
Topological energy bounds in generalized Skyrme models

C. Adam1 and A. Wereszczynski2
1Departamento de Física de Partículas, Universidad de Santiago de Compostela

and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela, Spain
2Institute of Physics, Jagiellonian University, Reymonta 4, 30 059 Kraków, Poland

(Received 21 November 2013; published 11 March 2014)

The Skyrme model has a natural generalization amenable to a standard Hamiltonian treatment,
consisting of the standard sigma model and the Skyrme terms, a potential, and a certain term sextic in first
derivatives. Here we demonstrate that, in this theory, each pair of terms in the static energy functional which
may support topological solitons according to the Derrick criterion (i.e., each pair of terms with opposite
Derrick scaling) separately possesses a topological energy bound. As a consequence, there exists a four-
parameter family of topological bounds for the full generalized Skyrme model. The optimal bounds, i.e.,
the optimal values of the parameters, depend both on the form of the potential and on the relative strength of
the different terms. It also follows that various submodels of the generalized Skyrme model have one-
parameter families of topological energy bounds. We also consider the case of topological bounds for the
generalized Skyrme model on a compact base space as well as generalizations to higher dimensions.
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I. INTRODUCTION

The Skyrme model [1–3] is a nonlinear field theory of a
SU(2) valued scalar field U. Physically, the field variables
are interpreted as pions, and the theory is regarded as
an approximate low-energy effective field theory for
QCD. One salient feature of the model is the presence
of a topological lower bound for the energy, and the
intimately related existence of topological soliton solutions
(“Skyrmions”) [4–8], which may be interpreted as baryons
[9–17]. Here we shall consider a generalized version of the
Skyrme model frequently employed in applications of the
Skyrme model to nuclear and strong interaction physics
[18–22], which is at most quadratic in first time derivatives
and, therefore, still has a standard Hamiltonian formulation.
Its Lagrangian density reads

L ¼ ν2L2 þ ν4L4 þ ν0L0 þ ν6L6 (1)

(the νi are some dimensionful coupling constants), where
the terms

L2 ¼ −trðRμRμÞ; L4 ¼ trð½Rμ; Rν�½Rμ; Rν�Þ (2)

define the Skyrme model originally introduced and studied
by Skyrme. Here Rμ ¼ ð∂μUÞU† is the right-invariant
Maurer-Cartan current. The two remaining terms are the
potential

L0 ¼ −VðUÞ; (3)

which is assumed non-negative and with one unique
vacuum in the present paper, and the sextic term

L6 ¼ B2
μ (4)

where

Bμ ¼ − 1

24π2
ϵμνρσtrðRνRρRσÞ (5)

is the topological current density giving rise to the integer-
valued topological degree

B ¼
Z

d3xB0 ∈ Z; (6)

which may be identified with the baryon number.
The energy functional for static field configurations of

the original Skyrme model (the submodel ν2L2 þ ν4L4) is
known to have a lower bound linear in the topological
charge B, the so-called Skyrme-Faddeev bound [1,23]. It
may be proven easily, however, that nontrivial soliton
solutions cannot saturate this bound. One consequence
of this is that higher B solitons of the original Skyrme
model have rather high binding energies (see, e.g., [24]),
which is at odds with the low binding energies of the
physical nuclei they are supposed to describe. It has been
found recently that the submodel ν0L0 þ ν6L6, too, has a
Bogomol'nyi-Prasad-Sommerfield (BPS) bound linear in B
and that, further, nontrivial soliton solutions saturating the
bound do exist in this case [25–27]. This result leads to the
proposal to use a version of the Skyrme model for the
description of physical nuclei where the numerical values
of the νi parameters are such that the terms L0 and L6 give
the main contributions to the static soliton energies (i.e.,
nuclear masses). Some first steps in this direction have
already been done, with notable success [28–33].
It is the main purpose of the present paper to demonstrate

that there exist two more topological bounds in the
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generalized Skyrme model (1), generalizing (and somewhat
simplifying) some recent work by Harland on topological
energy bounds in the standard Skyrme model with a
potential (pion mass) term [34]. The existence of four
bounds (all together) implies that each term in the energy
functional participates in two bounds and may be distrib-
uted arbitrarily among them, which results in a four-
parameter family of topological bounds for the full energy.
The optimal bound (the optimal values of the four param-
eters) depends on the specific model, that is, on the form
of the potential V and on the values of the coupling
constants νi.
Our paper is organized as follows. In Section II, we

provide the mathematical concepts needed for the deriva-
tion of the bounds and then derive the general energy bound
for the generalized Skyrme model (1). In the next step, we
consider the bounds for certain submodels, where we
discuss in more detail the cases we believe are of special
importance for applications to nuclear physics. We also
briefly discuss some generalizations [i.e., bounds for some
models which do not belong to the class of generalized
Skyrme models (1)]. In Section III, we consider the
generalized Skyrme model on compact base spaces and
derive the additional topological energy bounds which hold
in this case. The additional bounds grow, in general, faster
than linear in the baryon number. These results may be
relevant for nuclear matter in the limit of infinite baryon
number where, e.g., the formation of crystal-like structures
implies the effective compactification of the base space to a
torus. In Section IV, we briefly consider the case of Skyrme
models in space dimensions different from d ¼ 3.

II. BOUNDS FOR THE SKYRME MODEL

The tools needed for our calculations of the bounds are
just the standard completion of squares in the energy
density, the arithmetic mean–geometric mean (AM-GM)
inequality

Xn
i¼1

ai ≥ n

�Yn
i¼1

ai

�1
n

; ai ≥ 0 (7)

(with equality iff all ai are equal), and the following
observation. The group SU(2) as a manifold may be
identified with the three-sphere S3, so static Skyrme fields
Uðx⃗Þ are maps U∶ R3 → S3. Then the topological charge
density B0 may be naturally extended to a three-form
B ¼ B0d3x, and B is just the pullback under the map U
of the volume three-formΩS3 on S3, divided by the volume
of S3,

B ¼ 1

VolS3

U�ðΩS3Þ; (8)

such that

Z
R3

B ¼ B
1

VolS3

Z
S3

ΩS3 ¼ B; (9)

where the factor B takes into account that the target space is
wrapped B times while the base space is covered once. But
this implies that when B is multiplied by a function of the
field variables fðUÞ, it may still be interpreted as the
pullback of a target space three-form,

fðUÞB ¼ 1

VolS3

U�ðfðUÞΩS3Þ; (10)

with the resulting integralZ
R3

fðUÞB ¼ B
1

VolS3

Z
S3

fðUÞΩS3 ≡ BhfðUÞi; (11)

where hfðUÞi is just the average value of the target space
function fðUÞ when integrated over the whole target space.
This result implies that not only the topological charge
density B0 but also expressions like fðUÞB0 in the energy
density are good candidates for topological bounds.

