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We present a new unification of the electroweak and gravitational interactions based on joining the weak
SUð2Þ gauge fields with the left-handed part of the space-time connection, into a single gauge field valued
in the complexification of the local Lorentz group. Hence, the weak interactions emerge as the right-handed
chiral half of the space-time connection, which explains the chirality of the weak interaction. This is
possible, because, as shown by Plebanski, Ashtekar, and others, the other chiral half of the space-time
connection is enough to code the dynamics of the gravitational degrees of freedom. This unification is
achieved within an extension of the Plebanski action previously proposed by one of us. The theory has two
phases. A parity symmetric phase yields, as shown by Speziale, a bimetric theory with 8 degrees of
freedom: the massless graviton, a massive spin-2 field and a scalar ghost. Because of the latter this phase is
unstable. Parity is broken in a stable phase where the 8 degrees of freedom arrange themselves as the
massless graviton coupled to an SUð2Þ triplet of chirally coupled Yang-Mills fields. It is also shown that
under this breaking a Dirac fermion expresses itself as a chiral neutrino paired with a scalar field with the
quantum numbers of the Higgs.
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I. INTRODUCTION

The ambition of unifying gravity with the other inter-
actions faces three big obstacles:
(1) Gravity is described by a dynamical metric while the

other interactions are described by connection fields.
Consequently the Einstein action is linear in curva-
ture while the Yang-Mills action is quadratic in
gauge field strength.

(2) The standard model can be quantized perturbatively,
because its action is a polynomial of dimension-4
terms, while the Einstein-Hilbert action, being non-
polynomial, is challenging to quantize.

(3) The standard model of particle physics is chiral,
while gravity, at least at the classical level, is not.
Any unification must explain why parity is broken
only for the weak interactions.

The first two challenges are addressed by the Ashtekar-
Plebanski formulationsofgeneral relativity inwhichgravity is
described by a gauge field [1,2], while the metric is emergent
[3,4]. These connection formulations of gravity are drastically
simpler than Einstein’s original metric formulation, as the
action and Hamiltonian formulations are based on cubic
polynomials inthebasicfields,whichisamuchbetter situation

for quantization than Einstein’s nonpolynomial formulation.
Indeedthesetheoriesareassimpleasnonlinear theoriescanbe,
with purely quadratic field equations.
Remarkably, these connection formulations of gravity

address the issue of chirality as well. There are a range of
these Ashtekar-Plebanski formulations, which differ in the
value of a complex parameter—the Immirzi parameter, γ.
When γ takes complex values the action for gravity is
chiral. At the classical level this chirality is hidden in the
gravitational sector and affects only four fermion inter-
actions that arise from their couplings to the torsion of the
connection. But the chirality emerges in the quantum
theory [5,6] where it can cause parity breaking in the
production of tensor modes in inflation [7]. This could be
detected as correlations of B mode polarization with
temperature fluctuations [8].
The gravitational action is maximally chiral when γ is

purely imaginary in the sense that the gravitational action is
then just a function of the left-handed part of the space-time
connection. Hence the connection and curvature that arise in
the gravitational action and field equations are valued only in
SUð2ÞL. Any dependence on SUð2ÞR drops out. The parity
invariance of the classical Einstein equations arises from the
fact that the complex conjugate of the left-handed part can be
inserted into the expressions of the equations of motion
without changing their on shell solutions. Thus, adopting
the Ashtekar-Plebanski approach, and in particular making
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use of the complex chiral variables for gravity, makes the
chiral nature of both the weak and gravitational connections
explicit in this framework. The particular choice of an
imaginary Immirzi-Barbero parameter γ then makes explicit
the focus on chiral variables of this study.
The fact that the Einstein equations can be generated by

an action which involves only the chiral SUð2ÞL half of the
space-time connection [9] opens the door to an idea about
unification: perhaps the initial action for gravity is parity
symmetric, but there is a phase in which parity is broken so
that one chiral half, SUð2ÞL, of the space-time connection
codes the gravitational interactions, while the other chiral
half, SUð2ÞR, emerges with the dynamics of a Yang-Mills
field propagating on a space-time described by the left half
of the connection. There might then also be a phase in
which parity is restored so that both chiral halves carry
gravitational dynamics.
Note that this idea requires doubling the degrees of

freedom initially, for in general relativity, applied to real,
Lorentzian metrics, the left and right halves of the space-
time connection are complex conjugates of each other. To
free them up these reality conditions have to be lifted, and
replaced by alternative reality conditions which allow the
left and right halves of the connection to be independent of
each other, but in a way which still realizes the reality of the
metric. We have a proposal for these alternative reality
conditions, but before introducing them we have to
introduce the degrees of freedom that make it possible
to realize our scenario.
Our starting point is a gauge theory of the complexified

Lorentz group, SLð2;CÞC on a four-dimensional manifold
M. The space-time connection Aab ¼ −Aba is a 1-form,
valued in slð2;CÞC the Lie algebra of SLð2;CÞC. That Lie
algebra is represented by complex antisymmetric, 4 × 4
matrices, Mab ¼ −Mba, where a; b; c ¼ 0; 1; 2; 3 are inter-
nal Lorentz indices. Because we want the metric to be
emergent, we do not include it as a fundamental degree of
freedom. Instead, we write dynamics of Aab making use of
two auxiliary fields, a 2-form Bab, also valued in the Lie
algebra of SLð2;CÞ and a scalar field which provides a map
Ψ∶slð2;CÞC → slð2;CÞC, which is written as Ψabcd with
the following symmetries and constraints:

Ψabcd ¼ Ψcdab ¼ −Ψbacd; εabcdΨabcd ¼ 0: (1)

To specify the dynamics we choose the most general parity
symmetric1 polynomial of dimension 4 and less:

