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We raise on theoretical grounds the question of the physical relevance of Israel matching conditions and
their generalizations to higher codimensions, the standard cornerstone of the braneworld and other
membrane scenarios. Our reasoning is based on the incapability of the conventional matching conditions to
accept the Nambu-Goto probe limit, the inconsistency of codimension-2 and -3 classical defects for D ¼ 4

and the probable inconsistency of high enough codimensional defects for any D since there is no high
enough Lovelock density to support them. We propose alternative matching conditions which seem to
overcome the previous puzzles. Instead of varying the brane-bulk action with respect to the bulk metric at
the brane position, we vary with respect to the brane embedding fields so that the gravitational backreaction
is included (“gravitating Nambu-Goto matching conditions”). Here, we consider in detail the case of a
codimension-2 brane in 6-dim Einstein-Gauss-Bonnet gravity, prove its consistency for an axially
symmetric cosmological configuration and show that the theory possesses richer structure compared to
the standard theory. The cosmologies found have the Friedmann behavior and extra correction terms. For a
radiation brane one solution avoids a cosmological singularity and undergoes accelerated expansion near
the minimum scale factor. In the presence of an induced gravity term, there naturally appears in the theory
the effective cosmological constant scale λ=ðM4

6r
2
cÞ, which for a brane tension λ ∼M4

6 (e.g. TeV4) and
rc ∼H−1

0 gives the observed value of the cosmological constant.
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I. INTRODUCTION

Many physical systems are described by a dynamics
which models them as relativistic membranes in an
appropriate dimensional spacetime. One example studied
extensively during the last decade is the Universe itself
within the context of various braneworld and other scenar-
ios. Distributional (thin) as well as finite thickness defects
have been studied. However, thin sources are expected to
describe the important main features of brane dynamics
for an arbitrary family of finite width regularizations in the
limit of infinitesimal thickness, and therefore, distributional
description is independent from the regularization scheme
used.
It is admitted that the phenomenological action describ-

ing at lowest order the dynamics of a classical infinitely thin
test brane (probe) with tension, moving in a given back-
ground spacetime, is proportional to the intrinsic volume of
the world sheet, the Nambu-Goto action [1]. Variation of
this action with respect to the embedding fields of the brane
position gives the Nambu-Goto equations of motion which
are geometrically described by the vanishing of the trace of
the extrinsic curvature, and therefore, the world sheet swept
by the brane is extremal (minimal). Of course, the induced

metric on a Nambu-Goto brane is finite (with the possible
exception of a set of points with measure zero) which
means that the bulk metric is regular at the brane position,
since only then, the Nambu-Goto equations of motion are
defined. When the gravitational field of the defect is taken
into account the situation becomes very different and
difficult since now both the bulk metric and the brane
position become dynamical. It is the aim of this commu-
nication to examine anew the dynamics of a classical self-
gravitating brane with a bulk metric regular on the brane.
The situation with a bulk metric singular on the brane is an
interesting (not in the context of a braneworld) but very
different story since now the equation of motion of the
defect cannot contain the induced metric which is singular.
In this case, actually, the full nonperturbative equation of
motion is unknown; however, there is a consensus about the
equation of motion for the special case of a 0-brane (point
particle) in four dimensions and only at the linearized level
around an arbitrary background [2,3].
Let us recall the standard or conventional treatment for

obtaining the equations of motion for the brane-bulk system.
One starts from the gravitational equations containing the
Einstein term or some modification on the left-hand side and
all the matter content of the bulk on the right-hand side with
the localized brane energy-momentum tensor included.
Therefore, a source proportional to a delta function of
suitable codimension fuels the bulk gravitational equations.
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Whenever a delta function appears on the right-hand side of
an equation it always tries to find an analogous distribution
on the left-hand side to balance. This balance, when
possible, extracts the discontinuity of an appropriate quan-
tity, e.g. in electrodynamics the discontinuities of electric or
magnetic field. However, in gravity this discontinuity refers
to the (finite) extrinsic curvature of the defect, and since the
extrinsic curvature is related to the embedding fields of the
defect, it extracts as boundary conditions (matching con-
ditions) the equations of motion of the defect. This is what is
said that in gravity everything, bulk dynamics as well as
brane equations of motion, is contained in gravity theory
itself. By contrast, in electrodynamics one postulates the
Lorentz force equation of motion for the point charge.
Unfortunately, it is known that Einstein gravity being
nonlinear does not succeed the previous balance of dis-
tributional terms for all kinds of defects. Thin shells of
matter (codimension-1 objects) do make mathematical
sense within Einstein gravity and the equations of motion
for the domain wall are the well-known Israel matching
conditions [4] which are always consistent with bulk gravity
equations. Note that thin shells have always regular metrics
(analogously to the nonsingular electric potential of a
charged plane). However, when a generic distributional
stress-energy tensor is supported on a codimension-2 defect
the analysis shows that it does not make mathematical sense
to consider solutions of Einstein’s equations [5–7] (a pure
brane tension is a special situation which is consistent [8,9]).
Early work on codimension-2 distributional braneworlds
also showed that they were pure tension objects [10]. As
referred above, possible singular solutions consistent with
the underlying symmetry (analogous to the logarithmic
electric potential of a charged line) will not be of our interest
here [11]. Not surprisingly, the problematic behavior still
continues for other higher-codimension branes.
A nice idea to resolve the puzzle of inconsistency was to

understand that it was not the defect construction which
was problematic; rather the gravity theory itself did not
have the relevant differential complexity in order to
describe complicated distributional solutions. The clear-
cut hint of this point was the notice [12] that upon
considering the general second derivative gravity theory
in six dimensions [Einstein-Gauss-Bonnet (EGB)] one
could have, at least in principle, a nontrivial energy-
momentum tensor fueling geometric junction conditions
for a codimension-2 conical defect. In [13] the consistency
of the whole set of junction plus bulk field equations was
explicitly shown for an axially symmetric codimension-2
cosmological brane (not necessarily totally geodesic) in
six-dimensional EGB gravity. Presumably this consistency
will persist if axial symmetry is abandoned. Analogously,
e.g. a 5-brane in eight dimensions is again of codimension-
2 and an EGB theory would suffice, but for a 4-brane in
eight dimensions (codimension-3) the third Lovelock
density [14] would be needed for consistency. However,

it is not clear what is the situation when codimensionality
is even bigger, e.g. a 1-brane in six dimensions (it is
probably inconsistent since the spirit of the proposal is to
include higher and higher Lovelock densities to accom-
modate higher codimension defects and there is no higher
than the second Lovelock density in six dimensions).
In brief, the generalization of the proposal is that in a
D-dimensional spacetime the maximal ½ðD − 1Þ=2�
Lovelock density should be included (possibly along with
lower Lovelock densities) and the branes with codimen-
sions δ ¼ 1; 2;…; ½ðD − 1Þ=2� should be consistent accord-
ing to the standard treatment; for yet higher codimensions
the situation is not clear and probably inconsistent.
It is evident that the system of gravitational equations

with a delta source on the right-hand side, whenever
consistent, is equivalent to this system without the localized
energy-momentum tensor, plus the corresponding match-
ing conditions. An equivalent way to get all this set of
equations is to take the variation of the bulk action with
respect to the bulk metric as far as the bulk equations of
motion are concerned and to take the variation of the total
brane-bulk action with respect to the bulk metric at the
brane position as far as the matching conditions are
concerned. This method of deriving the matching con-
ditions, although formally equivalent, presents in some
cases a few technical differences compared to the initial
method where the appropriate distributional terms are
isolated. For example, for codimension-1 branes in
Einstein gravity the extra Gibbons-Hawking term has to
be included in the brane action in order for the variation to
be well defined, a term that does not appear in the first
method. Note also that contrary to the situation in classical
mechanics or field theory where the variation of the
coordinates or fields usually vanishes on the boundary,
here, the variation of the bulk metric remains arbitrary on
the brane since much useful information stems from there.
Although the two methods for deriving the matching
conditions are formally equivalent, however, there is a
subtle but important point concerning branes with codimen-
sion larger than one, which makes the variational method
superior. To explain, we note that for higher codimen-
sion branes there appear more than one kind of distribu-
tional terms in the full gravitational equations. For example,
for a codimension-2 brane there are (r-independent) terms
multiplied with δðrÞ=r and others proportional to δðrÞ,
where r is the radial coordinate from the brane. One could
assume that both kinds of distributional terms should be
balanced among the two sides of the distributional equa-
tion, arising therefore two different matching conditions.
For the six-dimensional EGB gravity the consistency
mentioned above includes only the matching conditions
related to the wilder distributional terms δðrÞ=r, while if
additionally the extra matching conditions [15] arising from
the distributional terms δðrÞ are included in the whole
system of equations, the problem in general becomes
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inconsistent [13]. An explanation why the mild distribu-
tional terms should be ignored is to multiply the initial
distributional equation by r; therefore δðrÞ becomes rδðrÞ
and vanishes. However, this is not a safe and unambi-
guous manner to handle distributional equations and
therefore this is not the correct reasoning. Because a
distribution is defined through integration, the action and
the variation of the action naturally provides this integra-
tion. In our example of a codimension-2 brane the volume
element of integration close to the brane is rdrdθ, and
therefore the quantity rδðrÞ naturally and unambiguously
appears sending the mild distributional terms to zero.
To make a criticism on the standard treatment for

obtaining the equation of motion of a defect that was
described in the previous paragraphs, we mention the
following points.
(a) A test brane moving in a curved background spacetime

traces a minimal surface in the lowest order approxi-
mation. When the self-gravitational field of the brane
starts to be taken into account it is natural to expect
that a small correction should result on top of the
background minimal surface motion of the test
approximation. However, the equations of motion
for a gravitating defect derived following the standard
approach do not obey this condition of continuous
deformation from the Nambu-Goto probe limit. In-
deed, since the matching conditions described so far
are nonperturbative, in order to realize the probe limit
one should split the brane quantities appearing in these
matching conditions (total induced metric, extrinsic
curvature and possible deficit angles) to their corre-
sponding background plus perturbed parts. It is not
quite obvious what one should do in the probe limit
with the brane energy-momentum tensor. Either the
total brane energy-momentum including the brane
tension (and the possible induced gravity term being
an extra brane source) should go to zero, or the brane
tension being always nonvanishing should be kept
fixed and small (as a sort of regulator) and only the
additional brane energy-momentum tensor should go
to zero. More precisely, since the brane tension has
dimensions of energy per spatial volume, the product
of the brane tension with the brane volume should be
much smaller than some definition of global energy of
the background space. Although there are extreme
cases where either the brane volume could be infinite
or the gravitational energy attributed to a background
space according to some definition of energy could be
infinite, however, a criterion of a sort of smallness of
the brane tension should be necessary in the probe
limit. Under this condition, to suppress the gravita-
tional character of the brane and go back to a probe
brane moving in the fixed background, one should
formally take to zero the bulk gravity couplings which
control the gravitational backreaction of the brane, as

well as some extra matter sources which also contrib-
ute to the backreaction (then, all the perturbed quan-
tities vanish) and the matching condition should
reduce to the Nambu-Goto equation. In a similar
context, in the singular case which is not the subject
of our discussion here, the linearized equation of
motion of a point particle in four dimensions [2,3]
is indeed a correction of the geodesic equation of
motion on a given background (of course, for a
0-brane the geodesic equation coincides with the
Nambu-Goto) and for a two-body system the probe
limit is realized when one mass is much smaller than
the other. When the brane tension is not small or
the brane contains additional energy-momentum, the
brane backreacts with the gravitational field and the
full equations are needed. Obviously, the Israel match-
ing conditions do not satisfy the requirement of the
Nambu-Goto limit since they contain the extrinsic
curvature instead of its trace (as expected, the same
also happens for the matching condition of a codi-
mension-1 brane in EGB gravity theory [16]). For the
codimension-2 matching condition in EGB theory
discussed above [12,13,17], the situation is similar.
To go one step further, one could oppose by claiming
that the correct probe limit of a defect is not the
Nambu-Goto equation of motion but the geodesic one,
which means that all the extrinsic curvatures have to
become zero. This is indeed the case for the Israel
matching conditions under the assumption that the
total brane matter content goes to zero. However, this
reasoning is not correct, because if the geodesic was
the correct probe limit, it would be so, independently
of the gravitational theory considered (for example, a
probe point mass moves on the geodesic of a back-
ground solution of any gravitational theory [18,19]),
or also independently of the codimension of the defect.
But this is not the case, since other than Einstein
gravitational theories for codimension-1 or other
codimension defects, in the limit of vanishing brane
energy-momentum, do not give the geodesic equation
[12,16,17].

(b) There is an additional reason why the idea of adding
higher Lovelock densities in order to get consistency
according to the standard approach cannot be the final
word: generic codimension-2 or 3 branes are not
allowed to reside in four dimensions since Einstein
gravity is insufficient and there are no any higher
Lovelock densities in four dimensions to add. Even if
four dimensions are not the actual spacetime dimen-
sionality, at certain length and energy scales it has
been tested that four-dimensional Einstein gravity
represents effectively the spacetime to high accuracy.

(c) Furthermore, it seems most probable that branes of
high enough codimension (higher than ½ðD − 1Þ=2�)
cannot reside in a D-dimensional spacetime according
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to the standard treatment since there is no corres-
ponding sufficiently high Lovelock density. In the
D-dimensional spacetime where we live (maybe
D ¼ 4) classical defects of any possible codimension
should be compatible. Even if particular branes are not
physically interesting or do not appear in nature, they
could in principle be constructed in the lab, and
therefore the correct mathematical framework should
allow all kinds of branes (in analogy, all kinds of
charged distributions exist). It does not seem reason-
able for some hidden symmetry to prohibit the
existence of any possible classical defect. If one
disregards this point and sticks to particular branes,
the criteria of consistency of a given formulation are
reduced. Additionally, since both regular and singular
solutions are in general allowed mathematically, it
would be peculiar if the regular solutions we inves-
tigate here are not permitted. Moreover, it seems
impossible for the equations of motion of the various
codimensional defects to be derived through different
methods, but a unified principle should give the
equations of motion of all kinds of defects. Possible
direct observational evidence of codimension-1 de-
fects in four dimensions could shed light on the issue
of matching conditions.

The present paper studies, instead of the standard,
alternative matching conditions which aim to satisfy the
previous three points. In particular, concerning the first
point above, these alternative matching conditions always
have the Nambu-Goto probe limit, independently of the
gravitational theory considered, the dimensionality of
spacetime or the codimensionality of the defect. As far
as the second point is concerned, considering the alternative
matching conditions, a codimension-2 brane is consistent
in D-dimensional Einstein gravity [20], or in particular in
four-dimensional Einstein gravity. Finally, for the third
point, the simple case of a codimension-1 brane is still, as in
the standard approach, always consistent, independently of
the gravitational theory. The codimension-2 brane in EGB
theory, examined in the present paper, is also proved to be
consistent. Accordingly, it is expected, although we do not
have a proof, that any higher codimension brane will also
be consistent in either Einstein gravity or any Lovelock
extension.
Let us describe now the method for deriving these

alternative matching conditions. In the standard method
the variation of the bulk action with respect to the bulk
metric gives the bulk equations of motion and the variation
of the total brane-bulk action with respect to the bulk metric
at the brane position gives the matching conditions.
Although the bulk equations of motion are not debatable,
the sort of variation at the brane position is not unques-
tionable. The brane defines a sort of boundary (not
necessarily of codimension 1) and a boundary is an
exceptional place whose position is primarily determined

by the embedding fields and secondarily or implicitly by
its induced metric or the bulk metric at the brane position.
The Nambu-Goto equations of motion arise by varying the
Nambu-Goto action with respect to the embedding fields.
Typically, the Nambu-Goto action being proportional to
the world sheet volume is a function of the induced brane
metric which depends explicitly and implicitly (through
the bulk metric at the brane position) on the embedding
fields. If, furthermore, the brane backreacts with the bulk
gravity, gravity will be also present at the brane position
and the motion of the brane will be influenced by the
gravitational bulk action. A variation of the embedding
fields implies a variation of the bulk metric at the brane
position, and therefore, additional contributions to the
brane equation of motion beyond the Nambu-Goto term
arise from the variation of the bulk action with respect to
the embedding fields. The distributional terms are respon-
sible for this contribution. Again, as in the standard
treatment, everything, bulk dynamics as well as brane
equations of motion, is contained in gravity theory itself,
but in a different manner than before. Here, the brane
equation of motion is the result of the variation of the
brane-bulk action at the brane position with respect to the
position variables, what can be called “gravitating Nambu-
Goto matching conditions.” Although the brane energy-
momentum tensor is still defined by the variation of the
brane action with respect to the bulk metric at the brane
position, however, this tensor enters the new matching
conditions in a different way than before. The present
proposal is not based primarily on the modification of the
gravitational theory, but on the modification of the
matching conditions. Since the consistency here is not
based crucially on the inclusion of the maximal Lovelock
density, it is plausible that the consistency will occur even
for all higher codimension defects. Here, the distributional
terms are still present, not inside a distributional differ-
ential equation leading directly to inconsistencies at
certain cases, but rather smoothed out inside an integra-
tion. Of course, in a higher D-dimensional spacetime
higher Lovelock densities should in principle contribute to
the bulk action, and actually, the consistency of such a
theory, along with the modified matching conditions
described above, is the main subject of study in the
present paper. Moreover, the inclusion of such extra terms
in the action leads probably to physically more interesting
and realistic solutions.
Our approach is reminiscent of the “Dirac-style” varia-

tion performed in [21] in the study of codimension-1
defects. It also resembles the Regge-Teitelboim brane
gravitational theory [22] which is an extension of the
Nambu-Goto style of variation, with the crucial difference
however that in [22] there are no higher-dimensional
gravity terms in the action and the bulk space is prefixed
(Minkowski) instead of dynamical which is here. In [21],
since the probe limit and the consistency of the various
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codimensions were not considered, the standard approach
was not set into doubt, but rather the derivation was
basically suggested as a formal treatment to unify differ-
ent gravitational theories. In [20], by varying with respect
to the embedding fields, the alternative matching con-
ditions of a 3-brane in six-dimensional Einstein gravity
were derived and their consistency was shown for an
axially symmetric configuration (the same however is
true for a codimension-2 brane in any dimension). In the
present paper we go one step further and derive the
matching conditions of a codimension-2 brane in EGB
theory. Their consistency is checked for an axially
symmetric cosmological configuration. The derived cos-
mologies have various differences compared to the
corresponding cosmologies derived using the standard
matching conditions [13]. The main point stressed in the
present paper is that in view of the three points
mentioned above, the alternative matching conditions
derived by varying with respect to the embedding fields
instead of the bulk metric at the brane position could well
be closer to the correct direction for deriving realistic
matching conditions, compared to the Israel matching
conditions and generalizations.
The setup of the paper is as follows: In Sec. II the

method is introduced as an extension of the Nambu-Goto
variation so that the contribution from the gravitational
backreaction is included. In Sec. III we consider a
3-brane in six-dimensional Einstein-Gauss-Bonnet gravity
and derive the generic alternative matching conditions
and the remaining effective equations on the brane.
Similar or identical equations hold for other codimension-2
branes in other spacetime dimensions, but we choose the
3-brane as it can represent our world in the braneworld
scenario. In Sec. IV we specialize to the cosmological
configuration and demonstrate the consistency of the
system. In Sec. V we investigate the cosmological
equations and derive solutions for the cosmic evolution.
In Sec. VI we study a few special characteristic cases,
and we discuss the Einstein limit of the theory and
compare with the standard treatment where the conven-
tional matching conditions are used. Finally, in Sec. VII
we conclude.

