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The space of local operators in three-dimensional quantum electrodynamics contains monopole
operators that create n units of gauge flux emanating from the insertion point. This paper uses the
state-operator correspondence to calculate the anomalous dimensions of these monopole operators
perturbatively to next-to-leading order in the 1=Nf expansion, thus improving on the existing leading-
order results in the literature. Here, Nf is the number of two-component complex fermion flavors. The
scaling dimension of the n ¼ 1 monopole operator is 0.265Nf − 0.0383þOð1=NfÞ at the infrared
conformal fixed point.
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I. INTRODUCTION

There are several reasons why one may be interested in
studying quantum electrodynamics in three dimensions
(QED3). To a high-energy physicist, QED3 may be of
interest because it bears some resemblance to four-
dimensional quantum chromodynamics (QCD4). Indeed,
both theories are asymptotically free, and they are both
believed to exhibit spontaneous “chiral” symmetry1 break-
ing when the number of fermion flavors in QED3 is
sufficiently small [1–3]. At the same time, QED3 is in
many ways simpler than QCD4. While QCD4 is a non-
Abelian gauge theory that requires nontrivial renormaliza-
tion and in which asymptotic freedom follows from a
complicated beta-function computation [4,5], QED3 is a
super-renormalizable Abelian gauge theory where asymp-
totic freedom follows from dimensional analysis. In three
dimensions, the gauge coupling e2 has units of mass, and
hence the dimensionless coupling e2=μ, with μ being the
renormalization group (RG) scale, becomes arbitrarily
small in the ultraviolet. Therefore, understanding the
dynamics of QED3 should be in principle less onerous
than understanding that of QCD4, and at the same time
QED3 may provide us with valuable lessons about the
physics that leads to spontaneous chiral symmetry
breaking.
To be precise, let Nf be the number of two-component

complex fermions in QED3. The following discussion will
be restricted to the case where Nf is even, because
otherwise it would be impossible to regularize the theory
while preserving parity and time-reversal symmetry. In
Euclidean signature, the action is

S ¼
Z

d3r

�
1

4e2
FμνFμν þ

XNf

a¼1

ψ†
aðiDþ AÞψa

�
; (1.1)

where ψa are the fermion fields, Aμ is a U(1) gauge field
with field strength Fμν, and D is the Dirac operator. This
theory has a global SUðNfÞ symmetry under which the
fermions ψa transform as a fundamental vector. Chiral
symmetry breaking refers to the breaking of this symmetry
to SUðNf=2Þ × SUðNf=2Þ × Uð1Þ. While the maximal
value Ncrit

f for which one expects this symmetry breaking to
occur has been the subject of some debate, recent lattice
gauge theory results [6–8] suggest that Ncrit

f ¼ 2.2 For
Nf > 2 the theory is believed to flow to a strongly
interacting conformal field theory (CFT) in the infrared.
At least at large enough Nf, the CFT is obtained by simply
taking the limit e2 → ∞ in the action (1.1).
To a condensed matter physicist, QED3 may be of

interest because it describes, for instance, the effective
low-energy dynamics of “algebraic spin liquids” [17]. As
explained in Ref. [18], SUðNfÞ spins on a lattice can be
described in a slave fermion formalism [19] as compact
QED3 with Nf fermion flavors. Compactness of the U(1)
gauge field means that monopole configurations are not
suppressed. Just like in the case of no fermions studied by
Polyakov [20,21], at small Nf one can argue that these
monopoles proliferate, and their proliferation leads to
confinement of electric charges. In renormalization group
language, the monopoles can proliferate provided that the
operators that create them are relevant in the RG sense

1There is no chirality for fermions in three dimensions. The
symmetry in question would be a chiral symmetry if the same
theory were considered in four dimensions.

2Other approaches give higher critical values Ncrit
f . For

instance, an analytical approach based on solving the
Schwinger-Dyson equations self-consistently gives Ncrit

f ¼ 6

[9–11]. Bounds obtained by using the F-theorem [12–15] give
Ncrit

f ≤ 6 [16].
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[22,23]. When Nf is large, it can be shown that the
monopole operators become irrelevant [24], and therefore
one can ignore the compactness of the gauge group [22].
All other relevant operators, such as fermion bilinears and
Chern-Simons interactions, are suppressed provided that
one requires invariance under various discrete symmetries,
in which case the resulting low-energy effective theory,
namely the CFT obtained by taking e2 → ∞ in Eq. (1.1), is
a stable RG fixed point. This stable CFT is the low-energy
effective theory of an algebraic spin liquid.
In this paper, I will calculate the scaling dimension of the

monopole operator that inserts one unit of magnetic flux by
performing an expansion to next-to-leading order in 1=Nf.
The leading term in this expansion was found by Borokhov,
Kapustin, and Wu [24]. I will therefore improve on their
result.While the validity of the 1=Nf expansion has not been
tested in QED3, there is evidence that in supersymmetric
versions of QED3 the 1=Nf expansion gives reasonably
accurate results even for small values of Nf [25,26]. The
tests of the 1=Nf expansion were made possible in super-
symmetric theories by the technique of supersymmetric
localization [27,28] combined with F-maximization
[29,30], whereby one can obtain exact results for various
supersymmetry-protected quantities, even at strong cou-
pling. It is therefore desirable to make use of the 1=Nf
expansion in nonsupersymmetric theories as well, and this
paper will focus on QED3.
In QED3, the scaling dimensions of the operators in the

zero-monopole sector can be computed in the 1=Nf expan-
sion using Feynman diagrams, and many results are known
to several orders in 1=Nf (see, for example, Ref. [17]). The
situation is significantly harder when one includes monop-
oles, because the monopole creation operators do not have
simple expressions in terms of the fundamental fields of the
theory (1.1), so conventional Feynman diagrams are not of
much use. The monopole scaling dimensions can be com-
puted, however, using the state-operator correspondence,3

whichmaps local operators of a CFT inserted at the origin of
R3 to normalizable states on S2 × R, theR coordinate being
interpreted as Euclidean time. The scaling dimension onR3

is mapped to the energy of the state on S2.
A monopole operator of strength n is a local operator that

changes the boundary condition for the gauge field at the
insertion point such that the field strength F ¼ dA inte-
grates to Z

S2
F ¼ 2πn (1.2)

over any (sufficiently small) two-sphere surrounding the
insertion point. Here, Dirac quantization imposes n ∈ Z.

The corresponding state on S2 is the ground state in the
presence of n units of magnetic flux through S2; the excited
states in the presence of this magnetic flux correspond to
composite operators that contain a monopole operator of
strength n. Standard thermodynamics equates the ground-
state energy with the free energy on S2, which can be
computed as minus the logarithm of the S2 ×R partition
function. The scaling dimension of a monopole operator of
strength n can therefore be extracted from the S2 × R
partition function in the background of n units of magnetic
flux through the S2.
The partition function on S2 ×R can be evaluated

perturbatively in 1=Nf as follows. To leading order in Nf
one can ignore the fluctuations of the gauge field and
perform a Gaussian integral over the fermionic fields.
The results obtained by this procedure agree with those
of Ref. [24]. The next order term in the large-Nf expansion
comes from performing a functional integral over the
fluctuations of the gauge field. This integral is also
Gaussian, because the higher-order terms in the effective
action for the gauge field fluctuations are suppressed by
positive powers of 1=Nf. The evaluation of this Gaussian
integral is the main focus of this paper. Similar but
significantly simpler computations were performed in
Ref. [33], where the contribution to the S2 ground-state
energy coming from a scalar fluctuation was computed in a
similar setup, and in Ref. [25], where an integral over gauge
field fluctuations on S3 was computed in the absence of any
monopoles.
In contrast with the computation presented in this paper,

a similar computation in a supersymmetric theory would
be much simpler if, as mentioned above, one appeals to
supersymmetric localization and F-maximization [29].
Indeed, in N ¼ 2 supersymmetric QED with N chiral
superfields with charge þ1 and N chiral superfields with
charge −1 under the U(1) gauge group, the scaling
dimension of a Bogomol’nyi-Prasad-Sommerfield monop-
ole operator with strength n ¼ 1 is Nð1 − ΔÞ [35,36],
where Δ is the scaling dimension (or R-charge) of one
of the chiral superfields. This scaling dimension was
computed using F-maximization in Ref. [25] both exactly
and in a 1=N expansion, and the two calculations agree
very well even at small values ofN—see Fig. 2 in Ref. [25].
The scaling dimension of the n ¼ 1monopole operator is in
this case

N
2
þ 2

π2
þ 2ðπ2 − 12Þ

π4N
þOðN−2Þ: (1.3)

In the nonsupersymmetric case presented below, there are
nomethods that yield a simple analytic answer like Eq. (1.3),
and one has to resort instead to numerical methods.
The remainder of this paper is organized as follows.