S ¼
Z

1

8πG

�
εabcdBab∧Fcd −

1

2
ΨabcdBab∧Bcd

�

þ
�

Λ
16πG

−
g2

2
Ψ2

abcd

�
εefghBef∧Bgh; (2)

where Fab is a 2-form which is the field strength of Aab, G
is Newton’s constant and Λ is the cosmological constant.
Aab then naturally has dimensions of inverse length, Bab is
dimensionless and Ψabcd has dimensions of inverse length
squared. Ψ2

abcd ¼ ΨabcdΨabcd, εabcd is the Levi-Civita
symbol and g is a new dimensionless coupling constant.
Note that there is no Immirzi parameter and no F∧F term
as we restrict the action to parity even terms.
The last term is a topological invariant. Apart from that

there is only a single term with a derivative in it, which is
the first term.
This action has been studied in several forms. Without

the terms in Ψ, it describes BF theory, a topological theory
[10]. With g2 ¼ 0 it is a form of the Plebanski action for
general relativity [1]. The full action gives an extended
dynamics for the gravitational field as discussed in [11]. It
has been studied by Alexandrov and Krasnov [12] and
Speziale [13] and is known to have 8 degrees of freedom.
Alexandrov, Krasnov and Speziale studied the symmetric
phase and found a bimetric theory with a massless graviton,
a massive spin-2 field and a scalar ghost (8 ¼ 2þ 5þ 1).
The presence of the scalar ghost might have been suspected
from results of Berezhiani et al. in [14], which show it
bedevils a large class of bimetric theories. More recently,
moving for the Hamiltonian analysis of the chiral Plebanski
formulation, Alexandrov et al. have recovered in [15] an
infinite class of ghost-free massive bigravity actions.
Anyway, the nonchiral version of the theory we are going
to focus on contains a ghost degree of freedom, as analyzed
by Speziale in [13].
The phenomena of spontaneous gravitational symmetry

breaking were discussed earlier in [11] where it was shown
that an extended Plebanski action of the form of (2), for a
gauge group G which contains the Lorentz group,
SOð3; 1Þ, suffers spontaneous symmetry breaking to an
Einstein-Yang-Mills theory with a Yang-Mills gauge group
in G=SOð3; 1Þ. The same phenomena were demonstrated
by Torres-Gomez and Krasnov for the chiral SUð2ÞL
subgroup of the Lorentz group [16]. Krasnov also had
earlier originated the notion of extending the Plebanski
action in [17], with G taken to be the chiral left-handed
space-time connection valued in SUð2ÞL. He has also
explored a closely related set of theories whose actions
are purely functions of connections, and demonstrated the
phenomena of gravitational spontaneous symmetry break-
ing there [18].
In [19], within the framework of left- and right-handed

graviweak unification models, namely SLð4;CÞL ×
SLð4;CÞR and its extension GLð4;CÞL × GLð4;CÞR,
Nesti has studied a parity-breaking coupling of gravitons
with a combination of opposite helicities to matter. Nesti
and Percacci have discussed issues related to the Higgs
phenomenon and the electroweak symmetry breaking in
[29], and elaborated those topics for the gravi-GUT
unification model they have presented in [20]. The latter

1With parity transformations applied simultaneously to space-
time and internal Lorentz indices.
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work develops a different perspective than the one
addressed in [19], in that the graviweak and color gauge
sectors have been accounted for separately in [19].
Renormalizability of Ashtekar-Plebanski theories has

been widely addressed in the literature. In particular,
nonperturbative renormalizability has been studied in
[21] by Crane et al. while dealing with the quantization
of Lorentzian general relativity. The first order Palatini
formulation of general relativity, which is tied to the
Plebanski formulation of Einsteinian gravity, has been
deepened in [22], in which Daum and Reuter have started
an analysis of the asymptotic safety of the Ashtekar-
Plebanski formulation and found evidence for the existence
of at least one non-Gaussian renormalization group fixed
point. However, Krasnov argued in [23] that Ashtekar-
Plebanski theories similar to the one we have been dealing
with in our paper are renormalizable once the assumption
of metricity is relaxed. Despite the existence of a sizable
number of studies already devoted to this issue in the past,
and despite the promising results that have been already

recovered, more work will be needed in order to reach a
definitive understanding of this subject.
To discuss the dynamics in more detail, as well as to

specify the modified reality conditions, it is convenient to
change to two component spinor indices [24,25]. A, B ¼ 0,
1 are left-handed spinor indices while A0, B0 ¼ 00, 10 are
right-handed spinor indices. This allows us to easily
distinguish between the left- and right-handed fields.
The connection decomposes into

Aab ¼ AAA0BB0 ¼ εABAA0B0 þ AABεA
0B0

(3)

and the 2-forms Bab similarly decompose. The scalar fields
Ψabcd decompose into pure spin-2 fields represented by
ΨABCD and ΨA0B0C0D0 , both totally symmetric, and mixed
components ΨABA0B0 on symmetric pairs of indices. Thus,

ΨABCD ¼ ΨðABCDÞ (4)

and the same for primed indices represents the spin-2 field.
The action now takes the form,

S ¼
Z

ı
4πG

�
BAB∧FAB − BA0B0∧FA0B0 þ λ

6G
ðBAB∧BAB − BA0B0∧BA0B0 Þ

−
1

2
ΨABCDBðAB∧BCDÞ þ 1

2
ΨA0B0C0D0BðA0B0∧BC0D0Þ −ΨA0B0ABBA0B0∧BAB

�

þ ıg2

2
ðΨ2

ABCD þΨ2
A0B0C0D0 þΨ2

ABA0B0 ÞðBAB∧BAB − BA0B0∧BA0B0 Þ; (5)

where λ ¼ GΛ is the dimensionless cosmological constant.
To describe the real world we have to impose reality

conditions, which restrict the solutions of the theory to
those in which the metric is real. This can be done directly,
in spite of the fact that the metric is not a fundamental field
in the action. Instead, we make use of the remarkable fact
that a densitized metric can be constructed which is cubic in
the B fields. In fact, two metrics can be built, out of the left
and right parts of B, which we call the left and right
Urbantke metrics [26,27]

~gLμν ¼ εγδρσBB
μγAB

A
νδCB

C
ρσB; (6)

~gRμν ¼ εγδρσBB0
μγA0BA0

νδC0BC0
ρσB0 ; (7)

in which εαβγδ is the Levi-Civita symbol and over tildes
label tensor densities of weight −1, i.e. tensor densities
transforming like a covariant tensor times

ffiffiffiffiffiffi−gp
, gμν being

the space-time metric. Note that in the symmetric
solution, which we study in Sec. III, these are equal
to each other while in the asymmetric solution (see
Sec. IV) they differ. The reality conditions we propose

are that both left- and right-handed Urbantke metrics
are real.
To summarize, we make four physical hypotheses:
(i) The SUð2Þ of the weak interactions is unified with the

chiral representation of gravity in a single SLð2;CÞ
connection. This was proposed earlier by Alexander
[28] and by Nesti and Percacci [29]. A toy model in
3D was presented in [30] by Alexander et al., together
with its spin-foam quantization.