II. GENERAL ARGUMENTS AND
INTRODUCTION OF THE METHOD

In order to understand how the proposed variation with
respect to the embedding fields of the brane position is
performed, we start with a general four-dimensional action
of the form

s4 ¼
Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p
LðhijÞ; (2.1)

where L is any scalar on Σ built up from the induced
metric hij. The brane coordinates are χi (i; j… are

coordinate indices on the brane) and the bulk coordinates
are xμ (μ; ν;… are D-dimensional indices). In this section
D is arbitrary, while in the next sections of the paper
we will specialize to D ¼ 6. In the present paragraph
the bulk metric gμν is fixed and nondynamical, while the
treatment of a backreacted metric will be given in the
next paragraphs of this section. The embedding fields are
the external (bulk) coordinates of the brane, so they are
some functions xμðχiÞ. We could use a capital case letter
for the embedding fields to distinguish from the bulk
coordinates, but it is better not to do so because first, the
embedding fields are the bulk coordinates at the brane
position, second, the functions xμðχiÞ do not define the
brane position unless the bulk coordinates xμ in the full
space are given, and third, since our concern is the brane
equation of motion, the bulk coordinates away from the
brane only incidentally will be considered. Since hij ¼
gμνxμ;ixν;j and on the brane it is gμνðxλÞ, thus hij has
explicit and implicit dependence on the embedding fields
xμ. Let their variation be described by the displacement
vector δ̄xμðxνÞ and the corresponding variation of the
various quantities denoted by δ̄x. The quantities xμ;i are
tangent vectors on the brane and their variation
is δ̄xðxμ;iÞ ¼ ðδ̄xμÞ;i ≡ δ̄xμ;i. We must observe that the
variation of gμν is

δ̄xgμν ¼ gμν;λδ̄xλ; (2.2)

so gμν is considered as a simple scalar function of xλ

ignoring the possible tensorial indices. The reason is that
the bulk coordinates, which determine the tensorial
behavior of the quantities with spacetime indices, do
not change; only the brane position changes—i.e. the
embedding fields are varied. So, the spirit of the δ̄x
variation is that when an explicit embedding field xμ is
met, it is varied, while when a function of this xμ is met,
the partial derivative is taken. Then,

δ̄xhij ¼ gμν;λxμ;ixν;jδ̄xλ þ gμνxμ;iδ̄xν;j þ gμνxν;jδ̄xμ;i

¼ xμ;ixν;jðgμν;λδ̄xλ þ gμλδ̄xλ;ν þ gνλδ̄xλ;μÞ: (2.3)

If we had wrongly considered the tensorial character
of gμν, its variation would be g0μνðxρ þ δ̄xρÞ − gμνðxρÞ ¼
−gμλðxρÞδ̄xλ;ν − gνλðxρÞδ̄xλ;μ, so the variation of hij would
vanish, which is a trivial result expressing no dynamics
and is simply due to that gμνxμ;ixν;j is scalar in the
spacetime indices μ; ν. The variation of s4 is

δ̄xs4 ¼
Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p
τijδ̄xhij; (2.4)

where τij ¼ δL
δhij

þ L
2
hij. Substituting δ̄xhij from (2.3),

integrating by parts and imposing δ̄xμj∂Σ ¼ 0, we get
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δ̄xs4 ¼ −2
Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p
gμσ½ðτijxμ;iÞjj þ τijΓμ

νλxν;ixλ;j�δ̄xσ

¼ −2
Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p
gμσ

× ½τijjjxμ;i þ τijðxμ;ij þ Γμ
νλxν;ixλ;jÞ�δ̄xσ

¼ −2
Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p
gμσðτijjjxμ;i − τijKα

ijnαμÞδ̄xσ; (2.5)

since xμjij ¼ xμ;ij, xμ;ij þ Γμ
νλxν;ixλ;j ¼ −Kα

ijn
μ
α, where

Kα
ij ¼ nαi;j are the extrinsic curvatures on the brane and

nαμ (α ¼ 1;…, δ ¼ D − 4) form a basis of normal
vectors to the brane. The covariant differentiations j
and; correspond to hij and gμν, respectively, while Γμ

νλ

are the Christoffel symbols of gμν. Because of the
arbitrariness of δ̄xμ it arises

τijjjxμ;i − τijKα
ijnαμ ¼ 0; (2.6)

and since the vectors xμ;i, nαμ are independent, two sets
of equations arise:

τijjj ¼ 0; τijKα
ij ¼ 0 ⇔ τijðxμ;ij þ Γμ

νλxν;ixλ;jÞ ¼ 0

(2.7)

(since nαμnβμ ¼ δβα). Note that the previous equivalence
of the two expressions, one with free index α and the
other with free index μ, is due to that the vectors
xμ;ij þ Γμ

νλxν;ixλ;j are normal to the brane. The variation
described so far is the same with the one leading to the
Nambu-Goto equation of motion. Indeed for L ¼ 1,
it is τij ¼ 1

2
hij and the first equation is empty, while

the second becomes hijKα
ij ¼ 0 ⇔ □hxμ þ Γμ

νλhνλ ¼ 0

(since −nαμhijKα
ij ¼ □hxμ þ Γμ

νλhνλ) which is the
Nambu-Goto equation of motion. Note again that
the previous equivalence of the two expressions for the
Nambu-Goto equation, one with free index α and the other
with free index μ, is due to that the vector□hxμ þ Γμ

νλhνλ is
normal to the brane. Similarly, the Regge-Teitelboim
equation of motion [22] is a generalization where L collects

the four-dimensional terms of (3.1), i.e. L ¼ rD−4
c
2κ2D

R − λþ
Lmatffiffiffiffi
jhj

p . It is τij ¼ − 1
2
ðrD−4

c
κ2D

Gij þ λhij − TijÞ, so the first

equation becomes the standard conservation Tijjj ¼ 0

and the second ðrD−4
c

κ2D
Gij þ λhij − TijÞKα

ij ¼ 0.

In order to express the backreaction of the brane onto the
bulk and vice versa, we now go one step further and
consider a general higher-dimensional action of the form

sD ¼
Z
M
dDx

ffiffiffiffiffi
jgj

p
LðgμνÞ; (2.8)

whereL is any scalar onM built up from the metric gμν, e.g.
L ¼ RðgμνÞ. Under an arbitrary variation of the bulk metric

δgμν the variation of sD is δsD ¼ R
M dDx

ffiffiffiffiffijgjp
Eμνδgμν,

where Eμν ¼ δL
δgμν

þ L
2
gμν, and the stationarity δsD ¼ 0

under arbitrary variations δgμν gives the bulk field equa-
tions Eμν ¼ 0. The boundary terms arising from this
variation in the presence of a defect disappear by a suitable
choice for the boundary condition of δgμν, usually by
choosing a Dirichlet boundary condition for δgμν. However,
in the presence of the defect, inside Eμν, beyond the regular
terms which obey Eμν ¼ 0, in general there are also
nonvanishing distributional terms making the variation
δsD not identically zero. The bulk action knows about
the defect through these distributional terms. Since
distr Eμν ∝ δðδÞ, where δðδÞ is the δ-dimensional delta
function with support on the defect, it is distr Eμνδgμν ∝
δðδÞδgμν ¼ δðδÞδgμνjbrane, so only the variation of the bulk
metric at the brane position contributes to δsD. More
precisely, these distributional terms always appear in the
parallel to the brane components and if distr Eij ¼ kijδðδÞ
the variation δsD gets the form

δsD ¼
Z
M
dDx

ffiffiffiffiffi
jgj

p
kijδðδÞδhij ¼

Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p
kijδhij: (2.9)

Therefore, there is an extra variation of the bulk metric at
the brane position δgμνjbrane (which in the adapted frame
coincides with the variation of the induced metric δhij)
which is independent from the bulk metric variation and
this extra variation determines the brane equation of motion
(actually, it is sensible for the brane equation of motion not
to depend on the variation of the fields away from the
brane). The corresponding variation of the total action at
the brane position is

δðsD þ s4Þjbrane ¼
Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p
ðkij þ τijÞδhij: (2.10)

In particular, if all the components of the variation δhij are
independent from each other, the stationarity of the total
action at the brane position δðsD þ s4Þjbrane ¼ 0 gives
the standard matching conditions (or standard brane equa-
tions of motion) kij þ τij ¼ 0 ⇔ kμν þ τμν ¼ 0, where
kμν ¼ kijxμ;ixν;j, τμν ¼ τijxμ;ixν;j are parallel to the brane
tensors. Our aim is to consider a variation δ̄xμ of the
embedding fields and derive a meaningful nontrivial brane
equation of motion in the presence of a higher-dimensional
action sD on top of the four-dimensional action s4. As we
have seen in the previous paragraph, since the bulk
coordinates do not change, gμν at the brane position
transforms as (2.2) and the induced metric as (2.3).
Now, the corresponding variation of the total action at
the brane position is due to δ̄xμ and since δ̄xhij is a special
variation of the arbitrary δhij, it will be

δ̄xðsD þ s4Þjbrane ¼
Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p
ðkij þ τijÞδ̄xhij: (2.11)
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Following the same steps as in the previous paragraph with
τij replaced by kij þ τij, the stationarity δ̄xðsDþs4Þjbrane¼0
gives, due to the arbitrariness of δ̄xμ, the brane equations of
motion

ðkij þ τijÞjj ¼ 0;

ðkij þ τijÞKα
ij ¼ 0 ⇔ ðkij þ τijÞðxμ;ij þ Γμ

νλxν;ixλ;jÞ ¼ 0:

(2.12)

These can be called “gravitating Nambu-Goto matching
conditions” since they collect also the contribution from
bulk gravity and they form a schematic summary of our
proposal. Nothing ab initio assures their consistency with
the bulk field equations.
There is an equivalent way to describe this variation and

get the same results. Instead of considering the active
notion above where the brane is deformed to another
position defined by the displacement vector δ̄xμ, we
consider the passive viewpoint of a bulk coordinate change
xμ → x0μ ¼ xμ þ δxμ, where now the brane does not change
position but it is described by different coordinates and the
change of the embedding fields is δxμ. Of course, only the
value of the variation δxμ on the brane and not the values
δxμ away from the brane is expected to influence the
corresponding variation of the brane-bulk action at the
brane position. Although a bulk action sD is invariant under
coordinate transformations, the presence of the defect, i.e.
of the distributional terms inside sD, makes δxsDjbrane ≠ 0.
The crucial point is how the tensor fields ϕμ

νðxρÞ are varied.
One option which is unsuccessful is the tensorial variation
~δxϕ

μ
ν ¼ϕ0μ

ν ðx0ρÞ−ϕμ
νðxρÞ¼ϕλ

νðxρÞδxμ;λ−ϕμ
λðxρÞδxλ;ν, where

δxμ;ν ≡ ðδxμÞ;ν. The successful option is the functional
variation which is the change in the functional form of
ϕμ
ν , i.e.

δxϕ
μ
ν ¼ ϕ0μ

ν ðxρÞ − ϕμ
νðxρÞ

¼ ϕλ
νðxρÞδxμ;λ − ϕμ

λðxρÞδxλ;ν − ϕμ
ν;λδx

λ

¼ −£δxϕ
μ
ν : (2.13)

So, the fields transform according to the Lie derivative with
generator the infinitesimal coordinate change and δxϕ

μ
ν is

tensor, contrary to ~δxϕ
μ
ν which is not. In particular, the

functional variation of gμν is

δxgμν ¼ g0μνðxρÞ − gμνðxρÞ
¼ −ðgμν;λδxλ þ gμλδxλ;ν þ gνλδxλ;μÞ
¼ −£δxgμν: (2.14)

The functional change of the embedding fields xμðχiÞ
is δxxμ ¼ x0μjxν − xμ ¼ xμ − xμ ¼ 0, and for the tangent
vectors it is δxðxμ;iÞ ¼ 0, or to be more formal
δxðxμ;iÞ¼δxt

μ
ðiÞ ¼ t0μðiÞðxρÞ− tμðiÞðxρÞ¼xμ;i−xμ;i¼0, where

tμðiÞðxρÞ ¼ xμ;i, t
0μ
ðiÞðx0ρÞ ¼ x0μ;i. Therefore, contrary to the

δ̄xμ variation, here the fields xμ;i are not varied, but the
functional variation of hij ¼ gμνxμ;ixν;j is again the same

δxhij ¼ ðδxgμνÞxμ;ixν;j
¼ −xμ;ixν;jðgμν;λδxλ þ gμλδxλ;ν þ gνλδxλ;μÞ: (2.15)

The variation of the total brane-bulk action at the brane
position is δxðsD þ s4Þjbrane ¼

R
Σ d

4χ
ffiffiffiffiffiffijhjp ðkij þ τijÞδxhij

and the stationarity δxðsD þ s4Þjbrane ¼ 0 gives, due
to the arbitrariness of δxμ, the same brane equations
of motion ðkij þ τijÞjj ¼ 0, ðkij þ τijÞKα

ij ¼ 0 ⇔
ðkij þ τijÞðxμ;ij þ Γμ

νλxν;ixλ;jÞ ¼ 0. Alternatively, instead
of directly going to the brane coordinates, we can work
with the full spacetime indices and have

δxsD ¼
Z
M
dDx

ffiffiffiffiffi
jgj

p
distr Eμνδxgμν

¼
Z
M
dDx

ffiffiffiffiffi
jgj

p
kμνδðδÞδxgμν

¼
Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p
kμνδxgμν

¼
Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p
kijxμ;ixν;jδxgμν

¼
Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p
kijδxhij; (2.16)

which is the same result as above. In the next section
we will follow this process (actually slightly modified
because of the use of Lagrange multipliers) for a
codimension-2 defect in EGB bulk gravity and basically
try to find kij.

