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We investigate the analytic structure of the 2 → 5 production amplitude in the planar limit of N ¼ 4

SYM in the multi-Regge kinematics in all physical regions. We demonstrate the close connection between
Regge pole and Regge cut contributions: in a selected class of kinematic regions (Mandelstam regions), the
usual factorizing Regge pole formula develops unphysical singularities that have to be absorbed and
compensated by Regge cut contributions. This leads, in the corrections to the Bern-Dixon-Smirnov
formula, to conformal invariant “renormalized” Regge pole expressions in the remainder function. We
compute these renormalized Regge poles for the 2 → 5 production amplitude.
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I. INTRODUCTION

It is now well established that the Bern-Dixon-Smirnov
(BDS) conjecture [1] for the MHV n-point scattering
amplitude in the planar limit of the N ¼ 4 SYM theory
is incomplete for n ≥ 6. In [2] it has been shown that this
conjecture is not correct at strong coupling and for a large
number of gluons. The authors of [3,4] showed that also at
weak coupling this conjecture does not reproduce the
correct result in different kinematic regions. Corrections to
the BDS formula have been named “remainder functions,”
Rn, and in recent years major efforts have been made [5–12]
for determining these remainder functions. For n ¼ 6, the
remainder function R6 has been calculated for two, and three
loops [13–24]. Beyond this loop expansion, it has turned out
to be useful to consider a special kinematic limit, the multi-
Regge limit. For then ¼ 6point amplitude, the comparisonof
the BDS conjecture with the leading logarithmic approxima-
tion that extends over all orders of the coupling constant has
shown that the remainder function consists of a Regge cut
contribution that vanishes in the Euclidean region and in the
physical region where all energies are positive. It is nonzero
only in special kinematic regions, called “Mandelstam
regions,” which are physical regions where some of the
energy variables are positive and others are negative (the
precise definition of these “mixed regions”will be given later
on). These results have been generalized also beyond the
leading logarithmic approximation, and there is no doubt
that themulti-Regge limit playsa key role in thedetermination
of the remainder functions.
In the comparison of the multi-Regge formula with the

BDS conjecture in [3,4,25], it was crucial to make use of

the analytic structure of the 2 → 4 scattering amplitude in
the multi-Regge limit. It is well known that in non-Abelian
gauge theories the gauge bosons Reggeize, and in the
leading approximation the 2 → nþ 1 production ampli-
tudes can be written in a simple factorizing form with the
exchange of Reggeized gluons in all t channels. Beyond the
leading approximation this factorizing form of the Regge-
pole contribution remains valid in the region of all energies
being positive, but the production vertices become com-
plex-valued functions, in agreement with the results of
Regge theory derived from dual models [26–28] or scalar
theories [29]. In [3,25] in was also shown that the simple
factorized form of the Regge pole contributions is valid
only in the physical region with all energy variables being
positive (and also in the Euclidean region), but it takes a
quite different form in all other regions, in particular in the
Mandelstam regions mentioned before: in the expression
for the Regge pole contribution a new term appears which
contains an unphysical singularity and should be cancelled
by other terms.
This representation of the Regge poles is equivalent to

another representation, in which the scattering amplitude is
written as a sum of kn different terms, each of them
belonging to a distinct set of nonvanishing simultaneous
energy discontinuities: in this representation the agreement
with the Steinmann relation is explicit. For the case of
n ¼ 6, there are five terms, i.e. k6 ¼ 5; for n > 6 the
number increases rapidly: k7 ¼ 14, k8 ¼ 42 etc. As dis-
cussed in [3,4], the perturbative analysis of Yang-Mills
theories shows that some of these terms contain, in addition
to the Regge poles, also Regge cut singularities. For the
2 → 4 case, this applies to two terms: in the notation of
[3,4], to W3 and W4. In the physical region where all
energies are positive, the phase factors in front W3 and W4

are such that the Regge cut contributions in W3 and W4
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cancel, whereas in the Mandelstam region they add up to a
nonzero result. Both the discussions of the Regge cut
contributions and of Regge poles have made it clear that a
complete analysis of the analytic structure of scattering
amplitudes must include the investigation of all physical
regions.
The analysis of [25] for the2 → 4 amplitudehas shown that

there is an important connection between theRegge poles and
Regge cuts which has not been seen in earlier analysis of
Regge pole models [28]. First, it was observed that the Regge
cut appears in exactly the samekinematic regions inwhich the
Regge pole expression contains the termswith the unphysical
singularities. Furthermore, both this singular Regge pole
piece and the Regge cut term have the same complex phase
structure: this allows us to absorb the singular Regge pole
piece into the Regge cut contribution, leading to a “renor-
malized” Regge pole which is free from unphysical diver-
gences, and to amodified Regge cut definition. The existence
of Regge cuts therefore resolves the problem connected
with appearance of the singular pieces of the Regge poles.
Conversely, without Regge cuts the standard factorizing
Regge pole expression appears to be problematic.
For the determination of the conformal invariant remain-

der function in N ¼ 4 SYM, it is necessary to perform a
careful analysis of the content of the BDS formula. In
[3,4,25] it was shown that, in multi-Regge kinematics, the
BDS formula does not agree with the analytic structure
outlined above in two respects: (i) the Regge pole con-
tribution is correctly described in the region of positive
energies and in the Euclidean region, but not in the
Mandelstam region and (ii) in these Mandelstam regions
the Regge cut contributions are contained only in the one-
loop approximation, but not to all orders. This implies that
the conformal invariant remainder function must (i) correct
the Regge pole contribution in all kinematic regions and (ii)
provide the all-loop Regge cut contribution. In view of the
described interdependence between Regge pole and Regge
cut contributions, there must be a close connection between
the solutions to both problems. It looks reasonable to start
with the Regge pole part: here the main task is the
subtraction of the singular pieces by Regge cut contribu-
tions. To be more concrete, one can attempt to use the
known phase structure of the Regge pole terms in all
kinematic regions to constrain the phases of the Regge cuts
in such a way that they can absorb all singular terms of the
Regge poles. In this subtraction, most powerful constraints
follow from the conformal invariance of the remainder
function: after absorbing the singular Regge pole pieces
(which by themselves are not conformal invariant) into the
Regge cut contributions, the remaining “renormalized”
Regge poles and the modified Regge cut terms must be
conformal invariant.
In this paper we describe this subtraction procedure for

the 2 → 4 and for 2 → 5 cases. For the former case, most
the work has been done already in earlier publications: so

we only briefly review and complete our previous studies
and then generalize to the 2 → 5 case. In the first part
(Sec. II) we analyze the general factorization formula of
Regge pole contributions in all physical regions. Starting
from the region of positive energies where factorization
holds, we continue to other regions and derive the existence
of terms with unphysical pole singularities which have to
be compensated by Regge cut contributions. Particular
attention will be given to the phase structure which is
important in determining the phase structure of Regge cut
contributions in N ¼ 4 SYM. We present explicit results
for 2 → 4 and 2 → 5, but our analysis can also be
generalized to the general case 2 → nþ 1. In the second
part (Sec. III) we present an analysis of the BDS formula in
multi-Regge kinematics in all physical regions. This
analysis is general and applies to the case 2 → nþ 1. In
the third part (Sec. V) we carry out the program described at
the end of the previous paragraph. We first compute, for the
case 2 → 5, phases of Regge cut contributions which allow
to absorb the unphysical terms of the Regge poles calcu-
lated in the first part. We then define subtraction schemes
for absorbing these pieces into the Regge cuts, leaving
conformal invariant expressions for the Regge poles. In the
final part of this section we combine these results with our
findings of the BDS amplitude obtained in Sec. III, and we
present predictions for the remainder function. It should be
emphasized that, in this paper, we do not yet address the
second part of the program, the construction of the
conformal invariant Regge cut contributions. This will
be left for a separate paper.

II. THE REGGE POLE FRAMEWORK

A. Factorizing Regge poles

We begin with the factorized form of the fully signatured
2 → nþ 1 production amplitude (Fig. 1). The produced
particles will be labeled by a1;…; an−1, and they can have
positive or negative energies. We want to describe all
physical channels of these amplitudes in the multi-Regge
kinematics s ≫ js1j;…; jsnj ≫ −t1;…;−tn. We introduce,
for each t-channel ti, the signature label τi which takes the
values τi ¼ þ1 or τi ¼ −1. For τi ¼ þ1ð−1Þ the scattering
amplitude is even (odd) under twisting the ti channel, i.e.
under the crossing of the corresponding energy variables

FIG. 1. Notations for the 2 → n − 2 amplitude.
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(for the simplest case, the 2 → 2 scattering, “twisting the t
channel” is the same as s↔u crossing). For our present
discussion it is sufficient to consider signatured amplitudes
as sums and differences of planar untwisted and twisted
amplitudes. Denoting a twist by a simple cross, a signatured
2 → 2 scattering amplitude has the form where the cross
indicates the change of sign of the energies of the particles
B and B0 (Fig. 2).
Generalizing this to arbitrary n, we write down the

amplitude for the 2 → nþ 1 production amplitude in the
following form,

A
τiτj…τn
2→nþ1

Γðt1ÞΓðtnÞ
¼ js1jω1ξ1Vτ1τ2;a1 js2jω2ξ2Vτ2τ3;a2 js3jω3ξ3 × � � �

× jsn−1jωn−1ξn−1Vτn−1τn;an−1 jsnjωnξn; (2.1)

where

ξi ¼ e−iπωi − τi; ξij ¼ e−iπωij þ τiτj;

ξji ¼ e−iπωji þ τiτj
(2.2)

with

ωij ¼ ωi − ωj (2.3)

denote the signature factors, and

Vτiτj;aj ¼ ξij
ξi

cij;aiR þ ξji
ξj

cij;aiL (2.4)

stands for the complex-valued production vertex.
As an example, for the case 2 → 3, the one particle

production amplitude has a simple structure [25,27],

Aτ1τ2
2→3

Γðt1Þjs1jω1 js2jω2Γðt2Þ
¼ ξ1Vτ1τ2;a1ξ2

¼ ξ12ξ2c
12;a1
R þ ξ21ξ1c

12;a1
L

≡ ~Vτ1τ2;a1 ; (2.5)

where ΓðtÞ is the Regge pole residue and cR and cL the
Reggeon-Reggeon-particle vertices. Similarly, the produc-
tion of two particles has the form [25,27]

Aτ1τ2τ3
2→4

Γðt1Þjs1jω1 js2jω2 js3jω3Γðt3Þ
¼ ξ1Vτ1τ2;a1ξ2Vτ2τ3;a2ξ3: (2.6)

In order to arrive at a symmetric factorizing expression, we
insert, for the t2 channel, an additional signature factor and
write

Aτ1τ2τ3
2→4

Γðt1Þjs1jω1 js2jω2 js3jω3Γðt3Þ
¼ ~Vτ1τ2;a1

1

ξ2
~Vτ2τ3;a2 ; (2.7)

where

~Vτ1τ2;a1 ¼ ξ1Vτ1τ2;a1ξ2: (2.8)

Generalizing to the case 2 → nþ 1, we see that for
each “inner” ti channel, t2;…; tn−1, we need an extra
“propagator” 1=ξi. With this rule, Eq. (2.1) can be written
in the convenient form

A
τiτj…τn
2→nþ1

Γðt1Þjs1jω1 js2jω2…jsnjωnΓðtnÞ

¼ ~Vτ1τ2;a1
1

ξ2
~Vτ2τ3;a2

1

ξ3
…

1

ξn−1
~Vτn−1τn;an−1 : (2.9)

It will be useful to write this formula as an expansion in
monomials of signatures τi. In such an expansion, terms
without any τi can be identified as the planar approximation
in the kinematic region where all energies are positive. For
the case of n ¼ 6, terms proportional to τ1τ3 correspond to
the planar amplitude where the particles a1 and a2 have
become incoming: this is one of the Mandelstam regions
where, according to the analysis in [3,4], the Regge cut
contribution will appear.
In order to obtain this representation we observe that the

production vertex, Eq. (2.5), can be expanded as

~Vτ1τ2;a ¼ e−iπω1c12;a1R þ e−iπω2c12;a1L

− τ1e−iπω1ðe−iπω1c12;a1R þ e−iπω2c12;a1L Þ
− τ2e−iπω2ðe−iπω1c12;a1R þ e−iπω2c12;a1L Þ
þ τ1τ2ðe−iπω2c12;a1R þ e−iπω1c12;a1L Þ; (2.10)

and the propagator can be written in the form

1

ξ2
¼ 1

e−iπω2 − τ2
¼ e−iπω2 þ τ2

−2i sinðπω2Þe−iπω2
: (2.11)

Note the appearance of the nonphysical poles
∼1= sinðπω2Þ which should be cancelled by the Regge
cut contributions.
With these ingredients it is straightforward to find

the expansion in monomials for the general 2 → nþ 1
amplitude.

