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We show that it is not possible to UV complete certain low-energy effective theories with spontaneously
broken spacetime symmetries by embedding them into linear sigma models, that is, by adding “radial”
modes and restoring the broken symmetries. When such a UV completion is not possible, one can still raise
the cutoff up to arbitrarily higher energies by adding fields that transform nonlinearly under the broken
symmetries, that is, new Goldstone bosons. However, this (partial) UV completion does not necessarily
restore any of the broken symmetries. We illustrate this point by considering a concrete example in which a
combination of spacetime and internal symmetries is broken down to a diagonal subgroup. Along the way,
we clarify a recently proposed interpretation of inverse Higgs constraints as gauge-fixing conditions.
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I. INTRODUCTION

Goldstone’s theorem is one of the most powerful
nonperturbative results in quantum field theory. For
Lorentz-invariant systems that exhibit spontaneous breaking
of global internal symmetries, it provides a wealth of
information by stating that their low-energy spectrum must
contain one massless, spin-zero excitation—a Goldstone
boson—for each broken symmetry. Moreover, Lorentz
invariance ensures that Goldstone bosons are exactly stable,
so that they are exact eigenstates of the interacting
Hamiltonian. Remarkably, all this information can be
derived without making any assumption about the dynamics
of the symmetry-breaking mechanism.
On the other hand, in relativistic systems where Poincaré

invariance is spontaneously broken as well, the low-energy
phenomenology is in general much less constrained.
Goldstone bosons can have a gap1 [1–3], and their stability
is in general no longer guaranteed by kinematics. For
example, phonons in superfluid helium can be thought of as
the Goldstone bosons associated with the spacetime sym-
metries broken by the medium [4,5], and the process in
which one phonon decays into two is kinematically allowed
[6]. More importantly, it was shown in [2] that the overall
number of Goldstone bosons generically depends on the
dynamical details of the symmetry-breaking mechanism,
rather than just on the symmetry-breaking pattern.
Although the situation can be very different at low

energies, one could still conceive that most of what we
knowabout thehigh-energybehaviorofordinaryGoldstones
remains true even when spacetime symmetries are sponta-
neously broken. In particular, the following three statements

are usually (implicitly) regarded as indisputable in systems
with spontaneously broken internal symmetries:
(1) The strong coupling scale of the low-energy effec-

tive theory for the Goldstones provides an estimate
for the energy scale at which the symmetries are
spontaneously broken.

(2) It is always possible to raise the cutoff of the low-
energy effective theory by adding some radial
modes. These modes have a mass at or below the
cutoff and their transformation under broken sym-
metries is nothing but a Goldstone-modulated un-
broken transformation. In other words, if g is a
broken symmetry transformation, the radial modes ψ
transform as ψ → hðπ; gÞψ , where h is an element of
the unbroken symmetry group and π stands for the
collection of Goldstone modes. This UV completion
of the Goldstones’ dynamics is known as a “linear
sigma model”: it might not be the correct description
of nature—we know that it isn’t for pions—but
it is always a possibility from the mathematical
viewpoint.

(3) Togetherwith theGoldstone bosons, the radialmodes
form a multiplet that transforms linearly under all
internal symmetries. Such a multiplet is nothing
but an order parameter, whose nonzero vacuum
expectation value (vev) spontaneously breaks the
symmetries under consideration.2

The main goal of this article is to dispel these last hopes
that our intuition developed for broken internal symmetries
will carry over to broken spacetime ones. We do this by
showing that even these three reasonable-sounding state-
ments arenot always true in the caseof spontaneouslybroken

1When Poincaré invariance is nonlinearly realized, there is no
invariant meaning of mass. As such, we prefer to call gap the
minimum energy necessary to create an excitation.

