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We present a framework for discussing the cosmology of dark energy and dark matter based on two
scalar degrees of freedom. An effective field theory of cosmological perturbations is employed. A unitary
gauge choice renders the dark energy field into the gravitational sector, for which we adopt a generic
Lagrangian depending on three-dimensional geometrical scalar quantities arising in the Arnowitt-Deser-
Misner decomposition. We add to this dark energy–associated gravitational sector a scalar field ϕ and its
kinetic energy X as dark matter variables. Compared to the single-field case, we find that there are
additional conditions to obey in order to keep the equations of motion for linear cosmological perturbations
at second order. For such a second-order multifield theory, we derive conditions under which ghosts and
Laplacian instabilities of the scalar and tensor perturbations are absent. We apply our general results to
models with dark energy emerging in the framework of the Horndeski theory and dark matter described
by a k-essence Lagrangian Pðϕ; XÞ. We derive the effective coupling between such an imperfect-fluid
dark matter and the gravitational sector under the quasistatic approximation on subhorizon scales. By
considering the purely kinetic Lagrangian PðXÞ as a particular case, the formalism is verified to reproduce
the gravitational coupling of a perfect-fluid dark matter.
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I. INTRODUCTION

The effective field theory (EFT) of cosmological pertur-
bations has been widely studied in connection with inflation
and dark energy to characterize the low-energy degree of
freedom of a most general gravitational theory [1,2]. This
approach allows for addressing all of the possible high-
energy corrections to standard slow-roll inflation driven by a
single scalar field [3]. Moreover, the EFT formalism of
inflation is suitable for the parametrization of higher order
correlation functions of cosmological perturbations, like
primordial non-Gaussianities [4–6].
The EFT approach is also convenient for the unified

description of dark energy because it can describe practically
all single-field models proposed in the literature. The dynam-
ics of dark energy has been investigated in the EFT formalism
for scalar fields in both minimal and nonminimal couplings
to gravity [7–17]. In this setup the background cosmology
is governed by three free parameters supplementing other
parameters associatedwith linear cosmological perturbations.
The unified framework based on the EFT parametrization is
useful both in imposing constraints on individual models
and in providing model-independent constraints on the
properties of dark energy and modified gravity [18,19].
In particular, Gleyzes et al. [15] described a most general

single-field dark energy/modified gravity scenario in terms
of a Lagrangian depending on the lapse function and some
geometrical scalar quantities naturally emerging in the

Arnowitt-Deser-Misner (ADM) decomposition on the flat
Friedmann-Lemaître-Robertson-Walker (FLRW) cosmo-
logical background. The choice of unitary gauge for the
scalar field χ allows one to absorb the field perturbation
δχ into the gravitational sector, so no explicit dependence
on χ needs to be included in the Lagrangian. In this setup
the time derivatives in the linear perturbation equations are
at most of the second order, but spatial derivatives higher
than second order could emerge. Gleyzes et al. [15] derived
the conditions under which such higher order spatial
derivatives are absent.
Recently the Horndeski gravitational theory [20] has also

received much attention [21–23] as the most general scalar-
tensor theory with second-order differential equations
of motion. This interest is due to the generalization of
covariant Galileons [24–26] allowing for the realizations of
cosmic acceleration [27] and the Vainshtein screening
of the fifth force [28]. The analysis of Ref. [15] shows that
the Horndeski theory is accommodated in the framework
of the EFT of dark energy as a special case. In fact, the
Horndeski theory satisfies conditions for the absence of
spatial derivatives higher than second order in the equations
of linear cosmological perturbations. Gleyzes et al. [15]
provided a convenient dictionary linking the variables
between the Horndeski theory and the EFT of dark energy.
The EFT formalism advocated in Ref. [15] corresponds

to a theory of a single scalar degree of freedom χ, which is
responsible for cosmic acceleration. In a more general
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setup, another scalar field ϕ may be present. In fact,
a scalar field described by the Lagrangian Pðϕ; XÞ [29]
(where X is the kinetic energy of ϕ) could represent dark
matter [30,31].
In this paper we study the EFT of dark energy and dark

matter by including explicit dependencies of the second
scalar field ϕ and of X into the Lagrangian, alongside the
lapse N and other three-dimensional geometric scalars
naturally emerging in the ADM formalism. We choose
unitary gauge for the dark energy field, such that the field
perturbation δχ is “eaten up” by the gravitational sector.
Our analysis is based upon the expansion of the Lagrangian
L up to second order in the cosmological perturbations,
with coefficients involving the partial derivatives of L with
respect to the scalar quantities (such as N and ϕ). As an
additional motivation, we also note that the formalism can
be applied to the models of multifield inflation such as
those studied in Refs. [32].
With the increase of the number of degrees of freedom,

there appear additional complications which need to be
carefully considered. We show that in our formalism, in
addition to the higher order spatial derivatives found in
Ref. [15], combinationsof spatial and timederivatives higher
than second order also emerge in the linear perturbation
equations of motion. Such terms need to be eliminated at the
price of extra conditions supplementing those derived in
Ref. [15]. Without imposing these, either the number of
degrees of freedom would be further increased or some
unwanted nonlocality (in the form of a truncated series
expansion) would be introduced in the theory [33].
There are also additional conditions to obey. The

