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I. INTRODUCTION

The dimensional reduction performed in [1] allows us,
when considering a spherically symmetric and static
background, to write down the equations of motion of
any four-dimensional ungauged supergravity as an effec-
tive, one-dimensional, system of differential equations for
the scalars fields fϕi; i ¼ 1;…; nvg and the metric warp
factor U, since the vector fields and one of the two arbitrary
functions of the metric can be explicitly integrated.
In [2], a remarkable fact was found: given a solution

ðU;ϕiÞ of the one-dimensional equations of motion, a
solution of the complete four-dimensional theory can be
constructed not only using the spherically symmetric, static
space-time metric, but also using two other different space-
time metrics. In other words, given a solution ðU;ϕiÞ of the
one-dimensional equations of motion, we can choose three
different space-time metrics such that the complete four-
dimensional solution obeys the equations of motion of the
original theory.
One of these three choices is, of course, the spherically

symmetric and static space-time metric describing a black-
hole solution, which we shall denote by C1. The second
one was previously investigated in [2] and corresponds to
Lifshitz solutions with hyperscaling violation, and will be
denoted by C2. The third and final choice C3 remains to be
completely identified, and its study is the leitmotif of this
article. We shall find that this class of solutions corresponds
to a specific kind of naked singularity in either static or
time-dependent solutions, depending on the values of the
solution’s parameters, which we shall illustrate by studying
two simple examples. Therefore, the solutions belonging to
C3 are not topological black holes, in the sense that it is
commonly understood in the literature [3]. However, they
are still topological solutions, i.e., they represent static

space-times with a topological spacelike slicing. In other
words, the space-time is foliated by a family of two-
dimensional surfaces, each being locally isometric to the
hyperbolic plane, which can, in principle, be of an arbitrary
genus, depending on the existence of global identifications
as shown in [3].
In any case, a triality among three general classes

(C1, C2, and C3) of solutions in four-dimensional super-
gravity can be established in terms of a 1-1-1 map: i.e., for
any solution s1 ∈ C1 there is one and only one correspond-
ing solution s2 ∈ C2=Z2

1 and one and only one solution s3 ∈
C3 such that s1, s2, and s3 are constructed in terms of the same
ðU;ϕiÞ appearing in the one-dimensional equations of
motion.
Finally, as a consequence of the triality, all the methods

developed to obtain black-hole solutions in ungauged four-
dimensional supergravity [4–7], as well as the new results
concerning the effective one-dimensional equations of
motion [8–10], can be applied to solutions belonging to
the classes C2 and C3.
The new class C3 of solutions are relevant for several

reasons. It is a class of solutions which can be easily
embedded in string theory, for example, by means of type-
II fluxless Calabi-Yau compactifications, and therefore they
correspond to states in the full-fledged string theory, after
being appropriately corrected. In addition, they are a
nontrivial example which exhibits the attractor mechanism,
different from all the previous solutions where the attractor
mechanism was proven to hold [1,11–15]. The attractor
mechanism was of outermost importance in supergravity
and string theory in order to check the macroscopic
computation, at strong coupling, of the entropy of a black
hole versus the microscopic calculation, at weak coupling,
where the black hole becomes a configuration of D-branes
and other objects [16,17]. Since it is possible to associate to
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1The Z2 identification is needed to relate pairs of solutions in
C2 whose transverse part is related by a change of sign in the
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each black-hole solution a unique topological solution, it
would be really interesting to see what is the microscopic
picture of these solutions in string theory. In doing so we
could compare the microscopic description of the black
hole and the microscopic description of the corresponding
topological solution, which will give us information about
what corresponds intrinsically to the microscopic picture of a
black hole, which possesses an event horizon. Furthermore,
the topological solutions provide evidence about the exist-
ence of different new brane solutions in higher dimensions,
which will provide us with the higher dimensional super-
gravity objects necessary to obtain the topological four-
dimensional solutions by appropriate intersection and
dimensional reduction, very much in the style of what
happens for black-hole solutions in four dimensions that
can be obtained from a particular intersection of brane
solutions to supergravity in higher dimensions.
This article is organized as follows: in Sec. II we

introduce the Ferrara-Gibbons-Kallosh formalism, devel-
oped in [1], and the effective one-dimensional equations
of motion governing the theory. Section III is focused in the
topological Schwarzschild-like solution,2 where we distin-
guish two cases depending on the sign of the available
arbitrary coefficient. Then in Sec. IV we study the
topological Reissner-Norström-like solution and depict
its Carter-Penrose diagram.

