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We discuss the ultraviolet and infrared perturbative finiteness of massless QED3, which is parity and

infrared anomaly-free to all orders in perturbation theory.
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The perturbative finiteness is one of the most peculiar
properties of topological field theories in three space-
time dimensions [1]. Thanks to a by-product of super-
renormalizability and the presence of topological terms,
Yang-Mills-Chern-Simons and BF-Yang-Mills theories are
also finite at all orders in perturbation theory—in the sense
of a vanishing � function [2]. In spite of not being a
topological field theory, the massless QED3 is perturba-
tively finite, exhibiting quite interesting and subtle proper-
ties such as super-renormalizability, parity invariance,
and the presence of infrared divergences. The issue of
‘‘how super-renormalizable interactions cure their infrared
divergences’’ has been analyzed in [3], and a possible
parity breaking at the quantum level, which is called a
parity anomaly in the literature, has been discarded [4–6].

The algebraic proof we are presenting in this paper
on the ultraviolet and infrared finiteness, and the absence
of a parity and infrared anomaly, in the massless QED3,
is based on general theorems of perturbative quantum field
theory [7–10], where the Lowenstein-Zimmermann
subtraction scheme is adopted. Here we summarize the
main results, skipping the intermediate steps of the

Lowenstein-Zimmermann subtraction scheme in the
framework of the Bogoliubov-Parasiuk-Hepp-
Zimmermann-Lowenstein renormalization method [10].
Such a subtraction scheme has to be introduced, thanks
to the presence of massless (gauge and fermion) fields, in
order to subtract infrared divergences that should arise in
the process of the ultraviolet subtractions.
The discussion of the extension of the theory in the tree

approximation to all orders in perturbation theory is or-
ganized according to two independent parts: In the first
step, we study the stability of the classical action. For the
quantum theory the stability corresponds to the fact that the
radiative corrections can be reabsorbed by a redefinition
of the initial parameters of the theory. Next, one computes
the possible anomalies through an analysis of the Wess-
Zumino consistency condition; then one checks if the
possible breakings induced by radiative corrections can
be fine-tuned by a suitable choice of noninvariant local
counterterms.
The gauge invariant action for the massless QED3, with

the gauge invariant Lowenstein-Zimmermann mass terms
added, is given by

�ðs�1Þ
inv ¼

Z
d3x
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Lowenstein-Zimmermann mass terms

9=
;; (1)

where 6Dc � ð6@þ ie 6AÞc and e is a dimensionful coupling
constant with mass dimension 1

2 . The Lowenstein-
Zimmermann parameter s lies in the interval 0 � s � 1
and plays the role of an additional subtraction variable
(such as the external momentum) in the BPHZL renormal-
ization program, such that the massless QED3 is recovered
for s ¼ 1.

In the BPHZL scheme a subtracted (finite) integrand
Rðp; k; sÞ is written in terms of the unsubtracted (divergent)
one, Iðp; k; sÞ, as

Rðp; k; sÞ ¼ ð1� t0p;s�1Þð1� t1p;sÞIðp; k; sÞ
¼ ð1� t0p;s�1 � t1p;s þ t0p;s�1t

1
p;sÞIðp; k; sÞ;

where tdx;y is the Taylor series about x ¼ y ¼ 0 to order d if

d � 0. Thus, for our purposes, by assuming s ¼ 1, a
subtracted integrand Rðp; k; sÞ reads

Rðp; k; 1Þ ¼ Iðp; k; 1Þ|fflfflfflffl{zfflfflfflffl}
parity-even

� Ið0; k; 1Þ|fflfflfflffl{zfflfflfflffl}
parity-even

� p� @

@p� Ið0; k; 0Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
parity-odd terms

:

In order to quantize the system (1) one has to add a
gauge-fixing action �gf and an action term �ext, coupling

the nonlinear Becchi-Rouet-Stora transformations to
external sources:
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�gf ¼
Z

d3x

�
b@�A� þ �

2
b2 þ �chc

�
; (2)

�ext ¼
Z

d3xf ��sc � s �c�g: (3)

No Lowenstein-Zimmermann mass has to be introduced
to the Faddeev-Popov ghosts since they are free fields;
therefore, they decouple.

The BRS transformations are given by

sc ¼ icc ; s �c ¼ �ic �c ; sA� ¼ � 1

e
@�c;

sc ¼ 0; s �c ¼ 1

e
b; sb ¼ 0;

(4)

where c is the ghost, �c is the antighost, and b is the
Lagrange multiplier field.

The complete action �ðs�1Þ reads

�ðs�1Þ ¼ �ðs�1Þ
inv þ�gf þ�ext: (5)

The UV and IR dimensions—those which are involved
in the Lowenstein-Zimmermann subtraction scheme
[10]—d and r, respectively, as well as the ghost numbers
�� and the Grassmann parity GP, of all fields are col-
lected in Table I.