Hamiltonian of the system could not be unbounded from
belowas thenevenanempty state could furtherdecay; hence,
the stability is lost. At a technical level, this no-ghost
condition can be imposed as the positivity of the kinetic
term in the Lagrangian [1,7]. For more degrees of freedom it
is ensured by the positivity of the eigenvalues of the kinetic
matrix. Similarly, the dispersion relation should not lead to
ill-defined propagation speeds, in the sense that their square
becomes negative, as such sign changes lead to Laplacian
instabilities (Laplacian growth) on small scales. For the
investigated multifield second-order theory, we obtain two
conditions for the avoidance of scalar ghosts and two scalar
propagation speeds in the ultraviolet limit. Finally we also
derive conditions for the absence of tensor ghosts and of
Laplacian instabilities. All of these conditions should be
obeyed by viable models of dark energy and dark matter.
Our analysis covers the most general second-order

scalar-tensor theories with a k-essence–type dark matter
[30,31,34] as a specific case. On using the dictionary
between the EFT parameters and the functions appearing in
the Horndeski theory [15], we apply our results to a specific
theory with dark energy given by the Horndeski Lagrangian
and dark matter represented by the k-essence Lagrangian
Pðϕ; XÞ. In this case the field ϕ does not have a direct

coupling to χ, so the no-ghost conditions and the propa-
gation speeds of scalar perturbations are considerably
simplified to reproduce results available in the literature
[35,36]. We also derive the effective coupling Geff between
the field ϕ (which in the generic case can be interpreted as
an imperfect fluid) and the gravitational sector, under the
quasistatic approximation on subhorizon scales (see, e.g.,
Refs. [37–42]). Further, for the purely kinetic Lagrangian
PðXÞ [31], the field ϕ behaves as a perfect fluid [43], in
which case Geff previously derived in some modified
gravitational models [38,40,44,45] could be reproduced.
Our paper is organized as follows.
In Sec. II we summarize the 3þ 1 decomposition of

spacetime and set up the framework for the EFT description
of modified gravity by introducing a generic action depend-
ing both on the gravitational degrees of freedom and
another independent scalar field ϕ.
In Sec. III we expand the action up to first order in

cosmological perturbations and obtain the background
equations of motion which involve the partial derivatives
of the Lagrangian L with respect to scalar quantities.
In Sec. IV we derive the second-order action for pertur-

bations and identify conditions under which the spatial and
time derivatives higher than second order are absent. The
conditions for the avoidance of ghosts and instabilities of
scalar and tensor perturbations are also discussed here.
In Sec. V we apply our results to a theory described by

the Horndeski Lagrangian and the field Lagrangian
Pðϕ; XÞ. The equations of matter perturbations as well
as the effective gravitational coupling are derived for such a
generic multifield system.
Sec. VI is devoted to conclusions.
Throughout the paper Greek and Latin indices denote

components in spacetime and in a three-dimensional space-
adapted basis, respectively. Quantities with an overbar are
evaluated on the flat FLRW background. Only the scale
factora, theHubbleparameterH ¼ _a=a, and the scalar fields
χ;ϕ (also its energy-momentum tensorwith its components),
all referring to the background, do not carry the distinctive
overbars, as the respective perturbed quantities will not
require independent notation (rather, new notations for their
perturbations are introduced). A dot represents a derivative
with respect to the time t, a semicolon as a lower index
the covariant derivative compatible with the 4-metric, while
a bar as a lower index the covariant derivative compatible
with the spatial 3-metric. A lower index of the Lagrangian
L denotes the partial derivatives with respect to the scalar
quantities represented in the index, e.g., LN ≡ ∂L=∂N
and Lϕ ≡ ∂L=∂ϕ.

II. 3þ 1 DECOMPOSITION OF SPACETIME
AND THE EFT DESCRIPTION OF MODIFIED

GRAVITY WITH TWO SCALAR FIELDS

We start with the generic ADM line element [46]
given by
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ds2 ¼ gμνdxμdxν

¼ −N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ; (1)

which contains the lapse function N, the shift vector
Ni, and the three-dimensional metric hij. The three-
dimensional components are equivalent to those of the
four-dimensional metric gμν as follows:

g00 ¼ −N2 þ NiNi; g0i ¼ gi0 ¼ Ni; gij ¼ hij:

(2)

The inverse metric is then

g00 ¼ −1=N2; g0i ¼ gi0 ¼ Ni=N2;

gij ¼ hij − NiNj=N2: (3)

A unit normal to Σt is defined as nμ ¼ −Nt;μ ¼
ð−N; 0; 0; 0Þ; hence, nμ ¼ ð1=N;−Ni=NÞ, and it satisfies
the relation gμνnμnν ¼ −1.
The induced metric hμν on Σt can be expressed cova-

riantly as hμν ¼ gμν þ nμnν. The mixed indices form hμν of
the induced metric acts as a projector operator to the
tangent and cotangent spaces of the hypersurfaces Σt. The
extrinsic curvature of the hypersurfaces is

Kμν ¼ hλμhσνnσ;λ ¼ hλμnν;λ ¼ nν;μ þ nμaν; (4)

where aμ ¼ nλnμ;λ is the acceleration (the curvature) of the
normal congruence nμ. It is straightforward to confirm
the property nμKμν ¼ 0 so that Kμν lives on the three-
dimensional hypersurfaces. More explicitly it can be
written in the form

Kij ¼
1

2N
ð _hij − Nijj − NjjiÞ; (5)

where ji represents a covariant derivative with respect to
the metric hij.
The four-dimensional and three-dimensional curvature

scalars R and R (the latter being the trace of Rμν ≡ ð3ÞRμν,
the Ricci tensor on Σt associated with hμν) are related by the
twice-contracted Gauss equation

R ¼ Rþ KμνKμν − K2 þ 2ðKnμ − aμÞ;μ; (6)

whereK is the trace of the extrinsic curvature. Therefore, in
a 3þ 1 rewriting of the general relativistic Einstein-Hilbert
action, only the above scalars of the intrinsic and extrinsic
geometries appear.
In what follows, we discuss a modified gravitational

dynamics, in which the Lagrangian describing the
gravitational sector depends on the set of scalars [15]:

K ≡ Kμ
μ; S ≡ KμνKμν; R≡Rμ

μ;

Z ≡RμνRμν; U ≡RμνKμν: (7)

We also allow for a dependence on the lapse functionN, but
not on the shift vector. Although a dependence of the
magnitude square of the shiftN ¼ NaNa in principle could
be introduced, we choose not to do so because the explicit
dependence of N does not appear even in the most general
scalar-tensor theories with second-order equations of
motion.
In top of the gravitational sector we also include

a scalar field ϕ whose kinetic term is denoted
X ≡ gμν∂μϕ∂νϕ. Hence we consider a generalized action
that depends on the scalar quantities (7), on ϕ, X, and the
lapse N as

