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We investigate the analytic structure of the 2 — 5 production amplitude in the planar limit of N = 4
SYM in the multi-Regge kinematics in all physical regions. We demonstrate the close connection between
Regge pole and Regge cut contributions: in a selected class of kinematic regions (Mandelstam regions), the
usual factorizing Regge pole formula develops unphysical singularities that have to be absorbed and
compensated by Regge cut contributions. This leads, in the corrections to the Bern-Dixon-Smirnov
formula, to conformal invariant “renormalized” Regge pole expressions in the remainder function. We

compute these renormalized Regge poles for the 2 — 5 production amplitude.
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I. INTRODUCTION

It is now well established that the Bern-Dixon-Smirnov
(BDS) conjecture [1] for the MHV n-point scattering
amplitude in the planar limit of the A' =4 SYM theory
is incomplete for n > 6. In [2] it has been shown that this
conjecture is not correct at strong coupling and for a large
number of gluons. The authors of [3,4] showed that also at
weak coupling this conjecture does not reproduce the
correct result in different kinematic regions. Corrections to
the BDS formula have been named “remainder functions,”
R,,, and in recent years major efforts have been made [5—12]
for determining these remainder functions. For n = 6, the
remainder function Rg has been calculated for two, and three
loops [13-24]. Beyond this loop expansion, it has turned out
to be useful to consider a special kinematic limit, the multi-
Regge limit. Forthe n = 6 point amplitude, the comparison of
the BDS conjecture with the leading logarithmic approxima-
tion that extends over all orders of the coupling constant has
shown that the remainder function consists of a Regge cut
contribution that vanishes in the Euclidean region and in the
physical region where all energies are positive. It is nonzero
only in special kinematic regions, called “Mandelstam
regions,” which are physical regions where some of the
energy variables are positive and others are negative (the
precise definition of these “mixed regions” will be given later
on). These results have been generalized also beyond the
leading logarithmic approximation, and there is no doubt
that the multi-Regge limit plays a key role in the determination
of the remainder functions.

In the comparison of the multi-Regge formula with the
BDS conjecture in [3,4,25], it was crucial to make use of
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the analytic structure of the 2 — 4 scattering amplitude in
the multi-Regge limit. It is well known that in non-Abelian
gauge theories the gauge bosons Reggeize, and in the
leading approximation the 2 — n + 1 production ampli-
tudes can be written in a simple factorizing form with the
exchange of Reggeized gluons in all 7 channels. Beyond the
leading approximation this factorizing form of the Regge-
pole contribution remains valid in the region of all energies
being positive, but the production vertices become com-
plex-valued functions, in agreement with the results of
Regge theory derived from dual models [26-28] or scalar
theories [29]. In [3,25] in was also shown that the simple
factorized form of the Regge pole contributions is valid
only in the physical region with all energy variables being
positive (and also in the Euclidean region), but it takes a
quite different form in all other regions, in particular in the
Mandelstam regions mentioned before: in the expression
for the Regge pole contribution a new term appears which
contains an unphysical singularity and should be cancelled
by other terms.

This representation of the Regge poles is equivalent to
another representation, in which the scattering amplitude is
written as a sum of k, different terms, each of them
belonging to a distinct set of nonvanishing simultaneous
energy discontinuities: in this representation the agreement
with the Steinmann relation is explicit. For the case of
n = 6, there are five terms, i.e. ks =35; for n > 6 the
number increases rapidly: k; = 14, kg = 42 etc. As dis-
cussed in [3,4], the perturbative analysis of Yang-Mills
theories shows that some of these terms contain, in addition
to the Regge poles, also Regge cut singularities. For the
2 — 4 case, this applies to two terms: in the notation of
[3,4], to W3 and W,. In the physical region where all
energies are positive, the phase factors in front W5 and W,
are such that the Regge cut contributions in W3 and W,
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cancel, whereas in the Mandelstam region they add up to a
nonzero result. Both the discussions of the Regge cut
contributions and of Regge poles have made it clear that a
complete analysis of the analytic structure of scattering
amplitudes must include the investigation of all physical
regions.

The analysis of [25] forthe 2 — 4 amplitude has shown that
there is an important connection between the Regge poles and
Regge cuts which has not been seen in earlier analysis of
Regge pole models [28]. First, it was observed that the Regge
cut appears in exactly the same kinematic regions in which the
Regge pole expression contains the terms with the unphysical
singularities. Furthermore, both this singular Regge pole
piece and the Regge cut term have the same complex phase
structure: this allows us to absorb the singular Regge pole
piece into the Regge cut contribution, leading to a “renor-
malized” Regge pole which is free from unphysical diver-
gences, and to a modified Regge cut definition. The existence
of Regge cuts therefore resolves the problem connected
with appearance of the singular pieces of the Regge poles.
Conversely, without Regge cuts the standard factorizing
Regge pole expression appears to be problematic.

For the determination of the conformal invariant remain-
der function in N' =4 SYM, it is necessary to perform a
careful analysis of the content of the BDS formula. In
[3.4,25] it was shown that, in multi-Regge kinematics, the
BDS formula does not agree with the analytic structure
outlined above in two respects: (i) the Regge pole con-
tribution is correctly described in the region of positive
energies and in the Euclidean region, but not in the
Mandelstam region and (ii) in these Mandelstam regions
the Regge cut contributions are contained only in the one-
loop approximation, but not to all orders. This implies that
the conformal invariant remainder function must (i) correct
the Regge pole contribution in all kinematic regions and (ii)
provide the all-loop Regge cut contribution. In view of the
described interdependence between Regge pole and Regge
cut contributions, there must be a close connection between
the solutions to both problems. It looks reasonable to start
with the Regge pole part: here the main task is the
subtraction of the singular pieces by Regge cut contribu-
tions. To be more concrete, one can attempt to use the
known phase structure of the Regge pole terms in all
kinematic regions to constrain the phases of the Regge cuts
in such a way that they can absorb all singular terms of the
Regge poles. In this subtraction, most powerful constraints
follow from the conformal invariance of the remainder
function: after absorbing the singular Regge pole pieces
(which by themselves are not conformal invariant) into the
Regge cut contributions, the remaining “renormalized”
Regge poles and the modified Regge cut terms must be
conformal invariant.

In this paper we describe this subtraction procedure for
the 2 — 4 and for 2 — 5 cases. For the former case, most
the work has been done already in earlier publications: so

PHYSICAL REVIEW D 89, 065002 (2014)

we only briefly review and complete our previous studies
and then generalize to the 2 — 5 case. In the first part
(Sec. II) we analyze the general factorization formula of
Regge pole contributions in all physical regions. Starting
from the region of positive energies where factorization
holds, we continue to other regions and derive the existence
of terms with unphysical pole singularities which have to
be compensated by Regge cut contributions. Particular
attention will be given to the phase structure which is
important in determining the phase structure of Regge cut
contributions in N' = 4 SYM. We present explicit results
for 2—>4 and 2 — 5, but our analysis can also be
generalized to the general case 2 — n + 1. In the second
part (Sec. III) we present an analysis of the BDS formula in
multi-Regge kinematics in all physical regions. This
analysis is general and applies to the case 2 - n+ 1. In
the third part (Sec. V) we carry out the program described at
the end of the previous paragraph. We first compute, for the
case 2 — 5, phases of Regge cut contributions which allow
to absorb the unphysical terms of the Regge poles calcu-
lated in the first part. We then define subtraction schemes
for absorbing these pieces into the Regge cuts, leaving
conformal invariant expressions for the Regge poles. In the
final part of this section we combine these results with our
findings of the BDS amplitude obtained in Sec. III, and we
present predictions for the remainder function. It should be
emphasized that, in this paper, we do not yet address the
second part of the program, the construction of the
conformal invariant Regge cut contributions. This will
be left for a separate paper.

II. THE REGGE POLE FRAMEWORK

A. Factorizing Regge poles

We begin with the factorized form of the fully signatured
2 - n+ 1 production amplitude (Fig. 1). The produced
particles will be labeled by ay, ..., a,_;, and they can have
positive or negative energies. We want to describe all
physical channels of these amplitudes in the multi-Regge
kinematics s > |s1], ..., |s,| > —t,, ..., —1,. We introduce,
for each 7-channel ¢;, the signature label z; which takes the
values 7; = +1 or 7; = —1. For 7; = +1(—1) the scattering
amplitude is even (odd) under twisting the #; channel, i.e.
under the crossing of the corresponding energy variables

a -

FIG. 1. Notations for the 2 — n — 2 amplitude.
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FIG. 2. The signatured 2 — 2 amplitude.

(for the simplest case, the 2 — 2 scattering, “twisting the ¢
channel” is the same as s<>u crossing). For our present
discussion it is sufficient to consider signatured amplitudes
as sums and differences of planar untwisted and twisted
amplitudes. Denoting a twist by a simple cross, a signatured
2 — 2 scattering amplitude has the form where the cross
indicates the change of sign of the energies of the particles
B and B’ (Fig. 2).

Generalizing this to arbitrary n, we write down the
amplitude for the 2 — n 4 1 production amplitude in the
following form,

AT
2-n+l | ® 717250 12} T)735a ®
o 51| 1E, VTms 1‘S2| 2 £, V723 2|S3| 3EL X -
F(tl)r(tn)
X |sn—1 Ot &y Vi Tt |Sn|w”§nv (2.1
where
gi — efmwi'_ T gij = e 1"Wij | TiTj; (22)
6]1 — e—lJT(Dji + TlTj
with
denote the signature factors, and
VEiTia — @Cg;ai 4 QciLj;ai (24)
Si $j

stands for the complex-valued production vertex.
As an example, for the case 2 — 3, the one particle
production amplitude has a simple structure [25,27],

AT,
F) [ [T )

= gVnmag,

12; 12;
=Epbeg M 4+ &

— \/T1T2:a
= ynmian

(2.5)

where I'(¢) is the Regge pole residue and ¢y and ¢; the
Reggeon-Reggeon-particle vertices. Similarly, the produc-
tion of two particles has the form [25,27]
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Afl 73

2—4 ; ;
_ 4 _ = E VImaE YRt E,  (2.6)
(1) 51| 52| 2| 55| (13) 1 2 3

In order to arrive at a symmetric factorizing expression, we
insert, for the 7, channel, an additional signature factor and
write

iy e L
— — VTITZ;L{] _V‘rz‘r3;a27 (27)
L(ty)|s1| 52| s3] T (23) &
where
‘77172;111 — 51 V’fsz;alfz‘ (28)

Generalizing to the case 2 - n+ 1, we see that for
each “inner” ¢; channel, ¢,,...,7,_;, we need an extra
“propagator” 1/&;. With this rule, Eq. (2.1) can be written
in the convenient form

TiTj...T,
AZ—:nJrl
(1)) [s1]71|s2]%2.. |5, T(2,,)
IS B | 1 - .
= yhtedr __ yntsd Vn1Tn 1 (29)
& &3 Sn

It will be useful to write this formula as an expansion in
monomials of signatures 7;. In such an expansion, terms
without any 7; can be identified as the planar approximation
in the kinematic region where all energies are positive. For
the case of n = 6, terms proportional to 7,73 correspond to
the planar amplitude where the particles a; and a, have
become incoming: this is one of the Mandelstam regions
where, according to the analysis in [3,4], the Regge cut
contribution will appear.