(ii) The chirality of the standard model arises from a sponta-
neous breaking of parity in the gravitational dynamics.
It is the weak interactions that break parity because the
weak SUð2Þ gauge connection is in fact a chiral half
of what is originally the space-time connection.

(iii) This mechanism also explains why parity is maxi-
mally violated in the weak interactions. The parity
mirror of the coupling of weak isospin to matter is the
coupling of the left-handed part of the space-time
connection to left-handed spinors.

(iv) Under the symmetry breaking, right-handed space-
time spinors become internal isospinors. More spe-
cifically, consider the Higgs field, a space-time scalar
valued in the 1

2
of gauged isospin and the sterile

neutrino (or right-handed neutrinos in general) which
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are isospin singlets but space-time spinors. Focusing
only on the quantum numbers of these particles’ fields,
these representations may be recast in a unified theory
as mirrors of each other under the parity symmetry that
exchanges the SUð2ÞL and SUð2ÞR parts of the
original connection, and can be hence unified in a
single Dirac spinor.

The basic dynamics of the SLð2;CÞC extended Plebanski
action are detailed in the next section. Sections III and IV
describe the symmetric and broken phases of solutions. The
imposition of reality conditions is discussed in Sec. V. For
the theory to truly unify the electroweak interactions with
gravity there must be a Uð1Þ in the theory. This can be
incorporated most simply by extending SLð2;CÞR to
GLð2;CÞR as is discussed in Sec. VI. But if we keep
the philosophy that parity is only broken spontaneously,
there must be another Uð1Þ gauge field coming from
extending SLð2;CÞL to GLð2;CÞL. Matter coupling is
discussed in Sec. VII, and some possible phenomenological
consequences are spelled out in the conclusions, in
Sec. VIII. Finally, the appendixes contain a summary of
the Infeld–Van der Waerden map, in Appendix A, and of
the conventions and recurrent identities we have been
making use of, in Appendix B.

II. FIELD EQUATIONS

We now exhibit the field equations. Because the reality
conditionsare subtlewestartwith thecomplexificationof the
theory and study phase invariant reality conditions below.
We write the equations of motion: from variation with

respect to the BAB and BA0B0
fields we obtain

FAB ¼ ΨABCDBCD þΨABA0B0BA0B0

−
�

λ

3G
þ 4πGg2Ψ2

�
BAB; (8)

FA0B0 ¼ ΨA0B0C0D0BC0D0 −ΨA0B0ABBAB

þ
�
−

λ

3G
þ 4πGg2Ψ2

�
BA0B0 ; (9)

while varying with respect to the multiplet of scale fields
we find

ΨABCD ¼ 1

8πGg2W
BðAB∧BCDÞ; (10)

ΨA0B0C0D0 ¼ −
1

8πGg2W
BðA0B0∧BC0D0Þ; (11)

ΨABA0B0 ¼ 1

4πGg2W
BAB∧BA0B0 ; (12)

where

W ¼ BAB∧BAB − BA0B0∧BA0B0
: (13)

Finally, variation with respect to the connection compo-
nents gives

D∧BAB ¼ D0∧BA0B0 ¼ 0; (14)

in which D stands for the covariant derivative with respect
to AAB, while D0 stands for the covariant derivative with
respect to AA0B0

.

III. SYMMETRIC SOLUTION

We begin with a left-right symmetric solution of the
theory. We expand the BAB and BA0B0

in g

BAB ¼ Bð0Þ
AB þ g2bAB; (15)

BA0B0 ¼ Bð0Þ
A0B0 þ g2bA0B0 : (16)

We then solve the equations of motion (10) and (11) order
by order in g. We have to leading order on the left side

Bð0Þ
ðAB∧Bð0Þ

CDÞ ¼ 0; (17)

while to order g2

bðAB∧Bð0Þ
CDÞ þ

g2

2
bðAB∧bCDÞ ¼ 4πGΨABCDW: (18)

There then must exist frame field eAA
0
such that

Bð0Þ
AB ¼ eA

0
A ∧eBA0 ¼ ΣAB: (19)

Similarly on the right side we have the same equations of
motion,

Bð0Þ
ðA0B0∧Bð0Þ

C0D0Þ ¼ 0 (20)

and

Bð0Þ
ðA0B0∧bC0D0Þ þ

g2

2
bðA0B0∧bC0D0Þ ¼−4πGΨA0B0C0D0W; (21)

which tells us that there must exist a second frame field fAA
0

such that

Bð0Þ
A0B0Þ ¼ fAA0∧fAB0χ0 ¼ Σ0

A0B0 ðfÞχ0: (22)

The two frame fields, eAA
0
and fAA

0
, are coupled through

(12) which to leading order give

ΣABðeÞ∧Σ0A0B0 ðfÞ ¼ 0: (23)
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This is solved by

fAA
0 ¼ heAA

0
; (24)

where h is a function. Speziale shows that in general the
symmetric solutions give a bimetric theory with 8 degrees
of freedom [13].

IV. SYMMETRY BREAKING SOLUTION

We keep the above solution on the left and unprimed
side, and we continue to expand as in (15). Thus, we have a
frame field eAA

0
from the solution to (17).

