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We study the properties of strongly interacting massive quantum fields in space-time as resulting from a
parametric decay of the fields with a large decay width γ. The resulting imaginary part of the retarded and
advanced propagators in this case is of Lorentzian form, and the theory conserves microcausality; i.e., the
commutator between the fields vanishes for spacelike distances in space-time. However, when considering
separately spacelike and timelike components of the spectral function in momentum space, we find
microcausality to be violated for each component separately. This implies that the modeling of effective
field theories for strongly interacting systems has to be considered with great care, and restrictions to
timelike four-momenta in case of broad spectral functions have to be ruled out. Furthermore, when
employing effective propagators with a width γðp2Þ depending explicitly on three-momentum p, the
commutator of the fields no longer vanishes for r > t, since the related field theory becomes nonlocal and
violates microcausality.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is considered to be
the theory of the strong interaction; however, it is accessible
to perturbation theory only in the limits of short distance or
high momentum transfer. Thermodynamical properties of
hadronic or partonic matter at finite temperature T and/or
chemical potential μq involve large-distance interactions
and can rigorously only be addressed by lattice QCD
(predominantly at vanishing chemical potential) in
Euclidean space. Alternatively, one might employ effective
field theories that share the symmetry properties of QCD
and fix the couplings to reproduce field expectation values
and correlators [1–11]. In fact, the knowledge about the
phase diagram of strongly interacting hadronic/partonic
matter has been increased substantially in the last decades.
At vanishing (or low) chemical potentials, lattice QCD
(lQCD) calculations have provided reliable results on the
equation of state [12,13] and given a glance at the transport
properties (or correlators [14–25]) in particular in the
partonic phase.
Recent studies of “QCD matter” in equilibrium—using

lattice QCD calculations [14,15] or partonic transport
models in a finite box with periodic boundary conditions
[26]—have demonstrated that the ratio of the shear vis-
cosity to entropy density η=s should have a minimum close
to the critical temperature Tc, similar to atomic and
molecular systems [27]. On the other hand, the ratio of
the bulk viscosity to the entropy density ζ=s should have a
maximum close to Tc [26] or might even diverge at Tc
[28–32]. Indeed, the minimum of η=s at Tc ≈ 160 MeV is
close to the lower bound of a perfect fluid with η=s ¼
1=ð4πÞ [33] for infinitely coupled supersymmetric

Yang-Mills gauge theory (based on the AdS/CFT duality
conjecture). This suggests the “hot QCD matter” to be the
“most perfect fluid” [34–36]. On the other hand, the
transport studies in Refs. [26,37,38] have provided results
for the shear and bulk viscosity as well as the electric
conductivity that are very close to lattice QCD results;
however, they employ the notion of a strongly interacting
gas of quasiparticles with a dynamically generated mass
that is sufficiently larger than the width of their spectral
functions. These studies have been based on the dynamical
quasiparticle model (DQPM) [39,40] that incorporates
effective propagators for the partons with a finite width
of the spectral functions Aiðωi;piÞ; i.e., for scalar fields
[ ~p ¼ ðω;pÞ],

Aiðωi;piÞ ¼
γi
2 ~Ei

�
1

ðωi − ~EiÞ2 þ γ2i
− 1

ðωi þ ~EiÞ2 þ γ2i

�

¼ 2ωiγi
ðω2

i − p2
i −M2

i Þ2 þ 4γ2iω
2
i
; (1)

with ~E2
i ðpiÞ ¼ p2

i þM2
i − γ2i and i ∈ ½g; q; q̄�. The spectral

functions AiðωiÞ are antisymmetric in ωi and normalized as

Z þ∞

−∞
dωi

2π
2ωiAiðωi;pÞ ¼ 1; (2)

where Mi and γi are the dynamical quasiparticle mass (i.e.,
pole mass) and the width of the spectral function for
particle i, respectively. They are directly related to the real
and imaginary parts of the related self-energy, e.g., Πi ¼
M2

i − 2iγiωi [40]. In the off-shell approach, ωi is an
independent variable and related to the “running mass”
mi by ω2

i ¼ m2
i þ p2

i . In the case of vector fields or fermion
fields, the following retarded propagators are employed that*Wolfgang.Cassing@theo.physik.uni‑giessen.de
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differ from the “free” massive case only by the additional
ð2γVωÞ2 or�iγF in the denominator and the corresponding
matrices in the numerator [41]:

Aμν
V ðω;p; γVÞ ¼ γV

2ωðgμν − pμpν=M2
VÞ

ðω2 − p2 −M2
VÞ2 þ 4γ2Vω

2
(3)

and

AFðω;p; γFÞ

¼ 1

4EF

�
EFγ

0 þ p · γþmF

ω − EF − iγF
− −EFγ

0 þ p · γþmF

ωþ EF − iγF

− EFγ
0 þ p · γþmF

ω − EF þ iγF
þ −EFγ

0 þ p · γþmF

ωþ EF þ iγF

�
; (4)

with EF ¼ p2 þm2
F in obvious notation.