2For a more precise and unambiguous characterization of the
order parameter associated with a system of Goldstone fields,
see [7].
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spacetime symmetries. To this end, we will consider a
particularly instructive example in which a combination of
internal and spacetime symmetries is spontaneously broken
down to a diagonal subgroup.
Our technical analysis will be rather tedious, so it is useful

to isolate here themain features of themechanismatwork. It is
well known that in the case of broken spacetime symmetries,
one can have fewer Goldstones than naively expected. In
many cases the mismatch can be attributed to certain gauge
redundancies in the Goldstone parametrization of the order
parameter’s fluctuations.3 In other cases however—and this
will beourmain point—themismatch is due to the presenceof
a gap for some of the Goldstones. At very low energies these
can be integrated out, and one is left with an effective theory
for fewer Goldstones, but with precisely the same symmetry-
breaking pattern—that is, the same combination of linearly
and nonlinearly realized symmetries.
Given these two options, one could further imagine that for

any given symmetry-breaking pattern one could realize both
of these situations, depending on the precise nature of the
order parameter that is breaking the symmetries.4However, as
we will demonstrate by example, this is not always the case
since there exist symmetry-breaking patterns where the first
possibility is off limits. Moreover, one can tell the difference
between these two scenarios already from the very low-
energy viewpoint. In the latter scenario, starting from the
gapless Goldstones’ effective theory and going up in energy,
in order to embed the effective theory into a weakly coupled
UV completion, one is forced to introduce the additional
Goldstones rather than amore conventional symmetry-break-
ing order parameter. We dub such an unconventional UV
completion an enlarged nonlinear sigma model.

II. LOW-ENERGY EFFECTIVE ACTION

The example we will consider has the Poincaré group
and an internal SOð3Þ ×Uð1Þ symmetry broken down to
spacetime translations and spatial rotations according to the
following pattern:

unbroken ¼
8<
:

P̄t ≡ Pt þ μQ time translations

P̄i ≡ Pi spatial translations

J̄i ≡ Ji − Si spatial rotations

broken ¼
8<
:

Ki boosts

Q internal Uð1Þ
Si internal SOð3Þ:

(1)

At first, this might seem like a very contrived symmetry-
breaking pattern, but in fact it is very similar to that
characterizing the B phase of superfluid helium 3 [8,9]: a
broken Uð1Þ charge (Q) combined with an unbroken
Hamiltonian at finite chemical potential (P̄t) characterizes
a superfluid. Then, in helium 3’s B phase, the “orbital”
rotations and the “spin” ones are broken down to a diagonal
combination. Here, the spin rotations are replaced by a
purely internal SOð3Þ—and the Galilei group is replaced by
the Poincaré one.
As a concrete example, an order parameter achieving this

pattern of symmetry breaking is a complex Lorentz vector
and internal SOð3Þ triplet, Aa

μ, acquiring an expectation
value

hAa
μi ¼ fδaμeiμt: (2)

However, without committing to any specific order
parameter, one can derive the low-energy effective action
describing any system characterized by the above sym-
metry-breaking pattern using the standard coset construc-
tion [10,11] for spacetime symmetries [12,13]. The starting
point is the coset parametrization

Ω ¼ eix
μP̄μeiπQeiξ

iSieiη
iKi : (3)

Notice that we are adopting a relativistic notation for the
spacetime coordinates only for reasons of typographical
simplicity. Since Lorentz invariance is spontaneously
broken, the μ ¼ 0 and μ ¼ i components have to be treated
independently.
As usual, the building blocks of the low-energy effective

action can be obtained by calculating the Maurer-Cartan
form Ω−1dΩ and expanding its coefficients in terms of the
broken and unbroken generators:

Ω−1∂μΩ≡ ieμνðP̄ν þ∇νπQþ∇νξ
iSi þ∇νη

iKi þ Aν
iJ̄iÞ:
(4)

The quantities ∇νπ, ∇νξ
i and ∇νη

i are the covariant
derivatives of the Goldstone fields, while the quantity
Aν

i enters the effective action only at higher orders in
the derivative expansion, or when couplings to “matter”
fields are taken into account.
It was first pointed out in [14] that when spacetime

symmetries are spontaneously broken, the number of
Goldstone fields necessary to nonlinearly realize the
symmetries can be lower than naively expected. In fact,
if the pattern of symmetry breaking is such that
½P̄a; Xb� ⊂ ifabcYc, where the P̄a’s are unbroken momenta
and the Xb’s and Yc’s are broken generators that transform
as multiplets under the unbroken symmetries, one can
show that the covariant derivatives ∇aπ

c
Y contain undiffer-

entiated πbX’s:

3The simplest example of this being a time-dependent scalar
field, which breaks time translations and boosts, but can only
accommodate one degree of freedom.