However on the right-hand side we do something else.
We image that the equation of motion for FA0B0, Eq. (9), is
dominated by the term ðBA0B0λÞ=3G and by the term
BCDðBA0B0∧BCDÞ=ð4πGg2WÞ. In doing so, we have
assumed BA0B0 to be order g2 and higher and we have
imaged the scaling λg2 ¼ ξ, with ξ a fixed dimensionless
real parameter, so that

FA0B0 ≈ −BCD
BðA0B0∧BCDÞ
4πGg2W

−
λ

3G
BA0B0 þOðg2Þ: (25)

In this limit λ ≫ 1, which may be admissible since λ
denotes here the bare cosmological constant, not the
physical one. The issue of finding realistic values for the

physical cosmological constant is currently under inves-
tigation by the same authors of this paper [31].
We may now expand the left-handed B fields as

BAB ¼ ΣAB þOðg2Þ, which to zeroth order leads to

W ¼ 24ıeþOðg2Þ; (26)

and invert (25) in order to obtain an expression for BA0B0
in

terms of FA0B0
and its dual. We then realize the relation

between BA0B0
and FA0B0

shifting the BA0B0
field by

BA0B0 ¼ −πGg2ðδξ1þ γξ⋆ÞFA0B0 þ g6bA0B0 ; (27)

where ⋆ stands for the space-time Hodge dual with indices
suppressed, 1 acts as the identity operator on 2-forms, and

δξ ¼
�
1

16
þ ξ

3

�
1

ðð 1
16
þ ξ

3
Þ2 − ð 3

128
Þ2Þ and

γξ ¼ −
3δξ

128ð 1
16
þ ξ

3
Þ : (28)

We can check that the shifting term in (27) is small in
solutions to equations of motion and compute that bA0B0 is
suppressed in power of G:

bA0B0 ¼ −π4G3ððδ2ξ þ γ2ξÞ1þ 2δξγξ⋆ÞFC0D0 ðδξ1þ γξ⋆ÞFA0B0∧ðδξ1þ γξ⋆ÞFC0D0 þOðg6Þ: (29)

To understand the effect of this shift we solve the equations of motion for the Ψ multiplet, (10)–(12), and plug the result
back into the action to find

S ¼
Z

ı
4πG

�
BAB∧FAB − BA0B0∧FA0B0 þ λ

6G
ðBAB∧BAB − BA0B0∧BA0B0 Þ

�

þ 81ı
128π2G2g2W

ððBAB∧BCDÞ2 þ ðBA0B0∧BC0D0 Þ2 − 4ðBAB∧BA0B0 Þ2Þ: (30)

We incorporate the shift (25) together with

BAB ¼ ΣAB þ g2bAB (31)

to write the action as

S ¼ Sð0ÞðeAA0
; AAB; AA0B0 Þ þ Sð1ÞðbAB; bA0B0 ; eAA

0
; AAB; AA0B0 Þ; (32)

where the leading order action Sð0Þ is

Sð0Þ ¼
Z

ı
4πG

ΣAB∧FAB þ λ

12πG2
e −

e
4g2YM

FA0B0
μν FA0B0ρσgμρgνσ − ıΘFA0B0∧FA0B0 þ 9G2

ð16πÞ2λ2e ðFðA0B0∧FC0D0ÞÞ2: (33)
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In this latter expression the Yang-Mills coupling constant2 is

1

4g2YM
¼ g2

�
δξγξ

�
ξ
π2

3
−

1

64
− 74

�
þ γξ

�
; (34)

while the Θ angle is

Θ ¼ g2
�
ðδ2ξ þ γ2ξÞ

�
ξ
π2

6
−

1

128
− 37

�
þ δξ

�
: (35)

Notice that for ξ ∼ 10−1 or smaller we would get g2g2YM ∼ 10−4.
The bAB and bA

0B0
are auxiliary fields which are determined by variation of the higher order action Sð1Þ, namely

Sð1Þ ¼
Z

ıg2

4πG

�
bAB∧FAB þ λ

3G
bAB∧ΣAB þ λg2

3G
bAB∧bAB þ g2λ

3G
bA0B0∧bA0B0

�

þ 81ı
128π2G2g2W

ððBAB∧BCDÞ2 þ ðBA0B0∧BC0D0 Þ2 − 4ðBAB∧BA0B0 Þ2Þð1Þ; (36)

where by the last “ðÞð1Þ”we mean that the zeroth order terms
present in Sð0Þ in Eq. (33) are absent.
The action Sð1Þ is a nonderivative polynomial up to the

fourth degree in bAB and bA
0B0
. These latter fields are then

determined by the solution of local, nonderivative cubic
equations. By solving these equations we get higher
order interactions in the physical fields, eAA

0
, AAB

and AA0B0
.

V. REALITY CONDITIONS

A crucial part of this construction is a modified form of
the reality conditions. Initially we regard all fields as
complex (for the Lorentzian case), and then specify reality
conditions which are to be imposed on the solutions of the
equations of motion.
We first review the standard reality conditions imposed

in the Ashtekar formulation, and then introduce our new
proposal.
The standard reality conditions are to take the three

metric as real,

~qab� ¼ ~qab; (37)

while the connection satisfies the nonlinear condition,

AðLÞi
a þ AðRÞi

a ¼ 2ΓðeÞia: (38)

Here we indicate the left and right connection by

AAB
a ¼ AðLÞi

a σABi ; AA0B0
a ¼ AðRÞi

a σA
0B0

i ; (39)

where the i index labels the three Pauli matrices σi.
These bind the left and the right parts of the connection

and so prevent the theory from existing in the parity broken
phase. In that asymmetric phase, we might impose different
reality conditions:

ðAðLÞi
a Þ� þ AðLÞi

a ¼ 2ΓðeÞia;
ðAðRÞi

a Þ� ¼ AðRÞi
a : (40)

However the reality conditions are part of the definition
of the theory. They determine the inner product of the
quantum theory. If the symmetry breaking is to be
dynamical we do not want to impose different reality
conditions on different phases of the theory. We want
instead a single set of reality conditions that governs the
whole theory. We can do this the following way.
We differentiate the right and left 2-forms as

BA0B0 ¼ BLiσA
0B0

i ; BAB ¼ BRiσABi : (41)

We then use these to define the left and right Urbantke
metrics [26]:

~gRab ¼ BRi
acB

Rj
bdB

Rk
ef εijkϵ

bdef; (42)

~gLab ¼ BLi
acB

Lj
bdB

Lk
ef εijkϵ

bdef: (43)

Note that in the symmetric solution

2We acknowledge one of our Referees for having brought to
our attention that relation (34) is consistent with real values of
gYM only for ξ < 20.41.
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~gLab ¼ detðeÞeAA0
a eBbA0 ; (44)

while on the right

~gRab ¼ detðfÞfAA0
a fBbA0 : (45)

In the asymmetric solution (44) holds, but instead of (45)
we have a relation that is cubic in the Yang-Mills field
strength. This latter is found by replacing (27) in (45)
and keeping only the sixth order in the coupling constant g,
which also corresponds to the third order in G,
namely

~gRab ¼ −π3G3g6F̄ðξÞi
ac F̄ðξÞj

bd F̄ðξÞk
ef ϵijkε

bdef þ oðG3g6Þ; (46)

in which we have defined F̄ðξÞi
ac ¼ ðδξ1þ γξ⋆ÞFi

ac.