III. SIX-DIMENSIONAL SETUP, MATCHING
CONDITIONS AND EFFECTIVE EQUATIONS

Let us consider the general system of six-dimensional
Einstein-Gauss-Bonnet gravity coupled to a localized
3-brane source. The total brane-bulk action is

S ¼ 1

2κ26

Z
M
d6x

ffiffiffiffiffi
jgj

p
× ½R − 2Λ6 þ αðR2 − 4RμνRμν þRμνκλRμνκλÞ�

þ
Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p �
r2c
2κ26

R − λ

�
þ
Z
M
d6xLmat

þ
Z
Σ
d4χLmat; (3.1)

where gμν is the (continuous) bulk metric tensor and
hμν is the induced metric on the brane (μ; ν;… are now
six-dimensional coordinate indices). The calligraphic
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quantities refer to the bulk metric, while the regular ones to
the brane metric. The brane tension is λ and the induced-
gravity term [23], if present, has a crossover length scale rc.
Lmat and Lmat are the matter Lagrangians of the bulk and of
the brane, respectively.
Varying (3.1) with respect to the bulk metric we get the

bulk equations of motion

Gμν þ 2αðRRμν − 2RμκRν
κ − 2RμκνλRκλ þRμκλσRν

κλσÞ
−
α

2
ðR2 − 4RκλRκλ þRκλρσRκλρσÞgμν

¼ κ26T μν − Λ6gμν; (3.2)

where Gμν is the bulk Einstein tensor and T μν is a regular
bulk energy-momentum tensor. We are mainly interested in
a bulk with a pure cosmological constant Λ6, but as it will
be seen, the existence of a nonvanishing T μν is not very
crucial. More precisely, we define the variation δgμν with
respect to the bulk metric to vanish on the defect. In this
variation, beyond the basic terms proportional to δgμν
which give (3.2), there appear, as usually, extra terms
proportional to the second covariant derivatives ðδgμνÞ;κλ.
Since we are interested in the equations of motion of bulk
gravity, we consider a hypersurface which is an infinitely
thin “tube” around the codimension-2 defect, and then, the
extra bulk integral becomes an integral on this hypersurface
with terms proportional to ðδgμνÞ;κ. Adding suitable boun-
dary terms on the hypersurface [16] (analogous to the
Gibbons-Hawking term) to cancel the normal derivatives of
δgμν, the surface integral of the total variation finally
consists only of terms proportional to δgμν. Considering
that the variation of the bulk metric vanishes on this
hypersurface, there is nothing left beyond the terms in
Eq. (3.2). In the limit where the tube shrinks at the
codimension-2 brane, the variation of the bulk metric
vanishes on this brane. Note that the boundary terms added
on the hypersurface have nothing to do with the equation of
motion of the codimension-2 brane derived below, but they
are just added to make the variation of the bulk metric well
defined. Equation (3.2) in the vicinity of the brane contains,
in general, regular terms as well as divergent terms
(distributional terms are different and refer to the brane
position, not to the bulk space) and will be analyzed
further later.
According to the standard method, the interaction of the

brane with the bulk comes from the variation δgμν at the
brane position of the action (3.1), which is equivalent to
adding on the right-hand side of Eq. (3.2) the term
κ26 ~Tμνδ

ð2Þ, where ~Tμν ¼ Tμν − λhμν − ðr2c=κ26ÞGμν. Tμν is
the brane energy-momentum tensor, Gμν the brane
Einstein tensor and δð2Þ the two-dimensional delta function
with support on the defect. This approach has been
analyzed in [13] and discussed in the introduction.
Here, we discuss the alternative approach where the

interaction of the brane with bulk gravity is obtained by

varying the total action (3.1) with respect to δxμ, the
embedding fields of the brane position. The embedding
fields are some functions xμðχiÞ and their variations are
δxμðxνÞ. While in the standard method the variation of
the bulk metric at the brane position remains arbitrary,
here the corresponding variation is induced by δxμ as
explained in Sec. II; it is given by Eq. (2.14):

δgμν ¼ δxgμν ¼ g0μνðxρÞ − gμνðxρÞ
¼ −ðgμν;λδxλ þ gμλδxλ;ν þ gνλδxλ;μÞ
¼ −£δxgμν (3.3)

and is obviously independent from the variation leading
to (3.2). The induced metric hij ¼ gμνxμ;ixν;j enters the
localized terms of the action (3.1) and depends explic-
itly and implicitly (through gμν) on the embedding
fields. Also the various bulk terms of (3.1) contribute
implicitly to the brane variation under the variation of
the embedding fields. The result of δxμ variation gives,
as we will see, as coefficient of δxμ a combination of
vectors parallel and normal to the brane; therefore, two
sets of equations will finally arise as matching con-
ditions instead of one. Instead of directly expressing
δgμν, δhij in terms of δxμ, it is more convenient to
include the constraints in the action and vary inde-
pendently. So, the first constraint hij ¼ gμνxμ;ixν;j
implies the independent variation of hij. The variation
δxμ affects the variation of the parallel to the brane
vectors xμ;i which in turn influences the variation of the
normal vectors nαμ. If nαμ (α ¼ 1, 2) are arbitrary unit
vectors normal to the brane and to each other, the
additional constraints nαμxμ;i ¼ 0, gμνnαμnβν ¼ δαβ have
to be added, and δnαμ is another independent variation.
Finally, the third variation δgμν depends on δxμ by
(3.3). Therefore, δgμν are independent from δnαμ, δhij,
but the various δgμν components are not all independent
from each other, so in the end they have to be
expressed in terms of δxμ which are independent. If
λij, λαi, λαβ are the Lagrange multipliers corresponding
to the above constraints, the constraint action added to
S is

Sc ¼
Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p
½λijðhij − gμνxμ;ixν;jÞ þ λαinαμxμ;i

þ λαβðgμνnαμnβν − δαβÞ�: (3.4)

Actually, since in the action (3.1) the normals nαμ are
not explicitly present, the inclusion of the Lagrange
multipliers λαi; λαβ is not very significant and they will
end up vanishing. However, we keep them in order to
preserve a uniform treatment with the codimension-1
case where the Gibbons-Hawking term contains the
normal vector explicitly. Additionally, such normal
vectors nαμ will be exploited to settle some geometric
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identities for the extrinsic curvature. The preservation
of the constraint concerning the induced metric, which
formally arises by varying with respect to the Lagrange
multiplier λij, is always valid since it defines the

induced metric, but this constraint will not need to
be used explicitly during the following derivation.
Variation of Sþ Sc with respect to nαμ; hij; gμν at the

brane gives

δðSþ ScÞjbrane ¼
Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p
ðλαixμ;i þ 2λαβnβμÞδnαμ þ

Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p �
λij þ 1

2
ðTij − λhijÞ − r2c

2κ26
Gij

�
δhij

−
Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p
ðλijxμ;ixν;j þ λαβnαμnβνÞδgμν −

1

2κ26

Z
M
d6x

ffiffiffiffiffi
jgj

p
fGμν þ αJ μν − κ26T

μν þ Λ6gμνgδgμνjbrane

þ 1

κ26

Z
M
d6x

ffiffiffiffiffi
jgj

p
fgμ½κgλ�ν þ 2αðRμνκλ þ 2Rν½κgλ�μ − 2Rμ½κgλ�ν þRgμ½κgλ�νÞgðδgνκÞ;λμjbrane; (3.5)

where

J μν ¼ 2RRμν − 4RμκRν
κ − 4RμκνλRκλ þ 2RμκλσRν

κλσ −
1

2
ðR2 − 4RκλRκλ þRκλρσRκλρσÞgμν: (3.6)

When rc ≠ 0, one should add in (3.1) the integral of the
extrinsic curvature k of ∂Σ (if ∂Σ is not empty) to cancel
some terms from the variation δR; this, in general, does
not affect the dynamics of Σ [24]. Note that in the δgμν
variation of gμνnαμnβν, it is nαμ which is kept fixed and
not nαμ.
The six-dimensional terms in (3.5) have to be integrated

out around the brane and finally give a four-dimensional
integral which contributes to the matching conditions, as
will be explained in the next section. Note that the quantity
in curly brackets appearing in the second line of (3.5),
though formally identical to that of Eq. (3.2), contains
additional information, so this curly bracket does not
vanish. Equation (3.2) refers to the bulk and also to the
limit as these equations approach the brane, while the
corresponding curly bracket in (3.5) refers exactly to
the brane, and therefore, it contains extra distributional
terms which are not present in (3.2).
Let us consider for simplicity that there is axial

symmetry in the bulk, so that the bulk metric ansatz
can be written in the brane Gaussian-normal coordi-
nates as

ds26 ¼ dr2 þ L2ðχ; rÞdθ2 þ gijðχ; rÞdχidχj: (3.7)

The braneworld metric hijðχÞ ¼ gijðχ; 0Þ is assumed to be
regular everywhere with the possible exception of iso-
lated singular points. The angle θ has the standard
periodicity 2π. Since θ is an angle, close to the brane
r ≈ 0, it has to be L ∝ r and the measure of the six-
dimensional integration is

ffiffiffiffiffijgjp
∝ r. Therefore, only

terms proportional to δðrÞ
r inside the two curly brackets

of (3.5) contribute to the four-dimensional equations of
motion. Let Kijðχ; rÞ ¼ 1

2
g0ijðχ; rÞ (a prime denotes ∂=∂r)

be the extrinsic curvature tensor defined everywhere in
the bulk. Since the various tensors Gμν; Rμν; …; shown
in Appendix A, contain L00, K0

ij, the quantities L0 or/and
Kij have to be discontinuous at r ¼ 0.
Therefore, there are two sources of discontinuity:

(a) cone discontinuity, where the transverse space to
the defect is assumed to have the standard conical
singularity structure with Lðχ; rÞ ¼ βðχÞrþOðr2Þ for
r ≈ 0. The conical deficit is 2πð1 − βÞ > 0, so it is
typically defined L0ðχ; 0Þ ¼ 1. The discontinuity of L0
arises due to the values L0ðχ; 0þÞ ¼ βðχÞ and
L0ðχ; 0Þ ¼ 1.

(b) extrinsic curvature discontinuity, where there is a jump
in the extrinsic tangential sector. If the extrinsic
curvature vanishes on the brane, the corresponding
jump is Kijðχ; 0Þ ¼ 0 ≠ Kijðχ; 0þÞ.

Combining these two sources of discontinuity we can
have four cases which will give four kinds of matching
conditions:

(i) pure cone or topological matching conditions, dis-
cussed in [17], which have a geometric origin based
on the distributional version of the Chern-Gauss-
Bonnet theorem [25]. Here, there is a conical
singularity, but the extrinsic curvature has no jump
Kijðχ; 0Þ ¼ Kijðχ; 0þÞ.

(ii) pure extrinsic curvature discontinuity, where there
is no cone, so the deficit angle is β ¼ 1. Although
a conical singularity is usually attached to a
codimension-2 defect, it is still consistent to appear
a discontinuity only in the extrinsic curvature, as in
codimension-1 defects.

(iii) cone plus extrinsic curvature discontinuity, intro-
duced in [12], which assumes not only a conical
deficit based on the normal geometry but also a jump
in the extrinsic tangential sector.
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(iv) “smooth” matching conditions, where there is nei-
ther conical singularity nor extrinsic curvature dis-
continuity. Although this full smoothness may look
peculiar, it will be seen later that they are consistent
backreacted matching conditions with nontrivial
solutions.

Introducing the index η ¼ 0, 1 so that Kijðχ; 0Þ ¼ ηKijðχÞ,
KijðχÞ≡Kijðχ; 0þÞ, the previous matching conditions are
described as (i) β ≠ 1, η ¼ 1, (ii) β ¼ 1, η ¼ 0, (iii) β ≠ 1,
η ¼ 0, (iv) β ¼ 1, η ¼ 1. More generally, we could con-
sider that the two extrinsic curvatures Kijðχ; 0Þ;Kijðχ; 0þÞ
are proportional to each other, i.e. Kijðχ; 0Þ ¼ ηKijðχ; 0þÞ
with η a continuous parameter, but in the present paper we
are going to restrict ourselves to the two characteristic cases
η ¼ 0, 1. Actually, the case η ¼ 1 of continuous extrinsic
curvature is especially interesting because it sets in a
natural way the minimal demand for consistency, either
of a pure cone singularity or of a smooth transverse section.
Any value of the parameter η, other than η ¼ 1, carries into
the problem the arbitrariness of the matrix Kijðχ; 0Þ, so the
matching conditions (3.28) and (3.29) do not give the
equation of motion of the defect until η is specified. Only
for η ¼ 1 are the equations of motion uniquely defined
without any other information. Imposing a value of η, e.g.
η ¼ 0, is similar to the codimension-1 case, where the Israel
matching conditions for a general non-Z2 bulk do not give
the equation of motion of the defect, but just the disconti-
nuity of the extrinsic curvature, and only after the addi-
tional information of Z2 symmetry is imposed do the
matching conditions define the equation of motion.
Analogously to the case η ¼ 1, for a codimension-1 brane
the case of continuous extrinsic curvature (which is con-
sistent in the alternative matching conditions) gives without
any extra assumption the equation of motion. To make
things worse, if we legitimately imagine that Kijðχ; 0Þ,
Kijðχ; 0þÞ are not proportional to each other, but they are
unrelated matrices, then the matching conditions (3.28) and
(3.29) will carry Kijðχ; 0Þ and the situation will be much
more messy.
For r > 0 the expansions of Lðχ; rÞ;Kijðχ; rÞ in powers

of r are

Lðχ; rÞ ¼ βðχÞrþ 1

2
β2ðχÞr2 þOðr3Þ; (3.8)

Kijðχ; rÞ ¼ KijðχÞ þ CijðχÞrþOðr2Þ: (3.9)

Together with the values L0ðχ; 0Þ;Kijðχ; 0Þ, the functions
L0ðχ; rÞ;Kijðχ; rÞ are also defined for r ¼ 0 and are in
general discontinuous. Therefore, the functions L00ðχ; rÞ;
K0

ijðχ; rÞ obtain distributional parts (beyond the regular
ones) given by

distrL00ðχ; rÞ ¼ −ð1 − βðχÞÞδðrÞ; (3.10)

distrK0
ijðχ; rÞ ¼ ð1 − ηÞKijðχÞδðrÞ: (3.11)

For convenience we include the expansion of gijðχ; rÞ
which is defined for r ≥ 0:

gijðχ; rÞ ¼ hijðχÞ þ 2KijðχÞrþ CijðχÞr2 þOðr3Þ: (3.12)

A. Matching conditions

As usually done when dealing with distributional
sources, the matching conditions are derived by inte-
grating around the singular space. Here, the six-dimen-
sional terms in (3.5) are integrated over the ðr; θÞ
transverse disk of radius ϵ in the limit ϵ → 0. Because
of the axial symmetry the angular dependence is fac-
torized. In Appendix A the components of the tensors
Rμνκλ, Rμν, Gμν in the Gaussian-normal coordinate
system (3.7) are given. Some of these components
contain L00, K0

ij, which have regular as well as distribu-
tional pieces (3.10) and (3.11). Plaguing the expressions
of Rμνκλ, Rμν, Gμν in the curly brackets of the six-
dimensional integrals of (3.5) and expanding according
to (3.8), (3.9), and (3.12) we find four types of terms.
First, distributional terms of the form δðrÞ

r , arising from the
factors L00

L and L0
L K0

ij. These terms multiplied by r, coming
from the measure of integration, are the surviving terms
which contribute to the matching conditions. Second,
distributional terms of the form δðrÞ, which when multi-
plied by r vanish. Third, regular terms, i.e. terms with
finite values for r ¼ 0, either continuous or discontinuous,
which when multiplied with the measure of integration
give a continuous function vanishing on the brane;
therefore their integration obviously vanishes in the limit
ϵ → 0. Finally, singular terms, i.e. finite χ-dependent
terms multiplied by 1=r, which when multiplied by r
and integrated obviously vanish. It can be seen that the
last line of (3.5), which contains terms multiplied by
ðδgνκÞ;λμ, does not contribute to the matching conditions.
From the previous terms which are multiplied by δgμν,
only the parallel to the brane components, i.e. terms
multiplied by δgij, contain distributional terms δðrÞ

r and
therefore contribute to the matching conditions. The
variational fields δgμν are considered, as usually, smooth
functions.
Of course, the correct variational fields have to be

dimensionless. Otherwise, since θ is the angle, L has
dimension of length and δgθθ has dimension of length
square. Since Gθ

θ þ αJ θ
θ has only regular terms, Gθθ þ

αJ θθ will have singular terms 1=r2. But then, multi-
plying by r and integrating would give divergence,
which is not the case. The correct dimensionless
variational field is gθθδgθθ and the corresponding multi-
plicative term is gθθðGθθ þ αJ θθÞ ¼ Gθ

θ þ αJ θ
θ which

possesses no singular terms at all. Somehow similarly,
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if the coordinates χi have length dimensions, then gij
and δgij are dimensionless.
Note also that although the action (3.1) contains dis-

tributional terms, S is finite.
The distributional term of Gij is easily found to be

distrGij ¼ −
1 − β

β
hij

δðrÞ
r

: (3.13)

The distributional terms of J ij are more difficult,
but they can be combined as − 4

L ðL0WijÞ0 − 4 L00
L Gij,

where

Wij ¼ KikKj
k −KKij −

1

2
ðKklKkl −K2Þgij (3.14)

and K ¼ Ki
i. Then, it is found that

distrJ ij ¼ 4

�
η − β

β
Wij þ 1 − β

β
Gij

�
δðrÞ
r

; (3.15)

where

Wij ¼ KikKj
k − KKij −

1

2
ðKklKkl − K2Þhij

¼ Wijðr ¼ 0þÞ: (3.16)

From (3.13) and (3.15), it is seen that the matching
conditions (i) and (iii) have distributional terms coming
from both Gij and J ij. The distributional source of
matching condition (ii) is only J ij. Finally, matching
condition (iv) is not related to distributional terms.
The result for the total variation (3.5) at the brane

position is

δðSþScÞjbrane¼
Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p
ðλαixμ;iþ2λαβnβμÞδnαμ

þ
Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p �
λijþ1

2
Tijþ2πð1−βÞ−κ26λ

2κ26
hij−

4παð1−βÞ
κ26

�
1þ r2c

8παð1−βÞ
�
Gij−

4παðη−βÞ
κ26

Wij

�
δhij

−
Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p
ðλαβnαμnβνþλijxμ;ixν;jÞδgμν: (3.17)

At this point, had we considered δnαμ; δhij; δgμν independent, three equations algebraic in the Lagrange multipliers would
arise, and therefore all Lagrange multipliers would have been zero, leading to the standard matching condition [13] [which
consists of vanishing the quantity inside the bracket of Eq. (3.28)]. Instead, as explained above, δnαμ; δhij are independent
variations, but δgμν depends on δxμ which are also independent. So, δðSþ ScÞjbrane ¼ 0 gives

λαixμ;i þ 2λαβnβμ ¼ 0; (3.18)

λij ¼ 4παðη − βÞ
κ26

Wij þ 4παð1 − βÞ
κ26

�
1þ r2c

8παð1 − βÞ
�
Gij þ κ26λ − 2πð1 − βÞ

2κ26
hij −

1

2
Tij; (3.19)

Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p
ðλαβnαμnβν þ λijxμ;ixν;jÞδgμν ¼ 0; (3.20)

where δgμν obeys (3.3). Since the vectors xμ;i, nαμ are
independent, Eq. (3.18) implies λαi ¼ λαβ ¼ 0. Then,
Eq. (3.20) with λij given by (3.19) takes the form

Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p
λijðgμν;λxμ;ixν;jδxλ þ 2gμνxμ;ixλ;jδxν;λÞ ¼ 0:

(3.21)

After an integration of (3.21) by parts and imposing
δxμj∂Σ ¼ 0 it becomesZ
Σ
d4χ

ffiffiffiffiffiffi
jhj

p
gμσ½λijjjxμ;i þ λijðxμ;ij þ Γμ

νλxν;ixλ;jÞ�δxσ ¼ 0:

(3.22)

The covariant differentiation j corresponds to hij and
Γμ

νλ are the Christoffel symbols of gμν. Because of the

arbitrariness of δxμ and since the extrinsic curvatures of the
brane Kα

ij ¼ nαi;j satisfy −Kα
ijnαμ ¼ xμ;ij þ Γμ

νλxν;ixλ;j,
Eq. (3.22) is equivalent to

λijjjxμ;i − λijKα
ijnαμ ¼ 0: (3.23)