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

LðN;K;S;R;Z;U;ϕ; X; tÞ: (8)

The action could also exhibit explicit time dependence for
reasons to be discussed below.
In addition to the field ϕ, we also allow for another scalar

degree of freedom χ. This however can be absorbed into the
gravitational sector by assuming unitary gauge in which the
hypersurfaces of a constant value of this field coincide with
the constant t hypersurfaces, i.e., χ ¼ χðtÞ [15]. The time
dependence of the quantities χðtÞ and _χðtÞ corresponds to
the explicit temporal dependence included into the action.
Moreover, defining the kinetic energy of the field χ as
Y ≡ gμν∂μχ∂νχ for the ADMmetric (1) withNi ¼ 0 (which
can be safely assumed on the background), one obtains
Y ¼ −_χ2=N2. Hence the kinetic term of χ depends only on
N and the time. The field χ enters the equations of motion
only in the form of the partial derivatives LN ¼ ∂L=∂N
and LNN ¼ ∂2L=∂N2.
Due to the choice of unitary gauge for the field χ, the

gauge freedom associated with the time component of the
gauge-transformation vector has been used up, so the first
field ϕ can be considered as independent of the gravita-
tional sector. Hence the theory has two scalar degrees of
freedom, i.e., the lapse N and the field ϕ.
In the context of the multifield Horndeski theory where

not only the field χ but also ϕ has a nontrivial coupling to
gravity [47], one would need to include in the action (8) the
dependence on scalar quantities constructed from the
second covariant derivative of ϕ, e.g., ð□ϕÞ2, ϕ;μνϕ;μν,
Rμνϕ

;μν, and ϕ;μνϕ
;μσϕ;ν

;σ . Our interest lies however in
a minimal extension of the single-field EFT of dark energy
to the two-field case, so we do not include such terms in
our analysis. In particular, we are interested in the pos-
sibility of describing scalar dark matter by the Lagrangian
depending on ϕ and X.
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III. COSMOLOGICAL PERTURBATIONS AND
BACKGROUND EQUATIONS OF MOTION

In this section we start by defining the perturbations of
the variables appearing in the action (8) and derive the
background equations of motion.

A. Cosmological perturbations

In the cosmological setup, the flat FLRW spacetime with
the line-element ds2 ¼ −dt2 þ a2ðtÞδijdxidxj corresponds
to N̄ ¼ 1, N̄i ¼ 0, and h̄ij ¼ a2ðtÞδij. At the background
level, there is no shift vector Ni. Only when we consider
cosmological perturbations, the shift appears at first order
of the perturbations. Also, on the flat FLRW background,
we have

K̄μν ¼ Hh̄μν; K̄ ¼ 3H; S̄ ¼ 3H2; R̄μν ¼ 0;

(9)

and hence R̄ ¼ Z̄ ¼ Ū ¼ 0.
The general perturbed metric including four scalar metric

perturbations A, ψ , ζ, and E can be expressed as [48,49]

ds2 ¼ −e2Adt2 þ 2ψ jidxidtþ a2ðtÞðe2ζδij þ EjijÞdxidxj:
(10)

We focus on scalar perturbations in most of our paper, but
we discuss the second-order action for tensor perturbations
in Sec. IV C. For the spatial derivatives of scalar quantities
such as ψ , we use the notations ∂iψ ≡ ψ ji ¼ ∂ψ=∂xi and
ð∂ψÞ2 ≡ ð∂iψÞð∂iψÞ ¼ ð∂1ψÞ2 þ ð∂2ψÞ2 þ ð∂3ψÞ2, where
same lower Latin indices are summed unless otherwise
stated.
Under the transformation t→ tþδt andxi → xi þ δij∂jδx,

the perturbation δχ in the field χ and the metric perturbation
E transform as [50]

δχ → δχ − _χδt; E → E − δx: (11)

As we already mentioned, we choose unitary gauge

δχ ¼ 0; (12)

inwhich the timeslicingδt is fixed.Wefix thespatial threading
δx by choosing the gauge

E ¼ 0: (13)

Comparing the perturbed metric (10) with (1) in this case, we
have the correspondence N2 − NiNi ¼ e2A and

Ni ¼ ∂iψ ; (14)

hij ¼ a2ðtÞe2ζδij: (15)

Hence the metric perturbations ψ and ζ are related to the shift
Ni emerging at first order and the perturbation of the spatial
metric hij, respectively, while A combines with ψ to give the
perturbation ofN, hence of the scalar field χ.We also note that
the gauge-invariant quantities such as ζGI ≡ ζ −Hδχ=_χ and
δϕGI ≡ δϕ − _ϕδχ=_χ reduce toζGI ¼ ζ and δϕGI ¼ δϕ for the
gauge choice (12).
We define the following perturbations:

δKμ
ν ¼ Kμ

ν −Hhμν ; δK ¼ K − 3H;

δS ¼ S − 3H2 ¼ 2HδK þ δKμ
νδKν

μ;
(16)

where the last equation arises from the first equation and
the definition of S. Note that the δ variations do not
commute with raising and lowering of indices (hence
δKμν ≠ gμρδK

ρ
ν). SinceR and Z vanish on the background,

they appear only as perturbations. They can be expressed
up to second-order accuracy as

δR ¼ δ1Rþ δ2R; δZ ¼ δRμ
νδRν

μ; (17)

where δ1R and δ2R are first-order and second-order
perturbations in δR, respectively. Note that the perturbation
Z is higher than first order. The first equality (16) also
implies

U ¼ HRþRμ
νδKν

μ; (18)

where the second term on the rhs is a second-order quantity.
Then the first-order perturbation δ1U is related to δ1R,
as δ1U ¼ Hδ1R.
We decompose the field ϕ into the background and

perturbative components, as ϕ ¼ ϕ̄ðtÞ þ δϕðt; xÞ. In the
following, apart from the Lagrangian L, we omit the
overbar for the background quantities. On using Eq. (3),
the kinetic term X ¼ gμν∂μϕ∂νϕ up to second order can be
expressed as

X ¼ − _ϕ2 þ δ1X þ δ2X; (19)

where the first- and second-order perturbations are given by

δ1X ¼ 2 _ϕ2δN − 2 _ϕ _δϕ; (20)

δ2X ¼ − _δϕ2 − 3 _ϕ2δN2 þ 4 _ϕ _δϕ δN

þ 2 _ϕ

a2
∂iψ∂iδϕþ 1

a2
ð∂δϕÞ2; (21)

with the notation ð∂δϕÞ2 ≡ ∂iδϕ∂iδϕ.