Section II contains the setup of the problem in more detail.
In Sec. III, I reproduce the leading-order results of Ref. [24]

3For other instances where the scaling dimensions of monop-
ole operators were computed using the state-operator correspon-
dence, see Refs. [24,31–33]. See also Ref. [34] for a different
method of computing scaling dimensions of monopole operators.
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by performing the Gaussian integral over the fermionic
fields. In Sec. IV, I outline the strategy used for computing
the leading 1=Nf correction to these results. Section V
contains expressions for the fermion Green’s function on
S2 ×R in the presence of n units of magnetic flux through
S2. This Green’s function is the central ingredient in the
effective action for the gauge field fluctuations. In Sec. VI, I
evaluate the Gaussian integral over the gauge field fluctua-
tions. Lastly, Sec. VII contains a discussion of these results.

II. SETUP AND CONVENTIONS

On an arbitrary conformally flat Riemannian three-
manifold, the QED3 action with Nf two-component com-
plex fermions is

S ¼
XNf

a¼1

Z
d3r

ffiffiffi
g

p ½ψ†
aðiDþAþ AÞψa�; (2.1)

where g is the determinant of the metric, ψa are the Nf
fermion fields, and the gauge field is written as the sum of a
background Aμ and a small fluctuation Aμ around this
background. We are interested in studying this theory on
S2 ×R in the background of n units of magnetic flux
through S2. Parametrizing S2 ×R using coordinates r ¼
ðθ;ϕ; τÞ such that the metric is written as

ds2 ¼ dθ2 þ sin2θdϕ2 þ dτ2; (2.2)

one can take the background gauge field to be

AðrÞ ¼ n
2
ð1 − cos θÞdϕ: (2.3)

The field strength F ¼ dA integrates to 2πn over S2, as in
Eq. (1.2). The expression (2.3) is well defined everywhere
away from the South pole at θ ¼ π, where there is a Dirac
string extended in theR direction. The requirement that this
Dirac string should be invisible restricts n ∈ Z. We will
assume n ≥ 0.
In working with spinors on a curved manifold, one

should specify the conventions used for the frame and
gamma matrices. To simplify the subsequent analysis, we
can introduce the frame obtained from conformal trans-
formation of the standard one in R3,

ei ¼ e−τdxi;

x⃗ ¼ eτx̂ ¼ eτð sin θ cosϕ sin θ sinϕ cos θ Þ; (2.4)

which can be found by writing the standard line
element on R3 in spherical coordinates as dx⃗2 ¼ dρ2þ
ρ2ðdθ2 þ sin2θdϕ2Þ such that the metric (2.2) on S2 ×R is

ds2 ¼ dx⃗2

ρ2
; ρ ¼ eτ: (2.5)

We will use the gamma matrices γi ¼ σi where σi are the
Pauli matrices.4

The following sections are devoted to the computation of
the ground-state energy FðnÞ ¼ − logZðnÞ on S2 ×R in the
presence of the background (2.3). This quantity can be
expanded at large Nf as

FðnÞ ¼ NfF
ðnÞ
0 þ FðnÞ

1 þ � � � : (2.6)

One expects Fð0Þ ¼ 0 because when n ¼ 0 the ground state
on S2 corresponds to the identity operator onR3, which has
vanishing scaling dimension. While we will check explic-

itly that FðnÞ
0 ¼ 0, we will take Fð0Þ

1 ¼ 0 as an assumption

and identify FðnÞ
1 with FðnÞ

1 − Fð0Þ
1 .

III. LEADING-ORDER FREE ENERGY

To leading order in Nf we can ignore the fluctuations of
the gauge field, and the action becomes that of free
fermions in the background gauge field (2.3). This action
can be written in almost diagonal form by expanding the
fermion fields in terms of Fourier modes in the R direction
as well as in terms of analogs of the S2 spherical harmonics
that are appropriate for describing a spin-1=2 charged
particle in the monopole background (2.3). The main
ingredients in constructing these harmonics are the monop-
ole spherical harmonics Yn=2;lm [37,38], with l ≥ l=2 and
−l ≤ m ≤ l, which are simultaneous eigenfunctions of the
gauge-covariant angular momentum operators,

L⃗2Yn=2;lm ¼ lðlþ 1ÞYn=2;lm;

L3Yn=2;lm ¼ mYn=2;lm: (3.1)

For explicit formulas forYn=2;lm in terms of the angles onS2,
see Refs. [37,38] or Appendix A. The monopole spherical
harmonics form a complete basis of functions on S2 suited
for describing spinlessparticleswith unit gauge charge in the
background of the monopole (2.3). When n ¼ 0 they are
nothing but the usual S2 spherical harmonics.
As explained in more detail in Appendix A, the scalar

harmonics Yn=2;lm can be generalized to include spin by
simultaneously diagonalizing ~S2, ~L2, ~J2, and J3, where ~S,
~L, and ~J are the spin, orbital, and total angular momentum
operators, respectively. The spin-1=2 case yields two sets of
spinors that we denote by Sn;lm and Tn;lm. They have
orbital angular momentum quantum number l and total
angular momentum quantum numbers

Tn;lm∶ j ¼ lþ 1

2
; mj ¼ mþ 1

2
;

Sn;lm∶ j ¼ l −
1

2
; mj ¼ mþ 1

2
: (3.2)

4There is no difference between upper and lower frame indices
in Euclidean signature.
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The expansion of the fermion fields reads

ψaðrÞ ¼
Z

dω
2π

�X∞
l¼n

2

Xl
m¼−l−1

Ψlm
a;TðωÞTn;lmðθ;ϕÞ

þ
X∞
l¼n

2

Xl−1
m¼−l

Ψlm
a;SðωÞSn;lmðθ;ϕÞ

�
e−iωτ; (3.3)

where Ψlm
a;T and Ψlm

a;S are (anticommuting) coefficients. In
this expression and throughout this section all spinor
indices carried by ψa, Sn;lm, and Tn;lm are suppressed.
The range of m in the sums in Eq. (3.3) follows from
Eq. (3.2) and the usual −j ≤ mj ≤ j. While the spin-1=2
monopole harmonics Sn;lm and Tn;lm diagonalize ~S2, ~L2,
~J2, and J3, they are not eigenspinors of the gauge-covariant
Dirac operator iDþA because this operator does not
commute with ~L2. Indeed, for given j ¼ l − 1=2 and
mj ¼ mþ 1=2, there are only two spinors that differ in
their ~L2 quantum number, namely Tn;ðl−1Þm and Sn;lm;
starting from Ref. [24] it can be shown that

ðiDþAÞ
�
Tn;ðl−1Þme−iωτ

Sn;lme−iωτ

�

¼ Nn;lðωþ iMn;lÞ
�
Tn;ðl−1Þme−iωτ

Sn;lme−iωτ

�
; (3.4)

where the matrices Mn;l and Nn;l are given by5

Mn;l ¼

0
B@ l

�
1 − n2

4l2

�
− n

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2

4l2

q
− n

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2

4l2

q
−l
�
1 − n2

4l2

�
1
CA;