In order to obtain this representation we observe that the
production vertex, Eq. (2.5), can be expanded as

i 12;a —i 12;a
inw say imw, ay
eieg toe cr

‘71172;51 _
i —inw, 12 —inw, 12a
Tw T >0 LT, i

— 7y P (eT e N e 02 e 7

i —inw, 12a —inw, 12a
(10 1240] suq LT, S0
— Ty M2 (T O e Y e ¢ T

+ 7172(€_i’rw2€}g2;a1 + e~ i) C?;al )’ (2.10)
and the propagator can be written in the form
1 1 —imw,
N __ et o)
& e — 1y =2isin(nw,)e "2
Note the appearance of the nonphysical poles

~1/sin(zw,) which should be cancelled by the Regge
cut contributions.

With these ingredients it is straightforward to find
the expansion in monomials for the general 2 — n + 1
amplitude.
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P2_>3='—|—] + '—><—|qu+ I—Lx—]'r2+ I—x—Lx—]Tlrz

FIG. 3.

B. Generating function approach
for the Regge pole formula

To be definite, let us from now on concentrate on planar
N = 4 SYM. It will be convenient to define a generating
function for the pole-term coefficients. Let us briefly
introduce the idea behind it. We are interested in the
analytical continuation of the planar scattering amplitude
to arbitrary kinematic regions in multi-Regge kinematics.
During such a continuation, various factors and phases
may appear. As explained above, each particular kin-
ematic region can be reached by a sequence of twists
(crosses) of t channels, and each such twist is denoted by a
corresponding factor 7. Thus, it is instructive to have a list
of all possible phases and factors that appear due to
continuation for each appropriate kinematic configuration.
One may also think of a different point of view on the
scattering amplitude. Instead of having one analytical
function of kinematic invariants and then continuing to
arbitrary physical and nonphysical kinematic regions, one
can introduce a generating function, P,_,,, which is given
as a sum of amplitudes in all physical regions. As a simple
example, consider such a generating function of the 2 — 3
scattering process Fig. 3: Turning now to the BDS formula,
applied to the 2 — 3 amplitude [3], we have for the
Reggeon vertices in (2.4),

sin(zw; — nw,)

ii+l:a

] i
Ck | "’+1|Sin(7m’i — ;) (2.12)
c2i+1;u =T 414l st - 70)

Sin(ﬂa)l‘+1 — 77.'0)1') ’

Here i labels the ¢ channel (for the 2 — 3 case we have
i = 1 only), a denotes the produced particle. Going to the
physical region where all energies are positive, this allows
us to write the Reggeon-Reggeon-Gluon vertex I'; ., (see
Egs. (19)—(22) [25]) in the form

Ciipra(In(ky — im)) = [Cijyrale™. (2.13)
Here the expansions in powers of a = ";}; are given by
12
w; = _% In |6/1{2‘ , vk =4a+ 0(a?), (2.14)

"t should be clear that, from now on, 7 is no longer related to
signature but simply denotes kinematic regions

The generating function for the 2 — 3 production process written in terms of monomials of z;, 7,.

where y is the cusp anomalous dimension and 4> = p%e!/¢
for D =4 —2¢ with e - 07,

14 \Qi|2|%‘+1|2

=——=1 2.15
e 8 ! |k“z+1|2/12 ( )
with k. = q; — qiy, and
YK 1 2|‘1i—61i+1|2 L, ‘Qilz
Inll; . | ==(—-1 ——1
1 |qi|2|Qi+l‘2 |ql'—‘1i+1|2 5
+§ In o In H2 +ZC(2) .
(2.16)

Let us now return to the generating functions P,_,,, to the
sum of amplitudes in all kinematic regions. It is convenient
to divide by factors which are common to all kinematic
regions. Beginning with the case 2 — 3, Namely, using the
explicit form Eq. (2.5) with Eq. (2.12) one arrives at

P2 ;= A2—>3
T D) s 7T o] s2] 72T (2)

— ‘77172311
red

_ e—in(w1+w2—wa) _ €_i”(w2_w‘1)1'1 _ e_iﬂ(wl_w“>‘[2

+ e_i”w”Tl’Z'z. (217)

Here we have defined a reduced vertex by

(7717250
f/Tsz;a _ v

S Y

— e—iﬂ(a)]erz—w(,) _ e_i”<”’2_“’“>r

| — e—i/z(a)l—w,,)TZ

+ e g, 1, (2.18)

which consists of phases only.
As the next example we calculate, from Eq. (2.7), the six-
point generating function (cf. [25]):
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_ A2—>4
PZ—’4 - ) W, s
L(21)[s1|1 [Ty 2fls2]*2 Tas] s3] T(23)

~ o~
_ YTiTsa T,733b
- Vred 5 Vred

—_ e—iﬂ(a)l +wytws—w,—wp) __

+ e @O0t o) o p 4 mine: {cos(ﬂa)ab) + i<sin(7m)a + nw,) — 2™
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e—in(m2+w3—ma—wb)71 _ e—in(w]+w3—wa—w,,)1.2 _ e—iﬂ(a)1+w2—w,,—wb)1.3 -+ e—iﬂ(a)3+wa—wh)711.2

_sin(za,) Sin(’w’b)> }1173

sin(zw,)

+ —{cos(na)a,,) - i<sin(ﬂwa + w,) — 2e "

where w,, = w, — w,. The careful reader may notice that
this expression has a mirror symmetry with respect to right
and left (a<>b) exchange. This fact will be important in
the future.

Concluding this part, on can write a general expression
for the generating function for an arbitrary number of
produced particles 2 — n + 1:

P2 L= A2—>n+1
ST () s Ty a2 ]2 Tl [ T (2)
~ o~ ] 1 - .
— Vflfzﬂl _ szfaﬂz — . VT;l—lean—l
red 52 red 53 én—l red
= ao + a Ty + arTH + aA; T + + alnnrl Ty
(2.20)

The r.h.s. can be written as a polynomial in the z;, and the
coefficients consist of phases and trigonometric functions.
In the Appendix A we list, for the cases 2 — 3,2 — 4, and
2 — 5, all coefficients of the generating function.

C. Rules: a few particular cases

It will be useful to extract, from the particular cases given
above, a few general rules. Let us begin with the case
n =135. As we have said before, the term without any 7
belongs to the planar amplitude in the physical region with
all positive energies. On the rhs of Eq. (2.17) we have

s e—iﬂ(ﬁ)l"ro)z)‘ (221)

As expected, the amplitude has the simple factorized form,
with phase factors for the produced particle, e, and for
the exchange channels, e 1 and e 2. As to the
remaining three terms for n = 5 we observe the following
pattern: each ¢ channel without a twist comes with a phase
factor e ™ each t channel with a twist carries the
factor —1:

(1) twisted propagator: — —1

(i) untwisted propagator in channel ¢;: — e~
An illustration is given in the Figs. 4 and 5. Turning to
n = 6, all but two terms are of the form that we have just
described: phase factors for the propagators and for the

sin(zw,) sin(nwb)> }
: 717273,

sin(zw,) @.19)

production vertices. It is important to note that in all these
terms the pole ~1/sin(zw,) from the propagator of the #,
channel cancels. New features appear for 7,73 and 77,73,
namely terms where the poles ~1/sin(zw,) from the
propagator Eq. (2.11) remain. The term proportional to
7,73 belongs to the planar amplitude continued into the
physical regions where particles a and b are incoming. This
kinematic region is the one in which the Regge cut appears
[3,4]. For this term we find from the rhs of Eq. (2.19),

= ¢ i {cos(ﬂ(a)a —wyp)) + i sin(z(w, + o))

—2i

.cos(zm,) sin(zw,) Sin(”wbq (2.22)

sin(zw,)
which we rewrite as

sin(zw, ) sin(zw;)

Eq.(2.22) = e~imo2 | pin(watwy) _ 9 piman
(222 = {e e sin(zw,)

(2.23)

Here the first term is of the same form as discussed before,
whereas the second term is new: it has an unphysical pole
in sin(zw,).

x— —» -T.

i

FIG. 5. Illustration of the term 7,73.
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a b c a b c
FIG. 6. Illustration of the term 7,z5. FIG. 8. Illustration of the term 7,7,7574.
b C . . .
° eilr(maerbJra)C)efilr(m2+w3) —2i Sln(ﬂwd) Sln(”wb) Sln(ﬂwC) )
‘ ‘ ‘ ‘ ﬂ A ﬂ ‘ sin(zw, ) sin(zws)
- T -
Again, the first term is of the same form as the cases
FIG. 7. Tllustration of the term 7,7y. discussed above, whereas the double pole term belongs to

The important observation made in [25] is that the last
two terms can be included in the Regge cut contribution,
because they have the same phase structure as the Regge
cut. This is the simplest example of the general feature that
a Regge pole amplitude which, for positive energies, has
the factorizing form, after analytic continuation, exhibits
unphysical poles (in our case: ~1/sin(z,)). From [3,4] we
know that, in Yang-Mills theories, the 2 — 4 amplitude
contains a Regge cut contribution with the same phase
ie~"72 which can absorb the singular piece in Eq. (2.22) of
the Regge pole contribution.

An analogous discussion applies also to the term propor-
tional to 7,7,73. Note, however, that in this case the first
term (see Appendix A) is of the form

—e~in(@atmy) (2.24)
As expected, there are no phases from ¢-channel propa-
gators, but for the production vertices we have e«
instead of e«

Moving on to n = 7, we again note the appearance of
pole terms: the coefficient of 775 is illustrated in Fig. 6: It
has the form (Appendix A)

. , , _sin(zw, ) sin(zw
e—tﬂ(w2+w4)em(u[ etﬂ(wa+wb) — 2jeimamn ( a) ( b)

sin(zw,)
(2.25)

It is easily obtained from the analogous term of the 2 — 4
amplitude by multiplication with e*« (for the additional
vertex of particle ¢) and by e @+ (for the untwisted
propagator of the ¢, channel). The pole term
~1/sin(zw,) belongs to the 7, channel, and later on we
will show that it can be combined with the Regge cut
contribution in the same ¢ channel. An analogous discus-
sion holds for the coefficient of 7,7,. Next let us consider
the coefficient of 7,7, (Fig. 7):

The corresponding term on the rhs of Eq. (2.20) is (see
Appendix A)

the #, and 3 channels and has to be combined with the Rege
cut contribution extending over these two channels. Finally,
we look at the coefficient of 77,7374 (Fig. 8). It has the form

_sin(zaw,, ) sin(zw,,) sin(zws,)
i

’

iﬂ'(wb_wu_wc) — 2
{e sin(zw,) sin(zw;)

(2.27)

and there is again a double pole which has to absorbed by the
Regge cut contribution extending over the ¢, and 753 channels.
The first term deviates from the previous cases: for the
production vertex of particle b we have e, whereas
particles a and ¢ become the complex conjugate.

