ¼ 0; 1; 2; 3. It was shown in Refs. [42,43] that
the following “evolution” equations give a solution to (3.1)

d
dh

CðhωÞ ¼ 1

4
ωρσf∂ρCðhωÞ; AρðhωÞg⋆h

; Cðh ¼ 0Þ ¼ c;

d
dh

AμðhωÞ ¼
1

2
ωρσfAρðhωÞ; ∂σAμðhωÞg⋆h

−
1

4
ωρσfAρðhωÞ; ∂μAσðhωÞg⋆h

þ i
4
ωρσfAρðhωÞ; ½AσðhωÞ; AμðhωÞ�⋆h

g⋆h
;

Aμðh ¼ 0Þ ¼ aμ;

d
dh

A4ðhωÞ ¼
1

2
ωρσfAρðhωÞ; ∂σA4ðhωÞg⋆h

−
1

4
ωρσfAρðhωÞ; ∂4AσðhωÞg⋆h

þ i
4
ωρσfAρðhωÞ; ½AσðhωÞ; A4ðhωÞ�⋆h

g⋆h
;

A4ðh ¼ 0Þ ¼ a4; (A1)

where the Greek indices run over 0,1,2 and 3 and ⋆h denotes
the Moyal product where hωμν has replaced ωμν.
Now, neither A4 nor a4 enter the first two equations in

(A1), so these two equations give Seiberg-Witten maps
C½aρ; c;ω� and Aμ½aρ;ω� which do not depend on a4.
On the other hand, the last equation in (A1) yields a

Seiberg-Witten map A4½aμ; a4;ω� which depends on both
aμ and a4. Let us particularize (A1) to ordinary fields
ai ¼ ðaμ; a4Þ, μ ¼ 0; 1; 2; 3, which do not depend on x4

and ordinary ghost fields which do not depend on x4, either.
For these ordinary field configurations we have that
C½aρ; c;ω�, Aμ½aρ;ω� and A4½aμ; a4;ω� solving (A1) do
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not depend on x4, so they are actually noncommutative
fields which live in 3þ 1 space-time dimensions. From this
four-dimensional point of view, Aμ½aρ;ω� and C½aρ; c;ω�
are, respectively, the noncommutative gauge field and the
corresponding ghost field—i.e., Aμ½aρ;ω� and C½aρ; c;ω�
solve (3.1) in 3þ 1 dimensions, whereas A4½aμ; a4;ω� is a
noncommutative field solving

sA4½aμ;a4;ω�¼∂4C½aμ;c;ω�þ i½½A4½aμ;a4;ω�;C½aμ;c;ω��⋆
¼−i½C½aμ;c;ω�;A4½aμ;a4;ω��⋆;

A4½ω¼0�¼a4;

since ∂4C½aμ; c;ω� ¼ 0. If, in the previous equation one
substitutes φðHÞ½aρ;φðHÞ;ω� for A4½aρ;φðHÞ;ω�, one obtains
(3.10). Hence, by replacing A4 with φðHÞ and a4 with ϕðHÞ
in the last equation of (A1), a solution to (3.10) will be
produced, if the term involving ∂4 is dropped. We have this
shown that the evolution problem that yields the Seiberg-
Witten map which defines ΦðHÞ reads

d
dh

ΦðHÞðhωÞ ¼ 1

2
ωρσfAρðhωÞ; ∂σΦðHÞðhωÞg⋆h

þ i
4
ωρσfAρðhωÞ; ½AσðhωÞ;ΦðHÞðhωÞ�⋆h

g⋆h
;

ΦðHÞðh ¼ 0Þ ¼ ΦðHÞ: (A2)

The ω-exact solution to (A2) that is a formal series
expansion in power of the ordinary fields is obtained
recursively. Let us express Aμ½aρ; hω� and
ΦðHÞ½aρ;ϕðHÞ; hω� as follows:

Aμ½aρ; hω� ¼
X
n>0

AðnÞ
μ ½aμ; hω�;

ΦðHÞ½aρ;ϕðHÞ; hω� ¼
X
n≥0

ΦðH;nÞ½aρ;ϕðHÞ; hω�;

where AðnÞ
μ ½aρ; hω� and ΦðH;nÞ½aρ;ϕðHÞ; hω� are monomials

of degree n with regard to Aμ. Then substituting them in
(A2), one obtains the infinite set of equations,

ΦðH;0Þ½aρ;ϕðHÞ; hω� ¼ ϕðHÞ;

ΦðH;1Þ½aρ;ϕðHÞ;ω� ¼
Z

1

0

dh

�
1

2
ωρσfAð1Þ

ρ ðhωÞ; ∂σϕ
ðHÞg⋆h

�
;