Nn;l ¼

0
B@ − n

2l −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2

4l2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2

4l2

q
n
2l

1
CA: (3.5)

Note that these matrices act trivially on the spinor indices
of Tn;ðl−1Þm and Sn;lm, which, as mentioned above, are
consistently being suppressed.
The case l ¼ n=2 deserves a comment. Since there are

no scalar monopole spherical harmonics with orbital
angular momentum less than n=2, when l ¼ n=2 [or
equivalently when j ¼ ðn − 1Þ=2] the matrices in
Eq. (3.5) should be thought of as 1 × 1 matrices equal
to the bottom right entries of the expressions in Eq. (3.5). In
particular,Mn;n=2 ¼ 0 and Nn;n=2 ¼ 1. The modes Sn;ðn=2Þm
are the n zero modes of the Dirac operator on S2 in the
presence of n units of magnetic flux.
Using Eqs. (3.4) and (3.3) and ignoring the gauge field

fluctuations, the action takes the block-diagonal form

S0 ¼
XNf

a¼1

Z
dω
2π

X∞
l¼n

2

Xl−1
m¼−l

�
Ψðl−1Þm

a;T ðωÞ� Ψlm
a;SðωÞ�

�

×Nn;lðωþ iMn;lÞ
�
Ψðl−1Þm

a;T ðωÞ
Ψlm

a;SðωÞ

�
: (3.6)

After performing the Gaussian integral over the fermions,
the logarithm of the S2 ×R partition function is thus

logZðnÞ ¼Nf

Z
dω
2π

X∞
l¼n

2

2l logdetðNn;lðωþ iMn;lÞÞ; (3.7)

where the factor of 2l comes from the sum over m, or
equivalently from the 2jþ 1 ¼ 2l degeneracy. The deter-
minant in Eq. (3.7) is easily computed, and the coefficient

FðnÞ
0 in Eq. (2.6) can be expressed as

FðnÞ
0 ¼ −

Z
dω
2π

X∞
l¼n

2

2l log
�
ω2 þ l2 −

n2

4

�
: (3.8)

This expression is divergent and requires regularization.
One way of extracting the finite part is to write
logA ¼ −dA−s=dsjs¼0, followed by an evaluation of the
sum and integral in Eq. (3.8) at values of s where they are
absolutely convergent, and then by an analytic continuation
of the answer to s ¼ 0. (See also Ref. [33], where a
similar expression was regularized in the same fashion.)
Performing the ω integral yields

FðnÞ
0 ¼ −

X∞
l¼n

2

2l
�
l2 −

n2

4

�1
2
−s����

s¼0

: (3.9)

After adding and subtracting quantities that are divergent
when s ¼ 0, one can write this sum as

FðnÞ
0 ¼−2

X∞
l¼n

2

�
l
�
l2−

n2

4

�1
2
−s
−l2−2sþn2

8
ð1−2sÞl−2s

�����
s¼0

þ2
X∞
l¼n

2

�
−l2−2sþn2

8
ð1−2sÞl−2s

�����
s¼0

: (3.10)

TABLE I. The values of FðnÞ
0 as obtained in a few particular

cases by evaluating Eq. (3.11).

n FðnÞ
0

0 0
1 0.265
2 0.673
3 1.186
4 1.786
5 2.462
6 3.206

5I thank Mark Mezei for helping me correct a sign error in a
previous version of this equation.
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The first sum is absolutely convergent, so one can simply
set s ¼ 0 and evaluate it numerically. The second sum
can be evaluated using zeta-function regularization. The
result is

FðnÞ
0 ¼−2

X∞
l¼n

2

�
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2−

n2

4

r
−l2þn2

8

�
−
nðn−1Þðnþ4Þ

24
:

(3.11)

See Table I for FðnÞ
0 evaluated for the first few lowest values

of n. These results agree with those of Ref. [24], where the
sum (3.9) was regularized by a different method.

IV. BEYOND LEADING ORDER: THE STRATEGY

The 1=Nf corrections to the ground-state energy on
S2 ×R come from performing the functional integral over
the gauge field. The effective action for the gauge field
fluctuations obtained after integrating out the fermions is

SA¼
1

2

Z
d3rd3r0

ffiffiffiffiffiffiffiffiffi
gðrÞ

p ffiffiffiffiffiffiffiffiffiffi
gðr0Þ

p
AiðrÞKn;ijðr;r0ÞAjðr0Þþ���;

(4.1)

where the ellipsis denotes terms that are higher order in the
gauge field fluctuations, and Kn;ijðr; r0Þ is the two-point
correlator of the U(1) current Ji,

Kn;ijðr; r0Þ ¼ −hJiðrÞJjðr0Þin: (4.2)

Here, i and j denote frame indices in the frame defined in
Eq. (2.4). The subscript n on the angle brackets serves as a
reminder that the expectation value should be evaluated in
the monopole background (2.3). As can be read off from the
action (2.1), the current Ji is

Ji ¼
XNf

a¼1

ψ†
aσiψa: (4.3)

In computing the two-point function (4.2) we should treat
the Nf fermions as noninteracting, so

Kn
ijðr; r0Þ ¼ −Nfhψ†ðrÞσiψðrÞψ†ðr0Þσjψðr0Þi; (4.4)

where ψ corresponds to a single charged fermion in the
background gauge field given by Eq. (2.3). In terms of the
fermion Green’s function Gnðr; r0Þ ¼ hψðrÞψ†ðr0Þin, one
can write the kernel (4.4) as

Kn
ijðr; r0Þ ¼ −Nf trðσiGnðr; r0ÞσjG†

nðr; r0ÞÞ: (4.5)

The reason why one can ignore the higher-order terms in
Eq. (4.1) now emerges. The factor of Nf can be absorbed

by rescaling the gauge field fluctuations Ai → Ai=
ffiffiffiffiffiffi
Nf

p
.

After this rescaling, the higher-order terms in the gauge
field fluctuations that were omitted from Eq. (4.1) become
suppressed at large Nf, so the leading contribution to the
S2 × R free energy comes from the Gaussian integral over
the gauge field fluctuations computed using just the
quadratic action (4.1).
The action (4.1) can be written in diagonal form by

expanding both the fluctuations Ai and the kernel Kn
ij in

plane waves in the R coordinate and vector spherical
harmonics on S2. Just as in the case of the spinor harmonics
discussed in the previous section, the vector harmonics can
be defined by simultaneously diagonalizing the angular
momentum operators ~S2, ~L2, ~J2, and J3. See Appendix A
for more details. These vector harmonics are constructed
from the usual S2 spherical harmonics Ylm because the
gauge field does not experience monopole flux. They have
spin s ¼ 1, orbital angular momentum l, and total angular
momentum quantum numbers given by

Ui
lm∶ j ¼ l − 1 ≥ 0; mj ¼ m;

Vi
lm∶ j ¼ l ≥ 1; mj ¼ m;

Wi
lm∶ j ¼ lþ 1 ≥ 1; mj ¼ m: (4.6)

We thus expand the gauge field fluctuations as

AiðrÞ ¼
Z

dω
2π

�X∞
l¼1

Xl−1
m¼−lþ1

almU ðωÞUi
lmðθ;ϕÞ

þ
X∞
l¼1

Xl
m¼−l

almV ðωÞVi
lmðθ;ϕÞ

þ
X∞
l¼0

Xlþ1

m¼−l−1
almW ðωÞWi

lmðθ;ϕÞ
�
e−iωτ; (4.7)

where the summation ranges follow from Eq. (4.6). The
kernel Kn

ijðr; r0Þ, seen as a 3 × 3 matrix Knðr; r0Þ, should
also be expanded in terms of the vector harmonics as