FIG. 2. The signatured 2 → 2 amplitude.
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B. Generating function approach
for the Regge pole formula

To be definite, let us from now on concentrate on planar
N ¼ 4 SYM. It will be convenient to define a generating
function for the pole-term coefficients. Let us briefly
introduce the idea behind it. We are interested in the
analytical continuation of the planar scattering amplitude
to arbitrary kinematic regions in multi-Regge kinematics.
During such a continuation, various factors and phases
may appear. As explained above, each particular kin-
ematic region can be reached by a sequence of twists
(crosses) of t channels, and each such twist is denoted by a
corresponding factor τ1. Thus, it is instructive to have a list
of all possible phases and factors that appear due to
continuation for each appropriate kinematic configuration.
One may also think of a different point of view on the
scattering amplitude. Instead of having one analytical
function of kinematic invariants and then continuing to
arbitrary physical and nonphysical kinematic regions, one
can introduce a generating function, P2→n, which is given
as a sum of amplitudes in all physical regions. As a simple
example, consider such a generating function of the 2 → 3
scattering process Fig. 3: Turning now to the BDS formula,
applied to the 2 → 3 amplitude [3], we have for the
Reggeon vertices in (2.4),

ciiþ1;a
R ¼ jΓi;iþ1j

sinðπωi − πωaÞ
sinðπωi − πωiþ1Þ

;

ciiþ1;a
L ¼ jΓi;iþ1;aj

sinðπωiþ1 − πωaÞ
sinðπωiþ1 − πωiÞ

:

(2.12)

Here i labels the t channel (for the 2 → 3 case we have
i ¼ 1 only), a denotes the produced particle. Going to the
physical region where all energies are positive, this allows
us to write the Reggeon-Reggeon-Gluon vertex Γi;j;a (see
Eqs. (19)–(22) [25]) in the form

Γi;iþ1;aðlnðκa − iπÞÞ ¼ jΓi;iþ1;ajeiπωa : (2.13)

Here the expansions in powers of a ¼ g2Nc
8π2

are given by

ωi ¼ − γK
4

ln
jqij2
λ2

; γK ¼ 4aþOða2Þ; (2.14)

where γK is the cusp anomalous dimension and λ2 ≡ μ2e1=ϵ

for D ¼ 4 − 2ϵ with ϵ → 0−,

ωa ¼ − γK
8

ln
jqij2jqiþ1j2
jkaiþ1

j2λ2 (2.15)

with kaiþ1
¼ qi − qiþ1, and

ln jΓi;iþ1j ¼
γK
4

�
− 1

4
ln2

jqi − qiþ1j2
λ2

− 1

4
ln2

jqij2
jqiþ1j2

þ 1

2
ln

jqij2jqiþ1j2
λ4

ln
jqi − qiþ1j2

μ2
þ 5

4
ζð2Þ

�
:

(2.16)

Let us now return to the generating functions P2→n, to the
sum of amplitudes in all kinematic regions. It is convenient
to divide by factors which are common to all kinematic
regions. Beginning with the case 2 → 3, Namely, using the
explicit form Eq. (2.5) with Eq. (2.12) one arrives at

P2→3 ¼
A2→3

Γðt1Þjs1jω1 jjΓ1;2jjs2jω2Γðt2Þ
¼ ~Vτ1τ2;a

red

¼ e−iπðω1þω2−ωaÞ − e−iπðω2−ωaÞτ1 − e−iπðω1−ωaÞτ2
þ e−iπωaτ1τ2: (2.17)

Here we have defined a reduced vertex by

~Vτ1τ2;a
red ¼

~Vτ1τ2;a

jΓ1;2j
¼ e−iπðω1þω2−ωaÞ − e−iπðω2−ωaÞτ1 − e−iπðω1−ωaÞτ2
þ e−iπωaτ1τ2; (2.18)

which consists of phases only.
As the next example we calculate, from Eq. (2.7), the six-

point generating function (cf. [25]):

FIG. 3. The generating function for the 2 → 3 production process written in terms of monomials of τ1, τ2.

1It should be clear that, from now on, τ is no longer related to
signature but simply denotes kinematic regions
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P2→4 ¼
A2→4

Γðt1Þjs1jω1 jΓ1;2jjs2jω2 jΓ2;3jjs3jω3Γðt3Þ
¼ ~Vτ1τ2;a

red
1

ξ2
~Vτ2τ3;b
red

¼ e−iπðω1þω2þω3−ωa−ωbÞ − e−iπðω2þω3−ωa−ωbÞτ1 − e−iπðω1þω3−ωa−ωbÞτ2 − e−iπðω1þω2−ωa−ωbÞτ3 þ e−iπðω3þωa−ωbÞτ1τ2

þ e−iπðω1−ωaþωbÞτ2τ3 þ e−iπω2

�
cosðπωabÞ þ i

�
sinðπωa þ πωbÞ − 2eiπω2

sinðπωaÞ sinðπωbÞ
sinðπω2Þ

��
τ1τ3

þ −
�
cosðπωabÞ − i

�
sinðπωa þ πωbÞ − 2e−iπω2

sinðπωaÞ sinðπωbÞ
sinðπω2Þ

��
τ1τ2τ3; (2.19)

where ωab ¼ ωa − ωb. The careful reader may notice that
this expression has a mirror symmetry with respect to right
and left (a↔b) exchange. This fact will be important in
the future.
Concluding this part, on can write a general expression

for the generating function for an arbitrary number of
produced particles 2 → nþ 1:

P2→nþ1 ¼
A2→nþ1

Γðt1Þjs1jω1 jΓ1;2jjs2jω2…jΓn−1;njjsnjωnΓðtnÞ
¼ ~Vτ1τ2;a1

red
1

ξ2
~Vτ2τ3;a2
red

1

ξ3
…

1

ξn−1
~Vτn−1τn;an−1
red

¼ a0 þ a1τ1 þ a2τ2 þ a12τ1τ2 þ…þ a1.:nτ1…τn:

(2.20)

The r.h.s. can be written as a polynomial in the τi, and the
coefficients consist of phases and trigonometric functions.
In the Appendix Awe list, for the cases 2 → 3, 2 → 4, and
2 → 5, all coefficients of the generating function.

C. Rules: a few particular cases

It will be useful to extract, from the particular cases given
above, a few general rules. Let us begin with the case
n ¼ 5. As we have said before, the term without any τ
belongs to the planar amplitude in the physical region with
all positive energies. On the rhs of Eq. (2.17) we have

eiπωae−iπðω1þω2Þ: (2.21)

As expected, the amplitude has the simple factorized form,
with phase factors for the produced particle, eiπωa , and for
the exchange channels, e−iπω1 and e−iπω2 . As to the
remaining three terms for n ¼ 5 we observe the following
pattern: each t channel without a twist comes with a phase
factor e−iπωi, each t channel with a twist carries the
factor −1:
(i) twisted propagator: → −1
(ii) untwisted propagator in channel ti∶ → e−iπωi .

An illustration is given in the Figs. 4 and 5. Turning to
n ¼ 6, all but two terms are of the form that we have just
described: phase factors for the propagators and for the

production vertices. It is important to note that in all these
terms the pole ∼1=sinðπω2Þ from the propagator of the t2
channel cancels. New features appear for τ1τ3 and τ1τ2τ3,
namely terms where the poles ∼1=sinðπω2Þ from the
propagator Eq. (2.11) remain. The term proportional to
τ1τ3 belongs to the planar amplitude continued into the
physical regions where particles a and b are incoming. This
kinematic region is the one in which the Regge cut appears
[3,4]. For this term we find from the rhs of Eq. (2.19),

¼ e−iπω2

�
cosðπðωa − ωbÞÞ þ i sinðπðωa þ ωbÞÞ

− 2i
cosðπω2Þ sinðπωaÞ sinðπωbÞ

sinðπω2Þ
�
; (2.22)

which we rewrite as

Eq:ð2.22Þ¼e−iπω2

�
eiπðωaþωbÞ−2ieiπω2

sinðπωaÞsinðπωbÞ
sinðπω2Þ

�
:

(2.23)

Here the first term is of the same form as discussed before,
whereas the second term is new: it has an unphysical pole
in sinðπω2Þ.

FIG. 4. Two types of propagators in channel i.

FIG. 5. Illustration of the term τ1τ3.
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The important observation made in [25] is that the last
two terms can be included in the Regge cut contribution,
because they have the same phase structure as the Regge
cut. This is the simplest example of the general feature that
a Regge pole amplitude which, for positive energies, has
the factorizing form, after analytic continuation, exhibits
unphysical poles (in our case: ∼1=sinðπω2Þ). From [3,4] we
know that, in Yang-Mills theories, the 2 → 4 amplitude
contains a Regge cut contribution with the same phase
ie−iπω2 , which can absorb the singular piece in Eq. (2.22) of
the Regge pole contribution.
An analogous discussion applies also to the term propor-

tional to τ1τ2τ3. Note, however, that in this case the first
term (see Appendix A) is of the form

−e−iπðωaþωbÞ: (2.24)

As expected, there are no phases from t-channel propa-
gators, but for the production vertices we have e−iπωa

instead of eiπωa .
Moving on to n ¼ 7, we again note the appearance of

pole terms: the coefficient of τ1τ3 is illustrated in Fig. 6: It
has the form (Appendix A)

e−iπðω2þω4Þeiπωc

�
eiπðωaþωbÞ − 2ieiπω2

sinðπωaÞ sinðπωbÞ
sinðπω2Þ

�
:

(2.25)

It is easily obtained from the analogous term of the 2 → 4
amplitude by multiplication with eiπωc (for the additional
vertex of particle c) and by e−iπω4 (for the untwisted
propagator of the t4 channel). The pole term
∼1= sinðπω2Þ belongs to the t2 channel, and later on we
will show that it can be combined with the Regge cut
contribution in the same t channel. An analogous discus-
sion holds for the coefficient of τ2τ4. Next let us consider
the coefficient of τ1τ4 (Fig. 7):
The corresponding term on the rhs of Eq. (2.20) is (see

Appendix A)

�
eiπðωaþωbþωcÞe−iπðω2þω3Þ−2i

sinðπωaÞsinðπωbÞsinðπωcÞ
sinðπω2Þsinðπω3Þ

�
:

(2.26)

Again, the first term is of the same form as the cases
discussed above, whereas the double pole term belongs to
the t2 and t3 channels and has to be combined with the Rege
cut contribution extending over these two channels. Finally,
we look at the coefficient of τ1τ2τ3τ4 (Fig. 8). It has the form

�
eiπðωb−ωa−ωcÞ − 2i

sinðπω2aÞ sinðπωbÞ sinðπω3cÞ
sinðπω2Þ sinðπω3Þ

�
;

(2.27)

and there is again a double pole which has to absorbed by the
Regge cut contribution extending over the t2 and t3 channels.
The first term deviates from the previous cases: for the
production vertex of particle b we have eiπωb , whereas
particles a and c become the complex conjugate.
In Appendix A we present, for the cases 2 → 3, 2 → 4,

and 2 → 5, a complete list of all coefficients of the
generating function. In all cases we first find a term with
a pure phase. For the generalizedMandelstam regions, there
are, in addition, termswith simple, double, andmultipoles of
the form ∼1=ðsinðπωiÞ sinðπωjÞ… sinðπωkÞÞ. A closer
inspection shows a one-to-one correspondence between
these singular terms and Regge cut contributions: we will
explicitly study the case n ¼ 7 and show that these Regge
cut pieces can be used to absorb all singular terms.