A. Generalized Skyrme model

There exists a more geometric description of the static
energy density of the Skyrme model, originally due to
Manton [35], which turns out to be extremely useful for our
purposes. Using an analogy to elasticity theory, a strain
tensor

Djk ¼ − 1

2
trðRjRkÞ (12)

may be defined such that all contributions to the static
energy density except the one from the potential may be
expressed by its eigenvalues. Indeed, Djk is a symmetric
and positive 3 × 3 matrix with three non-negative eigen-
values ~λ21, ~λ

2
2, and ~λ23. We also define the rescaled (roots of)

eigenvalues λi ¼ ~λi=
ffiffiffiffiffiffiffi
2π2

p
, which allows us to express the

topological charge density like

B0 ¼
1

2π2
~λ1 ~λ2 ~λ3 ¼ λ1λ2λ3: (13)

The use of λi instead of the (roots of the) eigenvalues ~λi
avoids factors of 2π2 and simplifies the expressions below.
We now introduce an energy unit Λ and a length unit l and
measure all energies and lengths in these units, such that
our resulting energy expressions and coordinates x⃗ are
dimensionless. The energy functional of the generalized
Skyrme model may then be written like

E ¼ μ0E0 þ μ2E2 þ μ4E4 þ μ6E6; (14)

where

E2 ¼
Z

d3xðλ21 þ λ22 þ λ23Þ; (15)
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E4 ¼
Z

d3xðλ21λ22 þ λ22λ
2
3 þ λ23λ

2
1Þ; (16)

E6 ¼
Z

d3xλ21λ
2
2λ

2
3; (17)

and

E0 ¼
Z

d3xVðUÞ: (18)

Here the μi are dimensionless coupling constants. Further,
the baryon number (topological degree) is

B ¼
Z

d3xλ1λ2λ3: (19)

Now we want to show that there are, all together, four
separate topological bounds. In what follows, β is always a
positive real number. First of all, there is the well-known
Skyrme-Faddeev bound βE2 þ E4 ≥ 6β

1
2jBj,

βE2 þ E4 ¼ 4

Z
d3x

1

4
ðβλ21 þ βλ22 þ βλ23 þ λ21λ

2
2 þ λ22λ

2
3 þ λ23λ

2
1Þ

¼
Z

d3xðβ1
2λ1 � λ2λ3Þ2 þ ðβ1

2λ2 � λ3λ1Þ2 þ ðβ1
2λ3 � λ2λ1Þ2 � 2 · 3β

1
2

Z
d3xλ1λ2λ3 ≥ 6β

1
2jBj: (20)

Then there is the bound of the BPS submodel [25],
βE0 þ E6 ≥ 2β

1
2hV1

2ijBj,

βE0þE6¼
Z

d3xðλ21λ22λ23þβVÞ

¼
Z

d3xðλ1λ2λ3�
ffiffiffiffiffiffi
βV

p
Þ2�2β

1
2

Z
d3xλ1λ2λ3

ffiffiffiffi
V

p

≥ 2β
1
2j
Z

d3xλ1λ2λ3
ffiffiffiffi
V

p
j¼ 2β

1
2hV1

2ijBj: (21)

We remark that this bound, and its higher-dimensional
generalizations for E ¼ βE0 þ E2d in d space dimensions
(see below), are special because they can be saturated
for arbitrary B and for rather arbitrary (sufficiently well-
behaved) potentials, see [27,36]. A further interesting
consequence is that the BPS Skyrmion solutions saturating
the bound (with a positive baryon charge, say) cannot have
regions of negative baryon density, which is at variance
with the situation in the standard Skyrme model [37].
Further, there exist the following two bounds. The bound

βE0 þ E4 ≥ 4β
1
4hV1

4ijBj, which was originally found by
Harland [34] using a slightly different derivation involving
also a Hoelder inequality,

βE0 þ E4 ¼ 4

Z
d3x

1

4
ðλ21λ22 þ λ22λ

2
3 þ λ23λ

2
1 þ βVÞ

≥ 4

Z
d3xðλ41λ42λ43βVÞ

1
4 ¼ 4β

1
4

Z
d3xjλ1λ2λ3jV1

4

≥ 4β
1
4

����
Z

d3xλ1λ2λ3V
1
4

���� ¼ 4β
1
4hV1

4ijBj; (22)

and the bound βE2 þ E6 ≥ 4β
3
4jBj,

βE2 þ E6 ¼ 4

Z
d3x

1

4
ðβλ21 þ βλ22 þ βλ23 þ λ21λ

2
2λ

2
3Þ

≥ 4

Z
d3xðβ3λ41λ42λ43Þ

1
4 ¼ 4β

3
4

Z
d3xjλ1λ2λ3j

≥ 4

����β3
4

Z
d3xλ1λ2λ3

���� ¼ 4β
3
4jBj: (23)

To arrive at the four-parameter family of bounds for the
full energy we now introduce four parameters αi,
0 ≤ αi ≤ 1, which allow us to distribute the four energy
terms on their four bounds, and we use the above
inequalities to arrive at

E ¼ μ0E0 þ μ2E2 þ μ4E4 þ μ6E6

¼ ðμ0α0E0 þ μ6α6E6Þ þ ðμ0ð1 − α0ÞE0 þ μ4α4E4Þ þ ðμ2α2E2 þ μ4ð1 − α4ÞE4Þ þ ðμ2ð1 − α2ÞE2 þ μ6ð1 − α6ÞE6Þ

¼ μ6α6

�
μ0α0
μ6α6

E0 þ E6

�
þ μ4α4

�
μ0ð1 − α0Þ

μ4α4
E0 þ E4

�
þ μ4ð1 − α4Þ

�
μ2α2

μ4ð1 − α4Þ
E2 þ E4

�

þ μ6ð1 − α6Þ
�
μ2ð1 − α2Þ
μ6ð1 − α6Þ

E2 þ E6

�

≥
�
μ6α6

�
μ0α0
μ6α6

�1
2

· 2hV1
2iþ μ4α4

�
μ0ð1 − α0Þ

μ4α4

�1
4

· 4hV1
4iþ6μ4ð1 − α4Þ

�
μ2α2

μ4ð1 − α4Þ
�1

2þ 4μ6ð1 − α6Þ
�
μ2ð1 − α2Þ
μ6ð1 − α6Þ

�3
4

�
jBj

¼ f2hV1
2iðμ0α0μ6α6Þ12 þ 4hV1

4iðμ4α4Þ34ðμ0ð1 − α0ÞÞ14þ6ðμ4ð1 − α4Þμ2α2Þ12 þ 4ðμ6ð1 − α6ÞÞ14ðμ2ð1 − α2ÞÞ34gjBj;
(24)
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which is our main result. The parameter values α2k for the
optimal (sharpest) bound obviously depend both on the
potential V and on the coupling constants μi. We also want
to emphasize that the final bound in (24) is scale invariant,
although the initial expression E for the energy is not.
Indeed, applying a scale transformation x⃗ → λx⃗ to the
Skyrme field, Uλðx⃗Þ≡Uðλx⃗Þ, the individual energy terms
transform like E2k → λ2k−3E2k, which is equivalent to a
transformation of the coupling constants μ2k → λ2k−3μ2k. In
the final bound, only scale-invariant combinations like
μ6μ0, μ34μ0, etc., appear.