ΦðH;2Þ½aρ;ϕðHÞ;ω� ¼
Z

1

0

dh
�
1

2
ωρσfAð2Þ

ρ ðhωÞ; ∂σϕ
ðHÞg⋆h

þ 1

2
ωρσfAð1Þ

ρ ðhωÞ; ∂σΦðH;1ÞðhωÞg⋆h

þ i
4
ωρσfAð1Þ

ρ ðhωÞ; ½Að1Þ
σ ðhωÞ;ϕðHÞ�⋆h

g⋆h

�
;

ΦðH;nÞ½aρ;ϕðHÞ;ω� ¼
Z

1

0

dh

�Xn−1
m¼0

1

2
ωρσfAðn−mÞ

ρ ðhωÞ; ∂σΦðH;mÞðhωÞg⋆h

þ
X

m1þm2þm3¼n

i
4
ωρσfAðm1Þ

ρ ðhωÞ; ½Aðm2Þ
σ ðhωÞ;ϕðH;m3ÞðhωÞ�⋆h

g⋆h

�
; n ≥ 3; (A3)

where m1 > 0, m2 > 0 and m3 ≥ 0. We would like to stress that each ΦðH;nÞ½aρ;ϕðHÞ;ω� in (A3) is linear in the ordinary
field ϕðHÞ. Hence, the corresponding equation in (4.1) holds for this Seiberg-Witten map.
Next,with thehelpof the resultspresented inRef. [45],onemayworkout the rhsofeachequality in (A3) recursively;weshall

display below the explicit expressions that we have obtained for ΦðH;1Þ½aρ;ϕðHÞ;ω� and ΦðH;2Þ½aρ;ϕðHÞ;ω�:

ΦðH;1Þ½aρ;ϕðHÞ;ω� ¼
Z

d4p1

ð2πÞ4
d4p2

ð2πÞ4 e
iðp1þp2Þxωμ1μ2p2μ2

�
e

i
2
p1∧p2 − 1

p1∧p2

ϕðHÞðp2Þaμ1ðp1Þ

−
e−

i
2
p1∧p2 − 1

p1∧p2

aμ1ðp1ÞϕðHÞðp2Þ
�
;

where p1∧p2 ¼ ωμ1μ2p1μ1p2μ2 , and
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ΦðH;2Þ½aρ;ϕðHÞ;ω� ¼
Z

d4p1

ð2πÞ4
d4p2

ð2πÞ4
d4p3

ð2πÞ4 e
iðp1þp2þp3Þx

�
1

2
ωμνωρσ½2ðp2σδ

μ1
ρ δ

μ2
μ þ p1σδ

μ1
μ δ

μ2
ρ Þ

− ðp2 − p1Þμδμ1ρ δμ2σ �p3ν½Gð−p3;p1; p2;ωÞaμ1ðp1Þaμ2ðp2ÞϕðHÞðp3Þ
þ Gðp3;p1; p2;ωÞϕðHÞðp3Þaμ1ðp1Þaμ2ðp2Þ� þ ωμνωρσðp2 þ p3Þνp3σδ

μ1
μ δ

μ2
ρ

× ½Gðp1;p2; p3;ωÞaμ1ðp1Þaμ2ðp2ÞϕðHÞðp3Þ þ Gð−p1;p2; p3;ωÞaμ2ðp2ÞϕðHÞðp3Þaμ1ðp1Þ
þ Ḡðp1;p2; p3;ωÞaμ1ðp1Þaμ2ðp2ÞϕðHÞðp3Þ þ Ḡð−p1;p2; p3;ωÞaμ1ðp1ÞϕðHÞðp3Þaμ2ðp2Þ�

−
1

2
ωμ1μ2 ½F ðp1;p2; p3;ωÞaμ1ðp1Þaμ2ðp2ÞϕðHÞðp3Þ þ F ð−p1;p2; p3;ωÞaμ2ðp2ÞϕðHÞðp3Þaμ1ðp1ÞÞ

þ F̄ ðp1;p2; p3;ωÞϕðHÞðp3Þaμ2ðp2Þaμ1ðp1Þ þ F̄ ð−p1;p2; p3;ωÞaμ1ðp1ÞϕðHÞðp3Þaμ2ðp2Þ�
�
:

In the previous equation, Ḡ and F̄ are the complex conjugates of the functionsG andF , respectively. The functionsG andF are
defined as follows:

Gðp1;p2; p3;ωÞ ¼
1

p2∧p3

�
e−

i
2
ðp1∧p2þp1∧p3þp2∧p3Þ − 1

p1∧p2 þ p1∧p3 þ p2∧p3

−
e−

i
2
ðp1∧p2þp1∧p3Þ − 1

p1∧p2 þ p1∧p3

�
;

F ðp1;p2; p3;ωÞ ¼
e−

i
2
ðp1∧p2þp1∧p3þp2∧p3Þ − 1

p1∧p2 þ p1∧p3 þ p2∧p3

:
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