D. The general case: recurrence relations

In order to analyze the structure for the general case it is
useful to make use of recurrence relations. To begin with,
consider the generating function of the five point ampli-
tude, Pτ1τ2

2→3 [Eq. (2.17)]. Due to the factorization property
Eq. (2.20), we can obtain the six-point generating function
by applying a recurrence operator ~K,

P2→4 ¼ ~Vτ1;τ2;a
red

1

ξ2
~Vτ2;τ3;b
red ¼ ~Vτ1;τ2;a

red
~Kðτ2; τ3; bÞ; (2.28)

with

~Kðτ2; τ3; bÞ ¼
1

ξ2
~Vτ2;τ3
red : (2.29)

Explicitly,

FIG. 6. Illustration of the term τ1τ3.

FIG. 7. Illustration of the term τ1τ4.

FIG. 8. Illustration of the term τ1τ2τ3τ4.
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~Kðτ2; τ3; bÞ ¼ e−iπðω3−ωbÞ − sinðπω2bÞ
sinðπω2Þ

τ3 þ
sinðπωbÞ
sinðπω2Þ

τ2τ3:

(2.30)

Note that ~K is not symmetric with respect to the monomial
representation. In particular, it does not contain a term
proportional to τ2. Nevertheless, the resulting generating
function, P2→nþ1,

P2→nþ1 ¼ ~Vτ1;τ2;a1
red

~Kðτ2; τ3; a2Þ… ~Kðτn−1:τn;an−1Þ (2.31)

is symmetric.
In Appendix B we present a more general discussion of

the coefficients of different configuration of τ’s. Here we
only discuss one special case which corresponds to two
crosses in the first (left) and in the last (right) channel
Fig. 9. As before, we consider the case 2 → nþ 1 with nt

channels (t1;…; tn) and (ω1;…ωn), and n − 1 produced
particles labeled by a1;…; an−1, and we want to prove, by
induction, that the coefficient of τ1τn in P2→nþ1 is given by

�
e−iπðω2þω3þ…ωn−1Þeiπðωa1

þωa2
þ…þωan−1 Þ−2i sinðπωa1Þ sinðπωa2Þ… sinðπωan−1Þ

sinðπω2Þ sinðπω3Þ… sinðπωn−1Þ
�
τ1τn: (2.32)

For this we also need to show that the coefficient propor-
tional to τ1 is

fe−iπðω2þω3þ:::ωnÞeiπðωa1
þωa2

þ:::þωan−1 Þgτ1: (2.33)

To begin with the simplest case, 2 → 4, we have for the
coefficient τ1τ3 (Eq. (2.23) or Appendix A),

e−iπω2eiπðωa1
þωa2

Þ − 2i
sinðπωa1Þ sinðπωa2Þ

sinðπω2Þ
; (2.34)

whereas the coefficient of τ1 is

e−iπðω2þω3Þeiπðωa1
þωa2

Þ: (2.35)

Let us now prove, by induction, our assertion. In order to go
from the case 2 → nþ 1 to the case 2 → nþ 2, we
multiply P2→nþ1 with the kernel ~Kðτn; τnþ1; anÞ,

~Kðτn; τnþ1;anÞ ¼ e−iπωnþ1eiπωan − sinðπωn − πωanÞ
sinðπωnÞ

τnþ1

þ sinðπωanÞ
sinðπωnÞ

τnτnþ1: (2.36)

Within this product, the relevant terms are

P2→nþ1 · ~Kðτn; τnþ1; anÞ ¼ ½f…gτ1 þ f…gτ1τn�
· ½1f…g þ f…gτnþ1

þ f…gτ1τnþ1�; (2.37)

where, by assumption, in the first square bracket we use
Eq. (2.32) and Eq. (2.33), and the second bracket is given
in Eq. (2.36).
We immediately see that, on the rhs, the coefficient of τ1

comes from the product of the first terms in each square
bracket and equals

e−iπðω2þ…þωnþ1Þeiπðωa1
þ…þωan Þ: (2.38)

This proves the second part of our assertion. Next, in order
to calculate, the contribution proportional to τ1τnþ1, one
should take into account two terms: the product of the term
∼τ1τn in the first bracket with the term τnτnþ1 in the second
bracket, and the product of the term τ1 in the first bracket
with the term τnþ1 in the second bracket. When combining
these two contributions, the following identity is useful:

sinðπωanÞ
sinðπωnÞ

þ e−iπωn
sinðπωn − πωanÞ

sinðπωnÞ
¼ e−iπωneiπωan :

(2.39)

One arrives at

FIG. 9. Initial configuration τ1τn.
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�
e−iπðω2þω3þ…ωnÞeiπðωa1

þωa2
þ…þωan Þ−2i sinðπωa1Þ sinðπωa2Þ… sinðπωanÞ

sinðπω2Þ sinðπω3Þ… sinðπωnÞ
�
τ1τnþ1;

which proves the first part of our assertion.
Concluding this part, according to Eq. (2.31), each

coefficient of the τ expansion in Eq. (2.20) can be
calculated recursively, by multiplying the iterative kernel
Eq. (2.36) with the initial expression ~Vτ1;τ2;a1

red .2

III. GENERATING FUNCTION FOR THE
BDS AMPLITUDES IN THE

MULTI-REGGE KINEMATICS

A. Motivation

In order to determine the remainder function in each
physical region for the pole and cut combinations, let us
now find the phase structure of the BDS amplitude [1] in
the different kinematic regions. Again, we find it conven-
ient to define a generating function:

ABDS ¼ a0 þ a1τ1 þ a2τ2 þ…þ anτn þ a12τ1τ2

þ a13τ1τ3 þ…a1…nτ1τ2…τn: (3.1)

In this expansion, each monomial of the twists τi…τj
defines a kinematic region, and the coefficient ai…j is the
BDS prediction for this region. As before, each term in the
expansion corresponds to a diagram of the type shown in
Fig. 10. The following discussion of the BDS formula will
be similar to the previous study of the Regge pole model,
but the results all be quite different.
The meaning of the “twist” or “crossed line” is the same

as before. By twist we mean that the diagram is rotated
around the direction of the exchanged momenta to the right
of the cross (“X”) sign. For example if one twists the
diagram with respect to channel 1 (corresponding to ω1),
the result is as shown in Fig. 11. We can generalize the
twisting of the diagram in order to reach other channels. For
example, in Fig. 12 we rotated twice. We move from left to
right. The first twist brings the diagram similar to presented
in Fig. 11 and the second twist (cross in channel 3) rotates
back the rest of the diagram to the right of the cross sign. It
is important to stress that despite the fact that we rotate the
diagram, it remains planar. The diagram in Fig. 12 corre-
sponds to the following kinematic region:

s1 < 0; s2 > 0; s3 < 0; s4 > 0; s012 < 0; s123 < 0; s234

< 0; s0123 > 0; s1234 < 0; s > 0. (3.2)

B. BDS predictions: examples

Let us begin with a brief review of the five point and the
six point functions in the multi-Regge kinematics. As
shown in [3], for the 2 → 3 amplitude in the region of
positive energies (no τ factors) we have the simple
exponential form

MBDS
2→3

Γðt1Þjs1jω1 jΓ1;2jjs2jω2Γðt2Þ
¼ e−iπω1eiπωae−iπω2 : (3.3)

Analogous expressions hold for the other regions. The
exponents resemble those which we have discussed in the
previous section. However, in contrast to our discussion of
the Regge pole framework, for the BDS amplitudes we
can formulate simple rules which also fix the signs of the
exponents of the production vertices. Let us next consider
the 2 → 4 case in the region belonging to the coefficient
τ1τ3 (Mandelstam region). From [3,25] we have

MBDS
2→4

Γðt1Þjs1jω1 jΓ1;2jjs2jω2 jjΓ2;3jjs3jω3Γðt3Þ
¼ Ce−iπω2eiπðωaþωbÞ: (3.4)

Here C is the new phase factor, related to the one-loop
approximation of the Regge cut

C ¼ e
iπ

�
γK
4
ln

jq1 j2 jq3 j2
jkaþkb j2λ2

�
(3.5)

with ka þ kb ¼ q1 − q3. The remaining parts of the phases
are obtained from the rules of Sec. II. It has been noticed in
[25] that when combining this phase with the two vertex
factors one arrives at a conformal invariant phase

CeiπðωaþωbÞ ¼ eiδ (3.6)

with

FIG. 10. Example of a diagram with twists in the channels 1, 2,
and 4. In Eq. (3.1) it corresponds to the term τ1τ2τ4.

2Although it is possible to calculate each coefficient in the
expansion by using these recurrence relations, practically it is
more efficient to use simple code with MATHEMATICA, which
generates these coefficients immediately. The simplest imple-
mentation might be iterative multiplication with the kernel ~K.
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δ ¼ π
γK
4

ln
jq1jjq2jjkajjkbj
jka þ kbj2jq2j2

: (3.7)

It is important to recall the origin of the phase factor C:
the BDS formula for the 2 → 4 amplitude contains three
Li2 functions (dilogarithms) which depend upon the three
independent anharmonic cross ratios. In the multi-Regge
limit, one of these anharmonic cross ratios is a phase factor

Φ ¼ ð−s2Þð−sÞ
ð−s012Þð−s123Þ ; (3.8)

with

Φ − 1 ¼ jka þ kbj2
s2

; (3.9)

whereas the remaining two ratios go to zero. The dilogar-
ithm depending upon the phase Φ appears in the combi-
nation

RðΦÞ ¼ − 1

4
ln2Φ − 1

2
ln Φ

�
ln
ð−t1Þð−t3Þ
ð−s2Þμ2 − 1

ϵ

�

− 1

2
Li2ð1 − ΦÞ: (3.10)

It is easy to see that

RðΦ ¼ 1Þ ¼ 0; (3.11)

whereas for Φ ¼ e�2iπ the argument of the dilogarithm
passes through a cut and

Li2ð1 − ΦÞ → ∓2πi lnð1 − ΦÞ (3.12)

with lnð1 − ΦÞ being real valued. Concluding, one can see
that the analytical continuation of the combination of the
Li2 function with the appropriate logarithms produces a
logarithmic phase factor

RðjΦje∓2πiÞ ¼ �iπ

�
ln

jqij2jqjj2
jqi − qjj2λ2

�
; (3.13)

which corresponds to the Mandelstam cut in the one-loop
approximation. There is an overall factor γK=4 in front of
the logarithm, which was omitted during the computation
of R and should be restored in the final expression.
For the 2 → 5 amplitude there are three phases which

have to be rotated. We first consider the kinematic region
belonging to the coefficient of τ1τ3. Here we rotate only

Φ1 ¼
ð−s12Þð−s0123Þ
ð−s012Þð−s123Þ (3.14)

with

Φ1 − 1 ¼ jka þ kbj2
s12

; (3.15)

whereas the two other phases are kept fixed. The BDS
prediction is

MBDS
2→5

Γðt1Þjs1jω1 jΓ1;2jjs2jω2 jΓ2;3jjs3jω3 jΓ3;4jjs4jω4Γðt4Þ
¼ C13e−iπðω2þω4ÞeiπðωaþωbþωcÞ (3.16)

with

C13 ¼ e
iπ

�
γK
4
ln

jq1 j2 jq3 j2
jkaþkb j2λ2

�
; jka þ kbj2 ¼ jq1 − q3j2:

(3.17)

We introduce the conformal invariant phase δ13:

C13e−iπðω2þω4ÞeiπðωaþωbþωcÞ ¼ e−iπðω2þω4Þeiπωceiδ13 ;

(3.18)

FIG. 11. Example of diagram with a twist in channel 1, which in the expansion Eq. (3.1) corresponds to the term τ1.