Knðr;r0Þ ¼
Z

dω
2π

X∞
l¼0

Xl
m¼−l

e−iωðτ−τ0Þ

× ðUðlþ1Þmðθ;ϕÞ Vlmðθ;ϕÞ Wðl−1Þmðθ;ϕÞÞ

×Kn
lðωÞ

0
B@

U†
ðlþ1Þmðθ0;ϕ0Þ
V†
lmðθ0;ϕ0Þ

W†
ðl−1Þmðθ0;ϕ0Þ

1
CA; (4.8)

where, if l > 0, Kn
lðωÞ is a 3 × 3 Hermitian matrix whose

entries depend on l and ω. When l ¼ 0, Vlm andWðl−1Þm
do not exist, and this matrix should be thought of as 1 × 1.
Note that the matrix Kn

lðωÞ acts trivially on the frame
indices of the harmonics and can be computed by
inverting Eq. (4.8),

ANOMALOUS DIMENSIONS OF MONOPOLE OPERATORS IN … PHYSICAL REVIEW D 89, 065016 (2014)

065016-5



Kn
lðωÞ ¼

4π

2lþ 1

Z
d3r

ffiffiffiffiffiffiffiffiffi
gðrÞ

p
eiωτ

Xl
m¼−l

�
U†

ðlþ1Þmðθ;ϕÞ V†
lmðθ;ϕÞ W†

ðl−1Þmðθ;ϕÞ
�

×Knðr; r0Þ

0
B@

Uðlþ1Þmðθ0;ϕ0Þ
Vlmðθ0;ϕ0Þ

Wðl−1Þmðθ0;ϕ0Þ

1
CA
�������
r0¼0

; (4.9)

where we made use of the symmetry under S2 rotations and
translations along R. Using Eqs. (4.7) and (4.8), one can
now write down the effective action (4.1) in almost
diagonal form,

SA ¼
Z

dω
2π

X∞
l¼1

Xl
m¼−l

�
almU ðωÞ� almV ðωÞ� almW ðωÞ�

�

×Kn
lðωÞ

0
BB@

almU ðωÞ
almV ðωÞ
almW ðωÞ

1
CCA: (4.10)

The Gaussian integral over the gauge field fluctuations then
gives, roughly,

FðnÞ
0 ¼ 1

2

Z
dω
2π

X∞
l¼0

ð2lþ 1Þ log det Kn
lðωÞ: (4.11)

This expression is rough because it ignores a very im-
portant subtlety: gauge invariance. Indeed, the effective
action SA should be independent of the pure gauge modes
that are part of the expansion (4.7), so it must be true that
the matrix Kn

lðωÞ has many eigenvalues equal to zero. (To
be precise, for each l there should be one eigenvalue that
vanishes.) While it should be possible to work carefully in a
fixed gauge, the subtleties related to gauge fixing are
exactly the same for all n and they disappear from the
differences6

FðnÞ
0 −Fð0Þ

0 ¼ 1

2

Z
dω
2π

X∞
l¼1

ð2lþ1Þ log det
Kn

lðωÞ
K0

lðωÞ
; (4.12)

provided that we only take the ratio of the nonzero
eigenvalues of these matrices. One can furthermore assume
that Fð0Þ

0 ¼ 0, because when n ¼ 0 the S2 ground-state
energy equals the scaling dimension of the identity oper-
ator, which vanishes.
It can be checked explicitly using the formulas in the

following sections that Kn;UV
l ðωÞ ¼ Kn;VW

l ðωÞ ¼ 0, which
implies that the matrix Kn

lðωÞ takes the form

Kn
lðωÞ¼

0
BB@

Kn;UU
l ðωÞ 0 Kn;UW

l ðωÞ
0 Kn;VV

l ðωÞ 0

Kn;WU
l ðωÞ 0 Kn;WW

l ðωÞ

1
CCA: (4.13)

The entry Kn;VV
l ðωÞ is a (nonvanishing) eigenvalue of this

matrix. Since one other eigenvalue vanishes and since the
trace of this matrix is the sum of all three eigenvalues,
the third eigenvalue must be Kn;UU

l þ Kn;WW
l . Let us denote

the nonzero eigenvalues by

Kn;E
l ≡ Kn;UU

l þ Kn;WW
l ; Kn;B

l ≡ Kn;VV
l : (4.14)

The labels E and B stand for “E-modes” and “B-modes,”
respectively, because when restricted to S2 one can check
using Eq. (A10) that Ulm and Wlm have vanishing curl
(just like an electric field), while Vlm has vanishing
divergence (just like a magnetic field).
To sum up, the correction to the free energy obtained

after performing the Gaussian integral over the gauge field
fluctuations is

FðnÞ
1 ¼ 1

2

Z
dω
2π

X∞
l¼1

ð2lþ 1Þ logK
n;E
l ðωÞKn;B

l ðωÞ
K0;E

l ðωÞK0;B
l ðωÞ : (4.15)

Explicit formulas for Kn;E
l ðωÞ and Kn;B

l ðωÞ will be given in
Sec. VI. To find them, one should start by computing the
fermion Green’s function needed in Eq. (4.5), which is the
goal of the following section.

V. FERMION GREEN’S FUNCTION

The Green’s function in the background (2.3) is
defined as

Gnðr; r0Þ ¼ hψðrÞψ†ðr0Þin: (5.1)

It satisfies ðiDþAÞðrÞGnðr; r0Þ ¼ −δðr − r0Þ, so we can
write it using the spectral decomposition as

Gnðr;r0Þ ¼−
Z

dω
2π

X∞
l¼n

2

Xl−1
m¼−l

�
Tn;ðl−1Þmðθ;ϕÞ Sn;lmðθ;ϕÞ

�

×
e−iωðτ−τ0Þ

Nn;lðωþ iMn;lÞ

 
T†
n;ðl−1Þmðθ0;ϕ0Þ
S†n;lmðθ0;ϕ0Þ

!
; (5.2)

6The sum starts at l ¼ 1 because, as mentioned above, when
l ¼ 0 the matrix Kn

lðωÞ has only one entry, which vanishes for
all n because it corresponds to a pure gauge mode.

SILVIU S. PUFU PHYSICAL REVIEW D 89, 065016 (2014)

065016-6



where the matrices Mn;l and Nn;l were introduced in
Eq. (3.5). Using Eq. (3.4), it is not hard to see that acting
with ðiDþAÞðrÞ on the Green’s function results in a delta
function.

To use this expression further, note that

1

ωþ iMn;l
¼ ω − iMn;l

ω2 þ l2 − n2=4
;

1

Nn;l
¼ Nn;l: (5.3)

One can perform the ω integral,

Gnðr;r0Þ ¼
X∞
l¼n

2

Xl−1
m¼−l

ie−En;ljτ−τ0j

2

�
Tn;ðl−1Þmðθ;ϕÞ Sn;lmðθ;ϕÞ

��
sgnðτ− τ0ÞNn;lþ

�
0 −1
1 0

���T†
n;ðl−1Þmðθ0;ϕ0Þ
S†n;lmðθ0;ϕ0Þ

�
; (5.4)

where in order to simplify the subsequent expressions we
defined the energy

En;l ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − n2=4

q
: (5.5)

One can also perform the sum over m using the explicit
expressions (A7) for the spinor harmonics. To understand
the result, it is simpler to first consider a similar sum overm
for the scalar monopole harmonics,Xl
m¼−l

Yn
2
;lmðθ;ϕÞY�

n
2
;lmðθ0;ϕ0Þ ¼ e−inΘFn

2
;lðγÞ;

Fn
2
;lðcos γÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
Yn

2
;l;−n

2
ðγ; 0Þ

¼ 2lþ 1

4π2n=2
ð1þ cos γÞn=2

× Pð0;nÞ
l−n

2
ðcos γÞ; (5.6)

where γ is the angle between two points on S2,

cos γ ¼ x̂ · x̂0 ¼ cos θ cos θ0 þ sin θ sin θ0 cosðϕ − ϕ0Þ;
(5.7)

and the phase factor eiΘ is

eiΘ cos
γ

2
¼ cos

θ

2
cos

θ0

2
þ e−iðϕ−ϕ0Þ sin

θ

2
sin

θ0

2
: (5.8)