Therefore, two matching conditions arise:

λijKα
ij ¼ 0; (3.24)

λijjj ¼ 0: (3.25)

Using (3.19), these matching conditions finally take the
form�

Wijþ1−β

η−β

�
1þ r2c

8παð1−βÞ
�
Gij

þκ26λ−2πð1−βÞ
8παðη−βÞ hij−

κ26
8παðη−βÞT

ij

�
Kij¼0; (3.26)
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Tijjj ¼
2π

κ26
β;jðhij − 4αGijÞ þ 8πα

κ26
½ðη − βÞWij�jj: (3.27)

Since the extrinsic curvature Kαij ¼ gð∇inα; ∂jÞ ¼ nαi;j (∇ refers, as also ;, to g) in the coordinates (3.7) has
Krij ¼ g0ij=2, Kθij ¼ 0, the matching conditions of codimension-2 Einstein-Gauss-Bonnet gravity can be rewritten,
recovering the manifest normal frame indices

�
Kβl

lKβ
ij−KβliKβ

j
l−

1

2
ðKβk

kKβ
l
l−KβklKβklÞhij−

1−β

η−β

�
1þ r2c

8παð1−βÞ
�
Gij−

κ26λ−2πð1−βÞ
8παðη−βÞ hijþ κ26

8παðη−βÞT
ij

�
×Kα

ij¼0; (3.28)

Tijjj ¼
2π

κ26
β;jðhij − 4αGijÞ − 8πα

κ26

�
ðη − βÞ

�
Kαl

lKα
ij − KαliKα

j
l −

1

2
ðKαk

kKα
l
l − KαklKαklÞhij

��
jj
: (3.29)

Indices α; β;… are lowered or raised with the matrix
gαβ ¼ gðnα; nβÞ and its inverse gαβ. With respect to local
rotations nα → Oα

βðxμÞnβ, Kαij transforms as a vector
Kαij → Oα

βKβij; thus Eq. (3.29) is invariant under changes
of the normal frame, while (3.28) transforms as a vector.
Equation (3.28) has been brought in a more compact

form by dividing by 1 − β, η − β. Equations (3.28) and
(3.29) are obviously defined for matching conditions
(i) and (iii); they are also defined for matching condition
(ii) and they are still pretty complicated; finally, for
matching condition (iv) they take the simpler form
½κ26ðTij − λhijÞ − r2cGij�Kα

ij ¼ 0, Tijjj ¼ 0. For a 3-brane,
making a general counting, the number of the matching
conditions (3.28) and (3.29) is δþ 4 ¼ D which is 6 here,
while the number of the standard matching conditions is 10.
In any case the role of the matching conditions is only
fulfilled by the inclusion of the bulk field equations.
Equation (3.28) is the algebraic in the extrinsic curvature

matching condition. It is a cubic equation in the extrinsic
curvature, contrary to the matching condition derived
according to the standard method [12,13] which is quad-
ratic in the extrinsic curvature. In the absence of the Gauss-
Bonnet term, (3.28) reduces to the matching condition of
codimension-2 Einstein gravity [20], which is linear in
extrinsic curvature. Equation (3.28) is the generalization of
the Nambu-Goto equation of motion when the self-gravi-
tating brane interacts with bulk gravity. In the limiting case
of no backreaction, a probe brane with tension λ moving in
a fixed background arises. Indeed, in the probe limit, all the
geometric quantities hij, Kαij, Gij, β get their background
values (most probably the background value of β ¼ 1)
when the bulk gravity couplings go to zero (i.e. 1=κ26 → 0,
α=κ26 → 0) and the extra brane sources vanish (i.e. Tij → 0,
r2c=κ26 → 0). Then, Eq. (3.28) becomes hijKα

ij ¼ 0, which
is the Nambu-Goto equation of motion. Inversely, when-
ever any extra term beyond λhijKα

ij (or all terms) appears
in (3.28) and (3.29) and these equations are consistent with
all the other bulk equations, then these matching conditions

are meaningful backreacted matching conditions. In this
spirit, matching conditions (iv) with neither conical singu-
larity nor extrinsic curvature discontinuity form an unusual
but interesting example. In this case, only the localized
matter and four-dimensional gravity terms participate in
the brane equations of motion, and although the higher-
dimensional bulk terms do not have a direct imprint in
these equations, there is still backreaction since the bulk
equations have also to be satisfied at the brane position.
These “smooth” matching conditions correspond to the
Regge-Teitelboim equations of motion [21,22,26] with the
crucial difference, however, that there, there are no higher-
dimensional gravity terms in the action and the bulk is
prefixed (Minkowski). Therefore, possible difficulties dis-
cussed in [27] are irrelevant here, since they emanate from
the embeddability restrictions in the given nondynamical
bulk space, while the matching conditions here dynami-
cally propagate in a nontrivial bulk space. Smooth match-
ing conditions are also meaningful in codimension-1
standard treatment [28], without of course the Kα

ij con-
traction (where there is no balance of distributional terms
between the two sides of the distributional equation, but the
right-hand side vanishes on its own), although there, they
lose their significance since there is no Nambu-Goto probe
limit so that these matching conditions signal a minimal
departure from that limit.
Equation (3.29) is the second matching condition and

expresses a nonconservation equation of the brane energy-
momentum tensor, where the energy exchange between the
brane and the bulk is due to the variability along the brane
of both the deficit angle and the extrinsic geometry. In the
next section, Eq. (3.29) will be written in a more convenient
form, from where it will be seen that the possible non-
conservation of energy is only due to the variability of β.
According to the conventional treatment, a different non-
conservation equation is also derived [13], not as a second
matching condition, but as a combination of the algebraic
matching condition with some bulk equations evaluated on
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the brane. In the absence of the Gauss-Bonnet term, (3.29)
reduces to the nonconservation equation of codimension-2
Einstein gravity, where the energy exchange is due to a
variable deficit angle. In the probe limit, Eq. (3.29) is
identically satisfied.

B. Effective equations

Having finished with the brane equations of motion
arising from the distributional parts of the various quan-
tities, we pass to the bulk equations of motion. These bulk
equations are also defined limitingly on the brane, and
therefore, additional equations have to be satisfied at the
brane position beyond the matching conditions. More
precisely, when the nondistributional quantities of
Appendix A are substituted in the bulk equations (3.2)
(more precisely in the equations with one index up and one
down) and expand according to (3.8), (3.9), and (3.12),
there appear two kinds of terms: (a) regular termsOð1Þ, i.e.
terms with finite values for r ¼ 0, and (b) singular terms
Oð1=rÞ, i.e. finite χ-dependent terms multiplied by 1=r.
Since the singular terms cannot be canceled by any regular
bulk energy-momentum tensor T μν, their χ-dependent
coefficients have to vanish providing some new equations
on the brane. Obviously, the regular parts which remain
will vanish independently, defining additional equations on
the brane. Note that T μν cannot blow up close to the
distributional singularity; otherwise the singularity would
not be distributional.
Regarding the ri components of the bulk equations, their

Oð1=rÞ leading terms come from terms multiplied by L0=L,
L0
ji=L and yield the equation

β;j
β

�
Wij þ Gij −

1

4α
hij

�
þWijjj ¼ 0: (3.30)

Similarly, the Oð1=rÞ terms of the rr bulk equation are
obtained from the terms L0=L and we get the equation�

Wij þGij −
1

4α
hij

�
Kij ¼ 0: (3.31)

Finally, in the Oð1=rÞ terms of the ij components of the
bulk equations, not only L0=L, L0

ji=L terms, but also terms
of the form L00=L, contribute. The corresponding brane
equations contain gij;2ðχÞ ¼ g00ijðχ; 0Þ, β2ðχÞ ¼ L00ðχ; 0Þ
where, of course, the second derivatives refer to the regular
pieces of the quantities. These equations are pretty com-
plicated and we will give their explicit form in the case of
cosmology.
Using (3.31), the matching condition (3.26) gets the

following simpler form which is linear and homogeneous in
the extrinsic curvature and it does not contain the deficit
angle:

ðσ1Gij þ σ2hij − TijÞKij ¼ 0; (3.32)

where

σ1 ¼
r2c
κ26

þ 8παð1 − ηÞ
κ26

; σ2 ¼ λ −
2πð1 − ηÞ

κ26
: (3.33)

Note that for matching conditions (iv), Eq. (3.31) cannot be
combined with Eq. (3.26) to eliminateWij since there is no
Wij in (3.26) in this case; however, Eq. (3.32) is still valid
since it coincides with (3.26) for η ¼ β ¼ 1. Therefore, the
proof of the consistency and the investigation of the
effective equations will also cover case (iv). It will also
be useful to define

σ ¼ σ2 þ
σ1
4α

¼ λþ r2c
4ακ26

; (3.34)

which is positive for positive brane tension λ. Note that
σ1 ¼ 0 ⇔ η ¼ 1, rc ¼ 0 ⇔ σ2 ¼ σ ¼ λ.
Using (3.30), the conservation equation (3.27) or (3.29)

also gets a simpler form:

Tijjj ¼ −η
8πα

κ26

β;j
β

�
Wij þGij −

1

4α
hij

�
: (3.35)

For η ¼ 0 it is seen that the energy on the brane is strictly
conserved, in analogy to the case η ¼ 0 of the standard
approach [29]. However, for η ¼ 1 and a varying β, i.e.
case (i), the brane radiates in the bulk and there is inevi-
table energy exchange between the brane and the bulk.
Similar nonconservation of energy also occurs in the
standard treatment for η ¼ 1; however, the exchange is
different [13].
What remains are the regular equations on the brane. The

regular parts of the ij equations contain gij;3ðχÞ ¼ g000ijðχ; 0Þ,
β3ðχÞ ¼ L000ðχ; 0Þ and are insignificant for all the other
equations. In Appendix B, the regular parts of the rr; ri
bulk equations on the brane are derived. Obviously, there
are manifestly regular terms inside the tensor components
Eμ
ν ¼ Gμ

ν þ αJ μ
ν which are obtained by setting formally

L0
L ¼ L0

ji
L ¼ L00

L ¼ 0, L ¼ β in the unperturbed expressions of
E’s. However, there are additional hidden regular terms

coming from the expansion of the terms containing L0
L ,

L0
ji
L ,

L00
L . Therefore, the Oð1Þ part of the rr bulk equation, after
use of (3.31), becomes

Er
rjL0

L¼0;L¼β þ K0 − 4αð3Wi
j þ Gi

jÞKj0
i − 4αGi0

j K
j
i

¼ κ26T
r
r − Λ6; (3.36)

where Kj0
i denotes Kj0

i ðχ; 0Þ. The Oð1Þ part of the ri bulk
equation because of its complication will be given only for
cosmology. Finally, the θθ bulk equation contains only
regular Oð1Þ terms, the corresponding brane equation
contains gij;2 and its form is
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Eθ
θ ¼ κ26T

θ
θ − Λ6: (3.37)

Its explicit form will be given in the case of cosmology.
To summarize, our system of equations consists of the

simplified matching conditions (3.32) and (3.35), the
Oð1=rÞ equations (3.30) and (3.31), the Oð1=rÞ ij equa-
tions, the Oð1Þ equations (3.36) and (3.37) and the Oð1Þ ri
equation.

IV. COSMOLOGICAL EQUATIONS
AND CONSISTENCY

In this section, we will study the cosmological equations
for a codimension-2 brane and check their consistency. For
this purpose we consider the following bulk cosmological
metric:

ds26 ¼ dr2 þ L2ðt; rÞdθ2 − n2ðt; rÞdt2

þ a2ðt; rÞγ î ĵðχl̂Þdχ îdχ ĵ; (4.1)

where γ î ĵ is a maximally symmetric three-dimensional
metric characterized by its spatial curvature k ¼ −1, 0, 1.
The energy-momentum tensor on the brane (beyond that of
the brane tension λ) is assumed to be the one of a perfect
fluid with energy density ρ and pressure p.
It is very convenient to define the quantities

A ¼ a0

a
; N ¼ n0

n
; (4.2)

X ¼ H2 þ k
a2

; Y ¼
_H
n
þH2; H ¼ _a

na
; (4.3)

X ¼ X − A2 þ 1

12α
; Y ¼ Y − AN þ 1

12α
; (4.4)

where a dot denotes differentiation with respect to t. The
cosmic scale factor, lapse function and Hubble parameter
arise as the restrictions on the brane of the functions

aðt; rÞ; nðt; rÞ and Hðt; rÞ, respectively. Other quantities
also have their corresponding values when restricted on the
brane, and since all the following equations will refer to
the brane position, we will use the same symbols for the
restricted quantities without confusion.
For the metric (4.1), Eq. (3.32) becomes

N ¼ fA; (4.5)

where

f ¼ 3
p − σ2 þ σ1ðX þ 2YÞ

ρþ σ2 − 3σ1X
; (4.6)

while Eq. (3.35) becomes

_ρþ 3nHðρþ pÞ ¼ −η
24πα

κ26

_β

β
X : (4.7)

We now focus on theOð1=rÞ parts of the bulk equations.
Equations (3.31) and (3.30), which correspond to the rr and
rt bulk equations, get the form

�
1þ N

A

�
X þ 2Y ¼ 0; (4.8)

2A2

�
_A
nA

þH

�
1 −

N
A

��
¼

_β

nβ
X : (4.9)

The Oð1=rÞ part of the tt bulk equation, which was not
computed in Sec. III B, is now found to be

2
a2
a
−

β2
βA

X ¼ X þ 1

6α
; (4.10)

where a2ðtÞ¼a00ðt;0Þ, n2ðtÞ¼n00ðt;0Þ, and β2ðtÞ¼L00ðt;0Þ.
Finally, the Oð1=rÞ part of the î ĵ bulk equations is

n2
n
þ
�
1þ N

A

�
a2
a
− ðX þ 2YÞ β2

2βA
¼ Y þ N

2A
X þ 1

12α

�
2þ N

A

�
−
2_β

nβ

�
_A
nA

þH

�
1 −

N
A

��
; (4.11)

which can be written in a simpler form after using Eqs. (4.5), (4.8), (4.9), and (4.10):

n2
n
þ f

a2
a
− Y

β2
βA

¼ 1þ f
12α

− X −
�

_β

nβ

�
2 X
A2

: (4.12)

Up to now, the cosmological equations that have to be satisfied on the brane are (4.5), (4.7), (4.8), (4.9), (4.10), and
(4.12). What remains are the regular equations on the brane which contain up to second transverse derivatives. The θθ
regular equation (3.37) takes the form

ðX þ 2YÞ a2
a
þ X

n2
n

¼ XY þ X þ Y
6α

þ 2A2

�
_A
nA

þH

�
1 −

N
A

��
2

þ 1

12α

�
κ26T

θ
θ − Λ6 −

5

12α

�
; (4.13)
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which, after use of Eqs. (4.5), (4.8), and (4.9), takes the simpler form

n2
n
− f

a2
a

¼ 1 − f
12α

þ Y þ
�

_β

nβ

�
2 X
2A2

þ 1

12αX

�
κ26T

θ
θ − Λ6 −

5

12α

�
: (4.14)

The rr regular equation (3.36) with the help of Appendix B, Eq. (B8), becomes

1

nβ

�
_β

n

�
_

X þH _β

nβ
ðX þ 2YÞ þ XY þ 1

6α
ðX þ YÞ þ 2A2

��
1þ 2

N
A

�
A0 þ N0

�
− ½ðX þ 2YÞA0 þ XN0�

− ½ðAþ NÞX0 þ 2AY 0� ¼ 1

12α

�
Λ6 þ

5

12α
− κ26T

r
r

�
: (4.15)

Finally, the rt regular equation takes the form of (B12)

_β2
nβ

þH
A

_β2

n2β2
þ
�
X 0

X
þ 1

2A

�
X − 2A0 þ 1

6α

�
− N −

β2
β

�
_β

nβ
−
2A
X

�
_A0

n
þ ðH0 þHNÞðA − NÞ þHðA0 − N0Þ

�
¼ nκ26

12αX
T t

r:

(4.16)

The Oð1Þ parts of the tt, î ĵ bulk equations contain third
derivatives with respect to r and form an algebraic system
of two equations for the three quantities a3ðtÞ ¼ a000ðt; 0Þ,
n3ðtÞ ¼ n000ðt; 0Þ, and β3ðtÞ ¼ L000ðt; 0Þ. Therefore, these
two equations are decoupled from all the other equations
and do not deserve further study.
In summary, all the cosmological equations on the

brane which have to be satisfied simultaneously
are (4.5), (4.7)–(4.9), (4.10), (4.12), (4.14), (4.15),
and (4.16). In particular, Eqs. (4.10), (4.12), and (4.14)
form an algebraic system for the unknown functions
a2; n2; β2, which after solved and substituted in (4.15)
and (4.16), they make these equations to be satisfied
identically when T r

r ¼ T θ
θ, T t

r ¼ 0 on the brane. This
calculation is shown in Appendix C and proves the
consistency of the whole system for all kinds of matching
conditions. Therefore, the essential equations on the brane
are (4.5), (4.7), (4.8), and (4.9), which is a differential
system of four equations for five unknowns a, ρ, β, A,
and N.