The BRS invariance of the action is expressed in a
functional way by the Slavnov-Taylor identity

S ð�ðs�1ÞÞ ¼ 0; (6)

where the Slavnov-Taylor operator S is defined, acting on
an arbitrary functional F , by

S ðF Þ ¼
Z

d3x
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�
: (7)

The corresponding linearized Slavnov-Taylor operator
reads
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Z

d3x
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�
: (8)

The following nilpotency identities hold:

SFSðF Þ ¼ 0; 8F ; (9)

S FSF ¼ 0 if SðF Þ ¼ 0: (10)

In particular, ðS�Þ2 ¼ 0, since the action �ðs�1Þ obeys the
Slavnov-Taylor identity (6). The operation of S� upon the
fields and the external sources is given by

S��¼ s�; �¼ c ; �c ; A�; c; �c; b;

S��¼���ðs�1Þ

� �c
; S�

��¼��ðs�1Þ

�c
:

(11)

The classical action �ðs�1Þ is moreover characterized by
the gauge condition, the ghost equation, and the antighost
equation, given by

��ðs�1Þ

�b
¼ @�A� þ �b; (12)

��ðs�1Þ

� �c
¼ hc; (13)

� i
��ðs�1Þ

�c
¼ ih �cþ ��c þ �c�: (14)

The action is invariant also with respect to the rigid
symmetry

Wrigid�
ðs�1Þ ¼ 0; (15)

where the Ward operator Wrigid is defined by

Wrigid¼
Z
d3x

�
c

�

�c
� �c

�

� �c
þ�

�

��
� ��

�

� ��

�
: (16)

The classical action for the massless QED3 (s ¼ 1) is
also invariant under parity P; its action upon the fields and
external sources is fixed as below:

x�!P xP� ¼ ðx0;�x1; x2Þ; c!P c P ¼ �i	1c ;

�c !P �c !P ¼ i �c	1; A�!P AP
� ¼ ðA0;�A1; A2Þ;

�!P �P ¼ �; � ¼ c; �c; b;

�!P �P ¼ �i	1�; ��!P ��P ¼ i ��	1:

(17)

In order to verify if the action in the tree approximation
is stable under radiative corrections, we perturb it by an

arbitrary integrated local functional (counterterm) �cðs�1Þ,
such that

~� ðs�1Þ ¼ �ðs�1Þ þ "�cðs�1Þ; (18)

where " is an infinitesimal parameter. The functional�c �
�cjs¼1 has the same quantum numbers as the action in the
tree approximation at s ¼ 1.

The deformed action ~�ðs�1Þ
must still obey all the

constraints listed above, Eqs. (12)–(15). Then �cðs�1Þ is
subjected to the following set of constraints:

TABLE I. UV and IR dimensions (d and r), ghost numbers
(��), and Grassmann parity (GP).

A� c c �c b � s� 1 s

d 1=2 1 0 1 3=2 2 1 1

r 1=2 1 0 1 3=2 2 1 0

�� 0 0 1 �1 0 �1 0 0

GP 0 1 1 1 0 1 0 0
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S ��
cðs�1Þ ¼ 0; (19)

��cðs�1Þ

�b
¼ ��cðs�1Þ

� �c
¼ ��cðs�1Þ

�c
¼ 0; (20)

Wrigid�
cðs�1Þ ¼ 0: (21)

We find that the most general invariant counterterm

�cðs�1Þ, i.e., the most general field polynomial with UV
and IR dimensions bounded by d � 3 and r � 5

2 , with

ghost number zero and fulfilling the conditions displayed
in Eqs. (19)–(21), is given by

�cðs�1Þ ¼
Z

d3xfa1F��F�� þ a2i �c 6Dc

þ a3�
���A�@�A� þ a4 �c c g: (22)

However, there are other restrictions due to the super-
renormalizability of the theory and its parity invariance—
the massless QED3 recovered for s ¼ 1. From the
super-renormalizability, the coupling constant-dependent
power-counting formula [2] is given by

�ð	Þ
�ð	Þ

� �
¼ 3�X

�

d�
r�

� �
N� � 1

2
Ne; (23)

for the UV (�ð	Þ) and IR (�ð	Þ) degrees of divergence of a
one-particle irreducible Feynman graph 	. Here N� is the
number of external lines of 	 corresponding to the field�;
d� and r� are the UVand IR dimensions of�, respectively,
as given in Table I; and Ne is the power of the coupling
constant e in the integral corresponding to the diagram 	.
Since the counterterms are generated by loop graphs, they
are of order 2 in e at least. Hence, the effective UVand IR

dimensions of the counterterm �cðs�1Þ are bounded by
d � 2 and r � 3

2 ; for this reason, a1 ¼ a2 ¼ 0. Moreover,

since the counterterm �c � �cjs¼1 is also parity invariant,
it yields that a3 ¼ a4 ¼ 0. It can be concluded that there
is no possibility for any local deformation, implying the
absence of any counterterm:

�c ¼ �cjs¼1 ¼ 0: (24)

This result means that the usual ambiguities due to the
renormalization procedure do not appear in the present
model.