II. THE GENERALIZED FERRARA-GIBBONS-
KALLOSH FORMALISM

Following Ref. [1], let us consider the action

I¼
Z

d4x
ffiffiffiffiffi
jgj

p
ðRþGijðϕÞ∂μϕ

i∂μϕjþ2ImN ΛΣFΛ
μνFΣμν

−2ReN ΛΣFΛ
μν⋆FΣμνÞ; (2.1)

where N ΛΣ is the complex, scalar-dependent, (period)
matrix. The bosonic sector of any ungauged supergravity
theory in four dimensions can be expressed through this
action. The scalars are labeled by i; j;… ¼ 1;…; ns, and
the vector fields by Λ;Σ;… ¼ 0;…; nv. The scalar metric
Gij and the period matrix N ΛΣ depend on the particular
theory under consideration.
Since we are interested in obtaining static solutions, let

us consider the metric

ds2 ¼ e2Udt2 − e−2Uγmndxmdxn; (2.2)

where γmn is a three-dimensional (transverse) Riemannian
metric, to be specified later. Using Eq. (2.2) and the
assumption of staticity for all the fields, we perform a

dimensional reduction over time in the equations of motion
that follow from the aforementioned general action. Thus,
we obtain a set of reduced equations of motion that we can
write in the form [1]

∇mðGAB∂m ~ϕBÞ − 1

2
∂AGBC∂m

~ϕB∂m ~ϕC ¼ 0; (2.3)

Rmn þ GAB∂m
~ϕA∂n

~ϕB ¼ 0; (2.4)

∂ ½mψΛ∂n�χΛ ¼ 0; (2.5)

where all the tensor quantities refer to the three-dimensional
metric γmn and where we have defined the metric GAB as
follows:

GAB ≡
0
B@

2

Gij

4e−2UMMN

1
CA; (2.6)

in the extended manifold of coordinates ~ϕA ¼ ðU;ϕi;ψΛ;
χΛÞ, where

ðMMNÞ≡
�
IþRI−1RÞΛΣ −ðRI−1ÞΛΣ
−ðI−1RÞΛΣ ðI−1ÞΛΣ

�
;

RΛΣ ≡ReN ΛΣ and IΛΣ ≡ImN ΛΣ: (2.7)

Equations (2.3) and (2.4) can be obtained from the three-
dimensional effective action

I ¼
Z

d3x
ffiffiffiffiffi
jγj

p
fRþ GAB∂m

~ϕA∂m ~ϕBg; (2.8)

once the constraint given by Eq. (2.5) has been added.
In order to further dimensionally reduce the theory to

a mechanical one-dimensional problem, we introduce the
following transverse metric:

γmndxmdxn ¼
dτ2

W4
κ
þ dΩ2

κ

W2
κ
; (2.9)

where Wκ is a function of τ and dΩ2
κ is the metric of the

two-dimensional symmetric space of curvature κ ¼ −1, 0,
1 and unit radius, respectively, as follows:

dΩ2
ð1Þ ≡ dθ2 þ sin2θdϕ2; (2.10)

dΩ2
ð−1Þ ≡ dθ2 þ sinh2θdϕ2; (2.11)

dΩ2
ð0Þ ≡ dθ2 þ dϕ2: (2.12)

In these three cases the ðθ; θÞ or the ðϕ;ϕÞ component of
the Einstein equations can be solved for WκðτÞ, giving

2By “topological Schwarzschild-like solution” we mean the
solution in C3 obtained by using the ðU;ϕiÞ effective solution
corresponding to the Schwarzschild black hole in C1. Similar
considerations apply to the topological Reissner-Nordström-like
solution.
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W1 ¼
sinh r0τ

r0
; (2.13)

W−1 ¼
cosh r0τ

r0
; (2.14)