B. Background dynamics

We now expand the action (8) up to the second order in
perturbations, as
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L ¼ L̄þ LNδN þ LKδK þ LSδS þ LRδRþ LZδZ þ LUδU þ Lϕδϕþ LXδX

þ 1

2

�
δN

∂
∂N þ δK

∂
∂K þ δS

∂
∂S þ δR

∂
∂Rþ δZ

∂
∂Z þ δU

∂
∂U þ δϕ

∂
∂ϕþ δX

∂
∂X

�
2

L; (22)

where L̄ is the background value. Using the second and
third relations of Eq. (16), it follows that

LKδKþLSδS¼F ðK−3HÞþLSδK
μ
νδKν

μ

¼− _F=N−3FHþLSδK
μ
νδKν

μ

≃− _F −3FHþ _FδNþLSδK
μ
νδKν

μ− _FδN2;

(23)

where

F ≡ LK þ 2HLS: (24)

In the second line of Eq. (23), we integrated the term FK
by using K ¼ nμ;μ, that isZ

d4x
ffiffiffiffiffiffi−gp

FK ¼ −
Z

d4x
ffiffiffiffiffiffi−gp

nμF ;μ

¼ −
Z

d4x
ffiffiffiffiffiffi−gp _F

N
; (25)

and we dropped the boundary term. In the third line of
Eq. (23), we expanded the term N−1 ¼ ð1þ δNÞ−1 up to
the second order.
As for the term U, there is the relation λðtÞU ¼

λðtÞRK=2þ _λðtÞR=ð2NÞ, valid up to boundary terms,
where λðtÞ is an arbitrary function of t [15]. Since U is
a perturbative quantity, the term LUδU in Eq. (22) reads

LUδU ¼ 1

2
ð _LU þ 3HLUÞδ1Rþ 1

2
ð _LU þ 3HLUÞδ2R

þ 1

2
ðLUδK − _LUδNÞδ1R; (26)

with the first term on the rhs corresponding to a first-order
quantity, while the rest is second order. We also note that
the second-order terms including the perturbation δU are
replaced by Hδ1R, e.g., LNUδNδU ¼ HLNUδNδ1R.
Up to boundary terms the zeroth-order and first-order

Lagrangians of (22) are given, respectively, by

L0 ¼ L̄ − _F − 3HF ; (27)

L1 ¼ ð _F þ LNÞδN þ Eδ1Rþ Lϕδϕþ LXδ1X; (28)

where

E ¼ LR þ 1

2
_LU þ 3

2
HLU : (29)

The Lagrangian density is defined by L ¼ ffiffiffiffiffiffi−gp
L ¼

N
ffiffiffi
h

p
L, where h is the determinant of the three-dimensional

metric hij. The zeroth-order term following from (27) is

L0 ¼ a3ðL̄ − _F − 3HF Þ. On using Eq. (20), the first-order
Lagrangian density reads

L1 ¼ a3ðL̄þ LN − 3HF þ 2LX
_ϕ2ÞδN

þ ðL̄ − _F − 3HF Þδ
ffiffiffi
h

p
þ a3Lϕδϕ

− 2a3LX
_ϕ _δϕþa3Eδ1R: (30)

The last term becomes a total derivative, and hence, it can
be dropped. Variations of the Lagrangian (30) with respect
to δN, δ

ffiffiffi
h

p
, and δϕ (the independent scalar field and the

gravitational variables characterizing the background met-
ric, which by unitary gauge fixing already include the other
scalar field) lead to the following equations of motion,
respectively:

L̄þ LN − 3HF þ 2LX
_ϕ2 ¼ 0; (31)

L̄ − _F − 3HF ¼ 0; (32)

d
dt

ða3LX
_ϕÞ þ 1

2
a3Lϕ ¼ 0: (33)

The zeroth-order Lagrangian (27) vanishes on account
of Eq. (32).
Although Eq. (33) contains only derivatives related

to the field ϕ, whenever the two fields are coupled in
the Lagrangian, it becomes an equation containing both
fields. We discuss such an example in Sec. IV, related to no-
ghost conditions, which involves the term LNX, correspond-
ing to the coupling between two kinetic terms.
If the Lagrangian does not contain any interactions

between χ and ϕ, then Eq. (33) becomes a continuity-type
equation for the field ϕ alone. In the next subsection,
we discuss an example exhibiting this property.

C. Noninteracting fields

Let us consider the following Lagrangian:

L ¼ M2
pl

2
Rþ fðχ; YÞ þ Pðϕ; XÞ; (34)

whereMpl is the reduced Planck mass. The function fðχ; YÞ
depends on the scalar field χ and its kinetic energy
Y ¼ gμν∂μχ∂νχ, whereas the function Pðϕ; XÞ is dependent
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on ϕ and X ¼ gμν∂μϕ∂νϕ. The variables χ; Y are equivalent
to N and an explicit time dependence, as argued before.
On using the property (6), the Lagrangian becomes

L ¼ M2
pl

2
ðRþ S − K2Þ þ fðχ; YÞ þ Pðϕ; XÞ; (35)

where the total divergence term is dropped. Since
L̄ ¼ −3M2

plH
2 þ P, LN ¼ 2_χ2fY , LX ¼ PX, Lϕ ¼ Pϕ,

and F ¼ −2M2
plH on the flat FLRW background,

Eqs. (31)–(33) read

3M2
plH

2 ¼ −2fY _χ2 − 2PX
_ϕ2 − f − P; (36)