As is seen e.g., from the spectral function [Eq. (1)], it is
nonvanishing for timelike ( ~p2 > 0) as well as for spacelike
( ~p2 < 0) four-momenta, such that the question emerges of
whether the theoretical concept behind the DQPM (or other
effective approaches) conserves microcausality; i.e., if the
spectral function transformed to space-time only has
support on and within the light cone. We recall that the
Fourier transform of the spectral function Aðω;pÞ is
proportional to the commutator of the fields at different
space-time points, and its integration over energy ω ensures
a proper quantization (see below). This is of particular
importance, since a transport realization can only propagate
“quasiparticles” within or on the light cone [42,43]. More
importantly, in the DQPM, spectral contributions are
separated into timelike ( ~p2 > 0) and spacelike ( ~p2 < 0)
four-momentum parts, and the additional question
arises of whether the contributions separately conserve
microcausality.
From the analytic function theory of propagators, it is

known that the propagation is causal and proceeds within
the light cone if the retarded propagator is analytic in ω on
the real axis and in the upper half-plane [44]. Furthermore,
it should obey standard asymptotics in the high-frequency
and momentum limit. As will become transparent in the
following, the spectral function [Eq. (1)] is proportional to
the imaginary part of a retarded propagator that is analytic
on the real ω axis and in the upper half-plane, and
accordingly should be causal. In fact, we will provide an
explicit proof for that. However, this no longer holds for the
retarded propagator when restricting to spacelike or time-
like four-momenta. In this case, analyticity no longer holds,
and one should expect microcausality to be violated. In this
paper, we will explore quantitatively these formal expect-
ations and demonstrate explicitly in space-time where such
causality violations become dominant for spectral functions
with γ ≪ M, γ ≈M, and γ > M.
The layout of our study is as follows: In Sec. II, we

briefly present the basic definitions and relations between

retarded and advanced propagators and recall the analytic
proof for microcausality in the case of the spectral functions
[Eqs. (1), (3), and (4)]. In Sec. III, the actual problem is set
up for timelike ( ~p2 > 0) and spacelike ( ~p2 < 0) four-
momentum parts of the spectral function and its numerical
realization. Furthermore, we present the actual numerical
results for strong coupling and investigate the aperiodic
limit as well as the case γ > M. A summary and discussion
of results is given in Sec. IV.

II. PROPAGATORS AND SPECTRAL FUNCTIONS

In this work, we will concentrate on the model case of a
massive scalar field coupled, e.g., to an external fermion
field [∼∂μΦðxÞΨ̄ðxÞγμΨðxÞ] with a vanishing three-current;
i.e., the field equation

� ∂2

∂t2 − ▵þM2 þ 2γ
∂
∂t
�
ΦðxÞ ¼ 0; (5)

where γ stands for the strength of the coupling (e.g.,
gshΨ†Ψi=2). Equation (5) has the algebraic solution

~GðpÞ ¼ −1
ω2 − p2 −M2 þ 2iγω

; (6)

which leads to the retarded Green function Gret obeying

Gretðx − yÞ ¼ 0 for x0 − y0 < 0 (7)

by a four-dimensional Fourier transformation of Eq. (6),

GretðxÞ ¼
Z

d4 ~p
ð2πÞ4

~Gð ~pÞ expð−i ~pxÞ: (8)

We point out that ℑ ~Gð ~pÞ is identical to Eq. (1). We
recall, furthermore, that solutions of the Kadanoff-Baym
equations [45] for Φ4 theory in 2þ 1 dimensions [46] have
led to spectral functions that are very close to Eq. (1) also
for strong coupling.