In either case the correct reality conditions are

~gLab ¼ ð~gLabÞ�; (47)

~gRab ¼ ð~gRabÞ�: (48)

In the symmetric case this tells us that both left- and right-
handed metrics are real, whereas in the asymmetric solution
we learn that ~gRab is real and the Yang-Mills connection ωi

a
is real and hence in SUð2Þ.
These can be implemented by adding these reality

conditions to the action so they become equations of
motion which arise by varyig new Lagrange multi-
pliers λabL;R:

Swrc ¼
Z

ı
4πG

�
BAB∧FAB − BA0B0∧FA0B0 þ λ

6G
ðBAB∧BAB − BA0B0∧BA0B0 Þ

−
1

2
ΨABCDBðAB∧BCDÞ þ 1

2
ΨA0B0C0D0BðA0B0∧BC0D0Þ −ΨA0B0ABBA0B0∧BAB

�

þ ıg2

2
ðΨ2

ABCD þΨ2
A0B0C0D0 þΨ2

ABA0B0 ÞðBAB∧BAB − BA0B0∧BA0B0 Þ
þ λabR ð~gRab − ð~gRabÞ�Þ þ λabL ð~gLab − ð~gLabÞ�Þ: (49)

The B equation of motion (8) is modified by

FAB ¼ ΨABCDBCD þΨABA0B0BA0B0 −
�

λ

3G
þ 4πGg2Ψ2

�
BAB þ 4πıGλefR

δ~gRef
δBAB : (50)

But the new term vanishes because the equation of motion
for BAB� yields

λefR
δ~gR�ef
δBAB� ¼ 0; (51)

which implies that λabR vanishes. Meanwhile, variation of
λabR enforces the reality of ~gRef.

VI. ADDING Uð1Þ FACTORS: PHOTONS

We can incorporate electroweak unification by
adding a Uð1Þ factor.3 This is done most naturally
by extending the SLð2;CÞL gauge symmetry to4

GLð2;CÞL, and similarly for the right component gauge
group. The gauge fields AA0B0

are then no longer
symmetric in AB,

AA0B0 ¼ AðA0B0Þ þ εA
0B0
a0; (52)

defining the Uð1Þ gauge field a0. If we want to continue to
follow our hypothesis that left-right breaking occurs only
spontaneously we should do this on the left as well, so

AAB ¼ AðABÞ þ εABa: (53)

We use the same action (5), which becomes the previous
action plus a Uð1ÞC factor,

S ¼ SSLð2;CÞC þ SUð1ÞC (54)

3The inclusion of a Uð1Þ gauge field by extending the
Plebanski action was also studied in [32].

4A subgroup of GLð2;CÞL is SLð2;CÞL × Uð1ÞL.
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where SSLð2;CÞC is the previous action (5) (with W extended as below), and

SUð1ÞC ¼
Z

ı
4πG

�
B∧f − B0∧f0 þ λ

6G
ðB∧B − B0∧B0Þ

−
1

2
Ψ̈B∧B−1

2
Ψ_0 _0B0∧B0−1

2
Ψ__0B∧B0−ΨAB·BAB∧B−ΨA0B0 ·B

A0B0∧B−ΨAB·0B
AB∧B0−ΨA0B0 ·0B

A0B0∧B0

�

þ ıg2

2
ðΨ̈2þΨ2

_0 _0þΨ2
__0
þΨ2

·0ABþΨ2

·0A0B0þΨ2
AB·þΨ2

·A0B0 ÞW; (55)

where B and B0 are Abelian 2-forms and f ¼ da, f0 ¼ da0 and, now,

W ¼ BAB∧BAB − BA0B0∧BA0B0 þ B∧B − B0∧B0: (56)

We can again solve for the Ψ equations of motion to cast the action in the form

SUð1ÞC ¼
Z

ı
4πG

�
B∧f − B0∧f0 þ λ

6G
ðB∧B − B0∧B0Þ

�
þ 81ı
128π2G2g2

ððB∧BÞ2 þ ðB0∧B0Þ2 þ ðB∧B0Þ2 − 4ðB∧BABÞ2

− 4ðB∧BA0B0 Þ2 − 4ðB0∧BABÞ2 − 4ðB0∧BA0B0 Þ2Þ: (57)

Note that if g ¼ 0 the Ψ̈ equation of motion gives

B∧B ¼ 0; (58)

which implies B ¼ 0. So this extension of the gauge group is only possible in the extended (as opposed to the
unextended) Plebanski action. We then have no choice but to shift the Uð1Þ fields:

B ¼ −πGg2ðδξ1þ γξ⋆Þf þ g6b; B0 ¼ −πGg2ðδξ1þ γξ⋆Þf0 þ g6b0; (59)

where δξ and γξ have been defined in (28).
Again this gives a zeroth order action plus an action for the auxiliary fields, b and b0. Below we only write theUð1ÞC part

of the leading order action:

SUð1ÞC
ð0Þ ¼ e

4g2YM
ðfμνfρσ þ f0μνf0ρσÞgμρgνσ þ Θðf∧f þ f0∧f0Þ þ 9g2G2

256ξ2e
ðð ~f∧ ~fÞ2 þ ð ~f0∧ ~f0Þ2 þ ð ~f∧ ~f0Þ2 − 4ð ~f∧FABÞ2

− 4ð ~f∧FA0B0 Þ2 − 4ð ~f0∧FABÞ2 − 4ð ~f0∧FA0B0 Þ2Þ; (60)

where we have used the shorthand notations ~f ¼
ðδξ1þ γξ⋆Þf and ~f0 ¼ ðδξ1þ γξ⋆Þf0. We see the follow-
ing interesting features:
(i) the two Uð1Þ factors have the same Yang-Mills

coupling constant as the SUð2ÞL factor, so there is
coupling constant unification;

(ii) however they will couple differently to matter as we
will see;

(iii) there is a universal four point coupling of vector
potentials of the form ðF∧FÞ2 which has a universal
coupling

λ4-point ¼
9g2G2

256ξ2
∼

9g2

256M4
pξ

2
(61)

which is quite small.