The addition formula (5.6) is the generalization of the
notion of zonal spherical harmonics to the case of non-
vanishing monopole flux. Note that when n > 0, the sum
over m yields an expression that, up to a phase, depends
only on the relative angle between the two points on S2.
Fortunately, this phase will not play a role in the compu-
tation below.
The addition formulas that generalize Eq. (5.6) to the

case of the spinor harmonics are more complicated because
of the spinor indices, and they will not be reproduced here.
They give

Gnðr; r0Þ ¼
X∞
l¼n

2

ie−En;ljτ−τ0je−inΘ

2

�
Q1

n;lðcos γÞðx̂ − x̂0Þ · ~σ þ sgnðτ − τ0ÞðQ2
n;lðcos γÞ1

þQ3
n;lðcos γÞðx̂þ x̂0Þ · ~σ þ iQ4

n;lðcos γÞðx̂ × x̂0Þ · ~σ
��

; (5.9)

where the coefficients Qi
n;lðxÞ (where x ¼ cos γ) can all be

expressed in terms of the function

Qn;lðxÞ≡ 1

2lþ 1
Fn;lðxÞ −

1

2l − 1
Fn;l−1ðxÞ (5.10)

as

Q1
n;lðxÞ ¼

En;l

1 − x
Qn;lðxÞ; Q3

n;lðxÞ ¼ Q0
n;lðxÞ;

Q2
n;lðxÞ ¼

n
2
Qn;lðxÞ; Q4

n;lðxÞ ¼
n

2ð1þ xÞQn;lðxÞ:

(5.11)

Explicit care must be taken for l ¼ n=2 where one should
replace Eq. (5.10) by

Qn;n=2ðxÞ ¼
ð1þ xÞn=2
22þn

2π
: (5.12)

In other words, only the first term in the expression for
Qn;lðxÞ in Eq. (5.10) should be considered in this case. The
reader is referred to Appendix B for a check that when
n ¼ 0, the Green’s function (5.9) agrees with what one
would expect from a conformal transformation of the flat-
space Green’s function.
Before moving on, let us discuss a few properties of the

function Qn;lðxÞ that will be important later on. In terms of
Jacobi polynomials, the definition (5.10) reads

Qn;lðxÞ ¼
ð1þ xÞn=2
22þn

2π
½Pð0;nÞ

l−n
2
ðxÞ − Pð0;nÞ

l−1−n
2
ðxÞ�: (5.13)

Using an identity that relates the difference of two Jacobi
polynomials to a third Jacobi polynomial of a different
rank, Qn;lðxÞ can also be expressed as
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Qn;lðxÞ ¼ −
lð1þ xÞn=2ð1 − xÞ
22þn

2πðl − n=2Þ Pð1;nÞ
l−1−n

2
ðxÞ: (5.14)

Quite remarkably, the Jacobi polynomial in Eq. (5.14) can
be traded for a scalar monopole harmonic with n − 1 units
of gauge flux:

Qn;lðcos θÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð1 − cos θÞ
4πðl2 − n2=4Þ

s
eiϕYn−1

2
;l−1

2
;−nþ1

2
ðθ;ϕÞ:

(5.15)

Because of this relation, the function Qn;lðxÞ satisfies a
second-order differential equation that follows from the
eigenvalue equation (A4) for the monopole harmonics,

Q00
n;lðxÞ þ

1

1þ x
Q0

n;lðxÞ þ
1

1 − x2

�
l2 −

n2

2ð1þ xÞ
�
Qn;lðxÞ

¼ 0: (5.16)

This equation also holds in the case l ¼ n=2 where one
should use Eq. (5.12) instead of Eq. (5.10).
Since the function Qn;l arose from describing fermions

with total angular momentum j ¼ l − 1=2, it may not be
very surprising that it can be expressed in terms of a
monopole harmonic with angular momentum equal to j. It
is less clear why the scalar monopole harmonic that appears
in Eq. (5.15) experiences one fewer units of magnetic flux
than the spinor harmonics. In particular, when n ¼ 1,
Q1;lðxÞ can be expressed in terms of the usual spherical
harmonics Y−1

j , or equivalently in terms of the associated
Legendre polynomials P1

lðxÞ.

VI. EVALUATING THE GAUGE FIELD KERNEL

A. General formulas

Using Eqs. (4.9)–(4.14) and (5.10)–(5.11), as well as the
explicit formulas for the spinor and vector harmonics,
one finds

Kn;E
l ðωÞ ¼ ð4πÞ2

ð2lþ 1Þlðlþ 1Þ
X
l0;l00

En;l0 þ En;l00

ω2 þ ðEn;l0 þ En;l00 Þ2
�
IE
1

2
þ En;l0En;l00IE

2

�
;

Kn;B
l ðωÞ ¼ ð4πÞ2

ð2lþ 1Þlðlþ 1Þ
X
l0;l00

En;l0 þ En;l00

ω2 þ ðEn;l0 þ En;l00 Þ2
�
IB
1

2
þ En;l0En;l00IB

2

�
; (6.1)

with

IE
1 ¼ 2

Z
1

−1
dx

�
2lðlþ 1ÞF0;l þ ð1 − xÞF0

0;l

4ð1þ xÞ n2Qn;l0Qn;l00 − ð1 − x2ÞF0
0;lQ

0
n;l0Q

0
n;l00

�
;

IE
2 ¼ −

Z
1

−1
dx

1þ x
1 − x

F0
0;lQn;l0Qn;l00 ;

IB
1 ¼ 2

Z
1

−1
dxðF0

0;l − ð1 − xÞF00
0;lÞ
�
n2

4
Qn;l0Qn;l00 − ð1þ xÞ2Q0

n;l0Q
0
n;l00

�
;

IB
2 ¼

Z
1

−1
dxðF0

0;l þ ð1þ xÞF00
0;lÞQn;l0Qn;l00 : (6.2)

Since both F0;l and Qn;l obey second-order differential equations and since all the expressions in Eq. (6.2) are symmetric
under exchanging l0 and l00, Eq. (6.2) can be brought into the canonical form

Z
1

−1
dx½αðxÞF0;lðxÞ þ βðxÞF0

0;lðxÞ�Qn;l0 ðxÞQn;l00 ðxÞ; (6.3)

with some functions αðxÞ and βðxÞ that depend on which expression in Eq. (6.2) we are considering. This canonical form is
useful when evaluating the integrals with respect to x.

B. Particular cases

1. n ¼ 0

Let us start by evaluating the kernel K0;E
l ðωÞ. By “inspection” of the integrals in Eq. (6.2) for many values of l, l0, and

l00, it is possible to guess the general formula
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K0;E
l ðωÞ ¼ 1

2πlðlþ 1Þ
X
l0;l00

ðl0 þ l00Þððl0 − l00Þ2 − l2Þððl0 þ l00Þ2 − lðlþ 1ÞÞðlþ l0 þ l00 − 1Þ
ðω2 þ ðl0 þ l00Þ2Þðlþ l0 þ l00Þ

×

�
l0 − 1 l00 − 1 l − 1

0 0 0

�
2

; (6.4)

where factor on the second line is the square of a 3-j symbol. At fixed l0, the summation over l00 is of course
convergent because the 3-j symbol vanishes when l00 > l0 þ l − 1. However, the remaining summation over l0 is
divergent because the terms in the sum approach the constant value −1=ð4πÞ at large l0. This divergence can be
regularized by adding and subtracting 1=ð4πÞ from each term and then using the zeta-function identityP∞

l0¼1
1 ¼ ζð0Þ ¼ −1=2,

K0;E
l ðωÞ ¼

X∞
l0¼1

�
al;l0 ðωÞ þ

1

4π

�
−
X∞
l0¼1

1

4π
¼ 1

8π
þ
X∞
l0¼1

�
al;l0 ðωÞ þ

1

4π

�
: (6.5)

The summation over l0 is now convergent and can be performed explicitly at fixed l. For instance, for l ¼ 1 we have

K0;E
1 ðωÞ ¼ 1

8π
þ
X∞
l0¼1

4l02ð1þ ω2Þ − ω2

4πð4l02 − 1Þð4l02 þ ω2Þ ¼ ð2þ ω2Þ ω coth πω
2

16ð1þ ω2Þ : (6.6)