W�
0 ¼ ae∓r0τ: (2.15)

where a is an arbitrary real constant with dimensions of
inverse length and r0 is an integration constant whose
interpretation depends on κ. The case κ ¼ 1 has been
widely studied in the literature and corresponds to asymp-
totically flat, spherically symmetric, static black holes
[1,7,18,19]. The case κ ¼ 0 has been recently studied in
[2] and provides a rich spectrum corresponding to Lifshitz-
like solutions with hyperscaling violation. Thus, the goal of
this article is to study the case κ ¼ −1.
For the three cases (2.13), (2.14), and (2.15) we are left

with the same equations for the one-dimensional fields,
which can be written as follows:

d
dτ

�
GAB

d ~ϕB

dτ

�
− 1

2
∂AGBC

d ~ϕB

dτ
d ~ϕC

dτ
¼ 0; (2.16)

GBC
d ~ϕB

dτ
d ~ϕC

dτ
¼ 2r20: (2.17)

The electrostatic and magnetostatic potentials ψΛ, χΛ only
appear through their τ derivatives. The associated con-
served quantities are the magnetic and electric charges pΛ,
qΛ that can be used to eliminate completely the potentials.
The remaining equations of motion can be reorganized in
the convenient form

U00 þ e2UVbh ¼ 0; (2.18)

ðU0Þ2 þ 1

2
Gijϕ

i0ϕj0 þ e2UVbh ¼ r20; (2.19)

ðGijϕ
j0Þ0 − 1

2
∂iGjkϕ

j0ϕk0 þ e2U∂iVbh ¼ 0; (2.20)

in which the prime indicates differentiation with respect to
τ and the so-called black-hole potential Vbh is given by

Vbhðϕ;QÞ≡ 1

2
QMQNMMN; ðQMÞ≡

�
pΛ

qΛ

�
:

(2.21)

Equations (2.18) and (2.20) can be in fact be derived from
the effective action

Ieff ½U;ϕi� ¼
Z

dτfðU0Þ2 þ 1

2
Gijϕ

i0ϕj0 − e2UVbhg;
(2.22)

whereas Eq. (2.19) is nothing but the conservation of the
Hamiltonian (due to the absence of explicit τ dependence in
the Lagrangian) with a particular value of the integration
constant r20.
A large number of solutions of the system (2.18), (2.19),

and (2.20), for different theories of N ¼ 2, d ¼ 4
supergravity coupled to vector supermultiplets, have been
found (see, e.g., Ref. [4,6,7,18,20–28]), always focusing
on the case κ ¼ 1. With this choice of transverse metric,
they describe single, charged, static, spherically sym-
metric, asymptotically flat and nonextremal black holes.
These solutions can now be studied setting κ ¼ −1 in the
transverse metric.
Using Eqs. (2.11) and (2.14), the metric can be written in

this case as

ds2 ¼ e2Udt2 − e−2U
�

r40dτ
2

cosh4r0τ
þ r20
cosh2r0τ

dΩ2
ð−1Þ

�
;

(2.23)

where dΩ2
ð−1Þ ¼ dθ2 þ sinh2θdϕ2 is the two-dimensional

metric of a negative constant curvature. We have intro-
duced the integration constants qΛ and pΛ, which come
from the explicit integration of the Maxwell equations,
and we have identified them with the electric and
magnetic charges of the topological solution. This iden-
tification works perfectly well in the usual black-hole
case; let us see how a similar procedure would apply here.
Let i∶N t;τ↪M3 be the two-dimensional submanifold
defined in local coordinates ðt; τ; θ;ϕÞ by t ¼ τ ¼ cte.
Then pΛ and qΛ are given by

pΛ ¼ α

Z
N t;r

i�FΛ; qΛ ¼ α

Z
N t;r

i�GΛ; (2.24)

where α is a normalization real constant and

GΛ ¼ ReΛΣFΣ þImΛΣ � FΣ: (2.25)

Notice that in the standard black-hole case, we obtain the
very same equation (2.24), but there N t;r is a spatial two-
sphere which englobes the black hole and is usually taken
to be at spatial infinity, τ → 0. Since here, in principle, we
do not have a well-defined spatial infinity, we cannot take
N t;r to be at such spatial infinity by an standard limit in
the coordinates ðt; τÞ. Nevertheless, the expression (2.24)
that relates the integration constants to the integration of
the field strengths FΛ and their duals GΛ over a spatial
slicing N t;r of the space-time still holds.