V. CODIMENSION-2 COSMOLOGICAL
EVOLUTION AND SOLUTIONS

We summarize by writing again the coupled system of
the essential equations which govern the cosmological
evolution. Since the quantity N can be eliminated from
Eq. (4.5), the system consists of the three essential
equations (4.7)–(4.9) which are written as

_ρþ 3nHðρþ pÞ ¼ −η
24πα

κ26

_β

β
X ; (5.1)

ð1þ fÞX þ 2Y ¼ 0; (5.2)

_A
nA

þHð1 − fÞ ¼
_β

nβ
X
2A2

; (5.3)

where

X ¼ X − A2 þ 1

12α
; Y ¼ Y − fA2 þ 1

12α
; (5.4)

X ¼ H2 þ k
a2

; Y ¼
_X

2nH
þ X; (5.5)

f ¼ 3
p − σ2 þ σ1ðX þ 2YÞ

ρþ σ2 − 3σ1X
: (5.6)

Although this is a system of three equations for four
unknowns a, ρ, β, and A, it will be seen in a while that
it is integrable. Note also that in the system (5.1)–(5.3), β is
present only through the derivative factor _β=β and there are
no separate β terms. Therefore, whenever one focuses on
the case β ¼ const, there is no difference between β ¼
const and β ¼ 1. The effective system of Eqs. (5.1)–(5.3) is
blind on the constant value of the cone (of course, the bulk
solution should know about this value). Therefore, for
β ¼ const, matching condition (i) coincides with (iv) and
matching condition (iii) coincides with (ii) from the view-
point of the effective equations. This does not mean that the
cone of matching conditions (i) and (iii) disappears. The
cone is still there, but its constant throughout the brane
deficit angle does not affect the effective equations, so,
effectively, it is like “opening” the constant deficit angle to
a smooth plane.
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From Eqs. (5.2) and (5.3) we take

_X
nX

þ
_β

nβ
¼ −ð3þ fÞH; 3þ f ¼ 3

ρþ pþ σ1
_X

nH

ρþ σ2 − 3σ1X
;

(5.7)

and with the help of (5.1), it takes the form

_X
X

þ
_β

β
¼ ðρþ σ2 − 3σ1XÞ_

ρþ σ2 − 3σ1X
þ η

24πα

κ26

_β

β

X
ρþ σ2 − 3σ1X

;

(5.8)

or equivalently�
X

ρþ σ2 − 3σ1X

�
−1
�
1 − η

24πα

κ26

X
ρþ σ2 − 3σ1X

�
−1

×

�
X

ρþ σ2 − 3σ1X

�
_

þ
_β

β
¼ 0: (5.9)

Equation (5.9) can be integrated giving the general solution

X
�
η
24πα

κ26
þcβ

�
¼ρþσ2−3σ1X; c∶integrationconstant.

(5.10)

Equation (5.2) is written in terms of X; A as

ð1þ 3fÞA2 ¼
_X

nH
þ ð3þ fÞ

�
X þ 1

12α

�
; (5.11)

and X is found to be

ð1þ 3fÞX ¼ 2ðf − 1Þ
�
X þ 1

12α

�
−

_X
nH

: (5.12)

Combining Eqs. (5.10) and (5.12) and replacing the
quantity 3þ f from (5.7), we get the Raychaudhuri
equation of the theory containing, however, also β:

◆
_X

nH

�
1þ 6σ1

Xþ 1
12α

3σ1X− ρ− σ2
þ 9σ1
η 24πα

κ2
6

þ cβ

�
þ 2

�
Xþ 1

12α

��
4þ 3

ρþp
3σ1X− ρ− σ2

�
þ 9ðρþpÞþ 8ð3σ1X− ρ− σ2Þ

η 24πα
κ2
6

þ cβ
¼ 0;

(5.13)

where X ¼ H2 þ k
a2, c is integration constant, η ¼ 0, 1 and

σ1 ¼ r2c
κ2
6

þ 8παð1−ηÞ
κ2
6

, σ2 ¼ λ − 2πð1−ηÞ
κ2
6

, σ ¼ σ2 þ σ1
4α ¼ λþ r2c

4ακ2
6

.

Equation (5.1) with the use of Eq. (5.10) takes the form

◆ _ρþ 3nHðρþ pÞ

¼ η
24πα

κ26

_β

βðη 24πα
κ2
6

þ cβÞ ð3σ1X − ρ − σ2Þ: (5.14)

Equations (5.13) and (5.14) form the general final
two-dimensional system for a; ρ, however, still with the
indeterminacy of the function βðtÞ. Note that one integra-
tion constant c enters the equations, and actually, in the
form cβ. Moreover, it is seen from Eqs. (5.13) and (5.14)
that under the rescaling of the deficit angle βðtÞ → cβðtÞ,
the constant c disappears. However, since this rescaling
induces a new angle variable with values in a range
different than the standard, we leave c intact in the
following. This system of equations is the full information
available to us at the brane position and constitutes a
nonclosed system. In other words, one needs extra
information coming from the bulk geometry in order to
fix one of the functions, e.g. β, and then to solve fully the
system. The solution in the bulk is no longer unique as in
the case of codimension-1 brane cosmology [21,30] and
one has a family of bulk solutions parametrized by the
angular deficit function β. Not all these bulk solutions will

be acceptable since certain of them will inevitably carry
singularities away from the brane. Note that matching
conditions (ii) and (iv), having β ¼ 1, will form a closed
system of equations on the brane without any undetermined
function.
After X; ρ have been found, one can use Eqs. (5.10) and

(4.5) to find A;N. Only in highly exceptional cases will the
extrinsic curvature vanish identically. As it can be seen in
Appendix A, the six-dimensional Ricci scalar (as well as
other curvature invariants), beyond the distributional terms,
contains also singular 1=r terms multiplied by the extrinsic
curvature. This means that in general the bulk geometry
has a genuine curvature singularity at r ¼ 0 apart from the
distributional one. In fact, it is expected from purely
geometrical considerations that higher codimension defects
will develop curvature singularities in their zero width
limit [31]. Moreover, for the standard Schwarzschild
solution of a 0-brane (point mass), the metric is singular
on the point and the curvature diverges on the defect.
In the special case of β ¼ const, there should be no β

in Eqs. (5.13) and (5.14) since in this case, there is no β
in the initial system (5.1)–(5.3). A seemingly remaining
constant β in (5.13) and (5.14) is the result of the
integration process. However, the integration process
knows to put β in the form cβ; thus a constant β is
absorbed in the integration constant c. Therefore, when-
ever we speak about constant β in the following, we will
replace cβ by c in (5.13) and (5.14).
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Equation (5.13), although much complicated, can be
brought in a more convenient form defining for σ1 ≠ 0 the
variable ξ as

ξ ¼ ρþ σ

3σ1X − ρ − σ2
⇔ X ¼ ρ

3σ1
þ σ2
3σ1

þ ρþ σ

3σ1

1

ξ
: (5.15)

It is seen from the last expression that in principle H2 has
the standard Friedmann term linear in ρ, a cosmological
constant term and a dark energy contribution attributed to ξ,
but more can be said after ξ is found. So, Eq. (5.13), using
(5.14), becomes for p ¼ wρ

_ξ

nHðξþ 1Þ − η
24πα

κ26

_β

nHβðη 24πα
κ2
6

þ cβÞ

¼
�
8

3
− 3ð1þ wÞ

�
1þ σ

ρ

�
−1
�

×
3ξþ 3þ 9σ1ðη 24πα

κ2
6

þ cβÞ−1
2ξþ 3þ 9σ1ðη 24πα

κ2
6

þ cβÞ−1
ξ

ξþ 1
: (5.16)

In order to get some understanding of the behavior of the
system, Eq. (5.16) will be integrated in the next section for
a characteristic case of β.
In the exceptional case where the denominator 3σ1X −

ρ − σ2 vanishes, some of the previous equations are not
defined. Equation (4.5) gives σ1ðX þ 2YÞ þ p − σ2 ¼ 0,
which leads to the conservation equation _ρþ3nHðρþpÞ¼0
and from Eq. (4.7) we get β ¼ const. From Eq. (4.8) we can
find N

A as a function of A; ρ and from (4.9) a differential
equation for dA

da gives A. The four-dimensional cosmology in
this case is the standard FRW cosmology with cosmological
constant.
If the deficit angle is time dependent instead of being

exactly constant, a time-varying effective four-dimensional
gravitational constant will be induced. To make an esti-
mate, from the coefficient of the linear term in (5.15) we

have 8πGN ¼ κ24 ¼ κ2
6

r2cþ8παð1−βÞ, which can also be taken

from the relative coefficients of the terms Gij, Tij in the
matching condition (3.28). The variation of GN is con-
strained during the early cosmology by the primordial
abundances at the nucleosynthesis epoch approximately by
j _GN j
GNH

≲ 0.2 [32]. This constrains the variation of β as

j _β
ð1−βþr2c=8παÞH j ≲ 0.2which is not a rather strong constraint.

Further constraints come from the fact that the theory with
varying β is similar to a scalar-tensor theory, and therefore,
there will be strong constraints from solar system obser-
vations. Not knowing the full family of solutions in the
bulk, we choose to consider in the next two sections V A
and V B the case where β is constant. This case will give, at
least seemingly, acceptable four-dimensional cosmologies
and has the merit that the system of equations is closed and

does not depend on undetermined functions. In Sec. VAwe
derive the general cosmology for σ1 ≠ 0, while in Sec. V B
the general cosmology for the complementary case σ1 ¼ 0.

A. Cosmology with σ1 ≠ 0

As explained above, one characteristic and meaningful
way to close the system and capture some features of its
behavior is to assume a constant deficit angle βðtÞ ¼ const.
Then, Eq. (5.14) gets the standard conservation form

_ρþ 3nHðρþ pÞ ¼ 0; (5.17)

and Eq. (5.16), using (5.17) to convert the derivative with
respect to time to derivative with respect to ρ, becomes
integrable:

2ξþ 3þ 9σ1ðη 24πα
κ2
6

þ cÞ−1
3ξþ 3þ 9σ1ðη 24πα

κ2
6

þ cÞ−1
1

ξ
dξ¼ dρ

�
1

ρþ σ
−

8

9ð1þwÞ
1

ρ

�
;

(5.18)

with general solution

1

~c
ρ

8
3ð1þwÞðρþ σÞ−3ξ3 − 3ξ ¼ 2γ; ~c∶integration constant;

γ ¼ 3

2
þ 9σ1

2

�
η
24πα

κ26
þ c

�
−1
: (5.19)

Equation (5.19) is a cubic for ξ and can be solved
analytically giving the function ξðρÞ and therefore the
Hubble evolution H2ðρÞ. Since the cubic has various
branches, there are also branches for the cosmic evolution.
Branch I: ~cðρþ σÞ > 0 and ~cðρþ σÞ3 ≤ γ2ρ

8
3ð1þwÞ.—

There is one real solution for ξ:

ξ ¼ 2sgnðγÞρ− 4
3ð1þwÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~cðρþ σÞ3

q

× cosh

�
1

3
arccosh

� jγjρ 4
3ð1þwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~cðρþ σÞ3
p ��

: (5.20)

For positive brane tension λ > 0, it is σ > 0; therefore the
first inequality above becomes ~c > 0 and the Hubble
equation is

H2 þ k
a2

¼ ρ

3σ1
þ σ2
3σ1

þ sgnðγÞ c�ρ
4

3ð1þwÞ

6σ1
ffiffiffiffiffiffiffiffiffiffiffi
ρþ σ

p

× cosh−1
�
1

3
arccosh

� jγjc�ρ
4

3ð1þwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρþ σÞ3

p ��
; (5.21)

where c� ¼ ~c−1=2 > 0 and cosh−1 x ¼ 1
cosh x. So, Eq. (5.21)

contains two integration constants c� > 0; γ. For negative
brane tension some slight difference will occur in (5.21)
according to (5.20).
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As it is seen from the second inequality above, this
solution does not accept the regime ρ → 0, but already the
linear ρ term of FRW is present. Note that the coefficient of
this term is determined by the Gauss-Bonnet coupling α=κ26
and the possible induced gravity coupling r2c=κ26, and not by
the higher-dimensional gravitational constant 1=κ26 of the
Einstein term. The Einstein term contributes only to the
effective cosmological constant and to the extra correction
term of the Hubble equation. This remark is valid also for
the other branches below.
The second inequality above also shows that the energy

density ρ cannot become infinite (for w > −1=9), which
means that an infinite-density singularity a ¼ 0 is not
encountered for the solution (5.21). This is true indepen-
dent of the spatial curvature k, or the equation of state.
More precisely, for w ¼ 1=3, which is the realistic equation
of state at the early Universe, the condition for the solution
(5.21) to exist is 0 < ~c < 4γ2

27σ (or for c� that c� >
ffiffiffiffiffiffi
27σ

p
2jγj ).

Note that this effect of avoidance of the infinity is not
the same with that of codimension-1 cosmology of the
standard approach [33], where the infinite density singu-
larity is removed by the combined effect of the Gauss-
Bonnet and the induced gravity term, while neither of the
two terms separately can do this. Here, the coupling rc can
be set to zero (along with η ¼ 0) and still the finite behavior
occurs. The maximum energy density ρM is found (for
w ¼ 1=3) by the equation z3 þ ð3 − l2=3Þz ¼ l − 1−
2l3=27, where z ¼ ρM

σ þ l
3
, l ¼ 3 − γ2

~cσ (the previous con-
dition for ~c means l < −15=4). In order for ρM to be the
maximum energy density and not the minimum, the
appropriate solution of the cubic equation for z must
satisfy z > 2þ l=3 for any l. To summarize, for a
radiation brane the solution (5.21) exists only if ~c (or
c�) satisfies the previous condition, and then necessarily
it has finite energy density ever.
Not only the energy density is finite at early times, but

there is a range of the integration constant c (or γ) for which
there is accelerated expansion near the minimum scale
factor. This, in principle, serves as a geometric form of
inflation alternative to the scalar field inflation. More
precisely, this happens for −1=18 < γ < 0 (or in terms
of c for −3σ1 < η 24πα

κ2
6

þ c < −81σ1=28). Indeed, using the
proper time on the brane, the acceleration parameter ä=a is
given by the formula ä=a ¼ X þ _X=ð2HÞ. Using (5.15) to
express _X in terms of _ξ and (5.16) to substitute _ξ in terms of
ξðρÞ, we find

3σ1
ä
a
¼

�
1þ 9w
12

3ξþ 2γ

ξðξþ γÞ −
1þ 3w

2

ξþ 1

ξ

�
ρ

þ σ2 −
3ξþ γ

ξðξþ γÞ
σ

3
: (5.22)

Equation (5.22) is valid for any w (for example it can be
used for w ¼ 0) and is true also for the other branches of
solutions to be discussed below, not only the current one.

For the solution (5.21) and w ¼ 1=3, the value of ξ at the
initial scale factor is found from (5.20) to be ξM ¼ 2γ and
the corresponding value of the acceleration is 3 σ1

σ
ä
a jM ¼

ðσ2σ − 7
18γÞ þ ð1þ 1

18γÞðl3 − zÞ; therefore, for the range of
γ given above, ä

a jM is positive and finite. Note that this
result also holds independently of the spatial curvature k of
the Universe.
Finally, the four-dimensional Ricci scalar on the brane is

given by R=6¼ _Hþ2H2þk=a2¼Xþä=a; therefore, from
the previous result for ä

a jM, we obtain that R is finite and
there is no initial singularity.
To conclude, the solution (5.21) with w ¼ 1=3, for a

range of the integration constants c�; γ avoids a cosmo-
logical singularity (both in density and curvature) and
undergoes accelerated expansion near the minimum scale
factor. There remains however one crucial caveat: there is
no exit from acceleration, as it can be seen that at the
minimum energy density there is also acceleration.
Branch II: ~cðρþ σÞ > 0 and ~cðρþ σÞ3 ≥ γ2ρ

8
3ð1þwÞ.—

There are three real solutions for ξ:

ξ¼ 2ρ−
4

3ð1þwÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~cðρþ σÞ3

q

× cos
�
1

3
arccos

�
γρ

4
3ð1þwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~cðρþ σÞ3
p �

þ 2πm
3

�
; m¼ 0;1;2:

(5.23)

For positive brane tension λ > 0, it is σ > 0; therefore the
first inequality above becomes ~c > 0 and the Hubble
equation is

H2 þ k
a2

¼ ρ

3σ1
þ σ2
3σ1

þ c�ρ
4

3ð1þwÞ

6σ1
ffiffiffiffiffiffiffiffiffiffiffi
ρþ σ

p

× cos−1
�
1

3
arccos

�
γc�ρ

4
3ð1þwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðρþ σÞ3
p �

þ 2πm
3

�
;

m ¼ 0; 1; 2; (5.24)

where c� ¼ ~c−1=2 > 0 and cos−1 x ¼ 1
cos x. So, Eq. (5.24)

contains two integration constants c� > 0; γ or alterna-
tively, we could consider the two integration constants
c� > 0, c� ¼ γc�. For negative brane tension some slight
difference will occur in (5.24) according to (5.23). The
solution (5.24) accepts the regime ρ → 0, where for w ¼ 0
it is

H2 þ k
a2

≈
ρ

3σ1
þ σ2
3σ1

þ c�
6σ1

ffiffiffi
σ

p cos−1
�
πð1þ 4mÞ

6

�
ρ
4
3:

(5.25)

Depending on the value of ~c the solution can evolve from
an initial big bang to ρ → 0, or from a finite value of the
energy density to ρ → 0.
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Branch III: ~cðρþ σÞ < 0.—There is one real solution
for ξ:

ξ ¼ −2ρ−
4

3ð1þwÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−~cðρþ σÞ3

q

× sinh

�
1

3
arcsinh

�
γρ

4
3ð1þwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−~cðρþ σÞ3
p ��

: (5.26)

For positive brane tension λ > 0, it is σ > 0; therefore the
inequality above becomes ~c < 0 and the Hubble equation is

H2 þ k
a2

¼ ρ

3σ1
þ σ2
3σ1

−
c�ρ

4
3ð1þwÞ

6σ1
ffiffiffiffiffiffiffiffiffiffiffi
ρþ σ

p

× sinh−1
�
1

3
arcsinh

�
γc�ρ

4
3ð1þwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðρþ σÞ3
p ��

; (5.27)

where c� ¼ j~cj−1=2 > 0 and sinh−1 x ¼ 1
sinh x. So, Eq. (5.27)

contains two integration constants c� > 0; γ or alterna-
tively, we could consider the two integration constants
c� > 0, c� ¼ γc�. For negative brane tension some slight
difference will occur in (5.27) according to (5.26). The
solution (5.27) accepts the regime ρ → 0, where for w ¼ 0
it is