Similarly,

K0;E
2 ðωÞ ¼ ð6þ ω2Þ ð1þ ω2Þ tanh πω

2

16ωð4þ ω2Þ ; K0;E
3 ðωÞ ¼ ð12þ ω2Þ ωð4þ ω2Þ coth πω

2

16ð1þ ω2Þð9þ ω2Þ ; (6.7)

and so on. It is not hard to see that in general7

K0;E
l ðωÞ ¼ lðlþ 1Þ þ ω2

2
D0

lðωÞ; (6.8)

where

D0
lðωÞ ¼

���� Γððlþ 1þ iωÞ=2Þ
4Γððlþ 2þ iωÞ=2Þ

����2 (6.9)

is the scalar field kernel appearing in Eq. (35) of Ref. [33].
One can perform a similar analysis for K0;BðωÞ. By inspection of Eqs. (6.1)–(6.2), I found

K0;B
l ðωÞ ¼ 1

2πlðlþ 1Þ
X
l0;l00

ðl0 − l00Þ2ðl0 þ l00Þðlþ 1 − l0 − l00Þðlþ l0 þ l00Þ
ω2 þ ðl0 þ l00Þ2

�
l0 − 1 l00 − 1 l

0 0 0

�
2

: (6.10)

The sums over l0 are again divergent but can be regularized precisely as in Eq. (6.5). A few particular cases give

K0;B
1 ðωÞ ¼ ð1þ ω2Þ tanh πω

2

16ω
;

K0;B
2 ðωÞ ¼ ωð4þ ω2Þ coth πω

2

16ð1þ ω2Þ ;

K0;B
3 ðωÞ ¼ ð1þ ω2Þð9þ ω2Þ tanh πω

2

16ωð4þ ω2Þ ; (6.11)

and so on. From these expressions one can guess the general formula

7The same expressions forK0;E
l ðωÞ andK0;B

l ðωÞwere obtained in collaboration with Subir Sachdev as part of a similar computation in
the CPN model.
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K0;B
l ðωÞ ¼ l2 þ ω2

2
D0

l−1ðωÞ: (6.12)

The quantity that appears in Eq. (4.15) is the product
K0;E

l ðωÞK0;B
l ðωÞ, which is given by

K0;E
l ðωÞK0;B

l ðωÞ ¼ lðlþ 1Þ þ ω2

256
: (6.13)

2. n ¼ 1

When n ¼ 1, the expressions (6.2) written in the
canonical form (6.3) are

IE
1 ¼ðJ1−J2Þ

�
lðlþ1Þ−l02−l002þ1

2

�
;

IE
2 ¼−J1−J2;

IB
1 ¼lðlþ1Þ½lðlþ1ÞJ0−2J2�− ½J1−J2þlðlþ1ÞJ0�

×

�
l02þl002−

1

2

�
;

IB
2 ¼ J1þJ2−lðlþ1ÞJ0; (6.14)

where Ji are integrals involving F0;l, Q1;l0 ðxÞ, and
Q1;l00 ðxÞ,

J0ðl;l0;l00Þ ¼
Z

1

−1
dx

1

1−x
F0;lðxÞQ1;l0 ðxÞQ1;l00 ðxÞ;

J1ðl;l0;l00Þ ¼
Z

1

−1
dx

1

1−x
F0
0;lðxÞQ1;l0 ðxÞQ1;l00 ðxÞ;

J2ðl;l0;l00Þ ¼
Z

1

−1
dx

x
1−x

F0
0;lðxÞQ1;l0 ðxÞQ1;l00 ðxÞ: (6.15)

One needs to evaluate these integrals. In doing so it is
helpful to recall that Eq. (5.15) implies that Q1;lðxÞ
is expressible in terms of the associated Legendre
polynomials,

Q1;lðxÞ ¼
ffiffiffi
2

p
l

πð2l − 1Þð2lþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
P1
l−1=2ðxÞ: (6.16)

We should also recall that F0;l is proportional to a
Legendre polynomial,

F0;lðxÞ ¼
2lþ 1

4π
PlðxÞ: (6.17)

When substituting Eq. (6.17) into J1 and J2 we should
also make use of the following formulas relating the
derivative of the Legendre polynomials to associated
Legendre polynomials:

P0
lðxÞ ¼

1

2
½P2

lþ1ðxÞ þ lðlþ 1ÞP0
lþ1ðxÞ�;

xP0
lðxÞ ¼

1

2
½P2

lðxÞ þ lðlþ 1ÞP0
lðxÞ�: (6.18)

The Ji then become integrals over products of three
associated Legendre polynomials; they can be evaluated
using the formula

1

2

Z
1

−1
dxPm1

l1
ðxÞPm2

l2
ðxÞPm3

l3
ðxÞ ¼ ð−1Þm3

�
l1 l2 l3

0 0 0

��
l1 l2 l3

m1 m2 −m3

�Y3
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðli þmiÞ!
ðli −miÞ!

s
; (6.19)

which holds for m3 ¼ m1 þm2. The resulting expressions for Jþ, J−, and J0 are relatively messy, but each of these
quantities can be expressed in terms of 3-j symbols that can be easily evaluated using a computer program,

J0

�
l;

1

2
þ l1;

1

2
þ l2

�
¼ −

ðl1 þ 1
2
Þðl2 þ 1

2
Þð2lþ 1Þ

16π3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1ðl1 þ 1Þl2ðl2 þ 1Þp �

l l1 l2

0 0 0

��
l l1 l2

0 1 −1

�
; (6.20)

J1

�
l;
1

2
þl1;

1

2
þl2

�
¼ðl1þ 1

2
Þðl2þ 1

2
Þð2lþ1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ1Þp
32π3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1ðl1þ1Þl2ðl2þ1Þp �

lþ1 l1 l2

0 0 0

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ2Þðlþ3Þ

p �
lþ1 l1 l2

−2 1 1

�

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p �
lþ1 l1 l2

0 1 −1

��
; (6.21)

J2

�
l;

1

2
þ l1;

1

2
þ l2

�
¼ ðl1 þ 1

2
Þðl2 þ 1

2
Þð2lþ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp
32π3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1ðl1 þ 1Þl2ðl2 þ 1Þp �

l l1 l2

0 0 0

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þðlþ 2Þ

p �
l l1 l2

−2 1 1

�

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p �
l l1 l2

0 1 −1

��
: (6.22)
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With Eqs. (6.20)–(6.22) and (6.14), one can now
evaluate K1;E

l ðωÞ and K1;B
l ðωÞ using Eq. (6.1). I checked

that plugging Eqs. (6.20)–(6.22) into Eq. (6.14) yields the
same answers as performing the integrals in Eq. (6.2)
explicitly.
In Eq. (6.1), the sums over l0 and l00 run from 1=2 to

infinity. While there are no problems with using Eq. (6.14)
when l0;l00 > 1=2, extra care must be taken when l0 ¼
1=2 or l00 ¼ 1=2. It is not hard to see using Eq. (5.12) that
the contribution toK1;E

l ðωÞ from l0 ¼ 1=2 and/or l00 ¼ 1=2
vanishes, while the contribution to K1;B

l ðωÞ is given by

−
1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

ω2 þ lðlþ 1Þ : (6.23)

So one can restrict the sums in Eq. (6.1) to run over
l0;l00 > 1=2 and add Eq. (6.23) to K1;B

l ðωÞ.

C. Numerics for n ¼ 1

One can calculate the corresponding contributions to the
free energy (4.15) when n ¼ 1,

Fð1ÞE
1 ¼ 1

2

Z
dω
2π

X∞
l¼1

ð2lþ 1Þ logK
1;E
l ðωÞ

K0;E
l ðωÞ ;

Fð1ÞB
1 ¼ 1

2

Z
dω
2π

X∞
l¼1

ð2lþ 1Þ logK
1;B
l ðωÞ

K0;B
l ðωÞ : (6.24)

These expressions are defined so that the total OðN0
fÞ

correction to the free energy is Fð1Þ
1 ¼ Fð1ÞE

1 þ Fð1ÞB
1 .