In Appendix A we present, for the cases 2 — 3, 2 — 4,
and 2 — 5, a complete list of all coefficients of the
generating function. In all cases we first find a term with
a pure phase. For the generalized Mandelstam regions, there
are, in addition, terms with simple, double, and multipoles of
the form ~1/(sin(zw;)sin(zw;)...sin(zwy)). A closer
inspection shows a one-to-one correspondence between
these singular terms and Regge cut contributions: we will
explicitly study the case n = 7 and show that these Regge
cut pieces can be used to absorb all singular terms.

D. The general case: recurrence relations

In order to analyze the structure for the general case it is
useful to make use of recurrence relations. To begin with,
consider the generating function of the five point ampli-
tude, P34 [Eq. (2.17)]. Due to the factorization property
Eg. (2.20), we can obtain the six-point generating function
by applying a recurrence operator K,

Pyy= Vfggzg“g—vggf;” = VK (1), 73:b),  (2.28)
2

with

~ 1 ~
K(Tz,T3;b) = —VTZ"%.

2.29
(;:2 red ( )

Explicitly,
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R(zy, 3 b) = o-iron-op _ S0E0n) - sin(ze,)
n sin(zw,) sin(zw, )
(2.30)

Note that K is not symmetric with respect to the monomial
representation. In particular, it does not contain a term
proportional to z,. Nevertheless, the resulting generating
function, P, .1,

P2—>n+1 = \7;'&72;“‘[?(12,1'3;a2)...1~((r,,_1.7n;a,,_1) (231)

is symmetric.

In Appendix B we present a more general discussion of
the coefficients of different configuration of z’s. Here we
only discuss one special case which corresponds to two
crosses in the first (left) and in the last (right) channel
Fig. 9. As before, we consider the case 2 — n + 1 with nt

{ e—imoytwst. .o, ) eiﬂ(&)al FWuyte o, ) )

For this we also need to show that the coefficient propor-
tional to 7, is

{e_i”(w2+w3+'“w") eiﬂ(wu] FW4ytoto,, ) }Tl )

(2.33)

To begin with the simplest case, 2 — 4, we have for the
coefficient 7,73 (Eq. (2.23) or Appendix A),

e—iﬂwzeiﬂ(a)al +wq,) _ 2i sm(ﬂ@;) Sln(ﬂ'waz) ’ (234)
sin(zw, )
whereas the coefficient of 7; is
e im(@r4w3) pin(0q, +0q,) (2.35)

Let us now prove, by induction, our assertion. In order to go
from the case 2—>n+1 to thg case 2 —>n+2, we
multiply P,_,,,; with the kernel K(z,,7,,1;4a,),

- sin(zw, — nw,,)

K(Tnv Tn+1s an) = e T e — Sin(ﬂa)n) Frt
sin(zw
Mrnrnﬂ. (2.36)
sin(zw,,)

Within this product, the relevant terms are
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al a2 an—2 an—l
Tl Tn
e o o
wl (4.)2 wn-l wn

FIG. 9. Initial configuration 77,,.

channels (74, ...,t,) and (@, ...w,), and n — 1 produced
particles labeled by ay, ..., a,_;, and we want to prove, by
induction, that the coefficient of 7,7, in P,_,,, is given by

sin(zw,, ) sin(zw,,)... sin(zw, )
. L T LT T, (2.32)
sin(zw, ) sin(zw;)... sin(zw,_;) }
|
Prpir Kty tpirsay) = [{.. 30 + {.. 3011,
S DR e N ¢
+ {...}TIT,,_H], (237)

where, by assumption, in the first square bracket we use
Eq. (2.32) and Eq. (2.33), and the second bracket is given
in Eq. (2.36).

We immediately see that, on the rhs, the coefficient of 7,
comes from the product of the first terms in each square
bracket and equals

e*iﬂ((uz+...+w”+])eiﬂ(wal+...+wan)

(2.38)

This proves the second part of our assertion. Next, in order
to calculate, the contribution proportional to 7,7,,, one
should take into account two terms: the product of the term
~1,1, in the first bracket with the term 7,7, | in the second
bracket, and the product of the term 7, in the first bracket
with the term 7, | in the second bracket. When combining
these two contributions, the following identity is useful:

Sin(ﬂw”n> e—iﬂw,, Sin(ﬂw" — ”O)an) _ e—iﬂa}n eiﬂ.’(uan .

sin(zw,) sin(zw,)

(2.39)

One arrives at

065002-7



BARTELS, KORMILITZIN, AND LIPATOV

which proves the first part of our assertion.

Concluding this part, according to Eq. (2.31), each
coefficient of the 7 expansion in Eq. (2.20) can be
calculated recursively, by multiplying the iterative kernel

T1,72:d1

Eq. (2.36) with the initial expression Vred 2

III. GENERATING FUNCTION FOR THE
BDS AMPLITUDES IN THE
MULTI-REGGE KINEMATICS

A. Motivation

In order to determine the remainder function in each
physical region for the pole and cut combinations, let us
now find the phase structure of the BDS amplitude [1] in
the different kinematic regions. Again, we find it conven-
ient to define a generating function:

Agpps = ag + a7y +a,tr + ... +a,t, + apnptt,

(3.1)

+ a137173 + ...a]mnTlfz...Tn.

In this expansion, each monomial of the twists 7;...7;
defines a kinematic region, and the coefficient a;_; is the
BDS prediction for this region. As before, each term in the
expansion corresponds to a diagram of the type shown in
Fig. 10. The following discussion of the BDS formula will
be similar to the previous study of the Regge pole model,
but the results all be quite different.

The meaning of the “twist” or “crossed line” is the same
as before. By twist we mean that the diagram is rotated
around the direction of the exchanged momenta to the right
of the cross (“X”) sign. For example if one twists the
diagram with respect to channel 1 (corresponding to ),
the result is as shown in Fig. 11. We can generalize the
twisting of the diagram in order to reach other channels. For
example, in Fig. 12 we rotated twice. We move from left to
right. The first twist brings the diagram similar to presented
in Fig. 11 and the second twist (cross in channel 3) rotates
back the rest of the diagram to the right of the cross sign. It
is important to stress that despite the fact that we rotate the
diagram, it remains planar. The diagram in Fig. 12 corre-
sponds to the following kinematic region:

2Although it is possible to calculate each coefficient in the
expansion by using these recurrence relations, practically it is
more efficient to use simple code with MATHEMATICA, which
generates these coefficients immediately. The simplest imple-
mentation might be iterative multiplication with the kernel K.
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{e—in(a)2+(n3+...m”)eiﬂ(wal+a)a2+...+wan)_2i sin(zw,, ) sin(zw,,)... sin(zw, ) }Tlr N
n ’

sin(zw, ) sin(zws)... sin(zw,)

|
51 < O, §y) > 0, 53 < 0, Sq > 0, So12 < 0, S13 < 0, 8§234

< 0, 50123 > O, S1234 < 0, s > 0. (32)

B. BDS predictions: examples

Let us begin with a brief review of the five point and the
six point functions in the multi-Regge kinematics. As
shown in [3], for the 2 — 3 amplitude in the region of
positive energies (no 7 factors) we have the simple
exponential form

BDS
M2—>3

— e*imul einwa e*imuz . (33)
L(ty)|sy |10 o] |s2| 2T (2,)

Analogous expressions hold for the other regions. The
exponents resemble those which we have discussed in the
previous section. However, in contrast to our discussion of
the Regge pole framework, for the BDS amplitudes we
can formulate simple rules which also fix the signs of the
exponents of the production vertices. Let us next consider
the 2 — 4 case in the region belonging to the coefficient
7173 (Mandelstam region). From [3,25] we have

MBDS
2—4
L(ty)|s1|“ [Ty o] [s2]“2[|T 5] 53| T (23)

— Ce—imzlzeiﬂ((x),,Jr(uh) )

(3.4)

Here C is the new phase factor, related to the one-loop
approximation of the Regge cut

2 2
ir VTK Indail \1132\2
C = e [ka+kp |4

with k, + k;, = q; — q3. The remaining parts of the phases
are obtained from the rules of Sec. II. It has been noticed in
[25] that when combining this phase with the two vertex
factors one arrives at a conformal invariant phase

(3.5)

Ceizr((z)a+{1J,,) . (36)

with

FIG. 10. Example of a diagram with twists in the channels 1, 2,
and 4. In Eq. (3.1) it corresponds to the term 7;7,7;.
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0 1 2 3 4

PHYSICAL REVIEW D 89, 065002 (2014)
0 1 2 3 4

}XTT1T

1 |
T T T T

FIG. 11. Example of diagram with a twist in channel 1, which in the expansion Eq. (3.1) corresponds to the term 7.
0 1 2 3 4 0 1 2 3 4
} e } ' ] b | }

FIG. 12. Example of double twisted diagram with twists in the channels 1 and 3, which in the expansion Eq. (3.1) corresponds to the

term 7, 73.

kq|lk
149 1n|q1||q2|| allks|

o=nx .
4 |ka+kb|2|QZ|2

(3.7)

It is important to recall the origin of the phase factor C:
the BDS formula for the 2 — 4 amplitude contains three
Li, functions (dilogarithms) which depend upon the three
independent anharmonic cross ratios. In the multi-Regge
limit, one of these anharmonic cross ratios is a phase factor

o (=5)(=9)

, 3.8
(—5012)(—5123) 68

with

_ |ka + kb|2
_75'2 ,

o —1 (3.9)

whereas the remaining two ratios go to zero. The dilogar-
ithm depending upon the phase ® appears in the combi-
nation

R(®) = _11n2q)_% In <I><1n(_t1)(_t23)—l>

4 (=s2)u €
1
—ELiz(l — ). (3.10)
It is easy to see that
R(®=1)=0, (3.11)

whereas for ® = ¢ the argument of the dilogarithm
passes through a cut and

Liy(1 — ®) —» F2xi In(1 — ) (3.12)
with In(1 — ®) being real valued. Concluding, one can see
that the analytical continuation of the combination of the
Li, function with the appropriate logarithms produces a
logarithmic phase factor

. 2 . 2
R(|®|eF2) = j:izz(ln ||q’|7qf|>, (3.13)

q; — q;|*#

which corresponds to the Mandelstam cut in the one-loop
approximation. There is an overall factor yx /4 in front of
the logarithm, which was omitted during the computation
of R and should be restored in the final expression.

For the 2 — 5 amplitude there are three phases which
have to be rotated. We first consider the kinematic region
belonging to the coefficient of 7;7;. Here we rotate only

(=s12)(=S0123)

o, = (3.14)
: (=S012)(—$123)
with
k k|2
<1>1_1:M’ (3.15)
S12

whereas the two other phases are kept fixed. The BDS
prediction is

1/BDS
2—5
L(t1)]s1]“1 [Ty o] 52]72T 3] |53]7% 5 4]|54] T (24)

— C13e’i”<‘”2+“’4)ei”(‘”dJr“’b*”’(f)

(3.16)

with

m(VTK In q1243222>
|kq+kp|=4
Ciy=e "l ke + kP =g — g5
(3.17)

We introduce the conformal invariant phase J3:

C13e—izr(a)2+w4)ein(w,,+w;,+wc) _ e—in(w2+w4)eiﬂmﬁei513 ,

(3.18)
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where

vk o l4illgsllkallks|
4 fky + ke laaf?