FIG. 12. Example of double twisted diagram with twists in the channels 1 and 3, which in the expansion Eq. (3.1) corresponds to the
term τ1τ3.
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where

δ13 ¼ π
γK
4

ln
jq1jjq3jjkajjkbj
jka þ kbj2jq2j2

: (3.19)

The coefficient of τ2τ4 (with the rotating phase Φ2) is
obtained from symmetry considerations. Next the region
belonging to τ1τ4. The relevant phase which rotates to
e−2iπ is

~Φ ¼ ð−s123Þð−sÞ
ð−s0123Þð−s1234Þ ;

~Φ − 1 ¼ jka þ kb þ kcj2
s123

;

(3.20)

and the corresponding Li2-function yields the phase factor

C14 ¼ e
iπ

�
γK
4
ln

jq1 j2 jq4 j2
jkaþkbþkc j2λ2

�
; jka þ kb þ kcj2 ¼ jq1 − q4j2:

(3.21)

The prediction of the BDS formula for this kinematic
region is

MBDS
2→5

Γðt1Þjs1jω1 jΓ1;2jjs2jω2 jΓ2;3jjs3jω3 jΓ3;4jjs4jω2Γðt4Þ
¼ C14e−iπðω2þω3ÞeiπðωaþωbþωcÞ: (3.22)

We write this as

C14e−iπðω2þω3ÞeiπðωaþωbþωcÞ ¼ e−iπðω2þω3Þeiπωbeiδ14 (3.23)

with the conformal invariant phase

δ14 ¼ π
γK
4

ln
jq1jjq4jjkajjkcj

jka þ kb þ kcj2jq2jjq3j
: (3.24)

One can spot that the contribution for a single Li2 function
belonging to a Mandelstam cut is given by the simple
exponential expression [cf. (3.13)]

Cij ¼ e
iπ

�
γK
4
ln

jqi j2 jqj j2
jqi−qj j2λ2

�
: (3.25)

The composite state of several single coefficients Cij
consists of a product of C’s with appropriate signs of
exponents, in accordance with the direction of the rotation
of the analytical continuation.
Finally the coefficient of τ1τ2τ2τ4. Now we rotate ~Φ

by e−2iπ and Φ1 and Φ2 by eþ2iπ. In terms of a single
coefficient Cij, the composite coefficient C1234 will be

C1234 ¼ Cþ
14C

−
13C

−
24; (3.26)

where C14 corresponds to the rotation of ~Φ, Φ1, and Φ2

respectively. � corresponds to the sign in front of iπ in the
exponent. We obtain

MBDS
2→5

Γðt1Þjs1jω1 jΓ1;2jjs2jω2 jΓ2;3jjs3jω3 jΓ3;4jjs4jω4Γðt4Þ
¼ C1234e−iπðωaþωbþωcÞ (3.27)

with

C1234 ¼ e
−iπ

�
γK
4
ln

jq2 j2 jq3 j2 jkaþkbþkc j2
jkaþkb j2 jkbþkc j2λ2

�
(3.28)

and

C1234eiπðωaþωcÞ ¼ eiδ1234 with

δ1234 ¼ π
γK
4

ln
jq1jjq4jjka þ kbj2jkb þ kcj2

jka þ kb þ kcj2jkajjkcjjq2jjq3j
:
(3.29)

In general, the definition of the phases δij… is not unique. It
depends upon which vertex factors are combined with the
phases resulting from the Li2 functions. We will fix these
phases at the end of Sec. VC, after we have defined our
renormalized Regge pole contributions.

C. Propagators, vertices, and Li2 functions

In order to generalize this discussion, we introduce
“Feynman rules” for the calculation of the terms in the
generating function. From the previous discussion it
follows that there are three building blocks: propagators,
vertices, and phases resulting from the Li2 functions.
Beginning with the propagators, there are two types of
propagators: one corresponds to untwisted t-channel lines,
the other one to a twisted line (Fig. 13). For each untwisted
propagator one should put e−iπωi , and for the twisted
propagator, one puts −τi. The second ingredient is the
production vertex for the particle ai with the phase πωai .
We denote the produced momenta as ka1 ; ka2 ; ka3 ;….
There are four types of vertices. Three vertices are
simple - with at most only one twisted propagator line
(upper line in Fig. 14), and the rule is eiπωai . For the
“doubly-twisted” vertex (the lower line in the Fig. 14),
we have the conjugated rule e−iπωak . For completeness
we recapitulate the expressions for the different ω’s
presented here. The propagator in Fig. 13 corresponds to
the Regge trajectory, which is given by

FIG. 13. Two types of propagators in channel i.
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ωi ¼ − γK
4

ln
jqij2
λ2

; (3.30)

while the vertex function ωai corresponds to

ωai ¼ − γK
8

ln

� jqij2jqjj2
jqi − qjj2λ2

�
; ðj ¼ iþ 1Þ; (3.31)

where qi − qj ¼ kai .
The final ingredient is the phase resulting from the Li2

functions. It depends on the kinematic regions, and it is
convenient to find graphical rules for deriving these
contribution. The idea of twisting the diagram is equivalent
to changing the kinematic regions of energy variables sij…k.
Consider the diagram in Fig. 15. We connect crosses by
lines. Each connecting line—except for those which
embrace a single production vertex—corresponds to a
phase (anharmonic cross ratio) that has been rotated,
Φ → e�2πi, and for each rotated phase the corresponding
Li2 function has to be analytically continued and produces
a nonvanishing phase. The sign in the exponent can be
determined by counting the number of crosses embraced by
the line: if the number is even, we have Φ → e−2πi;
otherwise, Φ → eþ2πi. A simple example has already been
given above, the case 2 → 4. For the coefficient τ1τ3 (left
part of Fig. 16) there is only one such line which

corresponds to the phase Φ ¼ ð−sÞð−s2Þ
ð−s012Þð−s1223Þ [Eq. (3.8)],

and there is no cross (zero cross) inside the line. This
phase is rotated by Φ → e−2πi. The analytic continuation of
the Li2 function leads to the expression Eq. (3.13) which we
denote by the “potential” V13,

eiπV13 ¼ e
iπγK

4
ln

jq1 j2 jq3 j2
jq1−q3 j2λ2 : (3.32)

If we apply the same discussion to the coefficient of τ1τ2τ3
(right part of Fig. 16), we have one cross inside the line, the
phase is rotated by Φ → eþ2πi, and the analytic continu-
ation of the Li2 function gives

e−iπV13 ¼ e
−iπγK

4
ln

jq1 j2 jq3 j2
jq1−q3 j2λ2 : (3.33)

We generalize the notion of a “potential” for the interaction
between two crosses in the ti channel and the tj channel,

Vij ¼
γK
4

ln
jqij2jqjj2

jqi − qjj2λ2
: (3.34)

Returning to the production vertices ωai , it is convenient to
extend the notion of the “potential” also to neighboring
lines which encircle not more than one production vertex,

Viiþ1 ¼ −2ωai : (3.35)

With this definition we modify our rules for the production
vertex: instead of writing e�iπωai (depending on whether
we have crosses on both sides of the produced particle ai),
we adopt the following rule: for each vertex we write the
unique factor eþiπωa, and for production vertices with
crosses on both sides, we include the additional factor

eiπViiþ1 : (3.36)

This allows us to include into our rules, in Fig. 15, also the
short line around the vertex a1; now each line that connects
crosses in the ti, and the tj channel obtains a factor

e�iπVij : (3.37)

If the channels i and j are adjacent (i.e. j ¼ iþ 1 and they
enclose a production vertex), the sign is always positive.
Otherwise the counting rules of crosses inside the lines
apply (Fig. 17). Concluding everything, we formulate
Feynman-like rules for the calculation of the coefficients

FIG. 14. Four types of vertices for the production of a particle
with momentm kai .

FIG. 15 (color online). Rules for obtaining the Li2 functions for
a particular kinematic region (see text).

FIG. 16 (color online). Example for the relation between
connecting lines and kinematic regions.
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in the monomial expansion of the amplitude ABDS
[Eq. (3.1)]. Each coefficient ai…j will be written in the form

ai…j ¼ �jai…jjeiφi…jeiδi…j ; (3.38)

and for the overall sign and for the sum of the phases in the
exponent, we have the following rules:
(i) for each t channel we write a propagator (twisted and

untwisted) according to the rules
(1) twisted propagator: → −1
(2) untwisted propagator in channel ti∶ → e−iπωi

(ii) write the product of phase factors of vertices for all
produced particles: eiπðωa1

þωa2
þ���Þ

(iii) write all pairwise interactions e�iπVij , i ≠ j with the
sign ð−1Þn in the exponent. Here n is the number of
crosses encircled by the pair ðijÞ.

These rules uniquely define the sum of all phases. For
our purposes, however, we go one step further and divide
this sum into two terms, iðφi…j þ δi…jÞ. Examples have
been given in Sec. III B 3 for the case 2 → 4. The first part,
iφi…j, contains all the propagators, and it may contain
some of the production vertices. The second part has
to be conformal invariant. From these requirements alone,
we do not find a unique separation into the two terms,
iðφi…j þ δi…jÞ. We will come back to this question in our
final Sec. IV D. As an example of applying these rules, we
return to the diagram in Fig. 15:
(i) propagators: ð−Þð−Þe−iπω3ð−Þe−iπω5ð−Þ
(ii) vertices: eiπðωa1

þωa2
þωa3

þωa4
þωa5

Þ

(iii) potentials: eiπðV12−V14þV16þV24−V26þV46Þ:
The final expression for Fig. 15 becomes

eiπðωa1
þωa2

þωa3
þωa4

þωa5
Þe−iπðω3þω5Þ

× eiπðV12−V14þV16þV24−V26þV46Þτ1τ2τ4τ6: (3.39)

The logarithmic form of the potential Eq. (3.34), together
with the exponential form of the coefficient of the mono-
mial in Eq. (3.39), allow an interesting analogy. Namely,
we can interpret Vij as a two dimensional Coulomb
potential of the interaction of two point charges i and j,

derived from the Polyakov string action. In more detail,
we consider the product of k vertex operators, i.e. corre-
lators of the form

h0jeiπ
P

k
r¼1

cr½ϕðρ⃗rÞ−ϕðρ⃗0Þ�j0i; (3.40)

where the averaging is done with the free action

ei
1
2

R
d2ρ⃗½∂σϕðρ⃗Þ�2 (3.41)

and cr ¼ ð−1Þr is the charge. It is convenient to introduce
the following currents:

π
Xk
r¼1

cr½ϕðρ⃗rÞ−ϕðρ⃗0Þ�¼π

Z
d2ρ⃗ϕðρ⃗rÞ

Xk
r¼1

crðδð2Þðρ⃗− ρ⃗rÞ

−δð2Þðρ⃗− ρ⃗0ÞÞ

¼
Z

d2ρ⃗ϕðρ⃗ÞJðρ⃗Þ; (3.42)

with

Jðρ⃗Þ ¼ π
Xk
r¼1

crðδð2Þðρ⃗ − ρ⃗rÞ − δð2Þðρ⃗ − ρ⃗0ÞÞ: (3.43)

One can calculate the Gaussian integral of the neutral
system

Z½J� ¼
Z

ei
R

d2ρ⃗½1
2
ð∂σϕðρ⃗Þ2þϕðρÞJðρ⃗Þ�Dϕ (3.44)

by using the inverse of the two-dimensional Laplacian,

∂2
σ
~ϕðρ⃗Þ ¼ Jðρ⃗Þ → ~ϕðρ⃗Þ ¼ 1

4π

Z
d2ρ⃗0Jðρ0Þ log ðjρ⃗ − ρ⃗0j2Þ;

(3.45)

and by shifting the field variables: ϕ ¼ ϕ0 þ ~ϕ. One obtains

Z
d2ρ⃗

�
1

2
ð∂σϕðρ⃗ÞÞ2 þ ϕðρ⃗ÞJðρ⃗Þ

�

¼ 1

8π

Z Z
d2ρ⃗d2ρ⃗0Jðρ⃗Þ log ðjρ⃗ − ρ⃗0j2ÞJðρ⃗0Þ

þ 1

2

Z
d2ρ⃗ð∂σϕ

0Þ2: (3.46)

From this expression one derives, for the correlator (3.40),
an exponential of the form

Vij ¼
π

8

Xk
r;r0¼1

crcr0 ½log jρ⃗r − ρ⃗0rj2 − log jρ⃗r − ρ⃗0j2

− log jρ⃗0r − ρ⃗0j2 þ log jρ⃗00j2�: (3.47)

FIG. 17. Sign of the phase depending on the number of crosses
“ X” between two twists i and j.
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In the first term one recognizes the logarithmic part of the
“potential” Vij between two crosses defined in (3.34). In
particular, we notice the universal short-range interaction
between two adjacent crosses,

Vi;iþ1 ∼ log jρ⃗i − ρ⃗riþ1
j2: (3.48)

Finally, returning to the generating function introduced at
the beginning of this section,

ABDS ¼ a0 þ a1τ1 þ a2τ2 þ � � � þ anτn þ a12τ1τ2

þ a13τ1τ3 þ � � � a1…nτ1τ2…τn;

we can interpret this expression also as a partition function,
where each terms represents one of the correlators de-
scribed above. For the rest of this paper, we will not pursue
this analogy any further.