B. Bounds for submodels

The exact determination of the optimal parameter values
α2k requires the solution of a system of nonlinear algebraic
equations which is, in general, not possible analytically. We
may, however, consider one-parameter families of bounds
for certain submodels where only three of the four terms
contribute, by taking the appropriate limits of the above
expression.

1. The model E024

For the model E024 ¼ μ0E0 þ μ2E2 þ μ4E4 (the standard
Skyrme model with a potential), we find the following
bound originally derived by Harland [34]:

E ¼ μ0E0 þ μ2E2 þ μ4ð1 − α4 þ α4ÞE4

≥ ð4μ1
4

0ðμ4ð1 − α4ÞÞ34hV1
4i þ 6ðμ2μ4α4Þ12ÞjBj: (25)

The optimal value for the parameter α4 can be determined
by maximizing the bound and reads

α4;opt ¼
1

2
a2
 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4

a2

r
− 1

!
; a2 ≡ μ22

μ0μ4ðhV1
4iÞ4 ;

(26)

leading to the optimal energy bound [34]

E024 ≥
ffiffiffiffiffi
μ4

p jBj
"
4

ffiffiffiffiffi
μ2
a

r  
1 − a2

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

a2

r
− 1

!!3
4

þ 3
ffiffiffi
2

p ffiffiffiffiffi
μ2

p
a

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

a2

r
− 1

!1
2

#
: (27)

For the standard pion mass potential V ¼ trð1 −UÞ, the
author of [34] compared the soliton energies of numerical
solutions for the B ¼ 1 hedgehog ansatz with the optimal
bound (27) for different values of the coupling constants
μ2k. For μ0 ¼ 0 (the original Skyrme model without
potential) he recalculated the known result that the hedge-
hog energy is about 23% above the Skyrme-Faddeev
bound, whereas for large μ0 (equivalently for small μ2)

the hedgehog energy gets closer to the optimal bound and is
about 11% above the bound in the limit μ2 → 0. Further,
the author of [34] argued that the situation may become
even better (Skyrmion energies may get closer to their
optimal topological bounds) for other choices of potentials.
This already indicates that the new topological bounds
imply that many generalized Skyrme models lead to soliton
energies which are much closer to their topological bounds
than previously thought and, consequently, to much smaller
binding energies, which is very welcome from a phenom-
enological point of view.

2. The model E026

Next, we consider the case E026 ¼ μ0E0 þ μ2E2 þ μ6E6

with the result

E ¼ μ0E0 þ μ2E2 þ μ6ð1 − α6 þ α6ÞE6

≥ ð2ððμ0μ6ð1 − α6ÞÞ12hV1
2i þ 4μ

3
4

2ðμ6α6Þ
1
4ÞjBj: (28)

This model is of special interest from the point of view of
nuclear physics. On the one hand, it contains the BPS
Skyrme model μ0E0 þ μ6E6 as a submodel which, due to
its BPS property, is a good starting point for the description
of nuclei. On the other hand, it also contains the standard
nonlinear sigma model term E2 which, among other
features, produces the kinetic energy term for the pion
field and is, therefore, required for a more complete and
more reliable description of low-energy strong interaction
physics. Unfortunately, in this case the maximization of the
bound results in a cubic equation for α6 with a rather
complicated solution, which we do not display here. It is,
however, interesting to consider the case when μ2 is small,
i.e., when the standard kinetic term E2 is considered as a
rather small perturbation of the BPS Skyrme model. For
small μ2 we may perform an expansion in μ2 or, better, in

b ¼ μ2

ðμ20μ6hV
1
2i4Þ13

; (29)

which leads to the optimal value for α6

α6;opt ¼ b − 2

3
b2 þ oðb2Þ: (30)

The corresponding optimal energy bound, up to linear order
in b, is

E026 ≥ 2jBj ffiffiffiffiffiffiffiffiffiμ0μ6
p hV1

2i
�
1þ 3

2
b

�
þ oðbÞ: (31)

Here the important point is that for μ2 ¼ 0, i.e., for the BPS
Skyrme model, Skyrmion solutions saturate the bound.
Further, for small μ2 the term μ2E2 will contribute linearly
to the Skyrmion energy in leading order, i.e.,
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E026 ¼ 2jBj ffiffiffiffiffiffiffiffiffiμ0μ6
p hV1

2ið1þ C1bÞ þ oðbÞ; C1 ≥
3

2
;

(32)

like in the optimal lower energy bound for μ2 > 0. This
optimal bound then implies that for not too large values of
μ2 (i.e., for not too large energy contributions of the term
μ2E2), the soliton energies will still be quite close to their
lower bounds, i.e., the model is still “near BPS”. The
resulting binding energies of higher B Skyrmions must,
therefore, be small, as is necessary for a reliable application
to nuclear physics.

3. The model E046

The energy functional E046 ¼ μ0E0 þ μ4E4 þ μ6E6 has
the bound

E046 ¼ ð1 − α0 þ α0Þμ0E0 þ μ4E4 þ μ6E6

≥ ð2hV1=2iðμ0μ6α0Þ12 þ 4hV1
4iðμ0ð1 − α0ÞÞ14μ

3
4

4ÞjBj:
(33)

The optimal value for α0 is, again, the solution of a cubic
equation which we do not show here. The absence of the
term E2 means that this model is probably not adequate for
a realistic description of strong interaction physics.

4. The model E246

Finally, we may consider the case without potential,

E ¼ μ2ð1 − α2 þ α2ÞE2 þ μ4E4 þ μ6E6

≥ ð6ðμ2μ4α2Þ12 þ 4ðμ2ð1 − α2ÞÞ34ðμ6Þ14ÞjBj: (34)

In this latter case, the optimal value for α2 reads

α2;opt ¼
1

2
c2
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4

c2

r
− 1

�
; c2 ≡ μ24

μ2μ6
; (35)

and the optimal energy bound is

E246 ≥
ffiffiffiffiffi
μ2

p jBj
�
3
ffiffiffi
2

p ffiffiffiffiffi
μ4

p
c

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

c2

r
− 1

�1
2

þ 4

ffiffiffiffiffi
μ4
c

r �
1 − c2

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

c2

r
− 1

��3
4
�
. (36)

The model (34) without potential has been studied in [19],
[20] numerically, so let us briefly compare with their
results. The authors of [19], [20] used the energy functional

~E ¼ − 1

12π2

Z
d3x

�
1

2
trR2

i þ
1 − λ

16
tr½Ri; Rj�2

þ λ

96
tr½Ri; Rj�½Rj; Rk�½Rk; Ri�

�
(37)

(here λ is a parameter and λ ∈ ½0; 1�) which, using our
rescaled eigenvalues, reads

~E ¼ 1

12π2

Z
d3x

�X
i

~λ2i þ ð1 − λÞ
X
i<j

~λ2i ~λ
2
j þ λ~λ21 ~λ

2
2
~λ23

�

¼ π2

3

Z
d3x

�
ð2π2Þ−4

3

X
i

λ2i

þ ð1 − λÞð2π2Þ−2
3

X
i<j

λ2i λ
2
j þ λλ21λ

2
2λ

2
3

�
: (38)

In [19] explicit numerical values are given for the case
λ ¼ 1, i.e., for the submodel without the quartic Skyrme
term, so let us consider this case. The energy and the energy
bound are

~Eðλ ¼ 1Þ ¼ π2

3
ðð2π2Þ−4

3E2 þ E6Þ ≥
2

3
jBj: (39)

Numerical energies have been calculated in [19] for baryon
numbers B ¼ 1;…; 5. We display these energies per
baryon number in Table I. All energies ~EB=B are above
the bound ~EB=B ≥ 2=3, as must, of course, hold.