(3.19)
The coefficient of 7,7, (with the rotating phase ®,) is
obtained from symmetry considerations. Next the region
belonging to 7z;74. The relevant phase which rotates to
—2inm 5
e is

b (=s123)(=s) (i)_lz‘ka+kb+kc|2,

(=50123) (—S1234) ' S123
(3.20)

and the corresponding Li,-function yields the phase factor

2
7% lq1 Pl

= e (), iy =gt
(3.21)

The prediction of the BDS formula for this kinematic
region is

MBDS
2-5
L(ty) ][9]0 [Ty o] 52| 2T 3] |53]72 (s 4]|54] 2T (24)

— C14e_i”(“’2+“’3) eiﬂ(a)a+{ub+w{) .

(3.22)

We write this as

C14e—iﬂ(a)2+(u3)ein’((ua+wb+wc) — e—in’(az2+w3)emwbei6]4 (323)
with the conformal invariant phase

k, ||k
5ot lailgillk Ik

. (3.24)
4 ko + ky + ke *|q2]] 93]

One can spot that the contribution for a single Li, function
belonging to a Mandelstam cut is given by the simple
exponential expression [cf. (3.13)]

. lqil*1q;1*
in VTK In——4
lgj—q;I<2
C.=¢e .

1

(3.25)

The composite state of several single coefficients C;;
consists of a product of C’s with appropriate signs of
exponents, in accordance with the direction of the rotation
of the analytical continuation. ~

Finally the coefficient of 7;7,7,74. Now we rotate ®
by e %7 and ®, and ®, by e™?” In terms of a single
coefficient C;;, the composite coefficient Cjp34 will be

Ciaas = C1,C3C3e (3.26)

PHYSICAL REVIEW D 89, 065002 (2014)

where Cy4 corresponds to the rotation of P, ®,, and P,
respectively. &+ corresponds to the sign in front of iz in the
exponent. We obtain

2/BDS
2—5
L(t1)]s1]” [Ty 2] [52]“2|T 5] |53]72 5 4]|54] T (24)

= Cyyage " @atontor) 3.27)
with
—m(V—K mW)
Cipzu=ce & kathy Pl ke P2 (3.28)
and
Cp3qe™@at@) = b3 with
v - lail|gallke + kp2ky + k2 (3:29)

51234 =7z— In .
4 |ka+kb+kc|2|ka||kc||QZHq3|

In general, the definition of the phases §;; . is not unique. It
depends upon which vertex factors are combined with the
phases resulting from the Li, functions. We will fix these
phases at the end of Sec. VC, after we have defined our
renormalized Regge pole contributions.

C. Propagators, vertices, and Li, functions

In order to generalize this discussion, we introduce
“Feynman rules” for the calculation of the terms in the
generating function. From the previous discussion it
follows that there are three building blocks: propagators,
vertices, and phases resulting from the Li, functions.
Beginning with the propagators, there are two types of
propagators: one corresponds to untwisted 7-channel lines,
the other one to a twisted line (Fig. 13). For each untwisted
propagator one should put e~ and for the twisted
propagator, one puts —z;. The second ingredient is the
production vertex for the particle a; with the phase 7w, .
We denote the produced momenta as k, , k,,, kg5 .-
There are four types of vertices. Three vertices are
simple - with at most only one twisted propagator line
(upper line in Fig. 14), and the rule is ¢™«. For the
“doubly-twisted” vertex (the lower line in the Fig. 14),
we have the conjugated rule e ®«. For completeness
we recapitulate the expressions for the different w’s
presented here. The propagator in Fig. 13 corresponds to
the Regge trajectory, which is given by

j -
, e l7l'Ct)l,

X% —> _Tl'

i

FIG. 13. Two types of propagators in channel i.
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a, a, a,
I _)J _ L(_ _ eiro,
a, g a q a g
a;
—else e-ln'a)ai
a9 q

FIG. 14. Four types of vertices for the production of a particle
with momentm k.

12
w = —IF n|i’2‘ , (3.30)

while the vertex function @, corresponds to

W — VK ln< |9il*1,I? ) (=
“ 8 Nai—qP2)

where g; — q; = kg,

The final ingredient is the phase resulting from the Li,
functions. It depends on the kinematic regions, and it is
convenient to find graphical rules for deriving these
contribution. The idea of twisting the diagram is equivalent
to changing the kinematic regions of energy variables s;; .
Consider the diagram in Fig. 15. We connect crosses by
lines. Each connecting line—except for those which
embrace a single production vertex—corresponds to a
phase (anharmonic cross ratio) that has been rotated,
® — 27 and for each rotated phase the corresponding
Li, function has to be analytically continued and produces
a nonvanishing phase. The sign in the exponent can be
determined by counting the number of crosses embraced by
the line: if the number is even, we have ® — ¢ 27:
otherwise, ® — e™27. A simple example has already been
given above, the case 2 — 4. For the coefficient 7,75 (left
part of Fig. 16) there is only one such line which

corresponds to the phase @z% [Eq. (3.8)],

—s012)(—S1223
and there is no cross (zero cross) inside the line. This

phase is rotated by ® — ¢~ The analytic continuation of
the Li, function leads to the expression Eq. (3.13) which we
denote by the “potential” V3,

i+1), (331

FIG. 15 (color online). Rules for obtaining the Li, functions for
a particular kinematic region (see text).
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FIG. 16 (color online). Example for the relation between
connecting lines and kinematic regions.

2002
) il Ipdailasl
eimVis = ot la—aPA

(3.32)

If we apply the same discussion to the coefficient of 77,73
(right part of Fig. 16), we have one cross inside the line, the
phase is rotated by ® — ¢*?*, and the analytic continu-
ation of the Li, function gives

7k a1 Plas

etV — o T NP (3.33)

We generalize the notion of a “potential” for the interaction
between two crosses in the #; channel and the 7; channel,

l4il*l9,I?

|‘Ii_Qj|2/12‘

YK
Vl] = Z In

(3.34)
Returning to the production vertices @, , it is convenient to
extend the notion of the “potential” also to neighboring
lines which encircle not more than one production vertex,

Vii+l = —2wai. (335)
With this definition we modify our rules for the production
vertex: instead of writing e="®« (depending on whether
we have crosses on both sides of the produced particle a;),
we adopt the following rule: for each vertex we write the
unique factor et and for production vertices with
crosses on both sides, we include the additional factor
eViit, (3.36)
This allows us to include into our rules, in Fig. 15, also the
short line around the vertex a;; now each line that connects
crosses in the #;, and the ¢; channel obtains a factor
etinVij, (3.37)
If the channels i and j are adjacent (i.e. j = i 4+ 1 and they
enclose a production vertex), the sign is always positive.
Otherwise the counting rules of crosses inside the lines
apply (Fig. 17). Concluding everything, we formulate
Feynman-like rules for the calculation of the coefficients
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Ll

even number of X

7

v
odd number of X

FIG. 17. Sign of the phase depending on the number of crosses
“ X” between two twists i and j.

in the monomial expansion of the amplitude Agpg
[Eq. (3.1)]. Each coefficient a; _; will be written in the form
a; ;= =xla; jlei-iei, (3.38)
and for the overall sign and for the sum of the phases in the
exponent, we have the following rules:
(1) for each ¢ channel we write a propagator (twisted and
untwisted) according to the rules
(1) twisted propagator: — —1
(2) untwisted propagator in channel t;: — e~

(i1) write the product of phase factors of vertices for all
produced particles: ¢(“a*@a+)

(iii) write all pairwise interactions e*#Vii, j # j with the
sign (—1)" in the exponent. Here n is the number of
crosses encircled by the pair (ij).

These rules uniquely define the sum of all phases. For

our purposes, however, we go one step further and divide

this sum into two terms, i(¢; ;+ J; ;). Examples have
been given in Sec. III B 3 for the case 2 — 4. The first part,
ip;._j,» contains all the propagators, and it may contain
some of the production vertices. The second part has
to be conformal invariant. From these requirements alone,
we do not find a unique separation into the two terms,

i(@;..; + 6, ;). We will come back to this question in our

final Sec. IV D. As an example of applying these rules, we

return to the diagram in Fig. 15:

(i) propagators: (—)(—)e™"s(—)e s (—)

(ii) vertices: em(a)u] FWay + 04y + 04, +04g)

(iii) potentials: i (Vio=Vig+Vig+Va—=Vas+ V).

The final expression for Fig. 15 becomes

ei”(“’111 FWay T Wy T0q, T05) e—iﬂ(w3+w5)

x ™ (Vi2=Via+Vig+Vau—Vae+Vie)

T|THTy4Tg- (3.39)
The logarithmic form of the potential Eq. (3.34), together
with the exponential form of the coefficient of the mono-
mial in Eq. (3.39), allow an interesting analogy. Namely,
we can interpret V;; as a two dimensional Coulomb
potential of the interaction of two point charges i and j,

PHYSICAL REVIEW D 89, 065002 (2014)

derived from the Polyakov string action. In more detail,
we consider the product of k vertex operators, i.e. corre-
lators of the form

<0|eiﬂ PR AC AR 0), (3.40)
where the averaging is done with the free action
ei%fdzﬁ[aalﬁ(ﬁ)]z (3.41)

and ¢, = (—1)" is the charge. It is convenient to introduce
the following currents:

k

”Zcr[¢(ﬁr) _¢(p_)0)}

r=1

k
= [ @550 > 6?7 7)
r=1
—50)(5—)

- / o)), (3.42)

with
— 8D —po).  (3.43)

One can calculate the Gaussian integral of the neutral

system
- furen

by using the inverse of the two-dimensional Laplacian,

PPl g, (3.44)

(= = T 1 = ’ -
D) = I(7) = ) = [ 7)o (15717,
(3.45)

and by shifting the field variables: ¢ = ¢’ + (;5 One obtains
L1 - o
[ #3007 + 07
1 o o S .
—an | | 7RG 08 (5 71)37)

1
+5 [ @0y

From this expression one derives, for the correlator (3.40),
an exponential of the form

(3.46)

k
Z log |pr ﬁ/rlz_log |:5)r_/70‘2

oom

—log |7, — pol* + log | oo [*]. (3.47)
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In the first term one recognizes the logarithmic part of the
“potential” V;; between two crosses defined in (3.34). In
particular, we notice the universal short-range interaction
between two adjacent crosses,

Vi ~log|p; —ﬁr,-ﬂ 2. (3.48)

Finally, returning to the generating function introduced at
the beginning of this section,

Agps = o + a1t + arty + - + a,7, + apTiTy

+ a;3T|73 =+ .. ap. ,T172...Ty,

we can interpret this expression also as a partition function,
where each terms represents one of the correlators de-
scribed above. For the rest of this paper, we will not pursue
this analogy any further.