H2 þ k
a2

≈
ρ

3σ1

�
1 −

3

2γ

�
þ 1

3σ1

�
σ2 −

3σ

2γ

�
−

2γc2�
27σ1σ

2
ρ
8
3:

(5.28)

Although in principle γ has any sign, the linearized
regime (5.28), in comparison to the standard FRW equa-
tion, gives the constraints 8πGN ¼ κ24 ¼ 1

σ1
ð1 − 3

2γÞ and

Λeff ¼ 1
σ1
ðσ2 − 3σ

2γÞ. Combining these relations we get
3
8αγ ¼ κ24½λ − 2πð1 − ηÞM4

6� − Λeff , where κ26 ¼ M−4
6 . Since

κ24 ∼ 10−31 TeV−2, Λeff ∼ 10−90 TeV2, M6 ≳ TeV, for any
reasonable λ the term Λeff is insignificant. Finally, γ can
indeed be either positive or negative depending on the value
of λ, and the correction term of (5.27) can also have either
sign. Moreover, setting the effective cosmological constant
Λeff to zero, in case we want the vacuum to be the
Minkowski space, we get κ24 ¼ ð4αλþ r2cM4

6Þ−1.
In general, the solutions found above need a more

systematic analysis to study their cosmological behavior.
Usually one adjusts the parameters of a solution such that in
the absence of matter to recover the Minkowski back-
ground. However, this is not necessary since any curved
spacetime is locally Minkowski and all local physics
constraints are satisfied. For example, the Randall-
Sundrum fine-tuning in five dimensions assures a
Minkowski background by exactly vanishing the effective
cosmological constant [30,34]. In this case, the acceleration
today would possibly be attributed to some dark energy
component. If, on the contrary, the effective cosmological

constant of a model does not vanish, the background is de
Sitter and it contributes to the acceleration today. For
branches I and II above, the effective cosmological constant
is σ2

σ1
and has no need to vanish (for η ¼ 0) or cannot vanish

(for η ¼ 1). Its value, together with the correction term,
could possibly define the dark energy today.
Let us finish with an intriguing comment. For a 3-brane

in D dimensions, out of the scales κ2D ¼ M2−D
D , λ, rc is

constructed the following scale with dimensions of effec-

tive cosmological constant: Λeff ¼ κ2Dλ

rD−4
c

¼ λ
MD−2

D

1
rD−4
c

. The

induced gravity crossover scale rc distinguishes the four-
dimensional from the higher-dimensional regime. For a
reasonable value of the brane tension λ ∼M4

D (e.g. λ ∼
TeV4 a typical cutoff) which might also have theoretical
explanation as it is connected to the fundamental mass
scale, it arises Λeff ∼ 1

ðMDrcÞD−6
1
r2c
. For D ¼ 6 it is Λeff ∼ 1

r2c
. If

the induced gravity crossover scale is of the cosmic horizon
size rc ∼H−1, then Λeff ∼H2; i.e. for today Λeff has the
observed magnitude. Since the induced gravity term is
generically induced by quantum corrections coming from
the bulk gravity and its coupling with matter living on the
brane, it would not be absurd to suppose that the accu-
mulative contribution of all the matter inside our horizon
gives a connection of rc to H−1. But if Λeff ∼H2, why only
today does Λeff emerge and not in the past? To make
another conjecture, only today a reasonable number of
galaxies with high energetic interiors exist from where the
quantum loops generate the induced gravity term. On
the contrary, any other dimensionality D fails to support
the observed value of Λeff . For D ¼ 5 it is Λeff ∼

MD
rc

and in

order to be Λeff ∼H2
0 it must be rc ∼

MD
H0

H−1
0 , which for

MD ∼ TeV gives rc ∼ 1045H−1
0 (too high to be realistic).

For D ¼ 7 it is Λeff ∼ 1
MDr3c

and in order to be Λeff ∼H2
0

it must be rc ∼ ðH0

MD
Þ13H−1

0 , which for MD ∼ TeV gives rc ∼
10−15H−1

0 ∼ A:U: (this may look marginally legitimate but
it is probably already excluded since high precision
measurements on solar system astronomy occur at dis-
tances 30 A.U. which is larger than A.U.; more importantly,
a higher value of MD, which is more reasonable, reduces
rc). ForD ¼ 8, it is Λeff ∼ 1

M2
Dr

4
c
and in order to be Λeff ∼H2

0

it must be rc ∼
ffiffiffiffiffiffi
H0

MD

q
H−1

0 , which for MD ∼ TeV gives

rc ∼ 10−27H−1
0 ∼ 10−12A:U: (obviously incompatible).

Incompatibility worsens with yet lower rc for higher
D. In all the solutions (5.21), (5.24), (5.27), or even in
(5.15), there appears the effective cosmological constant

Λeff ¼ σ2
σ1
¼ κ2

6
λ−2πð1−ηÞ

r2cþ8παð1−ηÞ. Already the scale
κ2
6
λ

r2c
starts becom-

ing visible, but for η ¼ 1 it is exactly Λeff ¼ σ2
σ1
¼ κ2

6
λ

r2c
.

Therefore, we have a consistent formalism which naturally

embodies the effective cosmological constant scale
κ2
6
λ

r2c
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which can suppress the large value of vacuum energy to the
small observed cosmological constant [for the standard

treatment a relevant scale Λeff ¼ κ2
6
λ−2πð1−βÞ

r2cþ8παð1−βÞ also arises, as it

is seen from (6.37) by setting ρ ¼ p ¼ 0, Y ¼ X].
However, even if all the above arguments have some
physical relevance, there is a point that creates a serious
phenomenological difficulty. This is the constraint from the
four-dimensional Newton’s constant GN . From the solu-

tions (5.21) and (5.25) it has to beGN ∼ σ−11 ¼ κ2
6

r2c
, and then,

rc is constrained by M6 and all the previous numerology
collapses. However, we give an idea how this difficulty
might be evaded. In the spirit of Eqs. (5.28) and (5.35), a
possible dependence of GN on some extra integration
constant GN ¼ GNðσ1; cÞ [even a whole time dependence
of GN due to βðtÞ would create for today an analogous
result] could liberate rc from M6 and charge the value of
GN to this integration constant c. For example, for the

solution (5.28) it is 8πGN ¼ κ24 ¼ κ2
6

r2c
ð1 − 3

2γÞ, and therefore

1
κ2
4

≠ r2c
κ2
6

, as opposed to what one usually imagines from the

action (3.1). To say it in a different way, in the present
theory, Newton’s constant is not determined solely from the
parameters (M6; rc) of the action, but in general depends
also from the integration constants of the considered
solution. Although in the concrete example of Eq. (5.28)
the dependence of GN on γ does not save the argument,
further investigation of the theory and its solutions could
shed more light on this issue.

B. Cosmology with σ1 ¼ 0

The case σ1 ¼ 0 corresponds to η ¼ 1, without the
induced gravity term rc ¼ 0. Therefore, it corresponds to
matching conditions (i) and (iv) with rc ¼ 0. Then, the
conservation equation (5.14) for general βðtÞ can be
rewritten as

�
ρþ λ

24πα
κ2
6
β
þ c

�
_

þ 3nH
ρþ p

24πα
κ2
6
β
þ c

¼ 0 (5.29)

and displays an interplay between the energy density and
the deficit angle during the evolution. This equation looks
like the standard energy conservation equation for
redefined energy densities of matter and brane tension,
i.e. ρ → ρfðβÞ and ρλ → ρλfðβÞ, where ρλ ¼ λ and
fðβÞ ¼ ð24πα

κ2
6
β
þ cÞ−1. Then, for p ¼ wρ it is p → pfðβÞ

and since pλ ¼ −λ it is pλ → pλfðβÞ. It is the same
to say that the total energy density ~ρ ¼ ρþ λ is redefined
~ρ → ~ρfðβÞ, and therefore, for the total pressure ~p ¼ p − λ
it is ~p → ~pfðβÞ. Furthermore, the Raychaudhuri equa-
tion (5.13) becomes

_X
nH

þ 2

�
X þ 1

12α

�
ρ − 3pþ 4λ

ρþ λ
þ ρþ 9p − 8λ

24πα
κ2
6

þ cβ
¼ 0:

(5.30)

Equation (5.29) is written as

dy
dΩ

þ 3ð1þ wÞy − 3ð1þ wÞλ
�
24πα

κ26β
þ c

�
−1

¼ 0; (5.31)

where

y ¼ ρþ λ
24πα
κ2
6
β
þ c

; Ω ¼ ln
a
a0

; (5.32)

and a0 is, for example, the today scale factor. Therefore, for
β ¼ βðaÞ, (5.31) is a linear differential equation for y and
can be integrated giving ρðaÞ. Then, (5.30) becomes a
linear differential equation for ~X:

d ~X
dΩ

þ 2
ð1 − 3wÞρþ 4λ

ρþ λ
~X

þ ½ð1þ 9wÞρ − 8λ�
�
24πα

κ26
þ cβ

�
−1

¼ 0;

~X ¼ X þ 1

12α
; (5.33)

giving HðaÞ or HðρÞ. For example, for a slowly varying β
around today, one could assume that βðΩÞ ≈ β0 þ νΩ2.
Here, we will restrict ourselves to the case of

constant deficit angle during the Universe evolution,
βðtÞ ¼ const. The absence, however, of the induced gravity
term makes the derived cosmology rather simple. As we
have explained, since β is constant, the quantity cβ in
Eqs. (5.29) and (5.30) should be replaced by c.
Equation (5.29) becomes the standard conservation law.
Equation (5.30) with the use of the conservation equation
reduces to the linear differential equation

dX
dρ

−
2

3ð1þ wÞ
ð1 − 3wÞρþ 4λ

ρðρþ λÞ
�
X þ 1

12α

�

¼ 1
24πα
κ2
6

þ c
ð1þ 9wÞρ − 8λ

3ð1þ wÞρ ; (5.34)

with general solution

H2 þ k
a2

¼ κ26ρ

24παð1 − c̄Þ þ
�

κ26λ

24παð1 − c̄Þ −
1

12α

�

þ ~c
ðρþ λÞ2 ρ

8
3ð1þwÞ; (5.35)

where c̄ ¼ − κ2
6

24πα c is a redefinition of the integration
constant c, and ~c is another integration constant. So,
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Eq. (5.35) contains two integration constants c̄; ~c. Note that
the four-dimensional Newton constant is determined by an
integration constant and not solely from the parameters of
the theory.

Setting for this cosmology κ24 ¼ κ2
6

8παð1−c̄Þ the effective

four-dimensional gravitational constant, we have

H2 þ k
a2

¼ κ24
3
ρþ

�
κ24λ

3
−

1

12α

�
þ ~c
ðρþ λÞ2 ρ

8
3ð1þwÞ: (5.36)

By fine-tuning the brane tension to the value λ ¼ 1
4ακ2

4

,

the effective cosmological constant vanishes and (5.36)
becomes

H2 þ k
a2

¼ κ24
3
ρþ ~c

ðρþ 1
4ακ2

4

Þ2 ρ
8

3ð1þwÞ; (5.37)

which includes a nontrivial correction beyond the standard
linear to energy density term.

VI. SPECIAL CASES, EINSTEIN LIMIT AND
COMPARISON WITH STANDARD APPROACH

A. Special cases

It is instructive to see the limit of a few special cases.
These cases need special treatment since several expres-
sions are divided by A;H, etc.

1. Minkowski brane

An exactly Minkowski four-dimensional spacetime has
no need to be the solution of a viable gravitational theory
since any curved spacetime solution is locally Minkowski,
and therefore, satisfies all known local physics. However,
the present theory possesses an exact brane Minkowski
vacuum, where H ¼ 0, k ¼ 0, ρ ¼ 0. In this case, the two
boundary conditions η ¼ 0; 1 reduce to a single case with
vanishing extrinsic curvature A ¼ N ¼ 0, the deficit angle
β comes out to be an integration constant, while for the
second order coefficients it holds β2 ¼ 0, 3A0 þ N0 ¼
κ26T

r
r − Λ6 with T r

r ¼ T θ
θ, T t

r ¼ 0. Here, the regular
parts of the ij bulk equations on the brane do not contain
a000; n000, as it happens when A;N ≠ 0, but they contain
A0; N0; L000; therefore, there is one additional equation for

A0; N0, namely A0 − N0 ¼ κ2
6

6
ð3T t

t − T î
î
Þ, and finally A0; N0

are uniquely determined A0 ¼ κ2
6

24
ð6T r

r þ 3T t
t − T î

î
Þ − Λ6

4
,

N0 ¼ κ2
6

8
ð2T r

r − 3T t
t þ T î

î
Þ − Λ6

4
. Note that in this special

case the brane tension λ does not enter, so irrespectively
of its value, a Minkowski brane is achieved without
fine-tuning.
If the bulk has only Λ6 < 0, one can find the exact bulk

solution of EGB theory which is the extension of the above

Minkowski brane [13,35]. For α < 10
24jΛ6j, we start with the

static black hole solution of EGB gravity [36] with horizon
of toroidal topology

ds26 ¼ −Δ2ðRÞdτ2 þ dR2

Δ2ðRÞ þ R2δijdζidζj;

Δ2ðRÞ ¼ R2

12α

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24α

�
Λ6

10
þ μ

R5

�s #
(6.1)

(μ is the integration constant) which possesses one singu-
larity at R ¼ 0 shielded by an horizon at Rh ¼ ð10μ−Λ6

Þ15.
Making the double Wick rotation θ ¼ −iτ, t ¼ −iζ0 and
defining χ î ¼ ζî and r instead of R by dR

dr ¼ ΔðRÞ, the
solution (6.1) gets the Gaussian-normal form (3.7)

ds26 ¼ dr2 þ L2ðrÞdθ2 þ R2ðrÞð−dt2 þ d~χ23Þ: (6.2)

Integrating equation dR
dr ¼ ΔðRÞ around R ¼ Rh, we find

r≃ 2
ffiffiffiffiffiffi
−2
5Λ6

q ffiffiffiffiffiffiffiffiffiffiffiffi
1 − R5

h

R5

q
; therefore the brane should be located

at the horizon. Moreover, since the induced metric on the
horizon should be the Minkowski metric, it has to be
Rh ¼ 1, i.e. μ ¼ −Λ6=10, and it is found that LðrÞ ¼
ΔðRðrÞÞ ¼ − Λ6

4
rþOðr3Þ, RðrÞ ¼ 1 − Λ6

8
r2 þOðr4Þ.

Comparing the metric (6.2) with (4.1), it is found that
A ¼ N ¼ 0, β2 ¼ 0, A0 ¼ N0 ¼ − Λ6

4
, in accordance with

the values found above for a Minkowski brane. The
constant deficit angle β which from the brane viewpoint
of the effective equations remained undetermined; now the
embedding of the brane in the exact bulk solution specifies
its value to be β ¼ jΛ6j

4
if the angle θ has the standard

normalization 0 ≤ θ < 2π.
For vanishing bulk matter content and Λ6 ¼ 0 the bulk

solution of Einstein or EGB gravity which is consistent
with a Minkowski brane is the locally flat geometry with a
constant deficit angle ds26 ¼ dr2 þ β2r2dθ2 − dt2 þ d~χ23.
This bulk solution has A ¼ N ¼ β2 ¼ A0 ¼ N0 ¼ 0, as
required by the previous brane equations. The only differ-
ence of this configuration with the standard treatment is that
here the brane tension λ remains an arbitrary parameter,

while in the standard approach the equation Gij þ αJ ij ¼
−κ26λhij

δðrÞ
2πβr is more restrictive and implies the well-known

fine-tuning λ ¼ 2π
κ2
6

ð1 − βÞ [8,37] (this fine-tuning is the

same as in Einstein gravity, since for a Minkowski brane the
Gauss-Bonnet term does not contribute). Such a sort of
relation we would like to arise as a direct calculation of an
appropriately defined energy of the gravitational field, and
indeed, one such definition that has successfully passed
various other tests is given by the teleparallel representation
of Einstein gravity [38]. It gives for the gravitational field of
the previous locally flat bulk solution the energy per unit
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spatial volume of the defect, inside a cylinder of arbitrary
radius around the defect, equal to εg ¼ 2π

κ2
6

ð1 − βÞ, which is

same with the energy per unit length of a cosmic string.
Since the radius of the cylinder is insignificant, it may be
concluded that the whole energy is concentrated along the
axis r ¼ 0. Therefore, in the standard approach the energy
is localized on the brane and is due to the brane tension
which adjusts β, while in the current approach the energy is
again practically localized on the brane in the form of
gravitational energy which now adjusts β and has the same
value as before. So, now the gravitational energy stored at
the defect, instead of the brane tension itself, adjusts the
deficit angle and the two descriptions are physically similar.

2. Vanishing extrinsic curvature

Since one of the two matching conditions, Eq. (3.28), is
contracted with the extrinsic curvature, in the limit of
vanishing extrinsic curvature this equation is satisfied
identically. Therefore, the situation is expected rather
exceptional. One such example was the Minkowski brane
above. For cosmology with A ¼ N ¼ 0 the equations on
the brane give the exact conservation equation, β ¼ const,
β2 ¼ 0, T r

r ¼ T θ
θ, T

t
r ¼ 0. Additionally, the regular parts

of the ij bulk equations on the brane do not contain a000; n000,
as it happens when A;N ≠ 0, but they contain A0; N0; L000.
These two equations, together with the θθ equation (4.13),
can be solved for A0; N0; β3. Therefore, H remains arbitrary
and any four-dimensional cosmology can be a solution,
under the condition that it is embedded geodesically in the
bulk. Since there is no curvature singularity at r ¼ 0 in this
case, maybe the stability issue could shed more light on the
physical relevance of such geodesic embeddings.