A. Analytical results

The integration over dω ¼ dp0 in Eq. (8) can be carried
out by contour integration, and the angular integration in
three-momentum is straightforward. With μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − γ2

p
,

the remaining integral kernel reads (p ¼ jpj)

KðxÞ≔ 1

jxj
Z

∞

0

p
sinðt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ p2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 þ p2
p sinðjxjpÞdp

¼ 1

2jxj
Z

∞

−∞
p
sinðt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ p2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 þ p2
p sinðjxjpÞdp; (9)

which has a singular contribution on the light cone and a
regular part on and within the light cone. The remaining
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integration over dp gives for the retarded Green function
[using x ¼ ðt; xÞ ¼ ðx0; xÞ]

GretðxÞ ¼
e−γtΘðtÞ

2π
δðt2 − x2Þ

− e−γtΘðtÞ
4π

Θðt2 − x2Þ μffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − x2

p J1ðμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − x2

p
Þ

(10)

for μ2 ≥ 0. With

δðt2 − x2ÞΘðtÞ ¼ δððt − jxjÞðtþ jxjÞÞΘðtÞ ¼ δðt − jxjÞ
2jxj ;

(11)

one arrives at the final result [47]

GretðxÞ ¼
�
δðt − jxjÞ
4πjxj − Rðt2 − x2Þ

�
e−γtΘðtÞ; (12)

with

Rðt2 − x2Þ ¼ Θðt2 − x2Þ μ

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − x2

p J1ðμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − x2

p
Þ;
(13)

where J1 is the Bessel function. In the actual calculations,
the δ-distribution term on the light cone will be subtracted,
and we will address the regular part [Eq. (13)] including the
overall exponential decay in time, i.e.,

~Rðt2 − x2Þ ¼ Rðt2 − x2Þe−γtΘðtÞ: (14)

We note in passing that the related results for massive
vector fields and Dirac fields read [48]

Gμν
retðxÞ ¼

�
gμν þ 1

M2
V
∂μ∂ν

�
GretðxÞ (15)

and

GF
retðxÞ ¼ ðmF · 14 þ iγμ∂μÞGretðxÞ: (16)

Equations (15) and (16) demonstrate that it is sufficient to
investigate microcausality for the scalar case, since micro-
causality for the scalar field implies microcausality for the
corresponding vector and fermion fields.
The retarded Green function [Eq. (12)] is close to the

solution of the free massive Klein-Gordon field except for
the factor e−γt describing the decay of the propagator in
time and the reduced mass μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − γ2

p
that incorpo-

rates a downward shift of the mass M as in the case of the
damped harmonic oscillator.

Similar relations hold for the advanced Green function,
which is obtained by replacing γ → −γ and a multiplication
by −1 due to the opposite contour integration:

GavðxÞ ¼
�
− δðtþ jxjÞ

4πjxj þ Rðt2 − x2Þ
�
eþγtΘð−tÞ; (17)

following Gavðx−yÞ¼0 for x0−y0>0. In four-momentum
space, the advanced propagator is given by Eq. (6), replacing
γ with −γ. Accordingly, ~Gadð ~pÞ − ~Gretð ~pÞ ¼ −2iAð ~pÞ is
purely imaginary and equal to twice the spectral func-
tion [Eq. (1)].

B. Spectral functions

Of central interest in our study is the scalar spectral
function Aðω;pÞ [Eq. (1)], i.e., the imaginary part of the
retarded propagator. The commutator between the fields at
different space-time points can also be written as the
difference of advanced and retarded propagators
(due to opposite signs of the imaginary parts in the
propagators [49]):

½ΦðxÞ;Φ†ð0Þ� ¼ iΔ⋆ðxÞ ¼ iðGavðxÞ −GretðxÞÞ ¼ ∶CðxÞ:
(18)

Except for a factor expð−γtÞ, the quantity Δ� is identical to
the Schwinger Δ function Δðx; μÞ with effective mass μ,

Δ⋆ðxÞ ¼ Δðx; μÞ · e−γjtj; (19)

Δðx; μÞ ¼ − i
ð2πÞ3

Z
ϵð ~pÞδð ~p2 − μ2Þe−i ~p·xd4 ~p; (20)

with ϵð ~pÞ ¼ 1 for ω > 0 and ϵð ~pÞ ¼ −1 for ω < 0. Since
Δðx; μÞ vanishes for spacelike distances x2 < 0 [49], we
find that microcausality is fulfilled also in the interacting
case (cf. Ref. [48]). Since the DQPM—as an effective
approach to QCD—employs spectral functions of the
type in Eq. (12) [or Eqs. (15) and (16)], we may conclude
that the model approach conserves microcausality
strictly [50].