Imposing a relativistic cutoff on the summations and
integrations in Eq. (6.24) by restricting l and ω in the range

lðlþ 1Þ þ ω2 ≤ LðLþ 1Þ; (6.25)

for some cutoff energy scale L, I find that both Fð1ÞE
1 and

Fð1ÞB
1 diverge logarithmically with L: see Fig. 1. However,

as can be seen in Fig. 2, the logarithmic divergence cancels

out from the sum Fð1Þ
1 .

Extrapolating to L ¼ ∞, I get

Fð1Þ
1 ≈ −0.0383: (6.26)

This is the sought-after correction in Eq. (2.6) to the
ground-state energy on S2 in the presence of one unit of
magnetic flux through the two-sphere.

VII. DISCUSSION

The main result of this paper is that the scaling
dimension of the monopole operator that inserts one unit
of magnetic flux in QED3 with Nf fermion flavors is

0.265Nf − 0.0383þOð1=NfÞ; (7.1)

which is obtained by combining the leading-order result
[24] given in Table I with Eq. (6.26). The Oð1Þ correction
in Eq. (7.1) was obtained by performing a Gaussian integral
over the fluctuations of the gauge field on S2 × R around a
background constant magnetic flux of 2π that is uniformly
distributed throughout the S2.
A striking feature of this computation is that the fermion

Green’s function on S2 ×R in the presence of n units of
magnetic flux (as well as the kernel that appears in the
quadratic action for the gauge field fluctuations, which can be
written in terms of the fermion Green’s function) can be
expressed in terms of the spinless S2 monopole spherical
harmonics of Refs. [37,38] in the presence of n − 1 units of
magnetic flux. This major simplification is what made the
computation in this paper at all possible, and it would be
interesting to understand its origin from a more conceptual
point of view. In the case n ¼ 1 analyzed here, the fermion
Green’s function is particularly simple because it is

1 L
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1 B

0.05 0.10 0.15 0.20

FIG. 1 (color online). The quantities Fð1ÞE
1 (brown) and Fð1ÞB

1

(red) evaluated with the relativistic cutoff (6.25). They each
diverge logarithmically as L → ∞.
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FIG. 2 (color online). The correction Fð1Þ
1 ¼ Fð1ÞE

1 þ Fð1ÞB
1 to

the free energy evaluated by summing up the expressions in
Eq. (6.24) with the relativistic cutoff (6.25). The orange points are
obtained by evaluating (6.24) numerically, and the solid line is a
cubic fit.
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expressible in terms of the usual spherical harmonics onS2, or
equivalently in terms of certain associated Legendre
polynomials.
Another feature of the computation presented in this

paper is an exact cancellation of UV divergences. Because
of symmetry under rotations on S2 and translations along
R, the quadratic action for the gauge field fluctuations is
diagonalized by a combination of vector spherical harmon-
ics on S2 and plane waves in the R direction. There are two
gauge-invariant sectors depending on the properties of the
vector spherical harmonics on S2: one sector involving
vector harmonics with zero curl (the “E-modes”), and one
sector involving vector harmonics with zero divergence
(the “B-modes”). The contribution of each of these two
sectors to the S2 ground-state energy can be evaluated
independently. Strikingly, each contribution is logarithmi-
cally UV divergent, but the divergences cancel exactly
when the E-modes and the B-modes are added up together.
This cancellation is far from obvious at intermediate stages
of the computation, and it therefore provides a check on the
method used here.
A few comments on the significance of the result (7.1)

are in order. It can be noticed that theOð1Þ term in Eq. (7.1)
is small compared to the coefficient of the leading term
proportional to Nf. Since the expansion (7.1) is likely to be
an asymptotic series, the smallness of the Oð1Þ term
suggests that the approximation (7.1) might be accurate
even for small Nf. It is then reasonable to use this
approximation to extract estimates for the upper limits
on the number of fermion flavors below which compact
QED3 confines and below which the naive CFT limit
e2 → ∞ in noncompact QED3 might break down.
As mentioned in the Introduction, in compact QED3

monopole operators can proliferate and lead to confinement
provided that they are relevant in the RG sense, i.e. if their
scaling dimensions are smaller than 3. From Eq. (7.1) it is
easy to see that the n ¼ 1 monopole operator is relevant if
Nf ≲ 11.47 and irrelevant otherwise. I would therefore
expect that compact QED3 should be in a deconfined phase
precisely ifNf ≥ 12. This result is consistent with the lattice
analysis of Ref. [39], which showed that the monopoles
proliferate for Nf ¼ 2 and Nf ¼ 4, as well with the results
of Ref. [16], where it was argued based on the F-theorem
[12–15] and the work of Vafa and Witten [40,41] that
confinement would not be possible for Nf > 12.
Lastly, one should stress that the computation presented

in this paper was performed under the assumption that
QED3 flows to an infrared conformal fixed point obtained
by taking e2 → ∞ in the action (1.1). This assumption is
certainly correct at large Nf, where the whole RG flow can
be studied perturbatively. As discussed in the Introduction,
below a critical value of fermion flavors, Nf ≤ Ncrit

f , one
expects the infrared physics to be significantly different
from what the CFT limit e2 → ∞ would predict, the
scenario supported by lattice data being that of spontaneous

chiral symmetry breaking. For Nf ≤ Ncrit
f it is reasonable to

speculate that something would go wrong with taking the
limit e2 → ∞ in Eq. (1.1). Prima facie evidence that this
naive CFT limit is no longer appropriate would be that it
leads to operator dimensions that violate the unitarity
bound. Such a situation is not uncommon. In supersym-
metric gauge theories, it is well known that as one decreases
the number of flavors it may happen that at some point
certain operators hit the unitarity bound; to continue
decreasing the number of flavors, one must pass to a dual
description of the CFT because the original one is no longer
valid. In nonsupersymmetric QED3 such a dual description
may not be readily available, and for fewer fermion flavors
new physics would be expected.
One can therefore estimate Ncrit

f by assuming that for
Nf ≤ Ncrit

f the naive CFT limit predicts unitarity bound
violations. The unit strength monopole operator is a Lorentz
scalar, so in a unitary theory its scaling dimension should be
no smaller than 1=2. Using Eq. (7.1), one finds a unitarity
bound violation for Nf ≤ 2.03. Of the local operators that
are polynomials in the fundamental fields, the one with
lowest scaling dimension is ψ†

aψa, for which [17]

½ψ†
aψa� ¼ 2 −

64

3π2Nf
þOð1=N2

fÞ: (7.2)

The scaling dimension of this operator violates the unitarity
bound if Nf ≤ 1.44. While one should treat these bounds
very cautiously, they suggest that the monopole operators
are more constraining. That the monopole operators are
more important at small Nf is consistent with the similar
findings of Refs. [26,42] in supersymmetric theories. Lastly,
it is intriguing that the estimate forNcrit

f obtained this way is
consistent with the lattice results, which suggest there is
chiral symmetry breaking at Nf ¼ 2, but not for larger
values of Nf.
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APPENDIX A: MONOPOLE HARMONICS VIA
CONFORMAL TRANSFORMATION

1. Scalar harmonics

The (scalar) monopole spherical harmonics Yq;lmðθ;ϕÞ
of Refs. [37,38] can be used as a basis for the angular
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dependence of a charged scalar field in a background with
n ¼ 2q units of monopole flux sitting at the origin of R3.
Just like the usual spherical harmonics, they are eigen-
functions of the angular momentum operators ~L2 and L3

with eigenvalues given by

~L2Yq;lm ¼ lðlþ 1ÞYq;lm; L3Yq;lm ¼ mYq;lm: (A1)

If the electromagnetic potential is given by Eq. (2.3), the
angular momentum operators can be written as

L3 ¼ −i∂ϕ − q;

~L2 ¼ −∇2 þ 2q
sin2θ

ðcos θ − 1ÞL3; (A2)

where ∇2 is the usual Laplacian on the two-sphere. It will
be useful for us to write

Yq;lmðθ;ϕÞ ¼ Θq;lmðcos θÞeiðmþqÞϕ: (A3)

The ~L2 eigenvalue equation can then be written as

− ∂x½ð1 − x2Þ∂xΘq;lmðxÞ� þ
m2 þ q2 þ 2qmx

1 − x2
Θq;lmðxÞ

¼ lðlþ 1ÞΘq;lmðxÞ: (A4)

The regular solution of this equation can be given in terms
of the Jacobi polynomials,

Θq;lmðxÞ ¼ 2m−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðl −mÞ!ðlþmÞ!