4The interested reader can find a concrete example of a similar
“ambiguity” in [2], which features two physical systems with
precisely the same symmetry-breaking pattern but different
numbers of Goldstone excitations.
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∇aπ
c
Y ¼ ∂aπ

c
Y − fabcπbX þ higher orders: (5)

One then can impose the conditions ∇aπ
c
Y ≡ 0 to express

the fields πbX in terms of derivatives of πcY . These
conditions are known as inverse Higgs constraints [14]
and by construction they preserve all the symmetries, even
the nonlinearly realized ones. In other words, by imposing
some inverse Higgs constraints one obtains a nonlinear
realization of the same symmetry-breaking pattern with
fewer Goldstone fields. As pointed in [2], whether nature
chooses to implement such constraints depends on the
physical system under consideration, but from the sym-
metry viewpoint alone, implementing them is always a
consistent possibility.
In our case, we have that ½P̄i; Kj� ¼ −iδijðP̄t − μQÞ, and

by this logic we can impose the constraint

∇iπ ¼ ∂iπ − μηi þ � � � ¼ 0 (6)

and solve it to express the ηi Goldstones in terms of π:

ηi ¼
∂iπffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂jπ∂jπ

q arctanh

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂jπ∂jπ

q
∂0π þ μ

1
CA: (7)

Notice that, despite appearances, the rhs of this equation is
analytic in π. Since the ηi’s already have one derivative per
field once expressed in terms of π, we can neglect the
covariant derivatives ∇μη

i at lowest order in the derivative
expansion. Therefore, the most minimal realization of the
pattern of symmetry breaking (1) requires only four
Goldstones, namely π and ξi, and it is described by the
low-energy effective action

S ¼ f4
Z

d4xLð∇0π=f;∇μξ
i=fÞ; (8)

where

∇0π ¼ Λ0
νðηÞ∂νπ þ μ½Λ0

0ðηÞ − δ0μ� (9a)

∇μξ
j ¼ Λμ

νðηÞ
�
∂νξiRijðξÞ þ ∂νηi

1 − cosh η
η2

εijkηk

�
(9b)

and Λμ
ν is a Lorentz boosts with rapidity ηi given by

Eq. (7) and direction such that Λ0
i ¼ −ηi sinh η=η.

Finally, the matrix RijðξÞ is defined as

RijðξÞ ¼ δij þ 1 − cos ξ
ξ2

εijkξk þ
ξ − sin ξ

ξ3
ðξiξj − ξ2δijÞ:

Since the unbroken symmetries include rotations, the
indices of ∇μξ

i in (8) must be contracted in a manifestly
rotationally invariant fashion: this will ensure that the

action is also secretly invariant under all the nonlinearly
realized symmetries, including Lorentz. The scale f—the
analog of the pion decay constant—should be thought of as
the symmetry-breaking scale, and in principle it does not
need to be of the same order as the scale μ [2].
The main reason for going through the coset construction

above was to show that there is nothing pathological about
the symmetry-breaking pattern (1). At low energies, it leads
to a well-behaved derivatively coupled theory described by
the effective action (8). For instance, by expanding this
action to quadratic order in the Goldstones, one can show
that all the modes are gapless and that the arbitrary
coefficients in the Lagrangian can always be chosen so
as to avoid instabilities.

III. UV COMPLETION

We will now show that it is impossible to UV complete
the low-energy effective theory (8) simply by adding radial
modes. We demonstrate this by contradiction: If it were
possible, then there would exist an order parameter OðxÞ
whose nonvanishing expectation value breaks our sym-
metries as in (1), and whose Goldstone fluctuations can be
parametrized in terms of only four independent modes.
However, we find that the existence of such an order
parameter conflicts with the symmetries.
Let us therefore start by assuming that such an order

parameter exists. By definition, a Goldstone mode is a
fluctuation of the vev of the order parameter along a
direction associated with one of the broken symmetry
transformations. To first order in the Goldstone fields,
the most general such fluctuation can be parametrized as

δOðxÞ ¼ iðπðxÞQþ ηiðxÞKi þ ξiðxÞSiÞhOðxÞi: (10)