3Here M denotes the space-time manifold.
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III. THE TOPOLOGICAL SCHWARZSCHILD
BLACK HOLE

The formalism developed in Sec. II applies to any
Lagrangian of the form (2.1). In particular, it can be
applied to the case where there are no matter fields and
only the Hilbert-Einstein term remains. In this case, we are
dealing with the Einstein equations in vacuum, and we
obtain [18]

U ¼ στ; (3.1)

where σ is an arbitrary integration constant, which is equal
to the mass of the black hole in the asymptotically flat,
spherically symmetric, static case. Thus the metric is
given by

ds2 ¼ e2στdt2

− e−2στ
�
σ4dτ2

cosh4στ
þ σ2

cosh2στ
ðdθ2 þ sinh2θdϕ2Þ

�
:

(3.2)

In order to write Eq. (3.2) in a more convenient way we
perform the following change of variables:

e2στ ¼ 2σ

r
− 1: (3.3)

In these new coordinates, the metric reads

ds2 ¼
�
2σ

r
− 1

�
dt2 −

�
2σ

r
− 1

�−1
dr2 − r2dΩ2

ð−1Þ:

(3.4)

Thanks to Eq. (3.4) it is easy to recognize the last metric as
the so-called AII metric with κ ¼ −1, found in [29] and
whose interpretation was first given in [30,31]. We sum-
marize now the principal properties of such space-time,
closely following [32], where a detailed description
is given.

A. Carter-Penrose diagram

Since r ¼ 0 is a true singularity, it is convenient to take
r ∈ ð0;∞Þ, allowing σ to be either positive or negative. We
have therefore two different possibilities, that shall be
considered separately.
(1) σ > 0

The metric (3.4) can be written as follows:

ds2 ¼
�
2jσj
r

− 1

�
dt2 −

�
2jσj
r

− 1

�−1
dr2

− r2dΩ2
ð−1Þ: (3.5)

For r > 2σ the metric is time dependent, since the r
coordinate becomes timelike. In r ¼ 2σ we have the

Killing horizon related to ∂t. The metric is static
for 0 < r < 2σ. The corresponding Penrose diagram
is shown in Fig. 1, taking σ1 ¼ jσj and σ2 ¼ 0 in (4.5)
in order to recover (3.5). It is similar to the Penrose
diagram of the Schwarzschild solution [29] except for a
quarter-turn tilting.This is explainedby the fact that (3.5)
atconstantϕ,θ is relatedto theSchwarzschildmetricwith
the same restriction by an overall sign. This reverses the
notions of space and timelike vectors from one metric to
the other, leaving everything else unchanged. The tilt is
explained then by the fact that in Penrose diagrams,
timelike directions are represented upwards.

FIG. 1. Conformal diagram for metric (4.5) with σ1 > 0. This
represents sections on which angular coordinates are constant, so
that each point on the diagram represents a point on an topological
surface of constant negative curvature. The symbols in the figure
possess their standard interpretation in this kind of diagram.

A. DE LA CRUZ-DOMBRIZ, M. MONTERO, AND C. S. SHAHBAZI PHYSICAL REVIEW D 89, 065005 (2014)

065005-4



r ¼ 0 represents two different timelike, naked singular-
ities,asisapparentfromFig.1:Thecoordinatesingularity
atr ¼ 2σ isnotanusualeventhorizon (althoughas stated
above, it is a Killing horizon), since events inside it
can be seen from observers near the asymptotic future.
In contrast, events taking place in this region cannot be
seen from the inside, although events taking place near
theasymptoticpastcanbeseenfromr < 2σ. It ispossible
for a particle to travel from past null infinity to future
null infinity without ever encountering a singularity.
Notice that r ¼ 2σ is still a Killing horizon.