IV. SUBTRACTIONS FROM REGGE
POLE CONTRIBUTIONS

In the previous sections we have seen that the Regge pole
formula, based upon factorization and the analytic decom-
position into 5 terms (for the case 2 — 4) or 14 terms (for
the case 2 — 5), exhibits, when continued into different
kinematic regions with positive and negative energies,
terms with unphysical singularities. At the end of
Sec. IIT we have indicated that Regge cut terms are needed
in order to compensate these unwanted singularities. The
subsequent analysis of the BDS predictions, on the other
hand, has shown that the BDS formula is not in agreement
with the Regge pole structure, because it contains con-
tributions from the Li, functions. As a consequence,
depending on the kinematic region, it contains phases
which, in the 2 — 4 case [3], have been understood as a
signal of the beginning of Regge cut contributions. In this
final section we concentrate on the case n = 7, and we
show that Regge cut contributions can be determined which
satisfy the following two conditions:

(1.) the terms with Regge cuts have the correct phase

structure for absorbing the unwanted pole terms,

(2.) after absorbing the unphysical pole pieces of the

Regge poles into the Regge cut terms, we are left

with conformal invariant Regge pole contributions.

To be definite, our construction proceeds as follows.
Initially we have the Regge pole terms which, as we have
stated, factorize in the kinematic region of positive energies
but, when analytically continued, lead to unphysical
singularities. They have to be absorbed into Regge cut
contributions. Schematically, we therefore write
A= Apole + Acues “4.1)

where the pole contributions are listed in Appendix A, and
the phase structure of the cut contributions have to be

PHYSICAL REVIEW D 89, 065002 (2014)

discussed in the following. Their contributions to the
scattering amplitude depend upon the kinematic region:
they vanish for positive energies (and in the Euclidean
region), and they are nonzero in exactly those kinematic
regions where the Regge poles exhibit the unphysical
singularities. After having fixed the subtractions we will
arrive at modified expressions,

A= A;)ole

+ ALy 4.2)
where the primes indicate that, in each physical region with
Regge cuts and singular Regge pole pieces, the unphysical
singular pieces have been absorbed by the Regge cuts. In
this new representation the amplitude, for each region
7;...7;, will be written in the form
A = AppsR, 4.3)
where Agpg contains the phase factors ¢; ; and 6; ;
calculated in the previous section III C, and the conformal
invariant remainder function R is of the form
Re™® = conformal pole + conformal Regge cut.  (4.4)
For illustration we return, once more, very briefly to the
2 — 4 case [25]. As shown in [3,4], the Regge cut piece has
the phase ie 2. To see this we remind that, in the
decompositon of the 2 — 4, amplitude, the Regge cut
appears in two of the five terms. Their phase structure
follows from the energy factors which, in the notation of
[3.4], is

W3 ~ (=52) (—=5012) " (=) Veu

Wy~ —(=52)3 (=5123) " (=) V- 4.5)
The coefficient V is the same in both terms, and there is
relative minus sign between the two partial waves. From
this structure one derives easily that the sum of these two
contributions vanishes in the physical region where all
energies are positive (a phase factor e~* form each energy),
in the Euclidean region (all energies negative, i.e. all phases
reduce to unity), and also in the region where only one
energy is negative. In contrast to this, in the region s,
55 > 0, So12, S123 < 0, the sum is proportional to ie~72,
On the other hand, the Regge pole, when continued into
this kinematic region, takes the form Eq. (2.22), i.e. we
have one term proportional to e 2, and two terms
proportional to ie~™2. The latter ones have the same
phase structure as the Regge cut contribution, and thus they
can be combined with the Regge cut: we can remove them
by a special contribution (“subtraction”) inside the Regge
cut. What is then left is the first term of the Regge pole
contribution

e " cos(nwy,), (4.6)
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with w,, = w, — w,. Here the argument of the “cosine”
function is conformally invariant. Therefore, this expres-
sion defines, for this kinematic region, a ‘“conformal”
Regge pole contribution. The amplitude can be written as

A = ABDSRv (47)
where Agpg contains the phase factor e~#*2, and
Re" = cos(nw,y) + i ReggeCut. (4.8)

The new Regge cut contribution is expected to be con-
formally invariant.

A. Analytic structure of the
2 — 5 production amplitude

In the following we will extend this analysis to the 2 — 5
case. We now have three different Regge cut contributions.
They are illustrated in the following figure (Fig. 18). In
addition to the # channels where the Regge cuts appear, we
have also indicated a few kinematic regions in which these
Regge cut contribute. In the generating functional, these
kinematic regions correspond to the coefficients of 7,7,
7,74, T174, and 7,7,7374. The analytic representation of the
2 — 5 amplitude contains 14 different terms. They are
illustrated below in Fig. 19.

Here each term is written as a multiple Sommerfeld-
Watson integral over @ variables, and the integrand comes
as a product of energy factors which contain all the phases
and a real-valued partial wave. For simplicity, we will
disregard the @ integration in the rest of our paper. The
analytic structure of these terms is in agreement with the
Steinmann relations, i.e. each of these 14 terms has a
maximal set of energy discontinuities in nonoverlapping
channels (denoted by dashed lines).

Only 10 of these 14 terms contain Regge cut contribu-
tions: they can be arranged as two doublets a, b and two

¢

FIG. 18.
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triplets ¢, d. The “short” Regge cut in the #; channel
[Fig. 18(b)] is contained in the first doublet a; and a, and in
the first triplet, ¢y, ¢,, and c3. Similarly, the “short” Regge
cut in the 7, channel [Fig. 18(a)] is contained in the second
doublet, b; and b,, and in the second triplet, d,, d,, and d5.
Finally, the “long” cut in Fig. 18 ¢;, and Fig. 18 ¢, appears
in the first two terms of both triplets. In each term, these
Regge cut contributions are additive. As an example, the
first two terms of the triplets are sums of two terms, each of
a “short” cut and of the “long” cut.

Next we are interested in the phase structure of these
terms: it follows from the energy factors which we list in
the following. For the doublets we have

ay = (—51)"2(=s3)" (—5234) 2 (—5) ™"

ay = (=51)"2(=s3)"2(=s0123) " (—=5)™  (4.9)
and
by = (—52)"2 (—8p12) 13 (—84) "5 (—s)"
by = (=52)" (—54)" (—=51234) " (—s5)“". (4.10)
Similarly for the two triplets,
cp = (—83)"2(—=5123) " (—S0123) " (—5)™
Cy = (—53)"2(=5123) " (=5 1234) " (—5)"
c3 = (—53)" (—5234) "2 (—51234) " (—5)" 4.11)
and
dy = (=52)(=5123) " (—S1234) ™ (—5)”"
dy = (—52)3(—5123) ™ (—So123) "4 (—5)™
dy = (—52)” (—5012) "3 (—S0123) > (—s5) . 4.12)

Regge cut contributions for the 2 — 5 production amplitude.
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FIG. 19. Terms without Regge cuts.

It should be noted that in these expressions, for simplicity,
we have disregarded « factors as well as energy scales. As
an example, the complete form of d; from Eq. (4.12) which
includes these coefficients has the form [3,4]

d - (=2 ©23 [ —8123K03 | V3 [ —S1234K23K34 | V4!
= 2 4 6
p 1 p
<—S’<12’<23’<34>“"
X | ——] .
u

SiSit1 2
Kijpr =—— = |fIi —qi+1
Si—lii+1

where

El

(4.13)

and the usual convention, s; = s,_4;.
As a result of these « factors, all energy factors d,, etc. can
be written in the common form

d; = phase factor x <|;—;|> 1<|;_§> ’ <|;_;|> : (%) ‘

(4.14)

In the following, our interest will first be devoted to the
phase factors derived from Eqs. (4.9-4.12): they depend
upon the kinematic regions. In the next step, we will
determine the coefficients that accompany the phase
factors; they are real valued and do not depend upon the
kinematic region we are considering.

B. Determination of the coefficients
of the partial waves

As we have said before,the kinematic regions in which
the Regge pole expressions (listed in Appendix A) contain
poles of the type 1/sin(zw;) are the same regions for which
we also have Regge cut contributions.” For each such
region we write schematically

f :fpole + feut- (4.15)

Conditions for the existence of the Regge cuts have been
formulated in the Appendix of [5]

In this notation, f denotes the sum of all those terms which
contribute to this region, and it contains both the energy
(and phase) factors and their real-valued coefficient, the
partial waves. As a consequence, the form of the f will be
different in different kinematic regions. In general, the
Regge cut piece will be a sum of several terms: for example,
the coefficient of 77,7374 contains the two “short” cuts and
the “long” cut,

fcut :f(uz +fw; +fw2w3- (416)
In this paper we will not address the full structure of these
Regge cut terms. Instead, we will concentrate on the overall
phases, fP'®¢ and only those pieces of the Regge cuts
which absorb the “unwanted” pieces of the Regge pole
contributions, i.e. those terms that have the unphysical

poles of the form 1/sin(zw;): &f .y, namely,

fo, =N f0"6F o, 4.17)
We therefore have to keep in mind that the f., which
we discuss in the following contain only the subtraction
terms but not the full Regge cut terms. We will name this
procedure “subtraction,” in analogy to the removal of
ultraviolet divergences in the renormalization of quantum
field theory.

In more detail, for the two doublets and for the two
triplets, we will find a set of coefficients which should
satisfy the following requirements:

(i) the Regge cuts contribute only in specific kinematic
regions where the so-called Mandelstam conditions
are fulfilled. In particular, Regge cuts do not contribute
to the Euclidean region or to the physical region where
all energies are positive.

(i) Phases of the Regge cut contributions have to
match the “unwanted” pieces of the Regge pole
contributions, i.e. those terms which have the un-
physical poles of the form 1/sin(zw;).

(iii) After having absorbed these “unwanted” pole terms
into the Regge cut terms, the remaining Regge pole
contributions have to be conformal invariant.