2M2
pl
_H þ 3M2

plH
2 ¼ −f − P; (37)

d
dt

ða3PX
_ϕÞ þ 1

2
a3Pϕ ¼ 0; (38)

which agree with those derived in Refs. [29,51] for a single-
field case. When only the field χ is present, these reduce to
the first two equations with P ¼ 0. In the presence of the
field ϕ alone, by eliminating H2 and then _H from the first
two equations, one obtains the integrability condition

d
dt

ða3PX
_ϕ2Þ þ 1

2
a3 _P ¼ 0; (39)

which reduces to Eq. (38) for g00 ¼ −1 and ϕ ¼ ϕðtÞ.
Therefore, on the flat FLRW background for f ¼ 0 and
for ϕ depending only on time at the background level, only
two equations [(36) and (37)] are independent.
In the case where both fields are present, Eqs. (36)

and (37) imply

_χ

�
d
dt

ða3fY _χÞ þ
1

2
a3fχ

�
¼ _ϕ

�
d
dt

ða3PX
_ϕÞ þ 1

2
a3Pϕ

�
:

(40)

For χ dynamically changing in time, Eqs. (38) and (40)
show that the field χ obeys a similar continuity equation as
ϕ does. Hence both fields satisfy the continuity equations,
which could also be derived from the vanishing of the
covariant divergences of the individual energy-momentum
tensors. In the above discussion, there was no need to
impose these conditions by hand. The particular noninter-
acting structure of the Lagrangian combined with the
equation of motion (33) leads to the continuity Eq. (38)
for ϕ, while the integrability condition for Eqs. (36) and
(37) leads to a similar one for the field χ. Both continuity
equations thus emerge directly from the action.

IV. SECOND-ORDER LAGRANGIAN

In this section we expand the action (8) up to the second
order in the perturbations in order to derive conditions for
the avoidance of ghosts and of Laplacian instabilities for
scalar and tensor perturbations. We also study the con-
ditions under which the derivatives higher than second
order are absent in our two-field setup.

A. Conditions for the absence of derivatives
higher than second order

Up to second order of the scalar perturbations, the
Lagrangian (22) reads

L ¼ L̄ − _F − 3HF þ ð _F þ LNÞδN þ Eδ1Rþ Lϕδϕþ LXδ1X

þ
�
1

2
LNN − _F

�
δN2 þ 1

2
AδK2 þ BδKδN þ CδKδ1RþDδNδ1Rþ Eδ2Rþ 1

2
Gδ1R2 þ LSδK

μ
νδKν

μ

þ LZδR
μ
νδRν

μ þ LXδ2X þ 1

2
Lϕϕδϕ

2 þ 1

2
LXXδ1X2 þ LϕXδϕδ1X þ ðLRϕ þHLUϕÞδ1Rδϕþ LNϕδNδϕ

þ ðLKϕ þ 2HLSϕÞδKδϕþ ðLRX þHLUXÞδ1Rδ1X þ LNXδNδ1X þ ðLKX þ 2HLSXÞδKδ1X; (41)

where

A ¼ LKK þ 4HLSK þ 4H2LSS; (42)

B ¼ LKN þ 2HLSN; (43)

C ¼ LKR þ 2HLSR þ 1

2
LU þHLKU þ 2H2LSU ; (44)

D ¼ LNR − 1

2
_LU þHLNU ; (45)
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G ¼ LRR þ 2HLRU þH2LUU : (46)

The second-order Lagrangian density explicitly reads as

L2 ¼ δ
ffiffiffi
h

p
½ð _F þ LNÞδN þ Eδ1Rþ Lϕδϕþ LXδ1X�

þ a3
��

LN þ 1

2
LNN

�
δN2 þ Eδ2Rþ 1

2
AδK2 þ BδKδN þ CδKδ1Rþ ðDþ EÞδNδ1Rþ 1

2
Gδ1R2

þ LSδK
μ
νδKν

μ þ LZδR
μ
νδRν

μ þ LXδ2X þ 1

2
Lϕϕδϕ

2 þ 1

2
LXXδ1X2 þ LϕXδϕδ1X

þ ðLϕ þ LNϕÞδNδϕþ ðLX þ LNXÞδNδ1X þ ðLRϕ þHLUϕÞδ1Rδϕþ ðLRX þHLUXÞδ1Rδ1X

þ ðLKϕ þ 2HLSϕÞδKδϕþ ðLKX þ 2HLSXÞδKδ1X

�
: (47)

Since hij is given by Eq. (15) in our gauge choice, it follows that

δ
ffiffiffi
h

p
¼ 3a3ζ; δRij ¼ −ðδij∂2ζ þ ∂i∂jζÞ; δ1R ¼ −4a−2∂2ζ; δ2R ¼ −2a−2½ð∂ζÞ2 − 4ζ∂2ζ�; (48)

where ∂2ζ≡∂i∂iζ¼½∂2=∂ðx1Þ2þ∂2=∂ðx2Þ2þ∂2=∂ðx3Þ2�ζ
and ð∂ζÞ2 ¼ ð∂iζÞð∂iζÞ. After integration by parts the
perturbation δ2R reduces to δ2R ¼ −10a−2ð∂ζÞ2, up to
a boundary term. From Eq. (5), the first-order extrinsic
curvature is expressed as

δKi
j ¼ ð_ζ −HδNÞδij − 1

2a2
δikð∂kNj þ ∂jNkÞ; (49)

where we used the fact that the Christoffel symbols Γk
ij are

the first-order perturbations for nonzero k; i; j. Recalling

that the shift Ni is related to the metric perturbation ψ via
Eq. (14), the trace of Eq. (49) reads

δK ¼ 3ð_ζ −HδNÞ − 1

a2
∂2ψ : (50)

Substituting Eqs. (20,21,48,49), and (50) into the
Lagrangian density (47), it follows that