If at low energies there are only four independent modes,
the seven fields π, ξi, and ηi must provide a redundant
description of the low-energy fluctuations of the order
parameter. In other words, the physical fluctuation δOmust
be invariant under three independent gauge transformations
of the fields π, ξi, and ηi [2,15]. In this case, the inverse
Higgs constraints (6) should be interpreted as gauge-fixing
conditions that preserve all the global symmetries [2].
Finding a gauge transformation

π → π þ Δπ; ξi → ξi þ Δξi; ηi → ηi þ Δηi (11)

that leaves δO invariant is equivalent to finding a nontrivial
solution to the equation

ðΔπðxÞQþ ΔηiðxÞKi þ ΔξiðxÞJiÞhOðxÞi≡ 0: (12)

Notice that we were allowed to replace Si with Ji, since
their difference is assumed to be unbroken. A criterion of
this sort was first proposed in [15] as a way to determine the
number of independent Goldstone modes. It is important to
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stress that whether or not Eq. (12) admits nontrivial
solutions depends crucially on the transformation proper-
ties of O, and not just on the pattern of symmetry breaking
(1) [2]. We are now going to show that in fact the only
solution to Eq. (12) is Δξ⃗ ¼ Δη⃗ ¼ Δπ ¼ 0, and therefore
that there is no gauge transformation of the Goldstone
fields that leaves δO invariant. The proof is a bit technical
and it involves four main steps.
1. Recast the problem as an eigenvalue equation. We

start by decomposing the generators of rotations and boosts
as Ji ¼ εijkxjPk þ Ĵi and Ki ¼ xiPt þ tPi þ K̂i, where Ĵi
and K̂i are finite-dimensional representations of the Lorentz
group generators. The order parameter O does not need
to transform according to an irreducible representation of
SOð3; 1Þ × SOð3Þ × Uð1Þ, but without loss of generality
we can restrict ourselves to this case. In fact, if we can
prove that Eq. (12) does not have nontrivial solutions for
any irreducible representation, the same will hold a fortiori
for reducible representations. For an irreducible represen-
tation we simply have QhOi ¼ qhOi, where q must be
nonzero because Q is spontaneously broken. Using this
fact, we can rewrite Eq. (12) as

ðΔηiK̂i þ ΔξiĴiÞhOi ¼ −qðΔπ − μxiΔηiÞhOi: (13)

This means that, at any x, hOi must be an eigenvector
of the operator (ΔηiK̂i þ ΔξiĴi) with eigenvalue
−qðΔπ − μxiΔηiÞ.
2. Show that ΔηiK̂i and ΔξiĴi commute. Since both J̄i

and Pi are unbroken, the combination Ĵi − Si must be
unbroken as well, i.e.

ðĴi − SiÞhOi ¼ 0: (14)

Let us therefore act with ΔηiðĴi − SiÞ on both sides of
Eq. (13). The fact that Δηi, Δξi and Δπ depend in principle
on the coordinates is immaterial, because we are only
considering the finite-dimensional representation of spatial
rotations. Using the Poincaré algebra and Eq. (14), we get

εijkΔηiΔξjSkhOi ¼ 0: (15)

This equation seems to imply that there is a linear
combination of the generators Sk that remains unbroken.
Since however the Sk’s are all broken by assumption,
we must have that εijkΔηiΔξj ¼ 0. In particular, this means
that

½ΔηiK̂i;ΔξiĴi� ¼ iεijkΔηiΔξjK̂k ¼ 0: (16)

3. Show that hOi is an eigenvector of ΔηiK̂i and ΔξiĴi.
Since the two operators ΔηiK̂i and ΔξiĴi commute with
each other, they must have a common basis of eigenvectors.
However, this is not enough to conclude right away that

hOimust be separately an eigenvector ofΔηiK̂i andΔξiĴi.
5

Crucially however, all finite-dimensional irreducible rep-
resentations of the Lorentz group are not unitary, and can
always be chosen in such a way that the generators Ĵi are
Hermitian but the K̂i’s are anti-Hermitian [16]. This means
that the eigenvalues of ΔξiK̂i are either zero or purely
imaginary, whereas the eigenvalues of ΔξiĴi are real.6

Since the eigenvalue on the rhs of (13) is real, hOi can
only contain eigenvectors of ΔξiK̂i with zero eigenvalue,
and thus we must have

ΔηiK̂ihOi ¼ 0; (17a)