(2) σ < 0
We can write the metric (3.4) as follows:

ds2 ¼
�
− 2jσj

r
− 1

�
dt2 −

�
− 2jσj

r
− 1

�−1
dr2

− r2dΩ2
ð−1Þ; (3.6)

and we immediately see that there is no coordinate
horizon at r ¼ 2σ; the coordinates behave properly all
the way to the singularity. Also, ∂r is now everywhere
timelike. Relabeling the coordinates accordingly we
obtain

ds2 ¼
�
1þ 2jσj

t

�−1
dt2 −

�
1þ 2jσj

t

�
dr2

− t2dΩ2
ð−1Þ: (3.7)

The physical singularity is, therefore, at t ¼ 0. In this
case, the corresponding Penrose diagram can be seen
in [32]. The solution may be regarded as a vacuum
spatially homogeneous but anisotropic cosmological
model that is of Bianchi-type III, in which r is a global
time coordinate.

IV. THE TOPOLOGICAL REISSNER-
NORDSTRÖM BLACK HOLE

The Reissner-Nordström black hole can be embedded in
pure N ¼ 2, d ¼ 4 supergravity. The metric function of
this solution in the τ coordinates is [18]

e−2U ¼ ðM cosh r0τ − r0 sinh r0τÞ2
r20

;

r20 ¼ M2 − Vbh: (4.1)

As in the previous case, we perform a change of
coordinates,

r ¼ −r0 tanh r0τ þM; (4.2)

in order to rewrite the metric in a more convenient form.
Thus, the metric is given by

ds2 ¼
�
−1þ 2M

r
− Vbh

r2

�
dt2 −

�
−1þ 2M

r
− Vbh

r2

�−1
dr2

− r2dΩ2
ð−1Þ; (4.3)

where

Vbh ¼ −q2 − p2

4
(4.4)

is the black-hole potential of pure N ¼ 2, d ¼ 4 super-
gravity in the chosen conventions [18]. The parameters M
and Vbh have a clear physical interpretation in the spheri-
cally symmetric case, which, however, may not carry over
to the κ ¼ −1 case. Therefore, we rewrite Eq. (4.3) as

ds2 ¼
�
−1þ 2σ1

r
þ σ22

r2

�
dt2 −

�
−1þ 2σ1

r
þ σ22

r2

�−1
dr2

− r2dΩ2
ð−1Þ; (4.5)

where σ1 and σ2 are arbitrary real parameters. Remarkably,
the causal structure of the space-time is independent of
the particular values of σ1, σ2.

A. Carter-Penrose diagram

The causal structure of more general cases, in the presence
of nontrivial scalars, is analogous to the Topological
Reissner-Nordström-like solution, which is therefore the
relevant example which allows us to identify the space-time
features of the whole class of solutions, exactly as in the
spherically symmetric case.
This space-time exhibits a physical singularity at

r ¼ 0. Therefore, it is enough to restrict ourselves to
r > 0, while allowing σ1 to take any value. For the study
of the Carter-Penrose diagram, let us remember that the
metric (4.5) possesses two Killing horizons,

r� ≡ σ1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21 þ σ22

q
; (4.6)

and only one of these,

rþ ¼ rH ≡
(
σ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21 þ σ22

p
if σ1 ≥ 0

−σ1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21 þ σ22

p
if σ1 < 0;

(4.7)

is greater than zero. That means that there is only one
Killing horizon associated to ∂t. For r > rH the metric is
time dependent, whereas for 0 < r < rH it is static. This is
the same behavior of the type AII metric (3.5) for σ > 0.
Indeed, on their respective θ, ϕ constant slices, these two
space-times are related by a conformal transformation and
hence have the same causal structure and Carter-Penrose
diagram. To see this, notice that the metric (4.5) is related
by a global sign to the Reissner-Nordström metric with an
imaginary value of the charge. Following [32], we may
introduce Kruskal-Skezeres-like coordinates as follows:
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Uþ ¼ − 2r2H
rH − r−

���� r
rH

− 1

����1=2
���� r
r−

− 1

����
r2−
2r2
H exp

�
− ðrH − r−Þ

2r2H
ðt − rÞ

�
;