Because the classical stability does not imply, in general,
the possibility of extending the theory to the quantum level,
our purpose now is to show the absence of anomalies. This
result, combined with the previous one (24), concerning
the absence of counterterms, completes the proof of the
perturbative finiteness and absence of a parity anomaly in
massless QED3.

At the quantum level the vertex functional �ðs�1Þ, which
coincides with the classical action (5) at order 0 in ℏ,

�ðs�1Þ ¼ �ðs�1Þ þOðℏÞ; (25)

has to satisfy the same constraints as the classical action
does, namely, Eqs. (12)–(15).
According to the quantum action principle [7,9]

the Slavnov-Taylor identity (6) may have a quantum
breaking

S ð�ðs�1ÞÞ ¼ � � �ðs�1Þjs¼1 ¼ �þOðℏ�Þ; (26)

where� � �js¼1 is an integrated local functional, taken at
s ¼ 1, with ghost number 1 and UV and IR dimensions
bounded by d � 7

2 and r � 3.

The nilpotency identity (9), together with

S � ¼ S� þOðℏÞ; (27)

implies the following consistency condition for the
breaking �:

S �� ¼ 0: (28)

Beyond that, � satisfies

��

�b
¼ ��

� �c
¼

Z
d3x

�

�c
� ¼ Wrigid� ¼ 0: (29)

The Wess-Zumino consistency condition (28) consti-
tutes a cohomology problem in the sector of ghost number
1. Its solution can always be written as a sum of a trivial

cocycle S��̂
ð0Þ, where �̂ð0Þ has ghost number 0, and of

nontrivial elements belonging to the cohomology of S� (8)
in the sector of ghost number 1:

�ð1Þ ¼ �̂ð1Þ þ S��̂
ð0Þ: (30)

It should be stressed that it still remains a possible parity
violation at the quantum level induced by a parity-odd
noninvariant counterterm. Due to the fact that the
Lowenstein-Zimmermann subtraction scheme breaks
parity during the intermediary steps, the Slavnov-Taylor

identity breaking �ð1Þ is not necessarily parity invariant.

In any case, �ð1Þ must obey the conditions imposed by

Eqs. (28) and (29). The trivial cocycle S��̂
ð0Þ can be

absorbed into the vertex functional �ðs�1Þ as a noninvariant
integrated local counterterm ��̂ð0Þ. On the other hand, a

nonzero �̂ð1Þ would represent an anomaly. If there was any

parity-odd �̂ð0Þ
odd, a parity anomaly would be present,

induced by the noninvariant counterterm ��̂ð0Þ
odd.

By analyzing the Slavnov-Taylor operator S� (8) and

Eq. (26), one sees that the breaking �ð1Þ has UV and IR
dimensions bounded by d � 7

2 and r � 3. But being an

effect of the radiative corrections, the insertion �ð1Þ pos-
sesses a factor e2 at least, and thus its effective dimensions
are in fact bounded by d � 5

2 and r � 2.
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From the antighost equation

Z
d3x

�

�c
�ð1Þ ¼ 0; (31)

it can be concluded that �ð1Þ is given by

�ð1Þ ¼
Z

d3xð@�cÞK�; (32)

where K� has UV and IR dimensions bounded by d � 3
2

and r � 1, and the ghost c is dimensionless. Now, �ð1Þ can
be split into two pieces that are even and odd under parity
by writing K� as

K � ¼ rvV� þ rpP�; (33)

in such a way that V� is a vector and P� a pseudovector.

Bearing in mind that K� has its UV and IR dimensions

bounded by d � 3
2 and r � 1, we conclude that there are no

V� satisfying these dimensional constraints; therefore,

fV�g ¼ ;, which means the absence of parity-even

Slavnov-Taylor breaking. However, still remains the odd
sector represented by P�, and by a dimensional analysis a

candidate for P� is found. The only candidate which

survives all the constraints above is

P � ¼ ~F� ¼ 1

2
����F

��: (34)

It turns out that there is only one parity-odd candidate,

�ð1Þ
odd, which could be a parity anomaly, surviving all the

constraints above:

�ð1Þ ¼ �ð1Þ
odd ¼

rp

2

Z
d3xð@�cÞ����F

��; (35)

where integrating by parts shows that

�ð1Þ ¼ �ð1Þ
odd � 0: (36)

Hence, there are no radiative corrections to the insertion
describing the breaking of the Slavnov-Taylor identity,

f�ð1Þg ¼ ;, which means that there is no possible breaking
to the Slavnov-Taylor identity, and neither parity is
violated nor infrared anomaly stems by noninvariant coun-
terterms that could be induced due to the Lowenstein-
Zimmermann subtraction scheme—which breaks parity.
We finally conclude that the massless QED3 is

infrared and ultraviolet finite (vanishing coupling con-
stant �e function and anomalous dimensions of the
fields), infrared and parity anomaly-free at all orders
in perturbation theory. The latter is a by-product of
super-renormalizability and the absence of parity-odd
noninvariant counterterms.
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