ΔξiĴihOi ¼ −qðΔπ − μxiΔηiÞhOi: (17b)

4. Show that Δξ⃗ ¼ Δη⃗ ¼ Δπ ¼ 0. Let us now act with
the operator εijkn̂iΔηjðĴk − SkÞ on Eq. (17a), where n̂ is
an arbitrary unit vector perpendicular to Δη⃗. We obtain

jΔη⃗j2n̂iK̂ihOi ¼ 0: (18)

Equations (17a) and (18) would be satisfied for nonzero Δη⃗
only if K̂ihOi vanished, but this would mean that hOi is a
Lorentz scalar and therefore we should have ĴihOi ¼ 0 as
well. That however would be incompatible with Eq. (14)
and the fact that the Si are broken. Therefore, we conclude
that it is Δη⃗ that vanishes.
Similarly, if we act with εijkn̂iΔξjðĴk − SkÞ on (17b),

where n̂ is now an arbitrary unit vector perpendicular to
Δξ⃗, we obtain

jΔξ⃗j2n̂iĴihOi ¼ 0: (19)

If we introduce another arbitrary unit vector m̂, this time
perpendicular to both n̂ and Δξ⃗, we get

0 ¼ jΔξ⃗j2½m̂iĴi; n̂jĴj�hOi ¼ jΔξ⃗jΔξiĴihOi; (20)

which—for nonzero Δξ⃗—clearly implies ΔξiĴihOi ¼ 0.
Then, by similar logic as above we conclude that Δξ⃗ ¼ 0,
and then trivially Δπ ¼ 0.
This concludes our proof that Eq. (12) does not admit

any nontrivial solution. Therefore, there is no gauge
transformation that leaves δOðxÞ invariant, and no order
parameter that realizes the pattern of symmetry breaking (1)
with only four Goldstones.

5For instance, a singlet state j↑↓i − j↓↑i for two spin-1
2

particles A and B is an eigenstate of SA3 þ SB3 without being
an eigenstate of SA3 or SB3 , even though ½SA3 ; SB3 � ¼ 0.

6The Goldstone fields are real by construction, since they are
nothing but spacetime-modulated versions of a Lie group’s
parameters.
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IV. DISCUSSION

From a low-energy perspective, our result means that
it is not possible to UV complete the low-energy effective
action (8) simply by adding radial modes. This result is
valid, in principle, for all values of μ and f, but it admits a
very simple explanation when μ ≪ f. In this case, the
canonically normalized fields are πc ∼ fπ and ξic ∼ fξi, and
the EFT becomes strongly coupled at the scale

ffiffiffiffiffiffi
μf

p
because all the terms with an arbitrary number of powers
of ∂πc=ðμfÞ become equally important.7 Radial modes
would generically come into play at the scale f to restore
the broken symmetries as well as unitarity, but that would
be “too late” since unitarity is already violated at the
parametrically lower scale

ffiffiffiffiffiffi
μf

p
.

At this point, the skeptical reader might wonder whether
the action (8) could ever describe the low-energy behavior
of a physical system, or equivalently whether it admits a
UV completion at all. In fact, we have already introduced
an order parameter, given by (2), that realizes the sym-
metry-breaking pattern (1). One can check explicitly that
this order parameter does not admit any gauge invariance,
in accordance with our proof. Thus, at energies smaller than
f the effective action contains seven Goldstone bosons: π,
the ξi’s, and the ηi’s. To lowest order in the derivative
expansion their action takes the form

S ¼ f4
Z

d4xLð∇μπ=f;∇μξ
i=f;∇μη

i=fÞ: (21)

However, the crucial point is that only four of these
Goldstones are gapless: the boost Goldstones have generi-
cally a gap of orderμ. This is because the covariant derivative
∇iπ contains an undifferentiated ηi [see (6)]. As a result,
a ∇iπ∇iπ term in the action contains a “mass term” of the
form μ2ηiη

i. At energies smaller than their gap, the boost
Goldstones can be integrated out. At tree level, this can be
achieved by solving the equations of motion to express the
ηi’s in terms of π and ξi. To lowest order in derivatives, such
equations will be covariant under all the symmetries,8 and
thus must take the form (assuming parity)