πðl − qÞ!ðlþ qÞ!

s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ xÞq−m
ð1 − xÞqþm

s
Pð−q−m;q−mÞ
lþm ðxÞ: (A5)

The normalization factor in Eq. (A5) is chosen such that
jYq;lmðθ;ϕÞj2 integrates to unity over the two-sphere.
Let us denote the scalar monopole harmonics Yq;lm as

jl; mi, suppressing for now the extra label q. They trans-
form in the spin-l representation of the SO(3) rotation
group. In these conventions, q is allowed to take half-
integer values, and l − jqj ≥ 0 is an integer.

2. Spinor and vector harmonics

A basis of functions for a charged field of spin s in the
same monopole background can be constructed using
the angular momentum addition rules. The ð2sþ 1Þ com-
ponents of this field can be written as js;msi, with
−s ≤ ms ≤ s, and they transform in the spin-s representa-
tion of SO(3). A basis of monopole spinor harmonics is
given by

jl; s; j; mji ¼ ð−1Þ−lþs−mj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p Xs
ms¼−s

�
l s j

mj −ms ms −mj

�
jl; mj −msi ⊗ js;msi; (A6)

where I wrote down the Clebsch-Gordan coefficients explicitly in terms of the 3-j symbols.
In particular, for s ¼ 1=2 there are two sets of modes,

T2q;lmðθ;ϕÞ ¼
����l; 12 ;lþ 1

2
; mþ 1

2

	
¼

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffi
lþmþ1
2lþ1

q
Yq;lmðθ;ϕÞffiffiffiffiffiffiffiffi

l−m
2lþ1

q
Yq;lðmþ1Þðθ;ϕÞ

1
CA;

S2q;lmðθ;ϕÞ ¼
����l; 12 ;l −

1

2
; mþ 1

2

	
¼

0
B@ −

ffiffiffiffiffiffiffiffi
l−m
2lþ1

q
Yq;lmðθ;ϕÞffiffiffiffiffiffiffiffiffiffiffiffi

lþmþ1
2lþ1

q
Yq;lðmþ1Þðθ;ϕÞ

1
CA: (A7)

(This is what is called ϕj�1=2;jm in Ref. [24].) Note that for
T2q;lm we have −l − 1 ≤ m ≤ l, and for S2q;lm we have
−l ≤ m ≤ l − 1, as follows from the fact that in both cases
−j ≤ mj ≤ j. If the monopole harmonics Yq;lm are nor-
malized such that they have unit norm, then Tq;lm and Sq;lm
will also have unit norm.
Similarly, when q ¼ 0, one can define the vector

harmonics corresponding to s ¼ 1,

Ulmðθ;ϕÞ ¼ jl; 1;l − 1; mi; Vlmðθ;ϕÞ ¼ jl; 1;l; mi;
Wlmðθ;ϕÞ ¼ jl; 1;lþ 1; mi: (A8)

In thinking about vector harmonics on S2 it is customary to
define

X i;lmðθ;ϕÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp ∂iYlmðθ;ϕÞ;

Yi
lmðθ;ϕÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ϵijffiffiffi

g
p ∂jYlmðθ;ϕÞ; (A9)

where the indices i; j ¼ θ;ϕ, and εθϕ ¼ 1 is the unit
antisymmetric tensor. A straightforward calculation shows
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Uðlþ1Þmðθ;ϕÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1

2lþ 1

r
Ylmðθ;ϕÞdτ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2lþ 1

r
Xlmðθ;ϕÞ;

Vlmðθ;ϕÞ ¼ iYlmðθ;ϕÞ;

Wðl−1Þmðθ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2lþ 1

r
Ylmðθ;ϕÞdτ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1

2lþ 1

r
Xlmðθ;ϕÞ: (A10)

APPENDIX B: A CHECK: FERMION GREEN’S FUNCTION AT N ¼ 0

As a check, when n ¼ 0, the Green’s function should be

G0ðr; r0Þ ¼
ij~xjj~x0j
4π

~σ · ð~x − ~x0Þ
j~x − ~x0j3 ; (B1)

where ~x was defined in Eq. (2.4) in terms of the coordinates on S2 ×R. Apart from the j~xjj~x0j factor, this expression is just
the fermion Green’s function in flat space, and j~xjj~x0j is the conformal factor needed to map the theory from R3 to S2 × R.
We can rewrite G0 as

G0ðr; r0Þ ¼
i
4π

~σ · ðeðτ−τ0Þ=2x̂ − eðτ0−τÞ=2x̂0Þ
ð2 coshðτ − τ0Þ − 2 cos γÞ3=2 : (B2)

Let us now try to reproduce this expression from the spectral decomposition used in Sec. V. When n ¼ 0, Eq. (5.4)
becomes

G0ðr; r0Þ ¼ i
X∞
l¼1

Xl−1
m¼−l

e−ljτ−τ0j
�
T0;ðl−1Þmðθ;φÞS†0;lmðθ0;φ0Þθðτ0 − τÞ − S0;lmðθ;φÞT†

0;ðl−1Þmðθ0;φ0Þθðτ − τ0Þ
�
: (B3)

The spinor additions are

Xl−1
m¼−l

T0;ðl−1Þmðθ;φÞS†0;lmðθ0;φ0Þ ¼ σ

4π
· ½−x̂0P0

lðcos γÞ þ x̂P0
l−1ðcos γÞ�;

Xl−1
m¼−l

S0;lmðθ;φÞT†
0;ðl−1Þmðθ0;φ0Þ ¼ σ

4π
· ½−x̂P0

lðcos γÞ þ x̂0P0
l−1ðcos γÞ�: (B4)

Then

G0ðr; r0Þ ¼
X∞
l¼1

ie−ljτ−τ0j

4π
~σ · ½½−x̂0P0

lðcos γÞ þ x̂P0
l−1ðcos γÞ�ð−θðτ0 − τÞÞ þ ½−x̂P0

lðcos γÞ þ x̂0P0
l−1ðcos γÞ�θðτ − τ0Þ�: (B5)

Next we should use the generating function for the Legendre polynomials,

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2txþ t2

p ¼
X∞
n¼0

PnðxÞtn: (B6)

Differentiating with respect to x and setting x ¼ cos γ and t ¼ e−jτ−τ0j, one obtains

ejτ−τ0j=2

ð2 coshðτ − τ0Þ − 2 cos γÞ3=2 ¼
X∞
l¼0

P0
lðcos γÞe−ljτ−τ

0j: (B7)

Using this formula in Eq. (B5), one further obtains
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G0ðr; r0Þ ¼
i

4πð2 coshðτ − τ0Þ − 2 cos γÞ3=2 ~σ · ½ð−ejτ−τ0j=2x̂0 þ e−jτ−τ0j=2x̂Þθðτ0 − τÞ

− ð−ejτ−τ0j=2x̂þ e−jτ−τ0j=2x̂0Þθðτ − τ0Þ�: (B8)

Combining the terms in the square brackets, the final result is

G0ðr; r0Þ ¼
i
4π

~σ · ðeðτ−τ0Þ=2x̂ − eðτ0−τÞ=2x̂0Þ
ð2 coshðτ − τ0Þ − 2 cos γÞ3=2 ; (B9)

which agrees with Eq. (B2).
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