C. Some further generalizations

In this paper, we mainly restrict to field theories with
Lagrangians which are at most quadratic in first time
derivatives and, therefore, lead to a standard Hamiltonian,
but terms not satisfying this constraint have been considered
in the literature and may be induced by quantum corrections
in an effective field theory, so let us briefly discuss this
possibility. The simplest possible term of this type is the
standard sigmamodel termsquared,L0

4 ¼ ðtrRμRμÞ2 leading
to the static energy expression

E4
0 ¼
Z

d3xðλ21 þ λ22 þ λ23Þ2: (40)

This term may participate in topological energy bounds
analogously to the term E4, where just the numerical
coefficients are slightly different. Combining it, e.g., with
the potential E0 we find the following optimal bound

TABLE I. Numerical results for the energies per baryon number
from Ref. [19].

B 1 2 3 4 5

~EB=B 0.9395 0.864 0.848 0.821 0.823
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E0
4þ βE0 ¼ 12

Z
d3x

1

12

�
λ41þ λ42þ λ43þ λ21λ

2
2þ λ21λ

2
2

þ λ21λ
2
3þ λ21λ

2
3þ λ32λ

2
3þ λ22λ

2
3þ

β

3
Vþ β

3
Vþ β

3
V

�

≥ 12

Z
d3x

�
λ121 λ122 λ123

�
β

3
V

�
3
� 1

12

≥ 4× 3
3
4β

1
4jBjhV1

4i: (41)

Further, there exists a (still non-negative) linear combina-
tion of E4 and E0

4 such that the terms λ2i λ
2
j , where i < j, are

absent and the bound is exactly equal to the bound for
E4 þ βE0, namely

E0
4 − 2E4 þ βE0 ¼ 4

Z
d3x

1

4
ðλ41 þ λ42 þ λ43 þ βVÞ

≥ 4

Z
d3xðλ41λ42λ43βVÞ

1
4 ≥ 4β

1
4jBjhV1

4i:

(42)

Next, let us consider yet another type of field theory.
In the literature, sometimes scale-invariant field theories
with noninteger powers of kinetic terms have been consid-
ered as a way to circumvent the Derrick theorem. The
first model of this type, the Deser-Duff-Isham (DDI)

model introduced in [38], has Lagrangian L3 ¼ L
3
2

2 ¼
ð−trRμRμÞÞ32. The root in the Lagrangian may lead to
problems for general time-dependent configurations, but
as far as static configurations are concerned, this model may
be treated analogously to the ones considered so far. Indeed,
the static energy is scale invariant and, therefore, may
support finite energy solutions on its own, and we find

E3 ¼
Z

d3xðλ21 þ λ22 þ λ23Þ
3
2Þ ≥ 3

3
2

Z
d3xjλ1λ2λ3j ≥ 3

3
2jBj:
(43)

Another possibility consists of taking the Skyrme term to

the power 3
4
, L0

3 ¼ L
3
4

4, with the static energy and bound

E0
3¼
Z

d3xðλ21λ22þλ21λ
2
3þλ22λ

2
3Þ

3
4≥3

3
4

Z
d3xjλ1λ2λ3j≥3

3
4jBj:
(44)

We remark that for the analogous models with a target space
S2 (the Nicole [39–41] and the Aratyn-Ferreira-Zimerman
[42,43] models), the corresponding energy bounds have
been found in [34].

D. Saturating the bounds

Finally, let us briefly discuss the possibility of saturating
the bounds. As mentioned already, the bound of the BPS

Skyrme model E6 þ βE0 can be saturated for an arbitrary
baryon number and for rather arbitrary potentials, whereas
the Skyrme-Faddeev bound cannot be saturated (except
for the trivial configuration U ¼ const). For the model
E4 þ βE0, the possibility to saturate the bound was already
discussed in [34]. Indeed, it follows easily from the
derivation (22) that the inequality turns into an equality
iff the following conditions are satisfied:

λ1 ¼ λ2 ¼ λ3 ≡ λ (45)

and

βVðUðxÞÞ ¼ λðxÞ4: (46)

Here, condition (45) is very restrictive. It implies that the
strain tensor is proportional to the identity (remember
~λ ¼

ffiffiffiffiffiffiffi
2π23

p
λ),

Djk ¼ ~λ2δjk (47)

or, in more geometric terms, that the map U∶ R3 → S3

induced by the Skyrme field U pulls back the target space
metric ds2S3 to the Euclidean base space metric, up to a
conformal factor, i.e., U�ðds2S3Þ ¼ ~λ2ðxÞds2R3 . This geo-
metric point of view was used in [34]. In the same paper it
was demonstrated that the inverse stereographic projection
from R3 to S3 provides a solution with baryon number
B ¼ 1 to condition (45), where the resulting potential
obeying (46) is

V ∼ ð1þ ϕ0Þ4 ¼
�
1

2
trð1þUÞ

�
4

(48)

(where U ¼ ϕ0 þ iσkϕk). Due to the restrictive nature of
conditions (45), this probably is the only solution, although
this issue should be further investigated. The fact that the
B ¼ 1 Skyrmion (the hedgehog) of the submodel μ0E0 þ
μ4E4 with the potential (48) saturates the topological
energy bound, whereas higher B Skyrmions do not saturate
it, implies that higher B Skyrmions of this submodel are
unstable against decay into their B ¼ 1 constituents. As
was pointed out in [34], this implies that an inclusion of the
potential (48) into the Skyrme model should reduce binding
energies, which is again welcome from a phenomenologi-
cal point of view.
Concerning additional possibilities to saturate energy

bounds, we just want to add the observation that the
inequality (42) is saturated by exactly the same field
configuration and potential as the inequality (22) [i.e.,
the inverse stereographic projection and the potential (48)],
whereas (41) is saturated by the same Skyrme field
configuration but with a potential which is three times
bigger, i.e., βV ¼ 3λ4.
Finally, for the models (43) (the DDI model) and (44),

the condition (45) is sufficient, so both models have the
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inverse stereographic projection as a solution saturating
the bound. For the DDI model, this solution was already
found in [38].