L2 ¼ a3
��

1

2
ð2LN þ LNN þ 9AH2 − 6BH þ 6LSH2Þ þQ1

�
δN2

þ
�
ðB − 3AH − 2LSHÞ

�
3_ζ − ∂2ψ

a2

�
þ 4ð3HC −D − EÞ ∂

2ζ

a2
þQ2

�
δN

− ð3Aþ 2LSÞ_ζ
∂2ψ

a2
− 12C_ζ

∂2ζ

a2
þ
�
9

2
Aþ 3LS

�
_ζ2 þ 2E

ð∂ζÞ2
a2

þQ3

þ 1

2
ðAþ 2LSÞ

ð∂2ψÞ2
a4

þ 4C
ð∂2ψÞð∂2ζÞ

a4
þ 2ð4Gþ 3LZÞ

ð∂2ζÞ2
a4

�
; (51)

where the terms Q1, Q2, and Q3, which appear in the presence of the field ϕ, are given by

Q1 ¼ _ϕ2½2 _ϕ2LXX − LX þ 2LNX − 6HðLKX þ 2HLSXÞ�; (52)

Q2 ¼ ½Lϕ þ LNϕ þ 2 _ϕ2LϕX − 3HðLKϕ þ 2HLSϕÞ�δϕ − 2 _ϕð2 _ϕ2LXX − LX þ LNXÞ _δϕ

þ 2 _ϕðLKX þ 2HLSXÞ
�
3 _ϕ _ζþ3H _δϕ − _ϕ

∂2ψ

a2

�
− 8 _ϕ2ðLRX þHLUXÞ

∂2ζ

a2
; (53)

EFFECTIVE FIELD THEORY OF MODIFIED GRAVITY … PHYSICAL REVIEW D 89, 064059 (2014)

064059-7



Q3 ¼
1

2
Lϕϕδϕ

2 þ ð2 _ϕ2LXX − LXÞδ _ϕ2 − 2LϕX
_ϕδϕ _δϕþ 3ζðLϕδϕ − 2 _ϕLX

_δϕÞ − 2 _ϕLXδϕ
∂2ψ

a2
þ LX

ð∂δϕÞ2
a2

−
�
ðLKϕ þ 2HLSϕÞ

�∂2ψ

a2
− 3_ζ

�
þ 4ðLRϕ þHLUϕÞ

∂2ζ

a2

�
δϕ

þ 2 _ϕ

�
ðLKX þ 2HLSXÞ

�∂2ψ

a2
− 3_ζ

�
þ 4ðLRX þHLUXÞ

∂2ζ

a2

�
_δϕ: (54)

There is a term 3a3ðLN þ _F þ 2 _ϕ2LXÞζδN in L2, but it
disappears due to the background equations of motion (31)
and (32). In Eq. (54), the term −2 _ϕLXδϕ∂2ψ=a2 originates
from 2 _ϕLX∂iψ∂iδϕ=a2 after integration by parts.
The Lagrangian density (51) contains the terms δN and

∂2ψ but not their time derivatives. Varying the second-order
action S2 ¼

R
d4xL2 with respect to δN and ∂2ψ , we obtain

the following Hamiltonian constraint and momentum
constraint, respectively,

½2LN þLNN − 6HW− 3H2ð3Aþ 2LSÞ

þ 2 _ϕ2ð2LNX −LX þ 2 _ϕ2LXXÞ�δN−W
∂2ψ

a2
þ 3W _ζ

þ 4½3HC−D− E− 2 _ϕ2ðLRX þHLUXÞ�
∂2ζ

a2

þ ½Lϕþ 2 _ϕ2LϕX þLNϕ− 3HðLKϕþ 2HLSϕÞ�δϕ
þ 2 _ϕ½LX − 2 _ϕ2LXX −LNX þ 3HðLKX þ 2HLSXÞ� _δϕ¼ 0;

(55)

WδN − ðAþ 2LSÞ
∂2ψ

a2
þ ð3Aþ 2LSÞ_ζ − 4C

∂2ζ

a2

þ ðLKϕ þ 2HLSϕ þ 2 _ϕLXÞδϕ
− 2 _ϕðLKX þ 2HLSXÞ _δϕ ¼ 0; (56)

where we have denoted

W ≡ B − 3AH − 2LSH þ 2 _ϕ2ðLKX þ 2HLSXÞ: (57)

From Eqs. (55) and (56), we can express δN and ∂2ψ=a2 in
terms of the four quantities _ζ, ∂2ζ=a2, δϕ, and _δϕ. By
substituting these relations into Eq. (51), the Lagrangian
density L2 obeys a simpler functional dependence

L2 ¼ a3
�
C1 _ζ

2 þ C2
ð∂ζÞ2
a2

þ C3 _ζ
∂2ζ

a2
þ C4

ð∂2ζÞ2
a4

þ C5δϕ2 þ C6 _δϕ2 þ C7
ð∂δϕÞ2
a2

þ C8δϕ _δϕ

þ C9ζδϕþ C10ζ _δϕþ C11 _ζδϕþ C12 _ζ _δϕ

þ C13
∂2ζ

a2
δϕþ C14

∂2ζ

a2
_δϕ

�
; (58)

where Ci’s (i ¼ 1; 2;…) are time-dependent coefficients.
The contribution to the action corresponding to the third
term of Eq. (58) can be rewritten, up to a boundary term, asZ

d4xaC3 _ζ∂2ζ ¼
Z

d4x
1

2

d
dt

ðaC3Þð∂ζÞ2; (59)

which generates an additional contribution to the second
term of Eq. (58).
The fourth term of Eq. (58) gives rise to the equations of

motion for ζ with spatial derivatives higher than second
order. This contribution comes from the last three terms in
Eq. (51); hence, provided the three conditions

Aþ 2LS ¼ 0; C ¼ 0; 4Gþ 3LZ ¼ 0 (60)

are satisfied, the coefficient C4 vanishes. Even in the
absence of the scalar field ϕ, the conditions for the
avoidance of spatial derivatives higher than second order
(60) are equivalent to those derived in Ref. [15].
The last term of Eq. (58) corresponds to the mixture of

time and spatial derivatives higher than second order.
Under the conditions (60), the coefficient C14 reduces to

C14¼−8 _ϕ

W
½ðLKXþ2HLSXÞfDþEþ2 _ϕ2ðLRXþHLUXÞg

−ðLRXþHLUXÞW�: ð61Þ

The two combinations LKX þ 2HLSX and LRX þHLUX
originate from the terms on the third line of Eq. (54) as well
as from other contributions. If the conditions

LKX þ 2HLSX ¼ 0; LRX þHLUX ¼ 0 (62)

are satisfied, it follows that C14 ¼ 0. In the context of two
scalar fields, we require that the conditions for the
avoidance of time and spatial derivatives of combined
order higher than two (62) also hold, complementing the
conditions (60) such that any combinations of time and
spatial derivatives higher than second order are eliminated.