3. Only tension on the brane

This means that ρ ¼ p ¼ 0, and therefore, this case
cannot be obtained from the solutions of Sec. V. Physically,
this situation could approximate periods of the history of
the Universe where inflation or dark energy dominate over
matter. From Eq. (5.1) it is concluded that β ¼ const.
Then, Eqs. (5.2) and (5.3) do not contain β; thus, (5.13) and
(5.16) should not contain β, and therefore, cβ is replaced by
c in (5.13) and (5.16).
For σ1 ≠ 0 the equation which governs the evolution is

(5.16) and gets the form

_ξ

nH
¼ 4ξ

3

3ξþ 2γ

ξþ γ
; (6.3)

where γ ¼ 3
2
þ 9σ1

2
ðη 24πα

κ2
6

þ cÞ−1, with general solution

1

~ca8
ξ3 − 3ξ ¼ 2γ (6.4)

(~c integration constant). It is also defined c� ¼ j~cj−1=2 > 0.
Equation (6.4) is a cubic for ξ and can be solved

analytically giving the function ξðaÞ, and then the
Hubble evolution H2ðaÞ. Since the cubic has various
branches, there are also branches for the cosmic evolution,
all containing the two integration constants c� > 0; γ.
For ~c > 0 and a8 ≤ γ2=~c, there is one real solution:

H2 þ k
a2

¼ σ2
3σ1

þ sgnðγÞ σc�
6σ1a4

cosh−1
�
1

3
arccosh

�jγjc�
a4

��
:

(6.5)

For ~c > 0 and a8 ≥ γ2=~c, there are three real solutions:

H2 þ k
a2

¼ σ2
3σ1

þ σc�
6σ1a4

cos−1
�
1

3
arccos

�
γc�
a4

�
þ 2πm

3

�
;

m ¼ 0; 1; 2; (6.6)

and accept the regime a → ∞

H2 þ k
a2

≈
σ2
3σ1

þ σc�
6σ1

cos−1
�
πð1þ 4mÞ

6

�
1

a4
: (6.7)

For ~c < 0 there is one real solution:

H2 þ k
a2

¼ σ2
3σ1

−
σc�
6σ1a4

sinh−1
�
1

3
arcsinh

�
γc�
a4

��
; (6.8)

and accepts the regime a → ∞

H2 þ k
a2

≈
1

3σ1

�
σ2 −

3σ

2γ

�
−
2σγc2�
27σ1

1

a8
: (6.9)

Note that the previous solutions for c� ¼ k ¼ 0 can give
a de Sitter brane.
For σ1 ¼ 0, the relevant equation is (5.13) which

becomes

_X
nH

þ 8

�
X þ 1

12α

�
−

8λ
24πα
κ2
6

þ c
¼ 0; (6.10)

with general solution

H2 þ k
a2

¼ ~c
a8

þ κ26λ

24παð1 − c̄Þ −
1

12α
; (6.11)

where c̄ ¼ − κ2
6

24πα c is a redefinition of the integration
constant c, and ~c is another integration constant.
So, Eq. (6.11) contains two integration constants c̄; ~c.
For ~c ¼ k ¼ 0 the solution (6.11) can also give a de
Sitter brane, which is alternatively obtained by setting
directly H ¼ const in (6.10).
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B. The Einstein limit

In the limit of Einstein bulk gravity the Gauss-Bonnet
term is absent: α ¼ 0. We give the effective equations for a
general axially symmetric configuration. In [20], some
terms in the expansion of the regular parts of the bulk
equations at the brane position were missed, so we give
here an exhaustive account of all the relevant equations at
the brane location.
The matching condition (3.28) becomes

fκ26Tij − ½κ26λ − 2πð1 − βÞ�hij − r2cGijgKij ¼ 0; (6.12)

while the matching condition (3.29) gets the form

Tijjj ¼
2π

κ26
hijβ;j: (6.13)

Among the two terms L00
L and L0

L K
0
ij which contribute to the

distributional terms δðrÞ
r , only the first is present in the

Einstein tensor. Note that the index η disappears in (6.12)
and (6.13). In general, the term L0

L K0
ij attributes to the

matching conditions extra terms due to the possible
discontinuity of Kij. Since this term is absent here, there
is no point to consider Kij discontinuous; therefore the
Einstein limit corresponds to η ¼ 1.
The Oð1=rÞ part of the ri bulk equation, namely

Eq. (3.30), becomes

β;i ¼ 0; (6.14)

while the Oð1=rÞ part of the rr bulk equation, i.e.
Eq. (3.31), is1

K ¼ 0: (6.15)

TheOð1=rÞ part of the ij equations, using the expression of
Gij of Appendix A, takes the form

Kij − Khij −
β2
β
hij ¼ 0: (6.16)

The first matching condition (6.12), using (6.15), takes
the form

�
r2c
κ26

Gij − Tij

�
Kij ¼ 0 (6.17)

and coincides with (3.32) if indeed it is set η ¼ 1 in the
constants (3.33). The second matching condition (6.13),
using (6.14), becomes

Tijjj ¼ 0: (6.18)

From Eqs. (6.15) and (6.16) we get

Kij ¼
β2
β
hij: (6.19)

Contracting (6.19) with hij and using again (6.15) we take

β2 ¼ 0; Kij ¼ 0: (6.20)

Therefore, the algebraic matching condition (6.17) or (6.12)
is trivially satisfied and what remains is β ¼ const,
the conservation equation (6.18) and Eqs. (6.20). The
vanishing of the total extrinsic curvature means that in
the Einstein limit the brane is a special case of Nambu-Goto,
it is geodesic, i.e. xμ;ij þ Γμ

νλxν;ixλ;j ¼ 0. Of course, this
happens “on shell”; it is the result of all the equations,
not only the matching conditions. On the contrary, in the
EGB theory we examined, in general the brane even on
shell is not geodesic. It would be interesting to see if in
Einstein theory this geodesic result is relaxed when the
ansatz of axial symmetry is abandoned. If this is the case, the
codimension-2 Einstein gravity will be not only consistent,
but also nontrivial. Note that the probe limit of a theory is
a different thing and is checked “off shell,” from the
matching conditions only, since in the probe limit there is
no bulk dynamics and the bulk equations are empty.
Continuing with the remaining equations, the regular

part of the rr bulk equation is

2K0 þ K2 − KijKij − Rþ 2
□β

β
þ K

β2
β
¼ 2κ26T

r
r − 2Λ6;

(6.21)

where we denote K0
ij ¼ K0

ijðr ¼ 0Þ and Eq. (6.21), due to
(6.14) and (6.20), becomes

R − 2K0 ¼ 2Λ6 − 2κ26T
r
r: (6.22)

Similarly, the regular part of the ri bulk equation is

Kj
ijj − Kji þ

β;j
β

�
β2
2β

δji þ Kj
i

�
−
β2;i
β

¼ κ26T
r
i ; (6.23)

which due to (6.14) and (6.20) becomes identically satisfied
whenever T r

i ¼ 0 on the brane. Concerning the θθ bulk
equation one obtains

2K0 þ KijKij þ K2 − R ¼ 2κ26T
θ
θ − 2Λ6; (6.24)

1In [39], a self-gravitating string in Einstein gravity was locally
described by a thin tube of matter represented by a smoothed
conical metric, and under some constraint on the model of the
string in the limit where the thickness becomes negligible the
central line of the string was shown to follow the Nambu-Goto
dynamics.
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which due to (6.20) becomes

R − 2K0 ¼ 2Λ6 − 2κ26T
θ
θ: (6.25)

Equation (6.22) is compatible with Eq. (6.25) whenever
T r

r ¼ T θ
θ on the brane. Therefore, all the equations of

Einstein gravity on the brane up to now are β ¼ const,
β2 ¼ 0, Tijjj ¼ 0, Kij ¼ 0, R − 2K0 ¼ 2Λ6 − 2κ26T

r
r and

what remains is the regular part of the ij bulk equations.
The regular part of the ij bulk equations is

Gijþ2KikKk
jþKKij−2K0

ijþ
3β2
2β

Kij−
βjijj
β

þ
�
2K0 þ1

2
KklKklþ1

2
K2þ□β

β
þK

β2
2β

−
β22
2β2

þβ3
β

�
hij

¼ κ26T ij−Λ6hij; (6.26)

where β3ðχÞ ¼ L000ðχ; 0Þ. Equation (6.26), due to (6.14) and
(6.20), becomes

Gij − 2K0
ij þ

�
2K0 þ β3

β

�
hij ¼ κ26T ij − Λ6hij: (6.27)

Contracting (6.27) with hij we find β3:

4β3
β

¼ R − 6K0 − 4Λ6 þ κ26T ijhij; (6.28)

and substituting back in (6.27) we get

Gij − 2K0
ij þ

1

4
ðRþ 2K0Þhij ¼ κ26T kl

�
δki δ

l
j −

1

4
hklhij

�
:

(6.29)

Of course, not all ij equations of (6.29) are independent,
but independent are all but one. The nontrivial final equations
to be satisfied are (6.22) and (6.29). For cosmology,
Eq. (6.22) gets the form

3A0 þ N0 − 3ðX þ YÞ ¼ κ26T
r
r − Λ6 (6.30)

and coincides with Eq. (4.13) for α ¼ 0. Equation (6.29) for
cosmology contains one independent equation which is

A0 − N0 þ Y − X ¼ κ26
6
ð3T t

t − T î
î
Þ: (6.31)

Therefore, the two equations (6.30) and (6.31) can be
solved algebraically for A0; N0 and X; Y remain undeter-
mined; thus, the scale factor remains undetermined. The
energy density obeys the standard conservation.
The indeterminacy from the brane viewpoint of one

unknown function for cosmology is the result of the
codimension-2 geometry. Certainly here, in Einstein

gravity, the fact that the scale factor itself remains unde-
termined is more inconvenient compared to the indetermi-
nacy of the general EGB cosmology which can be rendered
to the deficit angle. But still the important thing is the
consistency of Einstein gravity in the present formulation,
in clear contrast to the inconsistency of Einstein gravity
according to the standard treatment [5–7,9,10]. Our main
purpose is to raise the interest to the investigation of more
realistic, alternative matching conditions, not to give an
answer on the selection of the appropriate bulk boundary
conditions, or the appropriate codimensionality, or the
appropriate gravitational theory in order to pick up the
unique final cosmology.

C. Comparison with the cosmology of the
standard approach

It was explained thoroughly in the introduction that
according to the standard approach the equations of motion
of a defect are derived by taking the variation of the brane-
bulk action with respect to the bulk metric at the brane
position. This is the extension of what is done with the
Israel matching conditions and for the codimension-2
Einstein-Gauss-Bonnet theory this was performed in
[12,13,17]. The aim here is to compare the cosmological
equations of the standard treatment discussed in [13] with
the cosmological equations (5.1)–(5.3) of the present
analysis.
In [13], cases (i) and (iii) were examined. Together with

the matching conditions originating from the distributional
terms δðrÞ=r, additional matching conditions were consid-
ered arising from the distributional terms δðrÞ (also
considered in [15]). For case (i), these extra matching
conditions are identically satisfied. However, for case (iii)
these conditions provide nontrivial constraints. The result
of the analysis in [13] for cosmology was that while case (i)
is consistent, case (iii) is not consistent with a codimension-
2 brane, but an additional codimension-1 brane is needed.
However, this result is not correct because the distributional
terms δðrÞ should not be considered for deriving extra
matching conditions. This becomes obvious from the
variational point of view where the volume element
rdrdθ multiplies δðrÞ and vanishes it. Otherwise, looking
at an equation containing two sorts of distributions it cannot
be said if the correct thing is to leave the equation as it is
getting two sets of matching conditions, or to multiply the
equation with r getting one set of matching conditions, or
why not to multiply the equation with r2 getting no
matching conditions at all. To say it in a similar way, it
is not obvious what is the correct regularization and the
answer is provided by the variational principle which
naturally supplies the correct regularization. Therefore,
the correct result is that both cases (i) and (iii) are consistent
with a codimension-2 brane in EGB theory according to
the standard approach. We can add here that case (ii) is
also consistent since mathematically it does not differ
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significantly from cases (i) and (iii). In the following, the
essential cosmological equations of the standard approach
are summarized in order to compare with the current
treatment. These equations for matching conditions (i),
(ii), and (iii) are

_ρþ 3nHðρþ pÞ ¼ η
_β

βðη − βÞ
�
3
r2c
κ26

X − ρ − λ

�
; (6.32)

A2 ¼ 1

η− β

�
1− βþ r2c

8πα

�
X −

κ26ðρþ λÞ
24παðη− βÞ þ

1− β

12αðη− βÞ ;

(6.33)

fA2 ¼ 1

η − β

�
1 − β þ r2c

8πα

�
Y þ κ26ðρþ 3p − 2λÞ

48παðη − βÞ
þ 1 − β

12αðη − βÞ ; (6.34)

2A2

�
_A
nA

þHð1 − fÞ
�
¼

_β

nβ

�
X − A2 þ 1

12α

�
; (6.35)

where, also here, N has been replaced by N ¼ fA. The
definitions for X; Y; f are the same with those in Eqs. (5.5)
and (5.6).
For matching condition (iv), Eqs. (6.33) and (6.34)

are replaced by the cosmological version of the four-
dimensional Einstein equations r2cGij − κ26ðTij − λhijÞ ¼
0; therefore the strict conservation equation replaces
(6.32). Additionally, Eqs. (4.8) and (4.9) are valid with a
zero right-hand side. Solving (4.8) for N=A (now we do not
have the equation N ¼ fA) and substituting in (4.9), there
arises a differential equation for A. Although we do not plan
here to study exhaustively the second order equations to
check the consistency, however, it seems most probable that
matching condition (iv) will still be consistent in the
standard treatment.
Equations (6.32)–(6.35) form a system of four equations

for four unknowns a; ρ; β; A; however, one equation, for
example the matching condition (6.34) is redundant, so
there is again one indeterminacy. Indeed, differentiating the
matching condition (6.33) with respect to time and using
(6.32) and (6.35), Eq. (6.34) is obtained. Although redun-
dant, this equation is left inside the set of equations because
it will be useful in the following. The conservation
equation (6.32) is the corresponding or (5.1), but the
two right-hand sides differ significantly. However, for η ¼
0 or β ¼ const they both reduce to the standard conserva-
tion equation. Equation (6.35) is identical to Eq. (5.3). The
crucial difference between the two theories is the matching
condition (6.33) compared to Eq. (5.2), which is a sort of
equivalent to the new, algebraic in extrinsic curvature,
matching condition (3.28). While Eq. (6.33) contains only

H, Eq. (5.2) contains also _H. In some sense it can be said
that in the standard approach the matching condition is
already integrated, while on the contrary, the present theory
is more complicated and accepts more general solutions
with more integration constants.
For example, to be more explicit, for β ¼ const and

σ1 ¼ 0, Eq. (6.35) can be integrated for A. Then, Eq. (6.33)
gives directly the Hubble parameter in terms of one
integration constant [we do not take into account the
additional integration constant for ρ from (6.32)] and this
solution was obtained in [13]

H2 þ k
a2

¼ κ26ρ

24παð1 − βÞ þ
�

κ26λ

24παð1 − βÞ −
1

12α

�

þ ~c
ðρþ λÞ2 ρ

8
3ð1þwÞ: (6.36)

On the other hand, this same solution for A when
substituted in (5.2), a Raychaudhuri equation for _H is
obtained. Its integration givesH in terms of two integration
constants and this is the solution (5.35) obtained above.
Maybe in this simplified case the two solutions (6.36) and
(5.35) look similar, but the main difference has already
been pointed out.
In the general case of nonconstant β and any σ1, for the

standard treatment, the Raychaudhuri equation can be
easily derived by combining the two algebraic in A
matching conditions (6.33) and (6.34):

�
1 − β þ r2c

8πα

�
ðY − fXÞ þ κ26

48πα
½ð1þ 2fÞρþ 3p�

þ 1 − f
12α

�
1 − β −

κ26λ

2π

�
¼ 0: (6.37)

The analogue of Eq. (6.37) in the alternative approach is
Eq. (5.13). The difference is not only that (5.13) already
contains one extra integration constant, but the whole
structure of the two equations is quite different. To say
it in a different way, in the alternative approach, there is
only one equation (5.2) algebraic in A (also containing
H; _H), instead of the two equations (6.33) and (6.34)
algebraic in A in the standard approach. Differentiating
this equation with respect to time and using (5.3) to get rid
of _A, we could obtain an equation for Ḧ. Again, the
difference with (6.37) is obvious. The successful treatment
performed in Sec. V managed to derive Eq. (5.13) which
contains only _H, but with the cost of one integration
constant c. Equation (6.37) together with the conservation
equation (6.32) constitute for the standard approach the
two-dimensional system for a; ρ with the indeterminacy of
βðtÞ. It would be interesting, for example, to be integrated
for β ¼ const and σ1 ≠ 0.
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VII. CONCLUSIONS

In view of the absence of direct observational evidence of
regular gravitating defects, we raise in this paper on
theoretical grounds the question of the physical relevance
of Israel matching conditions and their generalizations to
higher dimensions and codimensions, the standard corner-
stone of the braneworld paradigm and other membrane
scenarios. While for a self-gravitating brane an equation of
the general form bulk gravity tensor equals some smooth
matter content or some matter content of a “thick” brane is
certainly correct, we claim that it cannot be correct in the
shrink limit of distributional branes. A different treatment
of the delta function characterizing the defect is needed for
extracting its equation of motion. If this is so, the Israel
matching conditions, as well as their generalizations where
the Einstein bulk gravity tensor is replaced by Lovelock
extensions and the branes have differing codimensions,
cannot be adequate.
Our reasoning is based on two points: First, the inca-

pability of the conventional matching conditions to accept
the Nambu-Goto probe limit. Even the geodesic limit of the
Israel matching conditions is not an acceptable probe limit
since being the geodesic equation a kinematical fact it
should be preserved independent of the gravitational theory
or the codimension of the defect, which however is not the
case for these matching conditions. Second, in the D-
dimensional spacetime where we live (maybe D ¼ 4),
classical defects of any possible codimension could in
principle be constructed (even in the lab), and therefore,
they should be compatible. The standard matching con-
ditions fail to accept codimension-2 and -3 defects for
D ¼ 4 (which represents effectively the spacetime at
certain length and energy scales) and most probably fail
to accept high enough codimensional defects for any D
since there is no corresponding high enough Lovelock
density to support them.
We make a proposal that the problem is not the

distributional character of the defects, nor the gravitational
theory used, but the equations of motion of the defects. The
proposed matching conditions might move towards the
correct direction of finding realistic matching conditions
since they always have the Nambu-Goto probe limit,
independently of the gravity theory and independently of
the dimension of spacetime or codimension of the brane.
Moreover, with these matching conditions, defects of any
codimension seem to be consistent for any (second order)
gravity theory. These alternative matching conditions arise
by promoting the embedding fields of the defect to the
fundamental entities. Instead of varying the brane-bulk
action with respect to the bulk metric at the brane position
and deriving the standard matching conditions, we vary
with respect to the brane embedding fields in a way that
takes into account the gravitational backreaction of the
brane to the bulk (“gravitating Nambu-Goto matching
conditions”).