III. SKYRME MODELS ON COMPACT DOMAINS

There are two main reasons to study Skyrmions on
compact base spaces. On the one hand, exact solutions may
exist on some base spaces which are not available in
Euclidean space, and certain geometrical or topological
properties of Skyrmions may become more transparent.
On the other hand, certain Skyrmion configurations of
physical relevance are equivalent to Skyrmions on compact
domains. If Skyrmions form, e.g., crystal-type structures in
the infinite baryon number limit, then these crystals are
effectively equivalent to Skyrmions on a torus. Concretely,
we assume that the base space (the domain for static con-
figurations) of the Skyrme model is a compact manifoldM
with volume form ΩM and finite volume VolM ¼ RM ΩM,
generalizing the results of [34] for the standard Skyrme
model to more general Skyrme models and dimensions. We
remark that a similar bound for the Faddeev-Skyrme model
on a compact domain has already been derived in [44]. First
of all, all topological bounds derived above continue to
hold on compact domains. However, due to the finite
volume of the base space one can find more (and sometimes
sharper) topological bounds. For these bounds, we need a
version of the Hoelder inequality as an additional tool. The
Hoelder inequality reads�Z

M
ΩMjfjp

�
1=p
�Z

M
ΩMjgjq

�
1=q

≥
Z
M

ΩMjfgj; 1

p
þ 1

q
¼ 1; (49)

which on a compact space and for g ¼ 1 gives�Z
M

ΩMjfjp
�

1=p
�Z

M
ΩM

�
1=q

≥
Z
M

ΩMjfj

or �Z
M

ΩMjfjp
�

≥
1

ðVolMÞp=q
�Z

M
ΩMjfj

�
p
: (50)

We remark that in the cases we shall consider in this section
it is only the finite volume of the base space which gives
rise to the additional bounds, and, consequently, all bounds
are in terms of the baryon number B. For base spaces with
a nontrivial topology, further topological bounds related
to topological invariants of the base space may exist.
Specifically, nontrivial bounds may exist even in the sector
of field configurations with baryon number zero. A specific
example of this possibility has been studied in [45], where
the standard Skyrme model was considered on the base

space R × T 2. There, the author found a nontrivial BPS
bound and solitons saturating the bound in the B ¼ 0
sector, where the nontrivial character of the bound
(the nonzero BPS energy) was related to nonzero winding
numbers about the two compact directions of the two-
torus T 2.

A. Further bounds on compact domains

In addition to the bounds derived in the previous section
for base space R3, we have the following bounds:
(1) E6 ≥ 1

VolM
jBj2,

E6 ¼
Z
M

ΩMλ21λ
2
2λ

2
3 ¼

Z
M

ΩMðB0Þ2

≥
1

VolM

�Z
M

ΩMB0

�
2

¼ 1

VolM
jBj2; (51)

(2) E4 ≥ 3

Vol
1
3
M

B
4
3,

E4 ¼ 3

Z
M

ΩM
1

3
ðλ21λ22 þ λ22λ

2
3 þ λ21λ

2
3Þ

≥ 3

Z
M

ΩMðλ41λ42λ43Þ
1
3 ¼ 3

Z
M

ΩMjB0j43

≥
3

Vol
1
3

M

�����
Z
M

ΩMB0

����
�4

3 ¼ 3

Vol
1
3

M

jBj43: (52)

Here, the latter bound (for E4) has already been found in
[34]. These new bounds may lead to two possible bounds
for one and the same model. For instance, for the BPS
Skyrme model βE0 þ E6 we find the two inequalities

βE0 þ E6 ≥ 2β
1
2hV1

2ijBj (53)

and

βE0 þ E6 ≥ E6 ≥
1

VolM
jBj2: (54)

At this point, several comments are in order. First, for
sufficiently large jBj, the second bound is obviously
sharper and soliton energies must grow at least like jBj2.
Second, while the second bound is, in general, a strict
inequality (i.e., nontrivial solutions cannot saturate it), the
first bound is, in fact, a BPS bound with BPS soliton
solutions saturating it, at least on base space R3. So the
natural question arises whether BPS solutions saturating
the linear bound may still exist on compact base spaces, for
sufficiently small baryon number B. It turns out that under
certain circumstances this is, indeed, the case. The BPS
solutions on R3 are of the compacton type for a large class
of potentials, i.e., they differ from their vacuum value only

TOPOLOGICAL ENERGY BOUNDS IN GENERALIZED … PHYSICAL REVIEW D 89, 065010 (2014)

065010-7



on a subspace with finite volume (usually with the topology
of a ball or disc). Using the same potentials on M and
choosing the right values of the coupling constants (or a
base space with sufficiently large volume), the resulting
soliton solutions are still compact solutions of the BPS
equations for sufficiently small jBj. Here “compact” means
that they take nonvacuum values only in a subregion of the
full (compact) base space. The size of the compacton,
however, grows with the baryon number B, and there exists
a certain value B ¼ B0 such that BPS solitons for jBj ≥ B0

no longer fit intoM, i.e., formal local solutions of the BPS
equations cannot be extended to solutions on the whole
base space fulfilling all the required boundary conditions.
For these larger values of B, solitons are solutions of the
full static second-order equations with energies growing
at least quadratically in B. As the coexistence of both BPS
and non-BPS solutions for one and the same model is
quite interesting, we shall construct an explicit example
displaying this behavior in the next subsection.

B. BPS Skyrmions on S3

Hereweconstruct anexplicit exampleof soliton solutionsof
theBPSSkyrmemodelonthethree-sphere,wherethesolutions
are BPS solutions saturating the bound (53) for sufficiently
small baryon number B, whereas they are solutions to the full
second-order static Euler-Lagrange equations respecting the
secondbound(54)for largeB. It turnsout that for thesymmetric
ansatz we shall use, the second-order ordinary differential
equation (ODE) resulting from the Euler-Lagrange equation
can always be integrated once to a first-order ODE. The
difference between BPS and non-BPS solutions is related to
the corresponding integration constant, which is zero for BPS
solutions but nonzero for non-BPS solutions. We use the
standard parametrization of the Skyrme model,

U ¼ cos ξþ i sin ξn⃗ · τ⃗; n⃗2 ¼ 1; (55)

and the stereographic projection

n⃗ ¼ 1

1þ juj2 ð−iðu − ūÞ; uþ ū; juj2 − 1Þ; (56)

then the BPS SkyrmemodelE ¼ μ6E6 þ μ0E0 onS3 may be
written as

E ¼
Z
S3

ΩS3

�
λ2sin4ξ

ð1þ juj2Þ4 ðið∇ξÞ · ð∇u × ∇ūÞÞ2 þ μ2V

�
;

(57)

whereweconveniently introducenewcouplingconstantsλand
μ, and∇ ¼ êaEa

i∂i. Here, êa is a set of three orthonormal unit
vectors, and Ea

i is the inverse vielbein which, for a diagonal
metric, has only diagonal entrieswhich coincidewith the roots
of the entries of the inverse metric. The corresponding BPS
equation reads

λsin2ξ
ð1þ juj2Þ2 ið∇ξÞ · ð∇u ×∇ūÞ ¼ �μ

ffiffiffiffi
V

p
: (58)