VII. MATTER COUPLINGS

Matter couplings are tricky to write because there is no
metric or frame field initially (as for instance in [33]), but
only a BAB field. Couplings to scalars and additional gauge
fields can be done through the Urbantke metric, but they
involves nonpolynomial couplings. The simplest coupling
is to chiral spinors, with the following action [27]:

SDiracL ¼
Z

BAB∧ρA∧ðDλÞB þ τABC∧BðAB∧ρCÞ: (62)

This works like the Plebanski actions above, but here τABC ¼
τðABCÞ is a Lagrange multiplier 1-form whose variation,
together with the leading order solution for BAB, yields

ΣðAB∧ρCÞ ¼ 0; (63)
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which is solved by inventing a complex conjugate spinor,
λ̄A0 , such that

ρA ¼ eAA
0
λ̄A0 : (64)

Putting this back into the action we find an effective action

SDiracL ¼
Z

λ̄A0eA
0

A ∧ΣAB∧ðDλÞB; (65)

which yields the Weyl theory for a right-handed spinor λA.
Let us now consider the right-hand side. By symmetry,

we must start the same way:

SDiracR ¼
Z

BA0B0∧ρ0A∧ðDλÞ0B þ τA0B0C0∧BðA0B0∧ρC0Þ: (66)

Note that there is no relation between λA
0
and λ̄A

0
; indeed the

latter is not even a field in the fundamental action.
In the symmetric solution things work the same way on

the right side as the left, and the result is that the fields
combine to make a Dirac spinor. But on the symmetry
breaking side things on the right side are not so simple.
Instead of (63) we have

FðA0B0∧ρC0Þ ¼ 0; (67)

which does not have any simple general solution.
In terms of its transformation properties, in the symmetry

broken phase, λA0 is a space-time scalar and weak spinor, so
it has the quantum numbers of the Higgs boson.

VIII. CONCLUSION

Ever since the discovery and experimental success of the
standard electroweak theory, the origin of the weak
interaction’s chirality has remained a mystery. In this work
we have reached the conclusion that a parity symmetric
theory of gravity holds the key to the chiral origin and
maximal parity violation of the weak interaction. In
particular, we describe a parity symmetric theory of gravity
that has a symmetry broken phase, which organizes the
degrees of freedom to give rise to general relativity coupled
to a SUð2Þ Yang-Mills theory. The emergence of gravity
and the weak interaction is made possible because gravity
has been shown to be completely described in terms of
purely left-handed variables [9]. This leaves the right-
handed connection to function as the weak interaction
connection.
One concern is that the expansion in which we under-

stand the symmetry broken phase involves small g and
large λ, the dimensionless cosmological constant. [See (25)
and (34).] Since λ is the bare cosmological constant, it
might be possible to imagine that it must be large to cancel
contributions coming from radiative corrections and sym-
metry breaking, but this will require more investigation.

As clearly stated in [5] and [6], the parity-breaking
nature of the gravitational sector is tied to torsion, which
explains why experimentally it is extremely hard to detect.
In this model parity violation is maximal in the weak
interaction sector, as can be inferred from the fermion
vertex between the purely left-handed gauge field and the
leptonic sector. Conversely, parity violation is very sup-
pressed in the gravitational sector. Following Refs. [5] and
[6], we may recover nonminimal four fermion interactions
in the gravitational sector that are dimension-6 operators,
are suppressed by the square of the Planck scale, and
violate parity. Much work is required at the level of the
inclusion of matter in order to deepen parity-violating terms
in the gravitational sector, and we definitely plan to study in
greater detail these features in forthcoming works.
At the level of the quantized version of the theory,

another concern may originate from contemplating the
issue of the emergence of gravitational chiral anomalies.
For the two SUð2Þ symmetry groups of the theory, and
more in general for any SUðNÞ group, there will be no
gravitational violations of the gauge symmetries due to the
fact that generators of SUðNÞ gauge transformations are
traceless [34]. For the two Uð1Þ groups that appear in this
study the issue is more subtle, and involves specific
assignments of the quantum numbers of the left-handed
fermions under both the hypercharge [34] and the “dark
hypercharge” sectors [35]. Gravitational anomalies are then
avoided if the sum of all the quantum numbers of the left-
handed fermions under each Uð1Þ group vanishes. This is
the case for the hypercharge sector within the Standard
Model [34]. Nevertheless, a proper and consistent choice
for the assignments of the quantum numbers under the extra
Uð1Þ symmetry group is also necessary to ensure avoidance
of gravitational anomalies,5 and it has been considered
in Ref. [35].
Extending the SLð2;CÞC symmetry group toGLð2;CÞC,

enables us to account for two additional Uð1Þ sectors, one
of them describing the Uð1ÞY and the other accounting for
an extra Abelian gauge group that we can speculate may be
eventually related to dark matter. We note that the theory we
have discussed naturally supplies an extra Uð1Þ which has
been suggested both as a constituent of dark matter [36,37]
and as possibly relevant to the diphoton excess seen at the
LHC [38,39]. In our model, the correct quantum numbers of
theHiggs boson arise naturally, and in the symmetry restored
gravitational theory the Higgs quantum numbers are iden-
tified with those of a sterile neutrino under a parity trans-
formation. Recovering the correct action for the Higgs field
deserves of course much more study. Furthermore, a non-
standard assignment for the Grassmannian weak spinor to
represent the Higgs field must be considered. It is also
important to see any effects of the symmetry breaking in