IV. SUBTRACTIONS FROM REGGE
POLE CONTRIBUTIONS

In the previous sections we have seen that the Regge pole
formula, based upon factorization and the analytic decom-
position into 5 terms (for the case 2 → 4) or 14 terms (for
the case 2 → 5), exhibits, when continued into different
kinematic regions with positive and negative energies,
terms with unphysical singularities. At the end of
Sec. III we have indicated that Regge cut terms are needed
in order to compensate these unwanted singularities. The
subsequent analysis of the BDS predictions, on the other
hand, has shown that the BDS formula is not in agreement
with the Regge pole structure, because it contains con-
tributions from the Li2 functions. As a consequence,
depending on the kinematic region, it contains phases
which, in the 2 → 4 case [3], have been understood as a
signal of the beginning of Regge cut contributions. In this
final section we concentrate on the case n ¼ 7, and we
show that Regge cut contributions can be determined which
satisfy the following two conditions:
(1.) the terms with Regge cuts have the correct phase

structure for absorbing the unwanted pole terms,
(2.) after absorbing the unphysical pole pieces of the

Regge poles into the Regge cut terms, we are left
with conformal invariant Regge pole contributions.

To be definite, our construction proceeds as follows.
Initially we have the Regge pole terms which, as we have
stated, factorize in the kinematic region of positive energies
but, when analytically continued, lead to unphysical
singularities. They have to be absorbed into Regge cut
contributions. Schematically, we therefore write

A ¼ Apole þ Acut; (4.1)

where the pole contributions are listed in Appendix A, and
the phase structure of the cut contributions have to be

discussed in the following. Their contributions to the
scattering amplitude depend upon the kinematic region:
they vanish for positive energies (and in the Euclidean
region), and they are nonzero in exactly those kinematic
regions where the Regge poles exhibit the unphysical
singularities. After having fixed the subtractions we will
arrive at modified expressions,

A ¼ A0
pole þ A0

cut; (4.2)

where the primes indicate that, in each physical region with
Regge cuts and singular Regge pole pieces, the unphysical
singular pieces have been absorbed by the Regge cuts. In
this new representation the amplitude, for each region
τi…τj, will be written in the form

A ¼ ABDSR; (4.3)

where ABDS contains the phase factors φi…j and δi…j
calculated in the previous section III C, and the conformal
invariant remainder function R is of the form

Reiδ ¼ conformal pole þ conformal Regge cut: (4.4)

For illustration we return, once more, very briefly to the
2 → 4 case [25]. As shown in [3,4], the Regge cut piece has
the phase ie−iπω2 . To see this we remind that, in the
decompositon of the 2 → 4, amplitude, the Regge cut
appears in two of the five terms. Their phase structure
follows from the energy factors which, in the notation of
[3,4], is

W3 ∼ ð−s2Þω21ð−s012Þω13ð−sÞω3Vcut

W4 ∼ −ð−s2Þω23ð−s123Þω31ð−sÞω1Vcut: (4.5)

The coefficient Vcut is the same in both terms, and there is
relative minus sign between the two partial waves. From
this structure one derives easily that the sum of these two
contributions vanishes in the physical region where all
energies are positive (a phase factor e−iπ form each energy),
in the Euclidean region (all energies negative, i.e. all phases
reduce to unity), and also in the region where only one
energy is negative. In contrast to this, in the region s,
s2 > 0, s012, s123 < 0, the sum is proportional to ie−iπω2 .
On the other hand, the Regge pole, when continued into
this kinematic region, takes the form Eq. (2.22), i.e. we
have one term proportional to e−iπω2 , and two terms
proportional to ie−iπω2 . The latter ones have the same
phase structure as the Regge cut contribution, and thus they
can be combined with the Regge cut: we can remove them
by a special contribution (“subtraction”) inside the Regge
cut. What is then left is the first term of the Regge pole
contribution

e−iπω2 cosðπωabÞ; (4.6)
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with ωab ¼ ωa − ωb. Here the argument of the “cosine”
function is conformally invariant. Therefore, this expres-
sion defines, for this kinematic region, a “conformal”
Regge pole contribution. The amplitude can be written as

A ¼ ABDSR; (4.7)

where ABDS contains the phase factor e−iπω2, and

Reiδ ¼ cosðπωabÞ þ iReggeCut: (4.8)

The new Regge cut contribution is expected to be con-
formally invariant.

A. Analytic structure of the
2 → 5 production amplitude

In the following we will extend this analysis to the 2 → 5
case. We now have three different Regge cut contributions.
They are illustrated in the following figure (Fig. 18). In
addition to the t channels where the Regge cuts appear, we
have also indicated a few kinematic regions in which these
Regge cut contribute. In the generating functional, these
kinematic regions correspond to the coefficients of τ1τ3,
τ2τ4, τ1τ4, and τ1τ2τ3τ4. The analytic representation of the
2 → 5 amplitude contains 14 different terms. They are
illustrated below in Fig. 19.
Here each term is written as a multiple Sommerfeld-

Watson integral over ω variables, and the integrand comes
as a product of energy factors which contain all the phases
and a real-valued partial wave. For simplicity, we will
disregard the ω integration in the rest of our paper. The
analytic structure of these terms is in agreement with the
Steinmann relations, i.e. each of these 14 terms has a
maximal set of energy discontinuities in nonoverlapping
channels (denoted by dashed lines).
Only 10 of these 14 terms contain Regge cut contribu-

tions: they can be arranged as two doublets a, b and two

triplets c, d. The “short” Regge cut in the t3 channel
[Fig. 18(b)] is contained in the first doublet a1 and a2 and in
the first triplet, c1, c2, and c3. Similarly, the “short” Regge
cut in the t2 channel [Fig. 18(a)] is contained in the second
doublet, b1 and b2, and in the second triplet, d1, d2, and d3.
Finally, the “long” cut in Fig. 18 c1, and Fig. 18 c2 appears
in the first two terms of both triplets. In each term, these
Regge cut contributions are additive. As an example, the
first two terms of the triplets are sums of two terms, each of
a “short” cut and of the “long” cut.
Next we are interested in the phase structure of these

terms: it follows from the energy factors which we list in
the following. For the doublets we have

a1 ¼ ð−s1Þω12ð−s3Þω34ð−s234Þω42ð−sÞω2

a2 ¼ ð−s1Þω12ð−s3Þω32ð−s0123Þω24ð−sÞω4 (4.9)

and

b1 ¼ ð−s2Þω21ð−s012Þω13ð−s4Þω43ð−sÞω3

b2 ¼ ð−s2Þω23ð−s4Þω43ð−s1234Þω31ð−sÞω1 : (4.10)

Similarly for the two triplets,

c1 ¼ ð−s3Þω32ð−s123Þω21ð−s0123Þω14ð−sÞω4

c2 ¼ ð−s3Þω32ð−s123Þω24ð−s1234Þω41ð−sÞω1

c3 ¼ ð−s3Þω34ð−s234Þω42ð−s1234Þω21ð−sÞω1 (4.11)

and

d1 ¼ ð−s2Þω23ð−s123Þω34ð−s1234Þω41ð−sÞω1

d2 ¼ ð−s2Þω23ð−s123Þω31ð−s0123Þω14ð−sÞω4

d3 ¼ ð−s2Þω21ð−s012Þω13ð−s0123Þω34ð−sÞω4 : (4.12)

FIG. 18. Regge cut contributions for the 2 → 5 production amplitude.
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It should be noted that in these expressions, for simplicity,
we have disregarded κ factors as well as energy scales. As
an example, the complete form of d1 from Eq. (4.12) which
includes these coefficients has the form [3,4]

d1 ¼
�−s2

μ2

�
ω23

�−s123κ23
μ4

�
ω34

�−s1234κ23κ34
μ6

�
ω41

×

�−sκ12κ23κ34
μ8

�
ω1

;

where

κiiþ1 ¼
sisiþ1

si−1iiþ1

¼ jqi − qiþ1j2;

and the usual convention; si ≡ si−1i:
(4.13)

As a result of these κ factors, all energy factors d1, etc. can
be written in the common form

d1 ¼ phase factor ×

�js1j
μ2

�
ω1

�js2j
μ2

�
ω2

�js3j
μ2

�
ω3

�js4j
μ2

�
ω4

:

(4.14)

In the following, our interest will first be devoted to the
phase factors derived from Eqs. (4.9–4.12): they depend
upon the kinematic regions. In the next step, we will
determine the coefficients that accompany the phase
factors; they are real valued and do not depend upon the
kinematic region we are considering.

B. Determination of the coefficients
of the partial waves

As we have said before,the kinematic regions in which
the Regge pole expressions (listed in Appendix A) contain
poles of the type 1=sinðπωiÞ are the same regions for which
we also have Regge cut contributions.3 For each such
region we write schematically

f ¼ fpole þ fcut: (4.15)

In this notation, f denotes the sum of all those terms which
contribute to this region, and it contains both the energy
(and phase) factors and their real-valued coefficient, the
partial waves. As a consequence, the form of the f will be
different in different kinematic regions. In general, the
Regge cut piece will be a sum of several terms: for example,
the coefficient of τ1τ2τ3τ4 contains the two “short” cuts and
the “long” cut,

fcut ¼ fω2
þ fω3

þ fω2ω3
: (4.16)

In this paper we will not address the full structure of these
Regge cut terms. Instead, we will concentrate on the overall
phases, fphasecut , and only those pieces of the Regge cuts
which absorb the “unwanted” pieces of the Regge pole
contributions, i.e. those terms that have the unphysical
poles of the form 1=sinðπωiÞ∶ δfcut, namely,

fωi
¼ Nωi

fphaseωi δfωi
: (4.17)

We therefore have to keep in mind that the fcut which
we discuss in the following contain only the subtraction
terms but not the full Regge cut terms. We will name this
procedure “subtraction,” in analogy to the removal of
ultraviolet divergences in the renormalization of quantum
field theory.
In more detail, for the two doublets and for the two

triplets, we will find a set of coefficients which should
satisfy the following requirements:
(i) the Regge cuts contribute only in specific kinematic

regions where the so-called Mandelstam conditions
are fulfilled. In particular, Regge cuts do not contribute
to the Euclidean region or to the physical region where
all energies are positive.

(ii) Phases of the Regge cut contributions have to
match the “unwanted” pieces of the Regge pole
contributions, i.e. those terms which have the un-
physical poles of the form 1=sinðπωiÞ.

(iii) After having absorbed these “unwanted” pole terms
into the Regge cut terms, the remaining Regge pole
contributions have to be conformal invariant.

Let us begin with the “short” Regge cut in the t3 which
appears in the terms labeled by a1, a2, c1, c2, and c3. We are

FIG. 19. Terms without Regge cuts.