Now, we use the standard metric on a three-sphere

ds2S3 ¼ R2
0ðdρ2 þ sin2ρds2S2Þ

¼ R2
0ðdρ2 þ sin2ρðdθ2 þ sin2θdϕ2ÞÞ; (59)

where ρ; θ ∈ ½0; πÞ andϕ ∈ ½0; 2πÞ.We assume the following
ansatz:

ξ ¼ ξðρÞ; u ¼ uðθ;ϕÞ ¼ vðθÞeinϕ; (60)

where n is equal to the baryon number, n ¼ B. This
results in

v ¼ tan
θ

2
; (61)

and we are left with a first-order ODE for the profile function

2nλ sin2 ξ
R3
0 sin

2 ρ
ξρ ¼ �μ

ffiffiffiffiffiffiffiffiffiffi
VðξÞ

p
: (62)

It is convenient to introduce a new variable, z ¼
1
2
ðρ − sin ρ cos ρÞ. Then, z ∈ ½0; π=2Þ and

2nλsin2ξ
R3
0

ξz ¼ �μ
ffiffiffiffiffiffiffiffiffiffi
VðξÞ

p
: (63)

Let us now restrict to the standard Skyrme potential

V ¼ 1 − cos ξ; (64)

then the profile equation is

2nλsin2ξ
R3
0

ξz ¼ �μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos ξ

p
(65)

or

4
ffiffiffi
2

p
nλ

μR3
0

cos2
ξ

2
sin

ξ

2
dξ ¼ �dz: (66)

Then,

8
ffiffiffi
2

p
λn

3μR3
0

cos3
ξ

2
¼ �ðz − z0Þ: (67)

Now we assume the topologically nontrivial boundary con-
ditions (this implies that we have to choose the plus sign)

ξðρ ¼ 0Þ ¼ π; ξðρ0 ¼ πÞ ¼ 0 (68)

with ρ0 ≤ π, which means
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ξðz ¼ 0Þ ¼ π; ξðz ¼ zBÞ ¼ 0 (69)

with zB ≤ π
2
. Then, solutions are

ξðzÞ ¼
(
2arccos

	
z
zB


1
3 z ≤ zB

0 z ≥ zB
(70)

where

zB ¼ 8
ffiffiffi
2

p
λ

3μR3
0

n: (71)

Obviously, the condition zB ≤ π
2
leads to a maximal topo-

logical charge which may be carried by such a compact
solution,

n ≤
3π

16
ffiffiffi
2

p μR3
0

λ
(72)

or

nmax ¼ ⌊ 3π

16
ffiffiffi
2

p μR3
0

λ ⌋: (73)

Solitons with a bigger value of the topological charge cannot
be solutions of the BPS equation and, therefore, cannot lead
to a linear energy charge relation. The simple reason is that
the total volume of such a solution is bigger than the volume
of the base space. Then, some of the energy must be used to
“squeeze” the solitons. These “noncompact” Skyrmions are
a solution of the “generalized BPS equation” (which results
from the integration of the second-order ODE for the profile
function)

2nλsin2ξ
R3
0

ξz ¼ �μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðξÞ þ V0

p
; (74)

where V0 is an integration constant, which for the standard
Skyrme potential reduces to

2nλ
μR3

0

sin2ξdξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sin2 ξ

2
þ V0

q ¼ dz: (75)

Unfortunately, this equation is integrated into a sum of some
elliptic functions. Therefore, we will use a different and
more suitable potential known as the BPS potential,

VðξÞ ¼ 1

2
ðξ − cos ξ sin ξÞ: (76)

Then the general first-order equation for the profile function
reads

2nλsin2ξ
R3
0

ξz ¼ �μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðξ − cos ξ sin ξÞ þ V0

r
: (77)

It is very convenient to introduce a new target space
variable, i.e., a new profile function

η ¼ 1

2
ðξ − cos ξ sin ξÞ: (78)

The last formula can be rewritten as

2nλ
R3
0

ηz ¼ �μ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ηþ η0

p
(79)

with a new integration constant η0. Further, the boundary
conditions are

ηðz ¼ 0Þ ¼ π

2
; ηðz ¼ zBÞ ¼ 0; where zB ≤

π

2
:

(80)

For the BPS sector we assume η0 ¼ 0. Then the solution is

ηðzÞ ¼
(

π
2

	
1 − z

zB



2

z ≤ zB

0 z ≥ zB
(81)

where

zB ¼ 2
ffiffiffiffiffiffi
2π

p
λ

μR3
0

n: (82)

Obviously, such a solution makes sense only if zB ≤ π=2.
Hence,

2
ffiffiffiffiffiffi
2π

p
λ

μR3
0

n ≤
π

2
⇒ n ≤

μR3
0

λ

1

4

ffiffiffi
π

2

r
: (83)

Then, again, solutions do not fill the whole base space
completely and the energy is linear with the topological
charge. For higher charges we have to consider a nonzero
value for η0, and the solution is

ηðzÞ ¼ 1

β2

��
β2

2
þ π

4
− z

�
2

−
�
β2

2
þ π

4

�
2

þ β2π

2

�
(84)

where

β ¼ 4λ

μR3
0

n: (85)

This solution makes sense if

β2 ≥
π

2
⇒ n ≥

μR3
0

λ

1

4

ffiffiffi
π

2

r
: (86)
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The total energy is

E ¼ 4πμ2R3
0

�
2

3β2

�
β2

2
þ π

2

�
3

− 2

3β2

�
β2

2

�
3

þ π

2

�
π

2
− 1

β2

�
β2

2
þ π

4

�
2
��

: (87)

As β ∼ n, then at leading order in n we get

E ¼ 4π2
λμ

R3
0

n2 þOðn0Þ; (88)

which confirms the topological bound we found above.

IV. SKYRME MODELS IN DIFFERENT
DIMENSIONS

From a physical point of view, the Skyrme model and its
generalizations in d ¼ 3 space dimensions are the most
relevant ones, but Skyrme models in different dimensions
have been studied and are of some interest. The baby
Skyrme model in d ¼ 2 space dimensions [46–49] has been
studied quite intensely, both as a toy model for the full
Skyrme model and because it has some independent
applications, mainly in condensed matter physics (see,
e.g., [50,51]). The investigations of Skyrme models in
higher dimensions have not been developed thus far,
although they, too, may be of some interest, e.g., in the
context of brane cosmology [52–54]. The central idea of
brane cosmology is that our 3þ 1–dimensional universe is
a topological defect within a higher-dimensional bulk
universe [55,56]. This idea gained momentum when it
was found that topological defect solutions of the higher-
dimensional Einstein-matter system may exist such that
both gravitational and nongravitational interactions are
effectively confined to the topological defect (the brane)
[57,58]. In the simplest setting, the brane is a codimension
one defect (a domain wall) in a 4þ 1–dimensional bulk
universe, but branes which are codimension d defects in a
ð3þ dÞ þ 1–dimensional bulk universe are perfectly via-
ble. Skyrmions in d space dimensions provide specific
examples of such codimension d topological defects, and
topological energy bounds for these models may therefore
be useful; we shall briefly discuss them here.
The Skyrme model may be viewed as a field theory in

three space dimensions with fields taking values in the
(target space) three-sphere, and it is this point of view
which we want to generalize. So, a Skyrme model in d
space plus one time dimensions is a field theory with fields
taking values in the d-sphere Sd described by a unit vector
with dþ 1 components,