In the present paper we have considered in detail the
case of a 3-brane in six-dimensional Einstein-Gauss-
Bonnet gravity, derived the generic alternative matching
conditions and proved the consistency for an axially
symmetric cosmological configuration. Of course, same
or similar results are true for other codimension-2
defects in other spacetime dimensions. The consistency
of such branes in Einstein gravity was also discussed.
Additionally, however, a 3-brane could represent our
world in the braneworld scenario; therefore, we have
investigated the cosmological equations and found sol-
utions for the cosmic evolution. From the technical point
of view, compared to the standard equations, the main
difference is that the equations here, and accordingly
their solutions, have more richness and more complicated
structure and contain more integration constants. In all
the cosmologies found assuming a constant deficit angle,
there is the standard FRW term linear in energy density, a
cosmological constant term and an extra correction or
dark energy term. In particular, one of these solutions for
a radiation brane and for a range of the integration
constants avoids a cosmological singularity (both in
density and curvature) and undergoes accelerated expan-
sion near the minimum scale factor.
Depending on the existence or not of a conical

singularity or of a discontinuous extrinsic curvature,
there can be four possible cases as matching conditions.
Actually, one of these cases is the smooth matching
condition with smooth transverse section (no cone) and
smooth extrinsic tangential section, which is still con-
sistent and possesses interesting solutions. In general, for
a codimension-2 cosmological configuration, either here
or in the standard treatment, the system of the effective
equations from the brane viewpoint is nonclosed and we
need extra information coming from the bulk geometry in
order to fix one of the functions. On the theoretical side it
would be interesting to have particular bulk solutions
setting the boundary conditions and fixing the deficit
angle, whose evolution would then leave an imprint on
the cosmological evolution equations. For a pure conical
brane such a dynamical deficit angle will make the brane
to radiate in the bulk.
Codimension-2 braneworlds in six-dimensional gravity

or supergravity have attracted considerable interest in
relation to the cosmological constant problem (for a review
see [40]). They are proposed to offer a mechanism for
understanding the smallness of the vacuum energy since in
this scenario, a codimension-2 object induces a conical
singularity, and the cancellation occurring between the
brane tension λ and the bulk gravitational degrees of
freedom gives rise to a vanishing effective cosmological
constant. In the approach of the present paper there is no
such relation between the brane tension and the conical
deficit in order to obtain a Minkowski brane, but a
Minkowski brane is obtained by a physically similar
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balance between the gravitational energy stored at the brane
and the deficit angle. However, furthermore, in the presence
of the induced gravity term, the proposed formalism
embodies naturally the effective cosmological constant
scale κ26λ=r

2
c, which for λ ∼M4

6 (e.g. TeV4) and rc ∼
H−1

0 gives the observed value H2
0 of the cosmological

constant. The corresponding scale in any other bulk
dimension with λ ∼M4

D fails to provide the observed order
of magnitude of the cosmological constant. Even if the
constraint provided by the four-dimensional Newton’s
constant GN is not easily satisfied, there is still hope, since
in the present theory GN is not determined solely from the

parameters of the action, but in general depends also on the
integration constants of the considered solution.
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APPENDIX A: GEOMETRIC COMPONENTS

The nonvanishing components of the necessary geo-
metric quantities of the metric (3.7) are

Γr
θθ ¼ −LL0; Γr

ij ¼ −Kij; Γθ
rθ ¼

L0

L
; Γθ

θi ¼
Lji
L

; Γi
θθ ¼ −LgijLjj; Γi

rj ¼ Ki
j;

Γi
jk ¼

1

2
gilðglj;k þ glk;j − gjk;lÞ (A1)

(where Ki
j ¼ gikKkj),

Rrirj ¼ −K0
ij þKikKk

j ; Rθiθj ¼ −LðLjijj þ L0KijÞ; Rrθrθ ¼ −LL00; Rijkl ¼ Rijkl þKilKjk −KikKjl;

Rθrθi ¼ LðLjjK
j
i − L0

jiÞ; Rrijk ¼ Kijjk −Kikjj (A2)

(where j denotes the covariant derivative with respect to the metric gij),

Rrr ¼ −
L00

L
−K0 −KijKij; Rθθ ¼ −LðL00 þ□Lþ L0KÞ; Rri ¼

Ljj
L

Kj
i −

L0
ji
L

þKj
ijj −Kji;

Rij ¼ Rij −K0
ij þ 2KikKk

j −KKij −
Ljijj
L

−
L0

L
Kij (A3)

(where K ¼ Ki
i and □ is the Laplacian operator of the metric gij),

R ¼ R − 2
L00

L
− 2K0 −KijKij −K2 − 2

□L
L

− 2
L0

L
K; (A4)

Gri ¼
Ljj
L

Kj
i −

L0
ji
L

þKj
ijj −Kji; Grr ¼

1

2
K2 −

1

2
KijKij þ□L

L
þ L0

L
K −

1

2
R;

Gθθ ¼ L2

�
K0 þ 1

2
KijKij þ 1

2
K2 −

1

2
R

�
;

Gij ¼ Gij −K0
ij þ 2KikKk

j −KKij −
Ljijj
L

−
L0

L
Kij þ

�
L00

L
þK0 þ 1

2
KklKkl þ 1

2
K2 þ L0

L
Kþ□L

L

�
gij: (A5)

APPENDIX B: DERIVATION OF REGULAR
EQUATIONS

Using the results of Appendix A, we can find analogous
but more complicated expressions for the tensor compo-
nents of Eμ

ν ¼ Gμ
ν þ αJ μ

ν . In some of these components

there are terms proportional to L0
L ;

L0
ji
L ; L

00
L . All the other terms

of Eμ
ν are manifestly regularOð1Þ terms and can be obtained

by setting formally L0
L ¼ L0

ji
L ¼ L00

L ¼ 0, L ¼ β in the Eμ
ν

expressions. Now, the terms containing L0
L ;

L0
ji
L ; L

00
L are

certainly the sources of the singular Oð1=rÞ terms.
However, these same terms, when expanded in powers
of r, give additional hidden regular Oð1Þ terms. In this
Appendix we derive the regular rr, ri bulk equations on the
brane (4.15) and (4.16).
More precisely, in the rr equation there are terms with L0

L ,

while in the ri equation there are terms with L0
L ;

L0
ji
L . A typical

expansion of these terms is of the form
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L0

L
fðχ; rÞ ¼ f

1

r
þ f0 þ fβ2

2β
þOðrÞ; (B1)

L0
ji
L
fðχ;rÞ¼f

β;i
β

1

r
þf0

β;i
β
þf

�
β2;i
β

−
β;i
β

β2
2β

�
þOðrÞ; (B2)

L00

L
fðχ;rÞ¼f

β2
β

1

r
þβ2

β

�
f0−f

β2
2β

�
þf

β3
β
þOðrÞ; (B3)

where f, f0 are the values on the brane and

β2ðχÞ ¼ L00ðχ; 0Þ, β3ðχÞ ¼ L000ðχ; 0Þ.
In the quantity Er

r the term which multiplies L0
L is

f ¼ K − 4αðWi
j þ Gi

jÞKj
i ; i.e. at the brane position it is

Er
r ¼ Er

rjL0
L¼0;L¼β þ L0

L f. Therefore, using the identity

Wi0
jK

j
i ¼ 2Wi

jK
j0
i , we get the Oð1Þ part of the rr equation:

Er
rjL0

L¼0;L¼β þ K0 − 4αð3Wi
j þGi

jÞKj0
i − 4αGi0

j K
j
i þ ½K − 4αðWi

j þGi
jÞKj

i �
β2
2β

¼ κ26T
r
r − Λ6; (B4)

whereKj0
i denotesKj0

i ðχ; 0Þ. However, from theOð1=rÞ part of the rr equation (3.31) it is f ¼ 0 on the brane and (B4) takes
a simpler form:

Er
rjL0

L¼0;L¼β þ K0 − 4αð3Wi
j þ Gi

jÞKj0
i − 4αGi0

j K
j
i ¼ κ26T

r
r − Λ6: (B5)

For cosmology it is

Er
rjL0

L¼0;L¼β ¼ −12α
�
1

nβ

�
_β

n

�_

X þH _β

nβ
ðX þ 2YÞ þ XY þ 1

6α

�
X þ Y −

5

24α

��
; (B6)

so Eq. (B4) is

1

nβ

�
_β

n

�_

X þH _β

nβ
ðX þ 2YÞ þ XY þ 1

6α
ðX þ YÞ þ 2A2

��
1þ 2

N
A

�
A0 þ N0

�
− ½ðX þ 2YÞA0 þ XN0�

− ½ðAþ NÞX0 þ 2AY0� − A

��
1þ N

A

�
X þ 2Y

�
β2
2β

¼ 1

12α

�
Λ6 þ

5

12α
− κ26T

r
r

�
; (B7)

while its simpler form (B5) is

1

nβ

�
_β

n

�_

X þH _β

nβ
ðX þ 2YÞ þ XY þ 1

6α
ðX þ YÞ þ 2A2

��
1þ 2

N
A

�
A0 þ N0

�
− ½ðX þ 2YÞA0 þ XN0�

− ½ðAþ NÞX0 þ 2AY0� ¼ 1

12α

�
Λ6 þ

5

12α
− κ26T

r
r

�
: (B8)

Using (4.9) it is easy to findH0 ¼ _β
2nβAX − AH, and then progressively the quantities X0; _X ; _H0 ¼ ðH0Þ_; Y 0. Replacing X0; Y 0

in (B8) and using (4.5) we take the equivalent to the regular rr equation

_β2

n2β2

�
2X þ X2

2A2

�
þ XY þ 1

6α
ðX þ YÞ þ 2ð1þ fÞA2ðX þ YÞ þ 2A2½ð1þ 2fÞA0 þ N0� − ½ðX þ 2YÞA0 þ XN0�

¼ 1

12α

�
Λ6 þ

5

12α
− κ26T

r
r

�
: (B9)

For the rt regular equation, due to the complication, we give directly the cosmological expressions, while the rî equation

vanishes identically. In the quantity Et
r the term which multiplies L0

L is ~f ¼ −24α A
n ½

_A
n þHðA − NÞ�, and the term which

multiplies _L0
L is f̄ ¼ 12αX

n2 ; i.e. at the brane position it is Et
r ¼ Et

rjL0
L¼ _L0

L¼0;L¼β þ L0
L
~f þ _L0

L f̄. It is

Et
rjL0

L¼ _L0
L¼0;L¼β ¼ 12α

�
_A
n2

þH
n
ðA − NÞ

��
X þ 2H _β

nβ
þ 1

6α

�
− 12αX

N _β

n2β
; (B10)

so the Oð1Þ part of the rt equation is
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�
_A
n
þHðA − NÞ

��
X þ 2H _β

nβ
þ 1

6α
þ 4AN − 2A0 −

Aβ2
β

�
− 2A

�
_A0

n
þ ðH0 þHNÞðA − NÞ þHðA0 − N0Þ

�

þ ðX 0 − 3NXÞ
_β

nβ
þ X

�
_β2
nβ

−
_β

nβ
β2
2β

�
¼ nκ26

12α
T t

r: (B11)

Using the Oð1=rÞ part of the rt bulk equation, i.e. Eq. (4.9), Eq. (B11) gets the simpler form

_β2
nβ

þH
A

_β2

n2β2
þ
�
X 0

X
−
β2
β
−
A0

A
þ 1

2A

�
X þ 1

6α

�
− N

�
_β

nβ
−
2A
X

�
_A0

n
þ ðH0 þHNÞðA − NÞ þHðA0 − N0Þ

�
¼ nκ26

12αX
T t

r;

(B12)

and using H0 ¼ _β
2nβAX − AH in (B12), we get the equivalent to the regular rt equation

_β2
nβ

þH
A

_β2

n2β2
þ
�
X 0

X
−
β2
β
−
A0

A
þ 1

2A

�
X þ 1

6α

�
− A

�
_β

nβ
−
2A
X

�
_A0

n
þHðA0 − N0Þ −HðA − NÞ2

�
¼ nκ26

12αX
T t

r: (B13)

APPENDIX C: CONSISTENCY OF THE SYSTEM

In this Appendix we solve algebraically the system of
equations (4.10), (4.12), and (4.14) for the unknown
a2; n2; β2. Then, we substitute these expressions in
Eqs. (4.15) and (4.16) which are the regular parts of the
rr, rt equations and check that these are automatically
satisfied. This process shows the consistency of the whole
system for all kinds of matching conditions. More

precisely, Eq. (4.15) is an algebraic equation on the set of
variables a2; n2; β2, while on the other hand, Eq. (4.16) is a
differential (Bianchi) equation with respect to the second
order variables. Of course, the manipulation of the various
terms is quite complicated and it needs to be organized
systematically.
The solution of Eqs. (4.10), (4.12), and (4.14) for

a2; n2; β2 is

ð1þ 3fÞ a2
a

¼ 1þ 3f
12α

þ fX −
3X
2A2

�
_β

nβ

�
2

−
1

12αX

�
κ26T

θ
θ − Λ6 −

5

12α

�
; (C1)

ð1þ 3fÞ n2
n

¼ 1þ 3f
12α

−
1þ 4f þ f2

2
X þ X

2A2

�
_β

nβ

�
2

þ 1þ 2f
12αX

�
κ26T

θ
θ − Λ6 −

5

12α

�
; (C2)

ð1þ 3fÞ β2
βA

¼ −ð1þ fÞ − 3

A2

�
_β

nβ

�
2

−
1

6αX2

�
κ26T

θ
θ − Λ6 −

5

12α

�
: (C3)

Both the regular rr, rt equations (4.15) and (4.16), or the equivalent equations (B9) and (B13), contain A0; N0 instead of
a2; n2. So, it is better to write (C1) and (C2) as

ð1þ 3fÞA0 ¼ ð1þ 3fÞ
�

1

12α
− A2

�
þ fX −

3X
2A2

�
_β

nβ

�
2

−
1

12αX

�
κ26T

θ
θ − Λ6 −

5

12α

�
; (C4)

ð1þ 3fÞN0 ¼ ð1þ 3fÞ
�

1

12α
− N2

�
−
1þ 4f þ f2

2
X þ X

2A2

�
_β

nβ

�
2

þ 1þ 2f
12αX

�
κ26T

θ
θ − Λ6 −

5

12α

�
: (C5)

From (C4) and (C5) we get

fA0 − N0 ¼ f − 1

12α
þ fðf − 1ÞA2 þ f þ 1

2
X −

X
2A2

�
_β

nβ

�
2

−
1

12αX

�
κ26T

θ
θ − Λ6 −

5

12α

�
: (C6)
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As far as Eq. (B9) is concerned, we use (4.5) and (4.8) to express Y in terms of f;X and X þ Y in terms of f;X ; A2.
We also use (C4) and (C6) to find A0; N0 in (B9). Finally, we have everything in terms of f;X ; A2 and (B9) becomes
identically satisfied if T r

r ¼ T θ
θ on the brane. This shows the nontrivial consistency of the regular rr equation (4.15).

The manipulation of Eq. (B13) is more tricky and the starting point is to take the combination C3 − 2
X(C4). Then, we get

β2
βA

−
2

X
A0 ¼ 2

X

�
A2 −

1

12α

�
− 1: (C7)

Differentiating (C7) with respect to time and using the expression for _X with respect to X ;Y; β, we get some of the difficult
terms appearing in (B13):

_β2
nβ

þ
�
X 0

X
−
β2
β

�
_β

nβ
−
2A
X

_A0

n
¼ β2

βA

_A
n
þ X0

X

_β

nβ
−
4AA0

X2
HðY − XÞ − 2A

X 2

_X
n

�
A2 −

1

12α

�
þ 4A2

X

_A
n
: (C8)

Using Eqs. (C6), (C7), (5.2), and (5.3) in (C8) in order to find the coefficient of A0, we obtain extra terms of (B13):

_β2
nβ

þ
�
X 0

X
−
β2
β
−
A0

A

�
_β

nβ
−
2A
X

�
_A0

n
þHðA0 − N0Þ

�

¼
�
1

X

�
6A2 −

1

6α

�
− 1

�
_A
n
þ 2AH

X

�
ð1þ 3fÞA0 þ X

A2

_β2

n2β2

−
X
H

_β

nβ
−

_X
nHX

�
A2 −

1

12α

�
þ ð1 − fÞ

�
fA2 þ 1

12α

�
−
f þ 1

2
X þ 1

12αX

�
κ26T

θ
θ − Λ6 −

5

12α

��
: (C9)

Finally, substituting again _A from (5.3), ð1þ 3fÞA0 from (C4) and _X in (B13), this becomes an identity, given that T t
r ¼ 0

on the brane. This shows the nontrivial consistency of the regular rt equation (4.16).
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