III. SPACELIKE AND TIMELIKE
MOMENTUM CONTRIBUTIONS

We now come to the central question of our study: Is
microcausality fulfilled in the four-momentum integral

CðxÞ ¼
Z

dω
2π

d3p
ð2πÞ3 ℑðGretðω;pÞÞ expð−iðωt − p · xÞÞ

(21)

when restricting to timelike Θðω2 − p2Þ or spacelike
Θðp2 − ω2Þ four-momenta?
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To answer this question, we can no longer perform the
contour integration over dω due to the Θ functions in four-
momentum and have to evaluate the integrals in Eq. (21)
numerically, exploiting the antisymmetry of the integrand
[Eq. (1)] in ω and carrying out the angular integration in the
three-momentum. This leads to

CðxÞ ¼ − iγ
2π3jxj

Z
∞

0

dp
Z

∞

0

dω sinðωtÞ sinðjxjpÞ

×
p
~E

�
1

ðω − ~EÞ2 þ γ2
− 1

ðωþ ~EÞ2 þ γ2

�
; (22)

using Eq. (1), which can be “solved” on a numerical grid as
well as by analytical integration (cf. Sec. II). As mentioned
before, the integral in Eq. (22) has a singular part
[δðt − rÞ=ð4πrÞ using r ¼ jxj], as well as a regular part
given by Eq. (14). The singular part can be subtracted in the
integral [Eq. (22)]—to achieve a better convergence—by
considering

CðxÞ− δðt− rÞ
4πr

e−γt

¼− i
2π3r

Z
∞

0

dp
Z

∞

0

dωsinðωtÞsinðrpÞ

×
8pωðM2− γ2Þ½ω2−p2− ðγ2þM2Þ=2�

½ðω2−p2−M2Þ2þ4ω2γ2�½ðω2−p2− γ2Þ2þ4ω2γ2� :
(23)

In this way, the δ distribution on the light cone (decaying
exponentially in time) is subtracted explicitly on the same

computational grid. In order to demonstrate the validity of
this numerical subtraction scheme, we show in Fig. 1 a
comparison of the analytical result [Eq. (14)] with the
corresponding numerical evaluation of Eq. (23) for M ¼
1 GeV and γ ¼ 0.3 GeV at t ¼ 15 GeV. Indeed, both
results agree within the linewidth and are identical to zero
for r > t.
In Fig. 2, we show the regular part [Eq. (14)] for the

widths γ ¼ 0.045 GeV [Fig. 2(a)] and γ ¼ 0.3 GeV
[Fig. 2(b)]. The signal decays exponentially in time
[∼ expð−γtÞ] and shows hyperbolic oscillations within
the light cone while being zero outside the light cone.

FIG. 1 (color online). The regular part of the Green function
[Eq. (14)] at time t ¼ 15 GeV−1 as a function of the distance r.
The analytical and numerical results from the integration on the
grid are identical within the linewidth.

FIG. 2 (color online). The regular part of the commutator
[Eq. (14)] as a function of the distance r and time t for
(a) γ ¼ 0.045 GeV and (b) γ ¼ 0.3 GeV.
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The numerical results and the analytical expression
[Eq. (14)] are identical on the level of three digits for both
cases.
We now turn to the numerical results for strong coupling

when gating on timelike and spacelike four-momenta in
Eq. (23) separately. The results are displayed in Fig. 3 for
γ ¼ 0.3 GeV when including only timelike momenta
[Fig. 3(a)] or only spacelike momenta [Fig. 3(b)]. Note
that the numerical results in Fig. 3 have been multiplied by
expðγtÞ in order to compensate for the exponential decay
in time.
It is seen that both results do not vanish for r > t, and

thus they violate microcausality. This is shown more
explicitly in Fig. 4(a) as a function of time t and r − t

in the spacelike region and demonstrates that both con-
tributions are nonvanishing but of opposite sign, such that
their sum becomes identically zero. In Fig. 4(b), we display
the same quantities as in Fig. 4(a) but multiplied by expðγtÞ,
which demonstrates that both contributions do not decay
exponentially in time as seen from the full analytical
solution [Eq. (12)]. This clearly demonstrates that a
restriction to either spacelike or timelike momentum parts
of the spectral function violates causality, while both parts
together conserve microcausality in line with the analytical
result in Sec. II. The violation of microcausality is tiny in
the case of γ ≪ M but becomes sizeable for γ > 0.1 GeV.
When considering the “aperiodic” limit γ → M, i.e.,

μ → 0, we find from Eq. (13) that ~Rðt2 − r2Þ vanishes
identically for μ ¼ 0, and the commutator [Eq. (18)] only
has support on the light cone. Furthermore, in the limit
μ → 0, the oscillations in Rðt2 − r2Þ vanish, as can be

FIG. 3 (color online). The regular part of the commutator
[Eq. (14)] [multiplied by expðγtÞ] as a function of the distance r
and time t for γ ¼ 0.3 GeV for (a) timelike four-momenta and
(b) spacelike four-momenta.