B. Conditions for the avoidance of scalar ghosts
and instabilities

In the following, we focus on the theories in which the
conditions (60) and (62) are satisfied. Then the Lagrangian
density (58) can be expressed in the form

L2¼a3
�
_~X
t
K
_~X− 1

a2
∂i

~X tG∂i
~X− ~X tB

_~X− ~X tM ~X
�
; (63)
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where the vector ~X is composed from two dimensionless
gauge-invariant quantities ζ and δϕ=Mpl, as

~X t ¼ ðζ; δϕ=MplÞ: (64)

The 2×2 matrices K, G, B, andM are defined in terms of the
coefficients appearing in Eq. (58). We note that the term
aC13∂2ζδϕ reduces to −aC13∂ζ∂δϕ after integration by parts.
The components of the four matrices are given, respectively, by

K11 ¼
2LS

W2
½g2 þ 8LS

_ϕ2ðg1 þ 2LNXÞ�; K12 ¼ K21 ¼ − 4LS
_ϕMpl

W
ðg1 þ LNXÞ; K22 ¼ g1M2

pl; (65)

G11 ¼ − 1

2
ð _C3 þHC3 þ 4EÞ; G12 ¼ G21 ¼ − C3Mpl

8LS
g3 − 2g4Mpl; G22 ¼ −LXM2

pl; (66)

B11 ¼ 0; B12 ¼ 6 _ϕLXMpl;

B21 ¼
2Mpl

W2
½2LSg3fg5 þ 2 _ϕ2ðg1 þ 2LNXÞg − 2LSWðg6 þ 3Hg3Þ� þ 6 _ϕLXMpl;

B22 ¼
2 _ϕM2

pl

W
½LϕXW − g3ðg1 þ LNXÞ�; (67)

M11 ¼ 0; M12 ¼ M21 ¼ − 3

2
LϕMpl;

M22 ¼ − M2
pl

2W2
½g23fg5 þ 2 _ϕ2ðg1 þ 2LNXÞg − 2g3g6W þ LϕϕW2�; (68)

where

g1 ≡ 2 _ϕ2LXX − LX; g2 ≡ 4LSð2LN þ LNNÞ þ 3ðLKN þ 2HLSNÞ2;
g3 ≡ LKϕ þ 2HLSϕ þ 2 _ϕLX; g4 ≡ LRϕ þHLUϕ;

g5 ≡ 2LN þ LNN þ 12H2LS; g6 ≡ Lϕ þ LNϕ þ 2 _ϕ2LϕX þ 6H _ϕLX: (69)

The coefficient C3 is given by

C3 ¼ − 16LS

W
ðDþ EÞ; (70)

where

W ¼ LKN þ 2HLSN þ 4HLS;

Dþ E ¼ LR þ LNR þ 3HLU=2þHLNU :
(71)

Note that there is the relation g2 ¼ 3WðW − 8HLSÞþ
4LSg5.
The conditions for the avoidance of scalar ghosts are

fulfilled if the two eigenvalues λ1 and λ2 of the kinetic
matrix K are positive:

λ1 þ λ2 ¼
1

W2
½ð16 _ϕ2L2

S þM2
plW

2Þg1 þ 2LSg2

þ 32 _ϕ2L2
SLNX� > 0; (72)

λ1λ2 ¼
2M2

plLS

W2
ðg1g2 − 8 _ϕ2LSL2

NXÞ > 0: (73)

As we prove in Sec. IV C, the tensor ghost is absent for
LS > 0. Taking into account this constraint, the conditions
(72) and (73) read

ð16 _ϕ2L2
S þM2

plW
2Þg1 þ 2LSg2 þ 32 _ϕ2L2

SLNX > 0; (74)

g1g2 > 8 _ϕ2LSL2
NX: (75)

In the absence of couplings between the kinetic termsX and
Y we have LNX ¼ 0. In this case the conditions (74) and
(75) are satisfied for g1 > 0 and g2 > 0.
Let us derive conditions for the avoidance of Laplacian

instabilities for the modes with a wave number k and
a frequency ω in the large k limit. The dispersion relation
following from the Lagrangian density (63) is given by

det ðω2K − k2G=a2Þ ¼ 0: (76)

Introducing the scalar propagation speed cs as ω2 ¼
c2sk2=a2, it follows that

det ðc2sK − GÞ ¼ 0: (77)
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This can be written in the form

c4s − μ1
μ0

c2s þ
μ2
μ0

¼ 0; (78)

where

μ0 ¼ λ1λ2 ¼
2M2

plLS

W2
ðg1g2 − 8 _ϕ2LSL2

NXÞ; (79)

μ1 ¼ −
M2

pl

2W2

h
ð _C3 þHC3 þ 4EÞg1W2

þ 2ðC3g3 þ 16LSg4Þ _ϕðg1 þ LNXÞW
þ 4LSLXfg2 þ 8 _ϕ2LSðg1 þ 2LNXÞg

i
; (80)

μ2 ¼
M2

pl

64L2
S

½32ð _C3 þHC3 þ 4EÞL2
SLX − ðC3g3 þ 16LSg4Þ2�:

(81)

The solution to Eq. (78) is given by

c2s ¼
μ1
2μ0

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4μ0μ2

μ21

s #
: (82)

Since μ0 > 0 under the no-ghost condition (73), the two
solutions of c2s are positive for μ1 > 0 and μ2 > 0, which
translate to

ð _C3þHC3þ4EÞg1W2þ2ðC3g3þ16LSg4Þ _ϕðg1þLNXÞW
þ4LSLXfg2þ8 _ϕ2LSðg1þ2LNXÞg<0; (83)