Let us begin with the “short” Regge cut in the 73 which
appears in the terms labeled by a4, a,, ¢y, ¢, and c3. We are
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searching for real-valued coefficients of theses terms
which, for the sum of all five terms, lead to correct phases
in all kinematic regions. First we notice that, in the region
of all energies being positive, all ¢; have the common phase
e~ and all a; the common phase e~ #(?1=®2®3) The
absence of the Regge cut in this region implies that the sum
of the terms a,, a, and the sum of the terms ¢, ¢,, ¢; must
be zero separately. This alone does not fix the coefficients
of the ¢;. We make the ansatz (which will be justified in a
moment) and choose, for the coefficients of ¢y, ¢, and c3,
the relative weights 3, 1, and —1, respectively. Similarly, for
the coefficients of a; and a, the relative weights are +1 and
—1, respectively. In order to determine the common factors
of the ¢;, we go to the region 7,7,4: here the terms ¢; and ¢,
have the common phase e~7®3¢~7(®s=®2)  whereas c; has
the phase e~"73¢~/#(®2=®1) Taking into account the relative
weights given above, the sum of the terms c¢; gives the
phase e~"32i sin 7(w, — w,). In the same way, the sum of
a, and a, lead to the factor e=#(®3+@1=©22 sin 7(w, — w,).
Combining the sum of the ¢; terms with the sum of the a;
terms we still have the freedom to chose coefficients: with
the choice sin(zw,, ) and sin(zw,,)* we have, again for the
region 7,74, the result,

1 1
sin(ﬂa)za){z cy —l—ch — 03} + sin(zw,){a; — a,}

= 2i sin(zw;,) sin(zwsy ) e~ "1 ™0 gm0,
(4.18)

The phases are in agreement with what one expects from
Regge factorization: the Regge cut in the 7; channel has the
same phase in the 2 — 4 amplitude, ie~"**3, and the phase
of the #; channel together with the production vertex of
particle a factorizes as e~"®1¢/™®a,

However, this is not yet the final answer for the cut in the
w3 channel. Namely, when going to the region 7,74, we find
the phases

a; — a, = e~ "32j sin(rwyy) 4.19)

(c) + ¢2) — ¢35 = e sin(zwyy). (4.20)

N[ =

Together with the prefactors sin(zw,,), sin(zw,,), these
terms cannot be combined to arrive at the the expected
phase e~#(®2t®3)  As a solution, we chose to completely
cancel this contribution by adding a term proportional to
c| — ¢5. In the region 7,7, we have

c| — ¢y = e7"32j sin(rwy), 4.21)

and with the following coefficients we arrive at our final
answer for the “short” cut in the w; channel,

*Please keep in mind that ), =W — o).

PHYSICAL REVIEW D 89, 065002 (2014)

. 1 1
Nw3fggase = Sm(ﬂwza){i ¢+ Ecz - 03}

+ sin(zw,){a; — as}

L (L sin(rwss) sin(rone)
—— —F——— | — SIn Sin
Sin(n'a)14) 2 W14 T2

+ sin(zwy,) sin(ﬂa)la)) {c1 =}
4.22)

We make sure that, by analytically continuing this function
fo, into different kinematic regions, we find correct
answers. In detail, the results are the following: nonzero
values appear only in the four kinematic regions 7,17y,
T|TyT3T4, T1T274 and 7,7374. In all other kinematic regions

has . 5
by vanishes. The common factor N, is found to be

: : Ist P\ (Is2]\
N, = 2 sin(zw,y) sin(zw,; ) (ﬂ—; —i

)2
83|\ 3 [ |84] )
GG
H H

A comment is in place about the second line in (4.22) which
is proportional to ¢; —c,. As we will show in a few
moments, the combination c¢; — ¢, belongs to the “long”
cut in the w, and w5 channel. The fact that this combination
also participates in our calculations of the “short” cut hints at
the fact that the “long” cut contribution may contain terms
which have the w plane singularity structure of the “short”
cuts, i.e. there is a mixing between the different Regge cuts.
We will come back to this question in a forthcoming paper.

An analogous discussion applies to the “short” cut in the
fw, channel,

(4.23)

1 1
Nwzfggase = Sin(”w&-){i d; + Edz - d3}
+ sin(zwy, ) {b1 — ba}

1 | .
—m 5 Sln(ﬂw41)81n(ﬂw3c)

+ Sin(ﬂ'a)13) Sin(ﬂ'a)4c)) {dl — dz} (424)

. . h: .
We continue the function 5™ to those four different
kinematic regions where it is nonzero, with the common
factor

[0} )
Mo, =2 sinanysintaone) (1) (25])

M
(6
H H
phase —0.

In all other kinematic regions we have f5,,

(4.25)
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FIG. 20. Terms that contain Regge cut contributions: two doublets (a) and (b), and two triplets (c) and (d).

Next we turn to the “long” Regge cut in the @, and w;
channels simultaneously. This cut is contained in the first
two terms of the triplets—cy, ¢,, d;, d, of Fig. 20 with the
corresponding phases ¢, ¢;, dy, and d, in Eq. (4.11) and
Eq. (4.12). Repeating our line of arguments, we first
consider the region where all energies are positive: since
all ¢; are proportional to e~*, all d; proportional to
e~72_the coefficient of ¢, has to be opposite equal to that
¢y, and similarly for d; and d,. Turning to the region
T1T,7374, the phases of ¢; — ¢, are

C| — ¢y = 2ie” " sin(zwyy). (4.26)
We take the following linear combination,
sin(rws, ){c; — c2} + sin(zwy, ) {d) — do}
= 2ie” " sin(zww4) sin(zws,) (4.27)

with x = a, b, c. Obviously, x, would be a symmetric
choice; however the singular term in the Regge pole
contribution (Appendix A) has no phase e~ ", and
therefore this ansatz for the Regge cut cannot be used to
subtract for the subtraction. Instead, we take the linear
combination of two contributions,

Ny f (205 = sin(mar,){c) — c2}
+ sin(zw,, ){d; — d,} (4.28)
and
Nw2w3fg(iih£3s§ = Sin(”a)3c){cl - 02}
+ sin(zw,.){d, — d»}, (4.29)

and in the combination AfeP"™C 4 ¢ ff;i}ise we will

(0,03) 3)
determine real valued coefficients A = 4f7,,, and
C = 6f%),», Which subtract the singular part of the Regge
pole contribution.

Let us first study the other kinematic regions. The
functions f;‘;fﬁg‘“ and fz;ff,ise have nonzero values in four
particular kinematic regions (Figs. 23 and 24).

The common factor is the same for ffu’f,f}fse

c;phase
wHr,w3 >

. . Isi [\ (]2 2
N 0, = 2 sin(zwy4) sin(zws;) (/12 —5

Iz
83|\ 3 [ |8S4] )4
GG
H H

and for

(4.30)
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ka kb kc
phase - L -In(o o inw
S, { s *— } = je™MO0)e T1
2°4
f phase { } . .
o = - -
IRV VAR BV BV 1C a T,T,0T,
phase { } . i
— 1 4l o
® = 3€ T
IV *—] 1€ T, 1,7,
phase { } . i
f — 3 AT W
@ = - 1€ e
el e | 5 | 1€ T,T,T,
FIG. 21.  Analytical continuation of f,.
ka kb kc
phase T T 1 - -in(o,40),) e 1O
A wz{ —% * = je ™M) e 1,1,
f phase .
w{ } =-1¢ ™% TT,T,T
2 ¢ X X HK— 127374
phase . :
— o4l o 1O
J wz{ —% *——X—] } = 1e e LhYy
phase . :
— 1 Lo, p IO
! wz{—x *——% } =-1e e 1L

FIG. 22.  Analytical continuation of f,,.

For all other possible configuration of analytical continu-
ation, the result is zero. Thus, the “long” cut contributes
only to these four particular kinematic regions. We combine
these two terms,

o a;phase ¢ c;phase
Af{l)z(})’; 6f(u2m3 W3 + 5fmzu)3 Wrw3 s (431)

with real coefficients 51, 0 and 6f7,,,,» and we find for the
different regions Fig. 257 1t is remarkable that the square
bracket is the same in all four cases, up to complex
conjugation of the phases. Below we will determine the
coefficients 57, ., and df%,,,. Summarizing this subsec-
tion, we have determined coefficients of the partial waves
ai,...dy which, for all those kinematic region which

We omitted the subscript w,w3 of the §f*¢ in the figure for
the sake of simplicity.

contains Regge cuts, can be combined to give a “good”

phase structure. Returning to Eq. (4.17), we have deter-

mined the normalization factors N and the phases f5'™. In

the following we still have to calculate the coefficients 6f,,
and we have to show that our ansatz matches the phases of
the singular pieces of the Regge pole terms (studied in
Sec. II) and thus allows us to absorb these singularities by
the Regge cuts.

C. Redefinitions of Regge pole terms: subtractions

Let us now turn to the subtraction procedure. Figs. 21,
22, 25 show the kinematic regions in which the different
Regge cuts, f,,, fo,, and f, ., contribute. There are two
regions (7,74 and 7,7374) in which only £, contributes, two
regions (7,73 and 7,7,73) where only f,, is nonzero, and
one region (7;74) where only the “long” cut appears. In the
remaining three regions we have combinations of several
Regge cuts. In particular, the region z;7,7374 sees all cut
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FIG. 23. Analytical continuation of fe, DI
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¢, phase . ‘ .
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fc, phase { } . o
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. y — e .
S . e QL
fc; phase . o
— : -17T®
C()gwj{ —z V2 *—| } =-1¢ 3 € c T1T2T4

FIG. 24. Analytical continuation of fgF*.

contributions. We begin with the “short” cut f,, : from the region 7,7, we determine the subtraction f,, which then fixes
the subtractions in all regions listed in Fig. 21. Similarly, 5f,,, is obtained from the region 7,73 and will be used in all regions
listed in Fig. 22. Finally, in the region 77,7374 we can fix the remaining subtraction, 6f .-

We begin with the region 7,7, where only the “short” cut in the #; channel contributes. From Appendix A we read off the
Regge pole contribution in the region 7,74,

. : A . sin(zwwy) sin(zww
f;?)‘i.:: — efm(m|+m3)ema)“ <COS(7T6017€) + |:em(a)b+u)(.) _ COS(ﬂ.'a)bc) — Dieim®s (lei)()ﬂwS()ﬂ C):| ) ] (4.32)

The square bracket expression on the rhs can also be written as [Eq. (2.22) and Eq. (2.23)]

.cos(zws) sin(zw,,) sin(zw,.)
i

[...] = +isin(z(wp, + @) —2 Y — , (4.33)
which shows that it is purely imaginary and can also be written as
[‘ ) ] — e—iﬂ(u)h+a),.) _ COS(]TCUhL.) 4 Die~imw; Sln(ﬂa)b) Sln(ﬂa)c) (4.34)

sin(zws)
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phase -

Thus the phase structure of the second part of Eq. (4.32) is the same as that of the cut contribution f5,,
Fig. 21, and we define the subtraction term as follows:

in the first line of

5f(u; — |: in(wp+w.) _ COS(ﬂa)bc) — Djeimws

sin(zwy, ) sin(ﬂwcq
sin(zws)

= i) st )+ 2ie o ) Sl
C

sin(zws)

(4.35)

- [Sin oy + ) — 2 S05F0) sinCren) sin(;ra)c)} |

sin(zaws)

Having fixed the subtraction 6f,, in the 7,7, region, we know the subtraction for all kinematic regions in which the ;- cut
appears (these regions are listed in Fig. 21). In our generating function we therefore have the following contributions:°

_[T274e—in(w]+m3)ei7m)“ _ TI,L.2T4e—i7rw3eiﬂmu} |:ei7z(a),,+a)l.) _ cos(ﬂa),,c) —Djelm®s Sln(ﬂa)b) SIH(ﬂwc):|

sin(zws)

(4.36)

. , . . _sin(zwy ) sin(zw
+ [—72T3T4eimw' el a | TlT2T3T4€7mw“} |:em(a)h+(uc) _ COS(ﬂ'a)bc) 4 Dje~inws ( b) ( C):| )

sin(zw3)

For the regions 7,74 and 7,75374 these are the only subtractions, and by subtracting the corresponding parts of Eq. (4.36) from
their Regge pole terms (Appendix A), all unwanted singular terms must cancel. Indeed, for the region 7,7, we find

0t Tt s o—in(n . (et .
fren;pole _fpole 4 je—in(o w3)€mw“5fw3 — e—in(w+w3) pinw, COS(ﬂ'a)hc), (4.37)

which consists of a phase factor and a conformal invariant expression; the latter will be called the “conformal Regge pole.”
Similarly, in the region 7,7374, together with the Regge pole contribution from Appendix A which we write as

) . ) .. sin(zw,) sin(rw,
ffzo‘iéu — _pinw yinw, COS(]T(I)bC) + e—m(wb+wc) _ COS(ﬂ.’(l)bC> 4 Qje~inws ( : b) ( c) 7 (438)
P sin(zws)
we obtain
f:;;‘;gle = f;if]éf“ — ie""“’)le"”waéfw3 = —e 71 i cos(nwy, ). (4.39)

This defines our renormalized pole contribution in the region 7,75374. The other two regions, 7,7,74 and 77,7374, receive
contributions also from the “long” cut. They will be discussed further below.