3Conditions for the existence of the Regge cuts have been
formulated in the Appendix of [5]
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searching for real-valued coefficients of theses terms
which, for the sum of all five terms, lead to correct phases
in all kinematic regions. First we notice that, in the region
of all energies being positive, all ci have the common phase
e−iπω3 , and all ai the common phase e−iπðω1−ω2þω3Þ. The
absence of the Regge cut in this region implies that the sum
of the terms a1, a2 and the sum of the terms c1, c2, c3 must
be zero separately. This alone does not fix the coefficients
of the ci. We make the ansatz (which will be justified in a
moment) and choose, for the coefficients of c1, c2, and c3,
the relative weights 1

2
, 1
2
, and −1, respectively. Similarly, for

the coefficients of a1 and a2 the relative weights areþ1 and
−1, respectively. In order to determine the common factors
of the ci, we go to the region τ2τ4: here the terms c1 and c2
have the common phase e−iπω3e−iπðω4−ω2Þ, whereas c3 has
the phase e−iπω3e−iπðω2−ω4Þ. Taking into account the relative
weights given above, the sum of the terms ci gives the
phase e−iπω32i sin πðω2 − ω4Þ. In the sameway, the sum of
a1 and a2 lead to the factor e−iπðω3þω1−ω22i sin πðω4 − ω2Þ.
Combining the sum of the ci terms with the sum of the ai
terms we still have the freedom to chose coefficients: with
the choice sinðπω2aÞ and sinðπω1aÞ4 we have, again for the
region τ2τ4, the result,

sinðπω2aÞ
�
1

2
c1 þ

1

2
c2 − c3

�
þ sinðπω1aÞfa1 − a2g

¼ 2i sinðπω12Þ sinðπω34Þe−iπω1eiπωae−iπω3 :

(4.18)

The phases are in agreement with what one expects from
Regge factorization: the Regge cut in the t3 channel has the
same phase in the 2 → 4 amplitude, ie−iπω3 , and the phase
of the t1 channel together with the production vertex of
particle a factorizes as e−iπω1eiπωa .
However, this is not yet the final answer for the cut in the

ω3 channel. Namely, when going to the region τ1τ4, we find
the phases

a1 − a2 ¼ e−iπω32i sinðπω24Þ (4.19)

1

2
ðc1 þ c2Þ − c3 ¼ e−iπω3i sinðπω14Þ: (4.20)

Together with the prefactors sinðπω1aÞ, sinðπω2aÞ, these
terms cannot be combined to arrive at the the expected
phase e−iπðω2þω3Þ. As a solution, we chose to completely
cancel this contribution by adding a term proportional to
c1 − c2. In the region τ1τ4 we have

c1 − c2 ¼ e−iπω32i sinðπω14Þ; (4.21)

and with the following coefficients we arrive at our final
answer for the “short” cut in the ω3 channel,

Nω3
fphaseω3

¼ sinðπω2aÞ
�
1

2
c1 þ

1

2
c2 − c3

�

þ sinðπω1aÞfa1 − a2g

− − 1

sinðπω14Þ
�
1

2
sinðπω14Þ sinðπω2aÞ

þ sinðπω42Þ sinðπω1aÞ
�
fc1 − c2g:

(4.22)

We make sure that, by analytically continuing this function
fω3

into different kinematic regions, we find correct
answers. In detail, the results are the following: nonzero
values appear only in the four kinematic regions τ2τ4,
τ1τ2τ3τ4, τ1τ2τ4 and τ2τ3τ4. In all other kinematic regions
fphaseω3

vanishes. The common factor Nω3
is found to be

Nω3
¼ 2 sinðπω24Þ sinðπω21Þ

�js1j
μ2

�
ω1

�js2j
μ2

�
ω2

×

�js3j
μ2

�
ω3

�js4j
μ2

�
ω4

: (4.23)

A comment is in place about the second line in (4.22) which
is proportional to c1 − c2. As we will show in a few
moments, the combination c1 − c2 belongs to the “long”
cut in the ω2 and ω3 channel. The fact that this combination
also participates in our calculations of the “short” cut hints at
the fact that the “long” cut contribution may contain terms
which have the ω plane singularity structure of the “short”
cuts, i.e. there is a mixing between the different Regge cuts.
We will come back to this question in a forthcoming paper.
An analogous discussion applies to the “short” cut in the

fω2
channel,

Nω2
fphaseω2

¼ sinðπω3cÞ
�
1

2
d1 þ

1

2
d2 − d3

�

þ sinðπω4cÞfb1 − b2g

− 1

sinðπω41Þ
�
1

2
sinðπω41Þ sinðπω3cÞ

þ sinðπω13Þ sinðπω4cÞ
�
fd1 − d2g: (4.24)

We continue the function fphaseω2
to those four different

kinematic regions where it is nonzero, with the common
factor

Nω2
¼ 2 sinðπω31Þ sinðπω34Þ

�js1j
μ2

�
ω1

�js2j
μ2

�
ω2

×

�js3j
μ2

�
ω3

�js4j
μ2

�
ω4

: (4.25)

In all other kinematic regions we have fphaseω2
¼ 0.4Please keep in mind that ωij ¼ ωi − ωj:
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Next we turn to the “long” Regge cut in the ω2 and ω3

channels simultaneously. This cut is contained in the first
two terms of the triplets—c1, c2, d1, d2 of Fig. 20 with the
corresponding phases c1, c2, d1, and d2 in Eq. (4.11) and
Eq. (4.12). Repeating our line of arguments, we first
consider the region where all energies are positive: since
all ci are proportional to e−iπω3 , all di proportional to
e−iπω2 , the coefficient of c1 has to be opposite equal to that
c2, and similarly for d1 and d2. Turning to the region
τ1τ2τ3τ4, the phases of c1 − c2 are

c1 − c2 ¼ 2ie−iπω2 sinðπω14Þ: (4.26)

We take the following linear combination,

sinðπω3xÞfc1 − c2g þ sinðπω2xÞfd1 − d2g
¼ 2ie−iπωx sinðπω14Þ sinðπω32Þ (4.27)

with x ¼ a, b, c. Obviously, xb would be a symmetric
choice; however the singular term in the Regge pole
contribution (Appendix A) has no phase e−iπωb , and
therefore this ansatz for the Regge cut cannot be used to
subtract for the subtraction. Instead, we take the linear
combination of two contributions,

Nω2ω3
fa;phaseðω2ω3Þ ¼ sinðπω3aÞfc1 − c2g

þ sinðπω2aÞfd1 − d2g (4.28)

and

Nω2ω3
fc;phaseðω2ω3Þ ¼ sinðπω3cÞfc1 − c2g

þ sinðπω2cÞfd1 − d2g; (4.29)

and in the combination Afa;phaseðω2ω3Þ þ Cfc;phaseðω2ω3Þ we will

determine real valued coefficients A ¼ δfaω2ω3
and

C ¼ δfcω2ω3
which subtract the singular part of the Regge

pole contribution.
Let us first study the other kinematic regions. The

functions fa;phaseω2ω3
and fc;phaseω2ω3

have nonzero values in four
particular kinematic regions (Figs. 23 and 24).
The common factor is the same for fa;phaseω2ω3

and for
fc;phaseω2ω3

,

Nω2ω3
¼ 2 sinðπω14Þ sinðπω32Þ

�js1j
μ2

�
ω1

�js2j
μ2

�
ω2

×

�js3j
μ2

�
ω3

�js4j
μ2

�
ω4

: (4.30)

FIG. 20. Terms that contain Regge cut contributions: two doublets (a) and (b), and two triplets (c) and (d).
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For all other possible configuration of analytical continu-
ation, the result is zero. Thus, the “long” cut contributes
only to these four particular kinematic regions. We combine
these two terms,

Δfω2ω3
¼ δfaω2ω3

fa;phaseω2ω3
þ δfcω2ω3

fc;phaseω2ω3
; (4.31)

with real coefficients δfaω2ω3
and δfcω2ω3

, and we find for the
different regions Fig. 25.5 It is remarkable that the square
bracket is the same in all four cases, up to complex
conjugation of the phases. Below we will determine the
coefficients δfaω2ω3

and δfcω2ω3
. Summarizing this subsec-

tion, we have determined coefficients of the partial waves
a1;…d3 which, for all those kinematic region which

contains Regge cuts, can be combined to give a “good”
phase structure. Returning to Eq. (4.17), we have deter-
mined the normalization factors N and the phases fphaseω . In
the following we still have to calculate the coefficients δfω,
and we have to show that our ansatz matches the phases of
the singular pieces of the Regge pole terms (studied in
Sec. II) and thus allows us to absorb these singularities by
the Regge cuts.

C. Redefinitions of Regge pole terms: subtractions

Let us now turn to the subtraction procedure. Figs. 21,
22, 25 show the kinematic regions in which the different
Regge cuts, fω3

, fω2
, and fω2ω3

, contribute. There are two
regions (τ2τ4 and τ2τ3τ4) in which only fω3

contributes, two
regions (τ1τ3 and τ1τ2τ3) where only fω2

is nonzero, and
one region (τ1τ4) where only the “long” cut appears. In the
remaining three regions we have combinations of several
Regge cuts. In particular, the region τ1τ2τ3τ4 sees all cut

FIG. 21. Analytical continuation of fω3
.

FIG. 22. Analytical continuation of fω2
.

5We omitted the subscript ω2ω3 of the δfa;c in the figure for
the sake of simplicity.
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contributions. We begin with the “short” cut fω3
: from the region τ2τ4 we determine the subtraction δfω3

which then fixes
the subtractions in all regions listed in Fig. 21. Similarly, δfω2

is obtained from the region τ1τ3 and will be used in all regions
listed in Fig. 22. Finally, in the region τ1τ2τ3τ4 we can fix the remaining subtraction, δfω2ω3

.
We begin with the region τ2τ4 where only the “short” cut in the t3 channel contributes. From Appendix Awe read off the

Regge pole contribution in the region τ2τ4,

fτ2τ4pole ¼ e−iπðω1þω3Þeiπωa

�
cosðπωbcÞ þ

�
eiπðωbþωcÞ − cosðπωbcÞ − 2ieiπω3

sinðπωbÞ sinðπωcÞ
sinðπω3Þ

��
: (4.32)

The square bracket expression on the rhs can also be written as [Eq. (2.22) and Eq. (2.23)]

½…� ¼ þi sinðπðωb þ ωcÞÞ − 2i
cosðπω3Þ sinðπωbÞ sinðπωcÞ

sinðπω3Þ
; (4.33)

which shows that it is purely imaginary and can also be written as

½…� ¼ −
�
e−iπðωbþωcÞ − cosðπωbcÞ þ 2ie−iπω3

sinðπωbÞ sinðπωcÞ
sinðπω3Þ

�
: (4.34)

FIG. 24. Analytical continuation of fc;phaseω2ω3
.

FIG. 23. Analytical continuation of fa∶phaseω2ω3
.
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Thus the phase structure of the second part of Eq. (4.32) is the same as that of the cut contribution fphaseω3
in the first line of

Fig. 21, and we define the subtraction term as follows:

δfω3
¼ i

�
eiπðωbþωcÞ − cosðπωbcÞ − 2ieiπω3

sinðπωbÞ sinðπωcÞ
sinðπω3Þ

�

¼ −i
�
e−iπðωbþωcÞ − cosðπωbcÞ þ 2ie−iπω3

sinðπωbÞ sinðπωcÞ
sinðπω3Þ

�

¼ −
�
sinðπðωb þ ωcÞÞ − 2

cosðπω3Þ sinðπωbÞ sinðπωcÞ
sinðπω3Þ

�
: (4.35)

Having fixed the subtraction δfω3
in the τ2τ4 region, we know the subtraction for all kinematic regions in which the ω3-cut

appears (these regions are listed in Fig. 21). In our generating function we therefore have the following contributions:6

−½τ2τ4e−iπðω1þω3Þeiπωa − τ1τ2τ4e−iπω3eiπωa �
�
eiπðωbþωcÞ − cosðπωbcÞ − 2ieiπω3

sinðπωbÞ sinðπωcÞ
sinðπω3Þ

�

þ ½−τ2τ3τ4e−iπω1eiπωa þ τ1τ2τ3τ4e−iπωa �
�
e−iπðωbþωcÞ − cosðπωbcÞ þ 2ie−iπω3

sinðπωbÞ sinðπωcÞ
sinðπω3Þ

�
: (4.36)

For the regions τ2τ4 and τ2τ3τ4 these are the only subtractions, and by subtracting the corresponding parts of Eq. (4.36) from
their Regge pole terms (Appendix A), all unwanted singular terms must cancel. Indeed, for the region τ2τ4 we find

fτ2τ4ren;pole ¼ fτ2τ4pole þ ie−iπðω1þω3Þeiπωaδfω3
¼ e−iπðω1þω3Þeiπωa cosðπωbcÞ; (4.37)

which consists of a phase factor and a conformal invariant expression; the latter will be called the “conformal Regge pole.”
Similarly, in the region τ2τ3τ4, together with the Regge pole contribution from Appendix A which we write as

fτ2τ3τ4pole ¼ −e−iπω1eiπωa

�
cosðπωbcÞ þ

�
e−iπðωbþωcÞ − cosðπωbcÞ þ 2ie−iπω3

sinðπωbÞ sinðπωcÞ
sinðπω3Þ

��
; (4.38)

we obtain

fτ2τ3τ4ren;pole ¼ fτ2τ3τ4pole − ie−iπω1eiπωaδfω3
¼ −e−iπω1eiπωa cosðπωbcÞ: (4.39)

This defines our renormalized pole contribution in the region τ2τ3τ4. The other two regions, τ1τ2τ4 and τ1τ2τ3τ4, receive
contributions also from the “long” cut. They will be discussed further below.