ϕa; ϕaϕa ¼ 1; a ¼ 1;…; dþ 1: (89)

If the fields are constrained to take a unique value (e.g., the
vacuum value of the potential) at spatial infinity, which we

assume, then the field configurations fall into different
homotopy classes characterized by an integer topological
degree (winding number). We still restrict to Lagrangians
which are at most quadratic in time derivatives, then, in
addition to a potential L0 ¼ −VðϕaÞ we may have the
following derivative terms:

L2k ¼ ϵa1…akckþ1…cdþ1ϵμ1…μkρkþ1…ρd

× ϕa1
μ1…ϕak

μkϵ
b1…bkckþ1…cdþ1ϵν1…νk

ρkþ1…ρdϕ
b1
ν1…ϕbk

νk ;

(90)

where ϕa
μ ≡ ∂μϕ

a and k ¼ 1;…; d. Finally, the topological
degree is

B ¼ 1

d!VolSd

Z
ddxϵa0a1…adϵμ1…μdϕa0ϕa1

μ1…ϕad
μd : (91)

We may again define a d × d strain tensor for static field
configurations,

Dl
k ¼ gljϕa

jϕ
a
k; (92)

such that all contributions to the static energy (except for
the potential) may be expressed in terms of the d non-
negative eigenvalues ~λ2j of the strain tensor (here the rising
of one index by the inverse base space metric glj is
immaterial for an Euclidean base space, but becomes
relevant on general base spaces). Further, we shall again
rescale the (roots of the) eigenvalues ~λj → λj by a common
constant factor such that the topological index is just the
integral of the product of all λj,

B ¼
Z

ddxλ1…λd ∈ Z: (93)

This avoids clumsy factors in the expressions below.

A. The baby Skyrme model in two space dimensions

The bound of the baby Skyrme model is, in principle,
well known, so we just briefly repeat it here. The dimen-
sionless static energy functional reads

E ¼ μ0E0 þ μ2E2 þ μ4E4; (94)

where E0 ¼
R
d2xV, E2 ¼

R
d2xðλ21 þ λ22Þ and E4 ¼R

d2xλ21λ
2
2. There are two topological bounds, namely [59]

E2 ¼
Z

d2xðλ1 � λ2Þ2 � 2

Z
d2xλ1λ2 ≥ 2

����
Z

d2xλ1λ2

����
¼ 2jBj (95)

and [60–62]
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βE0 þ E4 ¼
Z

d2xðβV þ λ21λ
2
2Þ

¼
Z

d2xðλ1λ2 �
ffiffiffiffiffiffi
βV

p
Þ2 � 2

ffiffiffi
β

p Z
d2xλ1λ2

ffiffiffiffi
V

p

≥ 2β
1
2

����
Z

d2xλ1λ2V
1
2

���� ¼ 2β
1
2hV1

2ijBj: (96)

The total energy is, therefore, bound by

E ¼ μ2E2 þ μ4

�
μ0
μ4

E0 þ E4

�
≥ 2ðμ2 þ ðμ0μ4Þ12hV1

2iÞjBj:
(97)

On a compact two-dimensional base space M there exists
the additional bound

E4 ≥
1

VolM
jBj2; (98)

where VolM is the area of the base space. This bound is
equivalent to the bound (51) for E6 on a three-dimensional
compact base space.

B. Skyrme models in higher dimensions

The dimensionless static energy of the generalized
Skyrme model in four dimensions reads

E ¼ μ0E0 þ μ2E2 þ μ4E4 þ μ6E6 þ μ8E8; (99)

where E0 ¼
R
ddxV and, using the rescaled eigenvalues of

the strain tensor, the further expressions read

E2 ¼
Z

d4xðλ21 þ λ22 þ λ23 þ λ24Þ; (100)

E4 ¼
Z

d4xðλ21λ22 þ λ22λ
2
3 þ λ23λ

2
1 þ λ21λ

2
4 þ λ22λ

2
4 þ λ23λ

2
4Þ;

(101)

E6 ¼
Z

d4xðλ21λ22λ23 þ λ21λ
2
2λ

2
4 þ λ21λ

2
3λ

2
4 þ λ22λ

2
3λ

2
4Þ; (102)

E8 ¼
Z

d4xλ21λ
2
2λ

2
3λ

2
4: (103)

Further,

B ¼
Z

d3xλ1λ2λ3λ4 (104)

is the pertinent topological charge. Generalizations to five
or higher dimensions are obvious. Again, in Euclidean
space, there exists a separate topological energy bound for
each pair of energy expressions E2k which behave oppo-
sitely under Derrick scaling, now in four dimensions. In
addition, in this case (like in d ¼ 2 dimensions for E2) there
exists a separate bound for the scale invariant term E4.
Further, there exist two more bounds (for E6 and E8) on
compact base spaces. The calculations of these bounds are
similar to the calculations in two and three dimensions and
sometimes lead to rather lengthy expressions, therefore we
relegate them to the Appendix.

V. CONCLUSIONS

In the present paper, we investigated the issue of
topological energy bounds in generalized Skyrme models,
generalizing and complementing the recent results of [34].
We mostly restricted our considerations to generalizations
of the Skyrme model which still lead to a standard
Hamiltonian. The principal result of this investigation is
that in generalized Skyrme models there exists a rather
large number of new topological energy bounds which have
not been known until now. Apart from being an interesting
and unexpected mathematical result on its own, the main
physical importance of these new bounds lies in the fact
that the soliton solutions of generalized Skyrme models
obey much sharper energy bounds than thought previously.
In other words, quite many generalized Skyrme models are
near-BPS models with soliton energies rather close to the
new sharper topological bounds, which implies that pos-
sible binding energies must be small, exactly as required for
an application to nuclear physics. Indeed, if the energy of
the B ¼ 1 Skyrmion (the hedgehog) of a generalized
Skyrme model is 1þ δ times the optimal topological
bound, i.e., EB¼1 ¼ ð1þ δÞEð0Þ, where the optimal bound
is EB ≥ jBjEð0Þ, then the binding energies ΔB of higher
Skyrmions (the energetic cost of a disintegration into their
B ¼ 1 constituents) are bound by