5We acknowledge one of our Referees for bringing to our
attention the points listed in this period and in the previous one.
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the neutrino and Higgs sector, such as new interaction
vertices. We leave these questions to future work. In this
work, we did not provide a mass generation’s mechanism,
such as spontaneous symmetry breaking (SSB), although it
is not difficult to implement this into our model. We will
address the issue of SSB in a forthcoming paper [31],
togetherwith the roleof the extraUð1Þgauge sector, inorder
to unveil its consequences for current and upcoming LHC
experiments.
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APPENDIX A: FROM LORENTZ INDICES TO
SPINORIAL INDICES: INFELD–VAN DER

WAERDEN MAP

We started from a theory that is Lorentz invariant, whose
“objects” in the starting action are Lorentz algebra valued
tensor fields. We have then recast the action in terms of
spinor fields. If we want to account for the usual Plebanski
theory with spinorial variables, we may start the analysis by
considering, instead of an SOð3; 1Þ principal fiber bundle,
an SLð2;CÞ principal fiber bundle, where SLð2;CÞ is the
universal covering of the group of SOð3; 1Þ. Lorentz tensor
fields are then no longer simply sections of PSLð2;CÞ, but
they are allowed to be multilinear maps, or eventually
antilinear maps if we use complex conjugation. Sections
of these bundles are called spinor fields. We are then led to
the construction of a spinor algebra, that is mapped in the
Lorentz-algebra-valued tensor fields algebra through the
Infeld–van der Waerden symbols σ:

Tr…
s… → TAA0…

BB0… ¼ σAA
0

r …σsBB0…Tr…
s…; (A1)

where again the pair of capital latin indices A, A0 take the
values 0, 1. We identify σAA

0
0 with the 2 × 2 unit matrix and

σAA
0

1 , σAA
0

2 , σAA
0

3 with the Pauli matrices, satisfying the
relations

σAA
0

r σrBB0 ¼ δABδ
A0
B0 ; σAA

0
r σsAA0 ¼ δrs: (A2)

This map allows us to recover spinor fields from Lorentz
algebra tensors, and thus to rewrite our starting actions for
the SLð2;CÞC and GLð2;CÞC symmetric theories.
We start here below reviewing the spinor equivalent of

the objects entering our action. Tetrads are recast using the
map in ea → eAA

0 ¼ eaσAA
0

a . Writing the Lorentz connec-
tion components requires us to select a convention in the
order that the primed and unprimed indices appear: what
matters is indeed the relative order of the primed with
respect to the unprimed indices associated to the Lorentz
index through the Infeld–van der Waerden symbols. Since
the Lorentz connection is written in terms of a pair of
antisymmetric indices such that Aab ¼ −Aba, we have then
that AABA0B0 ¼ −ABAB0A0 , from which it follows that the
Lorentz connection can be decomposed in

AABA0B0 ¼ AABεA0B0 þ AA0B0εAB; (A3)

in which now the components AAB and AA0B0 are symmetric
in the swap of indices in order to fulfill the prop-
erty AABA0B0 ¼ −AABA0B0.
We use a convention such that εAB ¼ εAB, in which εAB is

the Levi-Civita symbol ε01 ¼ −ε10 ¼ −1. Indices are
raised and lowered using the so-called “northwest-
southeast” convention, that means ωP

N ¼ εPQωQN and
eAC

0 ¼ ePC
0
εPA. Moreover

εB
A ¼ δAB ¼ −εAB: (A4)

The 1-forms AMN have an SLð2;CÞ connection with an
associated curvature 2-form that we may recover from the
Ricci tensor Rμν → RMNM0N0, which can be decomposed in

RMNM0N0 ¼ RMNεM0N0 þ RM0N0εMN; (A5)

in which RMN and RM0N0 are also symmetric in the swap of
indices and are expressed by

RMN ¼ dAMN þ AM
P∧APN;

RM0N0 ¼ dAM0N0 þ AM0P
0∧AP0N0 : (A6)

Following this recipe we can map any Lorentz tensor
field in a spinor field. Finally, we recall that

εMNPQM0N0P0Q0 ¼ ıðεMPεNQεM0Q0εN0P0 − εMQεNPεM0P0εN0Q0 Þ:
(A7)

Thanks to this decomposition, we may recast the
covariant derivative (with respect to the Lorentz connec-
tion) acting for instance on the tetrad field as

DeAA
0 ¼ deAA

0 þ AA
B∧eBA0 þ AA0

B0∧eAB0
; (A8)

which allows us for instance to write the Cartan structure
equation for the Einstein-Hilbert action in the vacuum as
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DeðMQ0∧eNÞQ0 ¼ 0 ⟷ dðeI∧eJÞ
− eK∧eJ∧AI

K þ eI∧eK∧AJ
K

¼ 0: (A9)

Notice now that we may switch to the Plebanski
formulation of gravity by composing in the only two
possible combinations allowed for the tetrad field in the
resulting (Plebanski) 2-forms

BAB ¼ eAC
0∧eBC0 ; BA0B0 ¼ eCA

0∧eCB0
; (A10)

which in turn allows us to rewrite

eAA
0∧eBB0 ¼ −

1

2
ðεA0B0

BAB þ εABBA0B0 Þ: (A11)

Using the Infeld–van der Waerden map we can recover
that the Plebanski 2-forms satisfy the following geometric
properties:

⋆BAB ¼ −ıBAB; ⋆BA0B0 ¼ ıBA0B0
; (A12)

in which we have used the definition of the space-time
Hodge star operator

⋆ðdxμ∧dxνÞ ¼ 1

2
ffiffiffiffiffiffi−gp εμνρσgραgσβdxα∧dxβ: (A13)

Thus ⋆ acts as an endomorphism on the Plebanski 2-forms.
Notice now that the identity ⋆BAB∧BA0B0 ¼ BAB∧⋆BA0B0

implies actually that

BAB∧BA0B0 ¼ 0; (A14)

and that finally

BAB∧BCD ¼ 4ıδðAC δBÞD
ffiffiffiffiffiffi
−g

p
d4x; (A15)

having recognized that d4x ≔ dx0∧dx1∧dx2∧dx3.
Notice that in terms of these Plebanski variables the

Einstein-Cartan action in the presence of a cosmological
constant Λ ¼ λ=G rewrites

SEH ¼ ı
4πG

Z
BAB½e�∧RAB½ACD� þ Λ

3
BAB½e�∧BAB½e�;

(A16)

corresponding to “half” of our action for g ¼ 0 and all the
Lagrange multipliers vanishing.
Similarly, without imposing that the Plebanski 2-forms

are simple but using the totally symmetric spinor-value
Lagrange multiplier ΨABCD,

ΨABCD ¼ ΨðABCDÞ; (A17)

the generalized Plebanski action (for g ¼ 0) reads

SPleb½BAB; BA0B0
; AMN; AM0N0

;ΨABCD;ΨA0B0C0D0 �

¼ ı
4πG

Z �
BAB∧RAB½AMN � − BA0B0∧RA0B0 ½AM0N0 �

−
1

2
ΨABCDBAB∧BCD þ 1

2
ΨA0B0C0D0BA0B0∧BC0D0

þ λ

6G
BAB∧BAB −

λ

6G
BA0B0∧BA0B0

�
; (A18)

which is included in the action discussed in Sec. I.
Following these conventions, we briefly show in the next

appendix some identities involved in the calculations
reported in the previous sections.