F∇iπ þ G∇0ξi þH∇0ηi ¼ 0; (23)

where F, G, and H are invariant functions of the covariant
derivatives. Like an inverse Higgs constraint, such an
equation can be used to eliminate the ηi’s in favor of the
otherGoldstones, but it is considerablymoregeneral than the
“canonical” inverse Higgs constraint (6). In fact, already in
[14] it was pointed out that the most general inverse Higgs
constraint one should impose is a generic linear combination
of covariant derivatives that have, under the unbroken
symmetries, the same transformation properties as the
Goldstones one wants to eliminate. In our case this corre-
sponds to our Eq. (23) above with F, G, H ¼ const. Our
analysis indicates that this is still too restrictive.At least inour
weakly coupled case (μ ≪ f), the coefficient functionsF,G,
H can be fairly generic invariants built out of covariant
derivatives, satisfying certain integrability conditions that
express that theyare related tosuitablederivativesof thesame
Lagrangian function. Inpractice, insteadof trying to spell out
and comply with these integrability conditions, it is easier to
start from the action andderive the equationsofmotion forηi.
Once ηi has been integrated out, the low-energy effective
action one gets describes the remaining four gapless
Goldstones and is precisely of the form (8).
This shows that the UV completion of (8) occurs in a

very unorthodox way: unitarity is restored not by radial
modes, but by additional Goldstones. By including the
boost Goldstones in the effective theory, we can raise the
cutoff from

ffiffiffiffiffiffi
μf

p
to the parametrically larger scale f.

However, the number of nonlinearly realized symmetries
remains the same—the UV completion does not restore any
symmetry.
The particular example considered in this article also sheds

more light on the meaning of inverse Higgs constraints: they
cannot always be interpreted as gauge-fixing conditions, as
explicitly conjectured in [2] (and perhaps implicitly assumed
in [15]). As we saw, if suitably generalized, they can also
correspond to integrating out at tree level and to lowest order
in the derivative expansion some gapped Goldstones. In
particular, we believe this to be the sense in which the results
of [17] are to be interpreted. Either way, it remains true that,
from a low-energy point of view, whether or not to impose
inverse Higgs constraints is always a choice: when they
correspond to gauge redundancies, the choice is between
inequivalent physical systems [9]; when they correspond to
integrating out gapped Goldstones, the choice is between
working at energies much below the gap or not.
We should mention that even though much of our

discussion focused on weakly coupled UV completions
(linear sigma models or enlarged nonlinear ones), our
proof and our considerations on the possible gauge redun-
dancies of an order parameter are in fact more general,
being independent of the weak coupling assumption:
Spontaneous breaking is, by definition, characterized by
order parameters. In strongly coupled theories, these can be

7If the generators of unbroken rotations were simply Ji, then it
would be possible to raise the strong coupling scale up to f by
tuning the coefficients in the effective action to remove all the
powers of μ at the denominator (see [2] for more details). The
second term in the brackets in the covariant derivative (9b) is what
makes such tuning impossible inour case, and it originates precisely
from the fact that the unbroken generators of rotations are Ji − Si.8This is because the relevant terms at this order come from the
variation of the action with respect to an undifferentiated ηi:

∂L
∂ð∇jπÞ

·
∂ð∇jπÞ
∂ηi ¼ 0: (22)

The matrix on the right is invertible, since it starts as −μδij þ…,
so one can identify the ∂L=∂ð∇jπÞwith the lowest order equation
of motion, and that is manifestly covariant.
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composite operators, as is the case for the chiral condensate
in QCD for instance. Yet, the Goldstone fields can still be
identified with the perturbations that are generated by
applying the broken symmetries to these order parameters.
Then, in the case of spontaneously broken spacetime
symmetries, one can ask whether there are gauge redun-
dancies that can affect the counting of these Goldstones.
Finally, when μ is of the same order as the “improved”

strong coupling scale f, it is not obvious anymore what it
means to impose the available inverse Higgs constraints:
The would-be gapped Goldstones of the enlarged nonlinear
sigma model probably have a gap of order of the strong
coupling scale, making their existence as narrow resonan-
ces quite improbable, and more importantly their

integrating out quite complicated, and not just a matter
of solving some lowest-order classical equation of motion.
It would be interesting to understand the physical meaning
of the inverse Higgs constraints in this case.
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