®Note that here we follow our convention that terms promotional to an odd number of factors 7 receive an additional minus sign.
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A similar discussion applies to the symmetric region 7,73 which is used to calculate the subtraction contained in f,,

6fw, = i{ei”@““"b) — cos(zw,y) — 2ie™™ sin(zw, ) sin ”wb)}
2

(
sin(zw,
)

=—i [e_i”(“’“Jr“’b) — cos(nw,y) + 2ie”"™2 sin (7@, Sin(”a’b)]
a.

sin(zw, )

(4.40)

=— [Sin(n(a’a ) -2 costasy) sl Sin(ﬂwb)} .

sin(zw,)

From Fig. 22 it follows that the same subtraction contributes also to the regions 7,7,73, 717374, and 7,7,7374. The analogue
of Eq. (4.36) reads

_[TIT3efi7r(w2+w4)eiﬂa)(, _ 7113T4€7i”w2ei”w"] |:eiﬂ(a)a+wb) _ COS(ﬂ'wab) — Djeimm Slﬂ(ﬂ'(l)g) Sln(ﬂ'(z)b):|

sin(zaw, )

. . » . . . sin(zw,) sin(zw,,
+ [—1iTp13e e e 4 11Ty T3T 0 ] {e i#(@at o) — cos(mw,,) + 2ie” " ( - a) sin )], (4.41)
sin(zw,)
and the renormalized Regge poles in the regions 7,73 and 77,73 have the form
7173 _ £U7 P o—in(wytwy) yinw, _ y—in(wytwy) yirw,
fren;pole - fpole +1e (@, 4)6 "5fw2 =e (@ 4>e ¢ Cos(ﬂwab)v (442)
and
T1T273  __ T1T273 P ,—ITWy LITW, _ —inwy ,HInw,

Jrenpole = Fpole | — i€ "€ 5f, = —eT e cos(mwyy,). (4.43)

Finally we turn to the contributions of the “long” cut which contributes to the regions listed in Fig. 25. We start with the
region 7,7,737,; in this region all three cuts contribute. The subtractions contained in the two “short” cuts have already been
determined, and we can use these results for fixing the subtraction due to the “long” cut. We again begin with the Regge pole
expression (from Appendix A),

_sin(zaw,,,) sin(zwy) sin(zws,.)
i .

f71727374 _ eiﬂ(—ﬂ)u+mb_wc> -2

pole = (4.44)

sin(zw, ) sin(zws)

The subtractions from the “short” cuts, 5f,,, and 6f,,, have been defined above: 5, in Eq. (4.35) and Eq. (4.36), and 6,
in Eq. (4.40) and Eq. (4.41). Before the subtraction due to the “long” cut, we have

f;lorlénm _ ie—inwcéfmz _ ie—i;m),,(sfw3 , (4'45)

which contains a double pole term ~1/(sin(zw,) sin(z@3)) [from f 2" in Eq. (4.44)] and single poles ~1/ sin(za;)
(i =1, 2) (from 6f,, and 6f,,). We now use the freedom of having another subtraction connected with the “long” cut,

Wiy We chose these remaining subtractions & fw,w, N such a way that they remove all double poles
~1/(sin(zw,) sin(zws)), all single poles ~1/sin(zw;) (i = 1, 2), and make the resulting expression conformally invariant.
This leads to

sin(zw,, ) sin(zw, ) sin(zws,)

Af(uzu)3 = {_2

sin(zw,) sin(zw3)

— e imwg e*iﬂ(a)ﬁrwv) _ COS(ﬂ'w ) + 2je—imws Sil’l(ﬂ,’a}b) Sin(;z'a)c)
be sin(zws)

sin(zw,) sin(ﬂa)b)] }

sin(zw,)

—e T |:e—i7z(u)a+a)h) _ COS(ﬂ'a)uh) + Dje—imw (446)
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Here we remind that, according to Eq. (4.33), the square brackets in the second and third rows are purely imaginary. The
first term can also be written in the form

L sin(zm)?a) sin(ﬂc.ob) sin(zws,.) _ [ p-iro, s'in(zm)c) g s.in(zm)a) zsin(ﬂa)'za) sin(ﬂc.ob) sin(zws,.) Ry
sin(zw,) sin(zws) sin(zw,,.) sin(zw,,) sin(zw,) sin(zws)
Inserting this into Eq. (4.46) one sees that, in fact, Af, ., can be written as
Afwzw3 = éfZJZag e*ilrw,, + 6f5)2w3 eii’m)(:’ (448)

with real coefficients /7, and 6/, .-

Having fixed the subtractions due to the “long” cut, §f7,,,, and 5%, ..., we must show that in all four kinematic regions in
which the “long” cut is nonzero (Fig. 25), the unphysical singularities of the Regge pole contributions cancel. We collect
these subtractions by writing them as part of the generating function

eiﬂ(u)a+a)h+m(:)e—iﬂ(a)2+m3) —2i Sin(ﬂw“) Sin(ﬂwb) Sin(ﬂwC) 7|74 (449)
sin(zw,) sin(zws

{ein(—wa rop—w,) _o; sin(zw,, ) sin(zw,,) sin(zws,.)

sin(zw, ) sin(zw;)

— e imw, |:eiﬂ(wb+w<.) _ cos(a)bc) 4 Dje—inws Siﬂ(ﬂ(Ob) Sin(ﬂ'wc):|

sin(zws)

4 4 _sin(rw,) sin(zw
—e e [e"”(“’u*mb) — cos(wgy,) + 2ie™" (”. a) Sin(r b)} }1'11'27374
sin(zw,)

B {ei”(“’tx o) goinen _ o sin(zw,,) sin(zrwy,) sin(zrw,)

sin(zw, ) sin(zw;)

— pTinws plinw, |: in(wy+o.) _ COS(Cl)bL-) — Djeimms Sin(ﬂ'(f)b) Sin(ﬂ'a)c):| }1112’[4
sin(zws)

| irton o) gizon _ 2isin(7ra)a) sin(zwy,) sin(zws,.)
sin(zw, ) sin(rws)

_ efizm)zeimu‘. ei”(’l’a+"’b) _ cos(a)ah) _ 2iei7m)2 SlIl(ﬂ'C'()a) Sln(”wb) 717374, (450)
sin(zw,)

It is now a matter of straightforward algebra to calculate the conformal Regge poles for the four different kinematic regions.
For the region 7,7,7374 we return to Eq. (4.45) and find

T1T2T3T4 __ pT1727374 P ,—InW, P ,—ITw, H
frempole = fpole —ie "5, —ie7" S + IAf 0,

—_ ein(fwaerbfml.) ) (45 1)

Here the “conformal Regge pole” equals unity. In the same way we find for the other regions,

f:el;?pole = f;‘oll'é + ie‘i”(“’2+“’3)Afw2w3 — e—in(ytw3) pinw, cos(mw,,), 4.52)
f;é;f;éle = f;loflff“ + ie_i”a”(wa3 — jeT i3 Af gy = —e i3 gin®, cos(mwyp ), (4.53)

and
ffe‘;f]:gle = f;‘o?ef“ —ie "25f, —ie" "2 Af, . = —e 2™ cos(nwy,). (4.54)
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ka kb kc
A 4 ei(PM — e-in(w2+w3) elﬂ:(Db
— X— > T1T4
9, 49 a aq,
A 4 4 4 \ ] . ( n ) ino
1(P24 — e-l’lT (Dl (,03 c a
3 ¥ —=—> € 1,1,
) l - (0. +0,) o
19,; = e—lTC 0,70 € ¢
— X — ¢ T1T3
A 4 4 4 \ ) . ino
19, =M% e
—e—L e ¥ —> € T, LT,
1 l « i in®
193, =M% ¢
— X% x- —> ¢ T1T3T4
A 4 4 4 \ ) . ino
19, =™ e
—X¢ X% * — € T1T2T3
1 l « i in®
19,53, = C_mwl C
X% X% x- —> ¢ T2T3T4
A A
: -1 T.T,T,T
—)(1)(1)(1)(—:) e“P1234:meb 127374
FIG. 26. Phase factors ¢; ; of the 2 — 5 amplitude.

D. Predictions for the remainder function
of the 2 — 5 amplitude

Let us summarize our results for those eight kinematic
regions for which the Regge pole terms need to be
renormalized. This are also the regions which contain
Regge cuts. We again use our notation of a generating
function and write for the scattering amplitude A,

A=Ay +A T+ FApTiT + -+ AT 127374,
(4.55)

Here each term proportional to 7;...7; is written as a

product of the BDS prediction and a remainder function,

A; j = Agps.. jR (4.56)

Tj..Tj?

and in Sec. III it has been shown that the BDS amplitude
Agps.;...; can be written as the product of a real part, a
kinematic phase factor, and a second phase factor e’%i,
where the conformal invariant §; ; result from the Li,
functions and represent the one-loop approximations to

Regge cut contributions,
(4.57)

_ ip; i i
Agpps.i..j = i|ABDs;i...j|e Vi,

In the following Fig. 26 we list the phase factors e®:-J.
Next, we collect the phases J; _ ;,
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oot o Lllilal )
4 ko + kp + kc[*| 21195
Yk |kb||kc||42||614|>
4 lkp + ke|?|g3]*
|ka||kb||611||%|>
|k + Ky Pl g2
ko + Ky + kc|2|ka||612|2|613|)
|y + kel ko]l ?