FIG. 25. Analytical continuation of Δfω2ω3
.

6Note that here we follow our convention that terms promotional to an odd number of factors τ receive an additional minus sign.

BARTELS, KORMILITZIN, AND LIPATOV PHYSICAL REVIEW D 89, 065002 (2014)

065002-20



A similar discussion applies to the symmetric region τ1τ3 which is used to calculate the subtraction contained in fω2
,

δfω2
¼ i

�
eiπðωaþωbÞ − cosðπωabÞ − 2ieiπω2

sinðπωaÞ sinðπωbÞ
sinðπω2Þ

�

¼ −i
�
e−iπðωaþωbÞ − cosðπωabÞ þ 2ie−iπω2

sinðπωaÞ sinðπωbÞ
sinðπω2Þ

�

¼ −
�
sinðπðωa þ ωbÞÞ − 2

cosðπω2Þ sinðπωaÞ sinðπωbÞ
sinðπω2Þ

�
: (4.40)

From Fig. 22 it follows that the same subtraction contributes also to the regions τ1τ2τ3, τ1τ3τ4, and τ1τ2τ3τ4. The analogue
of Eq. (4.36) reads

−½τ1τ3e−iπðω2þω4Þeiπωc − τ1τ3τ4e−iπω2eiπωc �
�
eiπðωaþωbÞ − cosðπωabÞ − 2ieiπω2

sinðπωaÞ sinðπωbÞ
sinðπω2Þ

�

þ ½−τ1τ2τ3e−iπω1eiπωc þ τ1τ2τ3τ4e−iπωc �
�
e−iπðωaþωbÞ − cosðπωabÞ þ 2ie−iπω2

sinðπωaÞ sinðπωbÞ
sinðπω2Þ

�
; (4.41)

and the renormalized Regge poles in the regions τ1τ3 and τ1τ2τ3 have the form

fτ1τ3ren;pole ¼ fτ1τ3pole þ ie−iπðω2þω4Þeiπωcδfω2
¼ e−iπðω2þω4Þeiπωc cosðπωabÞ; (4.42)

and

fτ1τ2τ3ren;pole ¼ fτ1τ2τ3pole − ie−iπω4eiπωcδfω2
¼ −e−iπω4eiπωc cosðπωabÞ: (4.43)

Finally we turn to the contributions of the “long” cut which contributes to the regions listed in Fig. 25. We start with the
region τ1τ2τ3τ4; in this region all three cuts contribute. The subtractions contained in the two “short” cuts have already been
determined, and we can use these results for fixing the subtraction due to the “long” cut. We again begin with the Regge pole
expression (from Appendix A),

fτ1τ2τ3τ4pole ¼ eiπð−ωaþωb−ωcÞ − 2i
sinðπω2aÞ sinðπωbÞ sinðπω3cÞ

sinðπω2Þ sinðπω3Þ
: (4.44)

The subtractions from the “short” cuts, δfω3
and δfω2

, have been defined above: δfω3
in Eq. (4.35) and Eq. (4.36), and δfω2

in Eq. (4.40) and Eq. (4.41). Before the subtraction due to the “long” cut, we have

fτ1τ2τ3τ4pole − ie−iπωcδfω2
− ie−iπωaδfω3

; (4.45)

which contains a double pole term ∼1=ðsinðπω2Þ sinðπω3ÞÞ [from fτ1τ2τ3τ4pole in Eq. (4.44)] and single poles ∼1= sinðπωiÞ
(i ¼ 1, 2) (from δfω3

and δfω2
). We now use the freedom of having another subtraction connected with the “long” cut,

fa;cω2ω3
. We chose these remaining subtractions δfa;cω2ω3

in such a way that they remove all double poles
∼1=ðsinðπω2Þ sinðπω3ÞÞ, all single poles ∼1=sinðπωiÞ (i ¼ 1, 2), and make the resulting expression conformally invariant.
This leads to

Δfω2ω3
¼

�
−2 sinðπω2aÞ sinðπωbÞ sinðπω3cÞ

sinðπω2Þ sinðπω3Þ

− e−iπωa i

�
e−iπðωbþωcÞ − cosðπωbcÞ þ 2ie−iπω3

sinðπωbÞ sinðπωcÞ
sinðπω3Þ

�

−e−iπωc i

�
e−iπðωaþωbÞ − cosðπωabÞ þ 2ie−iπω2

sinðπωaÞ sinðπωbÞ
sinðπω2Þ

��
: (4.46)
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Here we remind that, according to Eq. (4.33), the square brackets in the second and third rows are purely imaginary. The
first term can also be written in the form

−2 sinðπω2aÞ sinðπωbÞ sinðπω3cÞ
sinðπω2Þ sinðπω3Þ

¼
�
e−iπωa

sinðπωcÞ
sinðπωacÞ

þ e−iπωc
sinðπωaÞ
sinðπωcaÞ

�
2
sinðπω2aÞ sinðπωbÞ sinðπω3cÞ

sinðπω2Þ sinðπω3Þ
: (4.47)

Inserting this into Eq. (4.46) one sees that, in fact, Δfω2ω3
can be written as

Δfω2ω3
¼ δfaω2ω3

e−iπωa þ δfcω2ω3
e−iπωc ; (4.48)

with real coefficients δfaω2ω3
and δfcω2ω3

.
Having fixed the subtractions due to the “long” cut, δfaω2ω3

and δfcω2ω3
, we must show that in all four kinematic regions in

which the “long” cut is nonzero (Fig. 25), the unphysical singularities of the Regge pole contributions cancel. We collect
these subtractions by writing them as part of the generating function

�
eiπðωaþωbþωcÞe−iπðω2þω3Þ − 2i

sinðπωaÞ sinðπωbÞ sinðπωcÞ
sinðπω2Þ sinðπω3Þ

�
τ1τ4 (4.49)

�
eiπð−ωaþωb−ωcÞ − 2i

sinðπω2aÞ sinðπωbÞ sinðπω3cÞ
sinðπω2Þ sinðπω3Þ

− e−iπωa

�
e−iπðωbþωcÞ − cosðωbcÞ þ 2ie−iπω3

sinðπωbÞ sinðπωcÞ
sinðπω3Þ

�

−e−iπωc

�
e−iπðωaþωbÞ − cosðωabÞ þ 2ie−iπω2

sinðπωaÞ sinðπωbÞ
sinðπω2Þ

��
τ1τ2τ3τ4

−
�
eiπð−ωaþωbþωcÞe−iπω3 − 2i

sinðπω2aÞ sinðπωbÞ sinðπωcÞ
sinðπω2Þ sinðπω3Þ

− e−iπω3eiπωa

�
eiπðωbþωcÞ − cosðωbcÞ − 2ieiπω3

sinðπωbÞ sinðπωcÞ
sinðπω3Þ

��
τ1τ2τ4

−
�
eiπðωaþωb−ωcÞe−iπω2 − 2i

sinðπωaÞ sinðπωbÞ sinðπω3cÞ
sinðπω2Þ sinðπω3Þ

− e−iπω2eiπωc

�
eiπðωaþωbÞ − cosðωabÞ − 2ieiπω2

sinðπωaÞ sinðπωbÞ
sinðπω2Þ

��
τ1τ3τ4: (4.50)

It is now a matter of straightforward algebra to calculate the conformal Regge poles for the four different kinematic regions.
For the region τ1τ2τ3τ4 we return to Eq. (4.45) and find

fτ1τ2τ3τ4ren;pole ¼ fτ1τ2τ3τ4pole − ie−iπωcδfω2
− ie−iπωaδfω3

þ iΔfω2ω3

¼ eiπð−ωaþωb−ωcÞ: (4.51)

Here the “conformal Regge pole” equals unity. In the same way we find for the other regions,

fτ1τ4ren;pole ¼ fτ1τ4pole þ ie−iπðω2þω3ÞΔfω2ω3
¼ e−iπðω2þω3Þeiπωb cosðπωacÞ; (4.52)

fτ1τ2τ4ren;pole ¼ fτ1τ2τ4pole þ ie−iπω3δfω3
− ie−iπω3Δfω2ω3

¼ −e−iπω3eiπωc cosðπωabÞ; (4.53)

and

fτ1τ3τ4ren;pole ¼ fτ1τ3τ4pole − ie−iπω2δfω2
− ie−iπω2Δfω2ω3

¼ −e−iπω2eiπωa cosðπωbcÞ: (4.54)
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D. Predictions for the remainder function
of the 2 → 5 amplitude

Let us summarize our results for those eight kinematic
regions for which the Regge pole terms need to be
renormalized. This are also the regions which contain
Regge cuts. We again use our notation of a generating
function and write for the scattering amplitude A,

A ¼ A0 þ A1τ1 þ � � � þ A12τ1τ2 þ � � � þ A1234τ1τ2τ3τ4:

(4.55)

Here each term proportional to τi…τj is written as a
product of the BDS prediction and a remainder function,

Ai…j ¼ ABDS;i…jRτi…τj ; (4.56)

and in Sec. III it has been shown that the BDS amplitude
ABDS;i…j can be written as the product of a real part, a
kinematic phase factor, and a second phase factor eiδi…j,
where the conformal invariant δi…j result from the Li2
functions and represent the one-loop approximations to
Regge cut contributions,

ABDS;i…j ¼ �jABDS;i…jjeiφi…jeiδi…j : (4.57)

In the following Fig. 26 we list the phase factors eiφi…j .
Next, we collect the phases δi…j,

FIG. 26. Phase factors φi…j of the 2 → 5 amplitude.
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δ14 ¼ π
γK
4

ln

� jkajjkcjjq1jjq4j
jka þ kb þ kcj2jq2jjq3j

�

δ24 ¼ π
γK
4

ln

�jkbjjkcjjq2jjq4j
jkb þ kcj2jq3j2

�

δ13 ¼ π
γK
4

ln

�jkajjkbjjq1jjq3j
jka þ kbj2jq2j2

�

δ124 ¼ π
γK
4

ln

�jka þ kb þ kcj2jkajjq2j2jq3j
jkb þ kcj2jkbjjq1j3

�

δ134 ¼ π
γK
4

ln

�jka þ kb þ kcj2jkcjjq2jjq3j2
jka þ kbj2jkbjjq4j3

�

δ123 ¼ π
γK
4

ln

�jkajjkbjjq1jjq3j
jka þ kbj2jq2j2

�

δ234 ¼ π
γK
4

ln

�jkbjjkcjjq2jjq4j
jkb þ kcj2jq3j2

�

δ1234 ¼ π
γK
4

ln

� jka þ kbj2jkb þ kcj2jq1jjq4j
jka þ kb þ kcj2jkajjkcjjq2jjq3j

�
: (4.58)

Finally, we collect the conformal invariant Regge pole and
cut terms which have been calculated in the previous
subsection and represent the main results of Sec. IV. They
define our predictions for the remainder function R, more
precisely for the products Rτi…τje

iδij ,

τ1τ4∶ cosðπωacÞþ iðeiπωbafaω2ω3
þ eiπωbcfcω2ω3

Þ
τ2τ4∶ cosðπωbcÞþ ifω3

τ1τ3∶ cosðπωabÞþ ifω2

τ1τ2τ4∶ − cosðπωabÞ− ieiπωacfω3
− ieiπωacfaω2ω3

− ifcω2ω3

τ1τ3τ4∶ − cosðπωbcÞ− ieiπωcafω2
− ifaω2ω3

− ieiπωcafcω2ω3

τ1τ2τ3∶ − cosðπωabÞ− ifω2

τ2τ3τ4∶ − cosðπωbcÞ− ifω3

τ1τ2τ3τ4∶ eiπωbaeiπωbc − ieiπωbafω3
− ieiπωbcfω2

þ ieiπωbafaω2ω3
þ ieiπωbcfcω2ω3: (4.59)

The conformal invariant Regge cut terms fω2
, fω3

, fa;cω2ω3

contain, in addition to the subtraction terms δfω2
, δfω3

,
δfa;cω2ω3

, respectively, which we have discussed in subsec-
tion IV C, the terms with Regge cut singularities. In this
paper, we have not addressed yet the general structure of
these amplitudes. This will be the subject of a forth-
coming paper.