FIG. 4 (color online). (a) The regular part of the commutator
[Eq. (14)] as a function of the time t and r − t in the spacelike
region for γ ¼ 0.09 GeV. The contribution from spacelike
momenta is given (for t > 20 GeV−1) by the upper (red) area,
while the contribution from timelike momenta is given by the
lower (blue) area, which is of opposite sign. (b) Same as (a), but
multiplied by expðγtÞ.
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extracted from a Taylor expansion of Eq. (14) [with
J1ðzÞ ≈ z=2� � � � ]:

Rðt2 − r2Þ ≈ Θðt2 − r2Þ μ

8π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − r2

p ðμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − r2

p
Þ � � �

¼ Θðt2 − r2Þ μ
2

8π
� � � : (24)

For γ > M (overdamped fields), we no longer find oscil-
lations of the regular part [Eq. (14)] within the light cone
but only an exponentially decaying signal as seen from
Fig. 5 for γ ¼ 1.25 GeV.
Weclose bypointingout that our numerical schemeallows

us to employ almost arbitrary spectral functions in Eq. (22)
and to check if microcausality holds. Without explicit
representation, we note that using a three-momentum width
γðp2Þ in the spectral function [Eq. (1)], the commutator
[Eq. (22)] no longer vanishes for r > t, since the individual
momentum modes decay on different time scales, and the
field equation (5) becomes nonlocal in this case.
Nevertheless, the normalization condition [Eq. (2)] still is
fulfilled. Furthermore, the commonly adopted form,

Aðω;pÞ ¼ 2Mγ

ðω2 − p2 −M2Þ2 þ 4γ2M2
; (25)

also violates microcausality. In fact, this finding is not too
surprising, since Eq. (25) is the imaginary part of the retarded
propagator

~GðpÞ ¼ −1
ω2 − p2 −M2 þ 2iγM

; (26)

which has a pole in ω in the upper half-plane and thus is no
longer analytic on the real axis and above. Note, however,
that in interacting (causal) systems, the width γ may well
show an explicit three-momentum dependence as demon-
strated withinΦ4 theory [46]. Although the spectral function
might be approximated by Eq. (25), it is illegitimate to
replace the full retarded propagator with Eq. (26).

IV. SUMMARY

In this study, we have examined effective propagators of
the type in Eq. (6) as used, e.g., in the dynamical
quasiparticle model (DQPM) [39,40] for an approximation
to QCD propagators at temperatures above the critical
temperature Tc for deconfinement. It could be shown
analytically that their spectral functions (or imaginary
parts) do not lead to a violation of microcausality, i.e.,
to a vanishing commutator of the interacting fields outside
the light cone. This result is in accord with analytic function
theory, since the related retarded propagator [Eq. (6)] is
analytic in ω on the real axis and in the upper half-plane,
thus ensuring microcausality [44]. However, when restrict-
ing to only spacelike or timelike four-momentum
contributions of the spectral function, a violation of micro-
causality is found which becomes severe in the case of
strong coupling. This finding is in line with analytic
function theory, since the restricted spectral functions no
longer correspond to analytic retarded propagators.
Moreover, the spacelike or timelike four-momentum con-
tributions separately no longer decay exponentially in time,
as in the case of the full solution [Eq. (12)]. Furthermore,
we have found that using a three-momentum-dependent
width γðp2Þ in the spectral function [Eq. (1)], the commu-
tator [Eq. (22)] no longer vanishes for r > t, since the
individual momentum modes decay on different time
scales, and the field equation (5) becomes nonlocal in
space in this case. This also holds for the spectral function
[Eq. (25)], which is often employed in phenomenological
models. This is also expected from analytic function theory,
since the related retarded propagator [Eq. (26)] has a pole in
ω in the upper half-plane.
Our findings imply that the modeling of effective field

theories for strongly interacting systems has to be consid-
ered with great care, and restrictions to timelike four-
momenta in the case of broad spectral functions have to be
ruled out.

ACKNOWLEDGMENTS

The authors acknowledge valuable discussions with
B.-J. Schaefer, L. von Smekal, and T. Steinert.

FIG. 5 (color online). The regular part of the commutator
[Eq. (14)] as a function of the distance r and time t for
γ ¼ 1.25 GeV.
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