Oy =n

Sy =nk ]
13 71'4 n

g

[\e)

=

|

N

<

[
5 5 =) 5
S N /7 N7 N 7 N 7 N N

k k k.|?|k 2
134 — 2K 1n ko + Ky + cl | c||6]2|3|fI3| >
4 |ka + kp|*[kp| g4l
vk . (|kallksllq:1qs]
Si3=r—F— In( ———F—5
4 kg + kp|*|ga |
kyllk.
PR M)

|kp + ke[l g3]?
_ ko + ki ky + ke |*1q1 4]
01234 = ”Z n 3
|ka + kb + kc| |ka||kc||QZ||QS‘

) . (4.58)

Finally, we collect the conformal invariant Regge pole and
cut terms which have been calculated in the previous
subsection and represent the main results of Sec. IV. They
define our predictions for the remainder function R, more
precisely for the products R,[___,jeié’-/’,

71740 COS(Twg, ) + i(e W fE A+ eV fE )
774+ COS(]TO)bC) + if(u3

7173 COS(7W,) + if

TITaT4 — Cos(ﬂwah) - iemmmf(u3 - iei”mm:f:f)za@ - ifZ)Za)3
717374 — COS(ﬂ.’O)hL.) - ieiﬂw('“fwz - ifz)z(n3 - iemw“‘fz)zug
T1TyT3: —COS(XW ) — if 4,
TyT3T4" —COS(AWp) — if 4,

T\ToT3T4 " eimu,,a eina};,f _ iei”“’b"f,,,3 _ ieiﬂm;,cfwz

LN Y 10 a LN Y 10 C
+ e W3 +1e bcfw2w3.

(4.59)
The conformal invariant Regge cut terms f,, , fo,.. fora,
contain, in addition to the subtraction terms &f,,, 6f ),
8f wyas» Tespectively, which we have discussed in subsec-
tion IV C, the terms with Regge cut singularities. In this
paper, we have not addressed yet the general structure of
these amplitudes. This will be the subject of a forth-
coming paper.

V. CONCLUSIONS

In this paper we have addressed different aspects of
scattering amplitudes in the multi-Regge region. Starting
from Regge pole models that factorize in the kinematic
region of positive energies, we have seen that after analytic
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continuation to other kinematic regions, terms with unphys-
ical poles appear which need to be compensated by other
terms. Specializing to the planar approximation of the
conformal N/ = 4 SYM theory, we have studied the cases
2 - 4 and 2 — 5, and we have shown that it is possible to
compute, in agreement with the analytic structure dictated
by the Steinmann relations, coefficients of Regge cut
contributions which match the singular Regge pole
pieces and thus can be used to absorb the singularities.
We have outlined a “renormalization scheme” that con-
sistently removes the singularities and leads to conformal
invariance of the pole contribution.

Since most of this has been motivated by the goal of
determining the remainder function R, in N’ =4 SYM
theory, we have systematically studied the predictions
of the BDS formula in multi-Regge kinematics for the
different kinematic regions, and compared them with
our results for Regge pole models and Regge cuts. This
has led us to the definition of a remainder function that
contains, apart from the Regge cut contribution, a
conformal invariant Regge pole term. In this paper,
we have not addressed the detailed structure of the
Regge cut terms; this will be the content of a sepa-
rate paper.

In a future study we will extend our study to the case
2 — 6, which is expected to contain a new form of the
Regge cut consisting of three Reggeized gluons.
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APPENDIX A: EXPLICIT RESULTS OF THE
EXPANSION FOR THE n =5, 6, 7
POINT AMPLITUDES

In this part we summarize the explicit coefficients of
the 7 expansions, P,_,, for the cases 2 — 3, 2 — 4,
2 — 5, and 2 — 6. We start with the simplest case of
n =5 amplitude and list all terms: Next we summarize
the n = 6 amplitude: Finally, the coefficients of n =7
amplitude (Tables I-III):

TABLE I. All terms of the production amplitude P,_,3.

P, =ei™ae=in(@1+02) (free term)

—e
_eizrwu e*inwl

inw, e*iﬂmz 7

2
im0, 17,.
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TABLE II. All terms of the production amplitude P,_,.

P2—>4 — eiﬂ(a)a+a)b)e—i7[(011+wz+w3) (free tCITIl)

_ein(@gtwy) p—in(wy+os) o

_eizr(a),,er,,)efin(w]er;) T
_ein(a)aJra)b)e*iﬂ(mﬁrmz) T

1
2

3
eiﬂ(rnb—wn) e~ i3 71T,

eiﬂ(ma—mb)e—iﬂw] 75

—inw; | pin(@atwy) _ 0jginm, S0, ) sin(mw,)
e [e ) — Qe Sin(zy) 7173
_ | p—in(w,+wy) :—inw, Sin(rw,) sin(rwy)

{e a + 2ie Sin(zany) TT573.

TABLE III.  All terms of the production amplitude P,_,s.

P2_>5 = ei”(wu‘kwlﬁfwu)e*i”(wl+w2+w3+w4) (free term)

m(w,,+wb+w( e —in(wy+w3+wy T

—_

T

T
zn(wll+w,,+w e —in(w)+w,+ws3 T

[SSN )

) )
m(w,, +opto,) e —in(w)+w3+wy)
m(w,,+w;,+w )e in(w)+wy+wy)
) )
o)

N

efzzr(wa 0p—0.) o —in(w3+wy) 1T

e—iﬂ(mz+w4)eiﬂm[ |:ei7r(m,,+mb) Dieimm sin(zw, ) sm(myh)} 7175
sin (7w,

)
|:ein(w[,+w,,+wc)efi”(w2+w3) — 2 sin(zw,) sin(zw,,) sin(zw, )

sin(zw, ) sin(zw3) :| 7174
eiﬂ(ma—wb-%—wf)e—iﬂ((u|+a)4) 7,75
e~ im(o1+m3) pinw, | pin(wy+o.) _ ) oinw; sin(zwy,) sin(zw, ) .
sin(zws; ) 2%4

eiﬂ(ma+wb—mf)e—iﬂ(a)|+a)2) 7374

— im0y pino, |:efm(wl,+wb) + Dje—inon sin(zw, ) sin(zwy,)

sin(zw,) i| 717273

_ |:eirr(—a)u+wh+w()e—ilm)3 —2i sin(zwy, ) sin(zw, ) sin(rw, )

sin(zw, ) sin(zrw;) } 717274

_| pin(wgtop—n,) ,—iza, _ ~;sin(zo,) sin(zwy) sin(zws, )
|:€ ' ¢ 2i sin(zw, ) sin(zws)

i| T1T3T4

_p—inw; Linw —in(wy+w,) —izw; sin(zwy) sin(zw,)
e e [e <)+ 2ie Sinzar) THT3Ty

|:ei”(*wu+wb*wr) —92i sin(zw,, ) sin(zwy,) sin(zws,.)

sin(zw, ) sin(rws) i| T1T27374.

APPENDIX B: RECURRENCE RELATIONS FOR
THE COEFFICIENTS OF THE EXPANSION
IN THE REGGE FRAMEWORK

Consider a configuration of k crosses (“twists”) on the
left side and one cross on the right side n (Fig. 27),

(—1)1(7:,']7[2. {Alllz } and

-1 k41 . B . (Bl)
( ) Ti\Tiy-- T,an{ iyiy.. lk}’

(I’l > lk+1>,

where the recurrence relation reads as

sin(zw, )
1
BT, =B! lkmﬂh“" i

sin(zw, — 710, )
sin(zw,))
(B2)
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This [Eq. (B2)] can be rewritten, using Eq. (2.39),

n — n n
B ; =0b} i, +ai ;. (B3)
with
n — ,—inw, 4n
Ail.“ik =e A, i (B4)
as
prit e SNGEO)
1ot oot Sin(im)n) (B5)
a;}+1' = q _e—imu,,eimu,,n
Lendp ...y
with initial conditions
A;"“i :e*"”“’fk“eim“ikA':k ;. and
1eeelie g
(B6)

i1 11\+1 inw;, .| lH‘l
B/ . =Dbi i et AN

Let us generalize for the case iy < n — 2, n+ 1 produced
particles.

<_1)k7i17i2 Ti Tn— ITnB

iyip..

From the recurrence relation we have

nrl sin(zoy,) sin(zw, — nw,,)
Blllz de TG ik ; i1...0g
sin(zw,,) sin(zw,,)
(B7)
with
n — n
B1112 N7 bl112 + al]lz
n J— —inw,
iviy...ip — € "amz
n J— —inw, inw
ap;, ;, =€ "e WA i (B8)
We obtain using the ansatz,
n 7n+1 ~n
Blllz g blllz i T Airiy.oi (B9)
with
~n _ Linw,
ap,. g, =e"maj; (B10)
The result is
o sin(zw, — nw,,) b
ipiy...ig Sin(zm) ) iyip...ig
~n+1 _ ,—inw _ ,—inw, ,—itw,
T e P Pay alllz (B11)

Now we consider the most general case, Fig. 28.
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» AR R R IR I SR IO B A
. AR R R IR IV SR IO B A

n

FIG. 27. Diagrams which correspond to A

some configuration — 00—

r - crosses

FIG. 28. Configuration with r crosses on the most right-hand
side and some arbitrary configuration on the left (grey blob),

k+r n
(=1)""z; 7.7 Ty Ty T, BY for

(B12)
iy <n—r—1.

Then the recurrence relation becomes the three-term
relation for B,

Bl — e—in:(w,,—wa"i]) Sin(”wun) Bl
r+1 3 r=1
sin(zw,))
sin(zw,, — 7w
M B", (B13)
sin(zw,)
with the initial conditions,
BY =B}, . and B = Bf’]iz.”ik. (B14)
The recurrence relation for E?} i,..i, and B}, . givenin the
1121k

n. . and

~n . .
above (reall.y, .Bili2~~ik) is expressed in terms.of Bl,zz.i.;k
B}, ., satisfies two-term recurrence relation and is ex-
pressed again in terms of B”). Therefore, we can construct
everything in terms of very simple recurrence relations.
Consider a case (—1)"z;7;...7; .7y, Ty pi1... T, BY,
where we obtain the recurrence relation
w1 Sin(zay, )
r+1 —

e im0 g~ M0, g

sin(zw,)

sin(zw,, — 7w, )
P T P ) gn (B15)
sin(zw,,)

Ny

n
iiy...

A (up) and B i (bottom) configuration.

In particular,

Bg+27r _ Sin(n—war1+]—r)

— e—imu,,ﬂ,,e—ilm)unir Bg—r
Sln(”wn+lfr)

Sin(ﬂa)n+1—r - ﬂa)azt+l—r>

BrH»lfr
Sin(”wnJrlfr) : ’

(B16)

where we can write

By=by+ay, B}=0bi+a}; a =e™u1By;
sin(zw,, — 7w
pitl = (."—“”)b’f (B17)
sin(zw,)
and
sin(zw . .
b{Jrl — % . ( ar); arrl — a?e*l”wrel”“’ar_ (B18)
sin(zw,)
We have
Bl sin(zw,) = sin(zw, —70,) -
. . b
! sin(zw,) ! sin(zw,,) !
Al = eTimongh, (B19)
Indeed,
o sin(zw, ) + e sin(zw, — 7w, )
! sin(zw,,)
a;it — e—i;m)neimu,,” a’l’. (BZO)

Concluding this part, one can see a clear recurrence relation
for an arbitrary number of crosses and “holes” (untwisted
propagators). Thus, more complicated configurations might
be reduced to the more simple ones using the recurrence
relations formulated in the above.
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