ΔB ≡ jBjEB¼1 − EB ≤ jBjEð0Þð1þ δÞ − jBjEð0Þ

¼ jBjEð0Þδ (105)

and the relative binding energies are bound by δ,

ΔB

EB
≤

ΔB

jBjEð0Þ ≤ δ; (106)

and are necessarily small for small δ. So the new sharper
bounds significantly extend the space of physically viable
generalizations of the Skyrme model. We remark that a
different proposal for a near-BPS Skyrme model via the
inclusion of vector mesons and based on an instanton
holonomy, has been developed recently in [63–66].
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From a more numerical point of view, these new
energy bounds may serve as benchmarks for numerical
calculations of solitons and soliton energies in generalized
Skyrme models, which should be instrumental in a
more precise determination of these soliton solutions and
a better control of possible numerical errors or finite-size
effects.
We also considered Skyrme models on compact base

spaces, which typically lead to further additional topologi-
cal energy bounds related to the finite volume of the base
space. Skyrme models on compact spaces are relevant for
the analysis of very high density nuclear matter, where
Skyrmions form crystal-like structures [35,67–69], so our
new bounds may be helpful in this context. We also found
new topological energy bounds for some further nonlinear
field theories supporting topological solitons like, e.g., the
DDI model [38]. Finally, we briefly discussed the resulting
topological energy bounds for Skyrme models in higher
dimensions.
At last, let us mention that in the very recent publication

by Harland [34], in addition to the bounds for the standard
Skyrme model with a potential, new energy bounds for
the Skyrme-Faddeev model with a potential and for the
Nicole and Aratyn-Ferreira-Zimerman models have also
been found.
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APPENDIX

Here we present some of the calculations and all results
for pairwise or individual bounds for general Skyrme
models in four and five dimensions. The generalization
to higher dimensions is straightforward.

1. Four dimensions

In d ¼ 4 space dimensions in Euclidean space, there are
five separate topological bounds.

(1) βE0 þ E6 ≥ 6 × 2−1
3β

1
3hV1

3ijBj

βE0 þ E6 ¼ 4

Z
d4x

1

4
ðλ21λ22λ23 þ λ21λ

2
2λ

2
4 þ λ21λ

2
3λ

2
4 þ λ22λ

2
3λ

2
4 þ βVÞ

¼ 6

Z
d4x

1

6

�
λ21λ

2
2λ

2
3 þ λ21λ

2
2λ

2
4 þ λ21λ

2
3λ

2
4 þ λ22λ

2
3λ

2
4 þ

βV
2

þ βV
2

�

≥ 6

Z
d4x

����β2λ61λ62λ63λ64 V2

4

����
1
6

¼ 6 × 2−1
3β

1
3

Z
d4xjλ1λ2λ3λ4jV1

3

≥ 6 × 2−1
3β

1
3hV1

3ijBj (A1)

(2) βE0 þ E8 ≥ 2β
1
2hV1

2ijBj

βE0 þ E8 ¼
Z

d4xðλ21λ22λ23λ24 þ βVÞ

¼
Z

d4xðλ1λ2λ3λ4 �
ffiffiffiffiffiffi
βV

p
Þ2 � 2β

1
2

Z
d4xλ1λ2λ3λ4

ffiffiffiffi
V

p

≥ 2β
1
2

����
Z

d4xλ1λ2λ3λ4
ffiffiffiffi
V

p ����
¼ 2β

1
2hV1

2ijBj (A2)
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(3) βE2 þ E6 ≥ 8β
1
2jBj

βE2 þ E6 ¼ 4

Z
d4x

1

4
ðβðλ21 þ λ22 þ λ23 þ λ24Þ þ λ21λ

2
2λ

2
3 þ λ21λ

2
2λ

2
4 þ λ21λ

2
3λ

2
4 þ λ22λ

2
3λ

2
4Þ

¼
Z

d4xðβ1
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þ ðβ1
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1
2

Z
d4xλ1λ2λ3λ4

≥ 8β
1
2

����
Z

d4xλ1λ2λ3λ4

���� ¼ 8β
1
2jBj (A3)

(4) βE2 þ E8 ≥ 6 × 2−1
3β

2
3jBj

βE2 þ E8 ¼
Z

d4xðβðλ21 þ λ22 þ λ23 þ λ24Þ þ λ21λ
2
2λ

2
3λ

2
4Þ

¼ 6

Z
d4x

1

6

�
βðλ21 þ λ22 þ λ23 þ λ24Þ þ

1

2
λ21λ

2
2λ

2
3λ

2
4 þ

1

2
λ21λ

2
2λ

2
3λ

2
4

�

≥ 6

Z
d4x
���β4λ61λ62λ63λ64 14

���1=6 ¼ 6 × 2−1
3β

2
3

Z
d4xjλ1λ2λ3λ4j

≥ 6 × 2−1
3β

2
3jBj (A4)

(5) E4 ≥ 8jBj

E4 ¼
Z

d4xðλ1λ2 � λ3λ4Þ2 þ ðλ1λ3 � λ2λ4Þ2 þ ðλ1λ4 � λ2λ4Þ2

� 4 × 2

Z
d4xλ1λ2λ3λ4 ≥ 8jBj: (A5)

On a compact four-dimensional manifold M we have, in addition, the following bounds:
(1) E6 ≥ 4ffiffiffiffiffiffiffiffiffi

VolM
p jBj32

E6 ¼
Z

ΩMðλ21λ22λ23 þ λ21λ
2
2λ

2
4 þ λ21λ

2
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2
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2
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2
4Þ
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2
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2
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2
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2
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2
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2
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ΩMðλ61λ62λ63λ64Þ

1
4 ¼ 4

Z
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≥
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VolM
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ΩMB
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VolM
p jBj32 (A6)

(2) E8 ≥ 1
VolM

B2

E8 ¼
Z

ΩMλ21λ
2
2λ

2
3λ

2
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Z
ΩMB2

≥
1

VolM
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ΩMB

�
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¼ 1

VolM
B2: (A7)
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2. Five dimensions

The static energy E and topological charge B in five
dimensions, expressed in terms of the rescaled eigenvalues
of the strain tensor, are

E ¼ μ0E0 þ μ2E2 þ μ4E4 þ μ6E6 þ μ8E8 þ μ10E10;

(A8)

where

E2 ¼
Z

d4xðλ21 þ λ22 þ λ23 þ λ24 þ λ25Þ; (A9)
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2
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E10 ¼
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d4xλ21λ
2
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2
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2
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2
5; (A13)

and

B ¼
Z

d3xλ1λ2λ3λ4λ5: (A14)

In Euclidean space, there are nine separate topological
bounds.

(1) βE0 þ E10 ≥ 2β
1
2hV1

2ijBj
(2) βE0 þ E8 ≥ 8

3
3
8

β
3
8hV3

8ijBj
(3) βE0 þ E6 ≥ 12

2
1
6

β
1
6hV1

6ijBj
(4) βE2 þ E10 ≥ 8

3
3
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β
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(5) βE2 þ E8 ≥ 10β
1
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3
3
42

1
4

β
1
4jBj
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2
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(8) βE4 þ E8 ≥ 40

3
3
42

1
4

β
3
4jBj

(9) βE4 þ E6 ≥ 20β
1
2jBj.

On a compact base space, there are three additional
topological bounds,

(1) E10 ≥ 1
VolM

jBj2
(2) E8 ≥ 5

ðVolMÞ35
B

8
5

(3) E6 ≥ 10

ðVolMÞ15
B

6
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