Vþ ¼ 2r2H
rH − r−

���� r
rH

− 1

����1=2
���� r
r−

− 1

����
r2−
2r2
H exp

�ðrH − r−Þ
2r2H

ðtþ rÞ
�
; (4.8)

in terms of which (4.5) take the form

ds2 ¼ 4
r−rH
r2

���� r − r−
r−

����1þ
r2−
r2
H exp

�
− rH − r−

r2H
r

�
dUþdVþ

− r2dΩ2
ð−1Þ

¼ Ωðr; rH; r−Þ
�
−4 rH

r
exp

�
− r
rH

�
dUþdVþ

�
− r2dΩ2

ð−1Þ; (4.9)

with

Ωðr; rH; r−Þ≡−r−
r

���� r − r−
r−

����1þ
r2−
r2
H exp

�
r−
r2H

r

�
: (4.10)

The factor multiplied by Ωðr; rH; r−Þ in the expression
(4.9) corresponds to the t − r part of the metric (3.5) in
Kruskal-Skezeres-like coordinates. Since Ωðr; rH; r−Þ > 0
is well defined throughout the space-time, this shows the
conformal equivalence between the two metrics in the θ, ϕ
constant slices.
This equivalence of conformal structures can be under-

stood on physical grounds by considering (4.5) with a
global sign change. As stated above, this corresponds to a
Reissner-Nordström metric with an imaginary charge. This
results in an attractive instead of a repulsive singularity at
short distances, which will behave qualitatively in the
same way as in Schwarzschild space-time. Therefore,
(3.5) and (4.5) share the same Carter-Penrose diagram,
given by Fig. 1.
The solution (4.5) can be given a physical interpretation

in the limit σ1, σ2 → 0, which is basically the same as that
of (3.4) when jσj → 0. This can be found in [32]. There it is
shown that, after a change of coordinates

T ¼ �r cosh θ; R ¼ r sinh θ; Z ¼ t; (4.11)

the metric becomes Minkowski in cylindrical coordinates
along the Z axis, namely,

ds2 ¼ −dT2 þ dR2 þ R2dϕ2 þ dZ2: (4.12)

Since r2 ¼ T2 − R2, the hypersurface r ¼ 0 (which naively
represents the region of strong coupling since we have
taken σ1, σ2 → 0) corresponds to T ¼ 0, R ¼ 0 (the
worldline of a spacelike particle moving along the Z axis)
plus the cylindrical surface T ¼ �R, which can be

understood as a cylindrical wave shrinking to zero size
and then expanding again at the speed of light. The
resulting configuration may be interpreted as the asymp-
totic metric, as r → ∞, of the gravitational field of a
tachyon, with the T ¼ �R null hypersurfaces correspond-
ing to the horizon r ≈ rH. The difference between the
solutions of (4.5) and (3.4) would be, as far as this physical
interpretation is concerned, that the tachyon of (4.5) carries
some charges as dictated by (4.4).

V. ATTRACTOR MECHANISM FOR
TOPOLOGICAL SOLUTIONS

The results of Sec. IV illustrate the casual structure of
the supergravity class of solutions C3, which is in 1-1-1
correspondence with the supergravity static, spherically
symmetric, asymptotically flat black holes of C1 and the
hyperscaling violation solutions of C2=Z2. From the very
same solution ðU;ϕiÞ, i ¼ 1;…; ns of the system of
differential equations (2.18), (2.19), and (2.20) we can
build three different four-dimensional solutions s1 ∈ C1,
s2 ∈ C2=Z2 and s3 ∈ C3 of the original theory. Since the
class C1 corresponds to spherically symmetric, static,
asymptotically flat black holes, the flow of the corre-
sponding scalars may exhibit attractors, or fixed points, at
τ → −∞ [1,11,13–15,19,33–39]. This is, in particular,
ensured for supersymmetric black holes. Amazingly
enough, the scalars of the related solution s3 are the very
same scalars as those of s1, so the scalars of s3 will have
fixed points if and only if the scalars of s1 also have
them.
The previous considerations prove the attractor mecha-

nism for a subset CAtt
3 ⊂ C3 such that the related solutions

in C1 also exhibit an attractor mechanism. However, in the
case of solutions in C3, the scalars are not fixed at an event
horizon, since the solution does not have any, but instead
they are fixed at the Killing horizon.
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