V. CONCLUSIONS

In this paper we have addressed different aspects of
scattering amplitudes in the multi-Regge region. Starting
from Regge pole models that factorize in the kinematic
region of positive energies, we have seen that after analytic

continuation to other kinematic regions, terms with unphys-
ical poles appear which need to be compensated by other
terms. Specializing to the planar approximation of the
conformal N ¼ 4 SYM theory, we have studied the cases
2 → 4 and 2 → 5, and we have shown that it is possible to
compute, in agreement with the analytic structure dictated
by the Steinmann relations, coefficients of Regge cut
contributions which match the singular Regge pole
pieces and thus can be used to absorb the singularities.
We have outlined a “renormalization scheme” that con-
sistently removes the singularities and leads to conformal
invariance of the pole contribution.
Since most of this has been motivated by the goal of

determining the remainder function Rn in N ¼ 4 SYM
theory, we have systematically studied the predictions
of the BDS formula in multi-Regge kinematics for the
different kinematic regions, and compared them with
our results for Regge pole models and Regge cuts. This
has led us to the definition of a remainder function that
contains, apart from the Regge cut contribution, a
conformal invariant Regge pole term. In this paper,
we have not addressed the detailed structure of the
Regge cut terms; this will be the content of a sepa-
rate paper.
In a future study we will extend our study to the case

2 → 6; which is expected to contain a new form of the
Regge cut consisting of three Reggeized gluons.
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APPENDIX A: EXPLICIT RESULTS OF THE τ
EXPANSION FOR THE n ¼ 5, 6, 7

POINT AMPLITUDES

In this part we summarize the explicit coefficients of
the τ expansions, P2→n, for the cases 2 → 3, 2 → 4,
2 → 5, and 2 → 6. We start with the simplest case of
n ¼ 5 amplitude and list all terms: Next we summarize
the n ¼ 6 amplitude: Finally, the coefficients of n ¼ 7
amplitude (Tables I–III):

TABLE I. All terms of the production amplitude P2→3.

P2→3 ¼eiπωae−iπðω1þω2Þ (free term)

−eiπωae−iπω2 τ1−eiπωae−iπω1 τ2
e−iπωa τ1τ2:
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APPENDIX B: RECURRENCE RELATIONS FOR
THE COEFFICIENTS OF THE EXPANSION

IN THE REGGE FRAMEWORK

Consider a configuration of k crosses (“twists”) on the
left side and one cross on the right side n (Fig. 27),

ð−1Þkτi1τi2…τikfAn
i1i2…ik

g and

ð−1Þkþ1τi1τi2…τikτnfBn
i1i2…ik

g; ðn > ik þ 1Þ;
(B1)

where the recurrence relation reads as

Bnþ1
i1…ik

¼ Bn
i1…ik

sinðπωanÞ
sinðπωnÞ

þ An
i1…ik

sinðπωn − πωanÞ
sinðπωnÞ

(B2)

This [Eq. (B2)] can be rewritten, using Eq. (2.39),

Bn
i1…ik

¼ bni1…ik
þ ani1…ik

; (B3)

with

An
i1…ik

¼ e−iπωnani1…ik
; (B4)

as

bnþ1
i1…ik

¼ bni1…ik

sinðπωanÞ
sinðπωnÞ

and

anþ1
i1…ik

¼ ani1…ik
e−iπωneiπωan

(B5)

with initial conditions

Aikþ1
i1…ik

¼ e−iπωikþ1e
iπωaik Aik

i1…ik
and

Bikþ1
i1…ik

¼ bikþ1
i1…ik

þ eiπωikþ1Aikþ1
i1…ik

:
(B6)

Let us generalize for the case ik < n − 2, nþ 1 produced
particles.

ð−1Þkτi1τi2…τikτn−1τn ~B
n
i1i2…ik:

From the recurrence relation we have

~Bnþ1
i1i2…ik ¼

sinðπωanÞ
sinðπωnÞ

An
i1…ik

þ sinðπωn − πωanÞ
sinðπωnÞ

Bn
i1…ik

(B7)

with

Bn
i1i2…ik

¼ bni1i2…ik
þ ani1i2…ik

An
i1i2…ik

¼ e−iπωnani1i2…ik

ani1i2…ik
¼ e−iπωneiπωan ani1i2…ik

: (B8)

We obtain using the ansatz,

~Bn
i1i2…ik ¼ ~bnþ1

i1i2…ik þ ~ani1i2…ik
; (B9)

with

~ani1i2…ik
¼ eiπωnani1i2…ik

: (B10)

The result is

~bni1i2…ik ¼
sinðπωn − πωanÞ

sinðπωnÞ
bni1i2…ik

~anþ1
i1i2…ik

¼ e−iπωan ani1i2…ik
¼ e−iπωne−iπωan ~ani1i2…ik

: (B11)

Now we consider the most general case, Fig. 28.

TABLE II. All terms of the production amplitude P2→4.

P2→4 ¼ eiπðωaþωbÞe−iπðω1þω2þω3Þ (free term)

−eiπðωaþωbÞe−iπðω2þω3Þ τ1−eiπðωaþωbÞe−iπðω1þω3Þ τ2−eiπðωaþωbÞe−iπðω1þω2Þ τ3
eiπðωb−ωaÞe−iπω3 τ1τ2
eiπðωa−ωbÞe−iπω1 τ2τ3

e−iπω2

h
eiπðωaþωbÞ − 2ieiπω2

sinðπωaÞ sinðπωbÞ
sinðπω2Þ

i
τ1τ3

−
h
e−iπðωaþωbÞ þ 2ie−iπω2

sinðπωaÞ sinðπωbÞ
sinðπω2Þ

i
τ1τ2τ3:

TABLE III. All terms of the production amplitude P2→5.

P2→5 ¼ eiπðωaþωbþωcÞe−iπðω1þω2þω3þω4Þ (free term)

−eiπðωaþωbþωcÞe−iπðω2þω3þω4Þ τ1−eiπðωaþωbþωcÞe−iπðω1þω3þω4Þ τ2−eiπðωaþωbþωcÞe−iπðω1þω2þω4Þ τ3−eiπðωaþωbþωcÞe−iπðω1þω2þω3Þ τ4
e−iπðωa−ωb−ωcÞe−iπðω3þω4Þ τ1τ2

e−iπðω2þω4Þeiπωc

h
eiπðωaþωbÞ − 2ieiπω2

sinðπωaÞ sinðπωbÞ
sinðπω2Þ

i
τ1τ3h

eiπðωaþωbþωcÞe−iπðω2þω3Þ − 2i sinðπωaÞ sinðπωbÞ sinðπωcÞ
sinðπω2Þ sinðπω3Þ

i
τ1τ4

eiπðωa−ωbþωcÞe−iπðω1þω4Þ τ2τ3

e−iπðω1þω3Þeiπωa

h
eiπðωbþωcÞ − 2ieiπω3

sinðπωbÞ sinðπωcÞ
sinðπω3Þ

i
τ2τ4

eiπðωaþωb−ωcÞe−iπðω1þω2Þ τ3τ4

−e−iπω4eiπωc

h
e−iπðωaþωbÞ þ 2ie−iπω2

sinðπωaÞ sinðπωbÞ
sinðπω2Þ

i
τ1τ2τ3

−
h
eiπð−ωaþωbþωcÞe−iπω3 − 2i sinðπω2aÞ sinðπωbÞ sinðπωcÞ

sinðπω2Þ sinðπω3Þ
i
τ1τ2τ4

−
h
eiπðωaþωb−ωcÞe−iπω2 − 2i sinðπωaÞ sinðπωbÞ sinðπω3cÞ

sinðπω2Þ sinðπω3Þ
i
τ1τ3τ4

−e−iπω1eiπωa

h
e−iπðωbþωcÞ þ 2ie−iπω3

sinðπωbÞ sinðπωcÞ
sinðπω3Þ

i
τ2τ3τ4h

eiπð−ωaþωb−ωcÞ − 2i sinðπω2aÞ sinðπωbÞ sinðπω3cÞ
sinðπω2Þ sinðπω3Þ

i
τ1τ2τ3τ4:
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ð−1Þkþrτi1τi2…τikτn−rτn−rþ1…τnBn
r for

ik < n − r − 1.
(B12)

Then the recurrence relation becomes the three-term
relation for Bn

r ,

Bnþ1
rþ1 ¼ e−iπðωn−ωan−1 Þ

sinðπωanÞ
sinðπωnÞ

Bn−1
r−1

þ sinðπωn − πωanÞ
sinðπωnÞ

Bn
r ; (B13)

with the initial conditions,

Bn
1 ¼ Bn

i1i2…ik
and Bn

2 ¼ ~Bn
i1i2…ik : (B14)

The recurrence relation for ~Bn
i1i2…ik and B

n
i1i2…ik

given in the
above (really, ~Bn

i1i2…ik) is expressed in terms of Bn
i1i2…ik

and
Bn
i1i2…ik

satisfies two-term recurrence relation and is ex-
pressed again in terms of Bn

r ). Therefore, we can construct
everything in terms of very simple recurrence relations.
Consider a case ð−1Þkþrτi1τi2…τik…τn−rτn−rþ1…τnBn

r ,
where we obtain the recurrence relation

Bnþ1
rþ1 ¼ sinðπωanÞ

sinðπωnÞ
e−iπωne−iπωan−1Bn−1

r−1

þ sinðπωn − πωanÞ
sinðπωnÞ

Bn
r : (B15)

In particular,

Bnþ2−r
2 ¼ sinðπωanþ1−rÞ

sinðπωnþ1−rÞ
e−iπωnþ1−re−iπωan−r Bn−r

0

þ sinðπωnþ1−r − πωanþ1−rÞ
sinðπωnþ1−rÞ

Bnþ1−r
1 ; (B16)

where we can write

B2 ¼ b2 þ a2; Bn
1 ¼ bn1 þ an1; a1 ¼ eiπωan−1Bn−1

0 ;

bnþ1
2 ¼ sinðπωn − πωanÞ

sinðπωnÞ
bn1 (B17)

and

brþ1
1 ¼ b21

sinðπωarÞ
sinðπωrÞ

; arþ1
1 ¼ ar1e

−iπωreiπωar : (B18)

We have

Bnþ1
1 ¼ sinðπωanÞ

sinðπωnÞ
Bn
1 þ

sinðπωn − πωanÞ
sinðπωnÞ

An
1; with

An
1 ¼ e−iπωnan1: (B19)

Indeed,

anþ1
1 ¼

�
sinðπωanÞ þ e−iπωn sinðπωn − πωanÞ

sinðπωnÞ
�

an1 ¼ e−iπωneiπωan an1: (B20)

Concluding this part, one can see a clear recurrence relation
for an arbitrary number of crosses and “holes” (untwisted
propagators). Thus, more complicated configurations might
be reduced to the more simple ones using the recurrence
relations formulated in the above.

FIG. 27. Diagrams which correspond to An
i1i2…ik

(up) and Bn
i1i2…ik

(bottom) configuration.

FIG. 28. Configuration with r crosses on the most right-hand
side and some arbitrary configuration on the left (grey blob),
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