APPENDIX B: IDENTITIES INVOLVING THE
PLEBANSKI 2-FORMS

We can start from the very definition of self-dual and
antiself-dual variables and find

ΣCD
ρσ ΣCDγδ ¼ −

1

2
½εA0B0ΣCD

ρσ εA0B0ΣCDγδ� ¼ −
1

2
½Σþ

ρσ
abΣþ

abγδ�

¼ −
1

2

�
1

2

�
Σab
ρσ −

ı
2
εabcdΣcd

ρσ

�
1

2

×

�
Σabγδ −

ı
2
εab

rsΣrsγδ

��

¼ 1

8

�
3

4
Σab
ρσΣabγδ − ıΣab

ρσεabcdΣcd
γδ

�

¼ −
3

32
gγ½ρgσ�δ þ

ı
8
ϵρσγδ; (B1)

having used in the first line the Infeld–van der
Waerden map.
Given the 2-forms with internal indices (no matter if dual

of antiself-dual) AAB
μν and BAB

μν , we find

AAB
μν BABαβϵ

αβγδϵμνρσ
�
−

3

32
gγ½ρgσ�δ þ

ı
8
ϵρσγδ

�

¼ −
3

32
AAB
μν BABμνgα½μgν�β þ

ı
8
AAB
μν BABμνϵ

αβμν

¼ −
3

32
AAB
μν B

μν
AB þ ı

8
AAB
μν ⋆Bμν

AB: (B2)

Similarly for AA0B0
μν and BA0B0

μν , we find
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AA0B0
μν BA0B0αβϵ

αβγδϵμνρσ
�
−

3

32
gγ½ρgσ�δ þ

ı
8
ϵρσγδ

�

¼ −
3

32
AA0B0
μν BA0B0μνgα½μgν�β þ

ı
8
AA0B0
μν BA0B0μνϵ

αβμν

¼ −
3

32
AA0B0
μν Bμν

A0B0 þ ı
8
AA0B0
μν ⋆Bμν

A0B0 : (B3)

Notice that we have used the definition of the Levi-Civita
tensors ϵwritten in terms of the Levi-Civita symbols ε, such
that ε0123 ¼ ε0123 ¼ 1, ϵαβγδ ¼ e−1εαβγδ and ϵαβγδ ¼ eεαβγδ.
We have also used the definition of the gravitational Hodge
dual ⋆ introduced in the previous appendix.

Below, we show some identities concerning or in-
volving the determinant of the metric. From the very
definition of the Σab 2-forms it is straightforward to check
that

εabcdΣab
μνΣcd

ρσ ¼ ϵμνρσ: (B4)

For any two 2-forms Aab and Bcd that can be decomposed
in terms of tensors AAB and BCD, symmetric in the spinorial
indices, using the Infeld–van der Waerden map and defin-
ing ð…Þ · ϵ ¼ ð…Þαβγδϵαβγδ, we find that

ıðAAB∧BCDÞ · ϵΣAB∧ΣCD ¼ ıðAAB∧BCDÞ ·
ε

e
ðΣAB∧ΣCDÞ · ε

e
ed4x

¼ AabμνBcdρσΣab
αβΣcd

γδ ϵ
αβγδϵμνρσed4x ¼ AabμνBcdρσε

abcdϵμνρσed4x: (B5)

We can also prove that BAB∧BAB ¼ 4!ıed4xþOðg2Þ, since

4!ed4x ¼ ðea∧eb∧ec∧edÞεabcd ¼ ðeAA0∧eBB0∧eCC0∧eDD0 ÞεABCDA0B0C0D0

¼ ðeAA0∧eBB0∧eCC0∧eDD0 ÞıðεACεBDεA0D0
εB

0C0 − εADεBCεA
0C0
εB

0D0 Þ
¼ ı½−ðeAC0∧eBC0 Þ∧ðeAD0∧eBD0 Þ − ðeCA0∧eDA0 Þ∧ðeCB0∧eDB0 Þ�
¼ −ıBAB∧BAB þOðg2Þ: (B6)

Thus we find for W

W ≔ BAB∧BAB − BA0B0∧BA0B0
(B7)

¼ 4!ıed4xþ 2g2bAB∧ΣAB þ g4bAB∧bAB
− π2G2g4ðδξ1þ γξ⋆ÞFA0B0∧ðδξ1þ γξ⋆ÞFA0B0 þOðg8Þ

¼ 4!ıe
�
1 − ı

g2

12
ðbAB∧ΣABÞ · ϵ − ı

g4

24
ðbAB∧bABÞ · ϵ

þ ı
π2G2g4

24
ððδξ1þ γξ⋆ÞFA0B0∧ðδξ1þ γξ⋆ÞFA0B0 Þ · ϵ

�
d4xþOðg8Þ; (B8)

and consequently

1

W
≡ 1

W · ϵ
¼

¼ 1

4!eı

�
1þ ı

g2

12
ðbAB∧ΣABÞ · ϵþ ı

g4

24
ðbAB∧bABÞ · ϵ

− ı
π2G2g4

24
ððδξ1þ γξ⋆ÞFA0B0∧ðδξ1þ γξ⋆ÞFA0B0 Þ · ϵ

�
d4xþOðg8Þ; (B9)

having used the ansatz on the shifted relation between BA0B0
and FA0B0

.
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