32ð _C3 þHC3 þ 4EÞL2
SLX − ðC3g3 þ 16LSg4Þ2 > 0: (84)

In the absence of the field ϕ, the condition (83) reads
ð _C3 þHC3 þ 4EÞg1W2 < 0. Since g1 > 0 to avoid scalar
ghosts, we have that _C3 þHC3 þ 4E < 0. This condition
agrees with the one derived in Ref. [15] for a single scalar field.
At the end of this subsection we present the master

equations for scalar perturbations in the two-field scenario
satisfying the conditions (60) and (62). First, the Hamiltonian
and momentum constraint Eqs. (55) and (56) read

½g5 þ 2 _ϕ2ðg1 þ 2LNXÞ − 6HW�δN

−W
∂2ψ

a2
þ 3W _ζ − 4ðDþ EÞ ∂

2ζ

a2
þ ðg6 − 3Hg3Þδϕ

− 2 _ϕðg1 þ LNXÞ _δϕ ¼ 0; (85)

WδN − 4LS
_ζ þ g3δϕ ¼ 0: (86)

Variations of the Lagrangian density (63) with respect to ζ and
δϕ lead to

d
dt

ð2MplK11
_ζ þ 2K12

_δϕ − B21δϕÞ

þ 3Hð2MplK11
_ζ þ 2K12

_δϕ − B21δϕÞ − 2MplG11

∂2ζ

a2

− 2G12

∂2δϕ

a2
þ B12

_δϕþ 2M12δϕ ¼ 0; (87)

d
dt

ð2MplK12
_ζ þ 2K22

_δϕ − B22δϕÞ

þ 3Hð2MplK12
_ζ þ 2K22

_δϕ − B22δϕÞ − 2MplG12

∂2ζ

a2

− 2G22

∂2δϕ

a2
þ B22

_δϕþ 2M22δϕ

þMplðB21 − B12Þ_ζ ¼ 0: (88)

In deriving Eq. (88), we used the property

_B12 þ 3HB12 − 2M12 ¼ 0; (89)

which follows from the background Eq. (33). From Eqs. (85)
and (86) we have

2MplK11
_ζ þ 2K12

_δϕ − B21δϕ

¼ Mpl

�
4LS

∂2ψ

a2
− C3

∂2ζ

a2

�
− 6MplLX

_ϕδϕ: (90)

Substituting this relation into Eq. (87) and using Eqs. (33) and
(86), we obtain

− C3W
16LS

δNþLS _ψþð _LSþHLSÞψþEζþg4δϕ¼0; (91)

which corresponds to the traceless part of the gravitational
field equations.
The explicit dynamics of scalar perturbations emerges

as a solution of Eqs. (85)–(88) and (91) for any given
Lagrangian.

C. Tensor perturbations

Tensor perturbations (gravitational waves) are outside
the general framework of our paper, but they provide useful
conditions for the avoidance of ghosts and of Laplacian
instabilities which have to hold together with those pre-
viously derived. For this purpose, let us derive the second-
order action for tensor perturbations γij under the con-
ditions (60). We express the three-dimensional metric in the
form

hij ¼ a2ðtÞe2ζĥij; ĥij ¼ δijþ γijþ
1

2
γilγlj; det ĥ¼ 1;

(92)

where γii ¼ ∂iγij ¼ 0. The second-order term γilγlj=2 has
been introduced for the simplification of calculations [52].
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We substitute the expression (92) into the Lagrangian (22)
and set all of the scalar perturbations to be zero. In doing so,
we use the following properties of tensor perturbations:

δK ¼ 0; δK2
ij ¼

1

4
_γ2ij; δ1R ¼ 0;

δ2R ¼ − 1

4a2
ð∂kγijÞ2:

(93)

Then the second-order action for gravitational waves
reads

Sð2Þh ¼
Z

d4xa3½LSðδKν
μδK

μ
ν − δK2Þ þ Eδ2R�

¼
Z

d4x
a3

4
LS

�
_γ2ij − E

LS

1

a2
ð∂kγijÞ2

�
: (94)

This shows that the no-ghost condition for tensor pertur-
bations corresponds to

LS > 0: (95)

The tensor propagation speed square is given by

c2t ¼
E
LS

: (96)

Provided that the condition (95) holds, the condition for the
avoidance of the Laplacian instability for tensor pertur-
bations is

E ¼ LR þ 1

2
_LU þ 3

2
HLU > 0: (97)

In addition to the conditions for the absence of scalar ghosts
and of Laplacian instabilities derived in the previous
section, the theory needs to respect the two conditions
(95) and (97).

V. A PARTICULAR FAMILY OF DARK ENERGY
AND DARK MATTER MODELS

In this section we apply our results derived in the
previous sections to a family of models describing both
dark energy and dark matter. We use both N and χ,
depending on the circumstances, as representing the dark
energy scalar field, while ϕwill play the role of dark matter.

A. Horndeski-type dark energy and k-essence–type
dark matter

For dark energy we consider a scalar degree of freedom
χ in the framework of the Horndeski theory, whereas for
dark matter we pick a k-essence–like scalar field ϕ without
a direct coupling to gravity. Such a theory is described by
the Lagrangian

L ¼
X5
i¼2

Li; (98)

where

L2 ¼ G2ðχ; Y;ϕ; XÞ; (99)

L3 ¼ G3ðχ; YÞ□χ; (100)

L4 ¼ G4ðχ; YÞR − 2G4Yðχ; YÞ½ð□χÞ2 − χ;μνχ;μν�; (101)

L5 ¼ G5ðχ; YÞGμνχ
;μν þ 1

3
G5Yðχ; YÞ½ð□χÞ3

−3ð□χÞχ;μνχ;μν þ 2χ;μνχ
;μσχ;ν;σ�: (102)

Here G2 to G5 are arbitrary functions of the indicated
variables. Note that L2 is the only contribution to the
Lagrangian directly affected by the scalar field ϕ. In the
Horndeski theory with a perfect-fluid dark matter,
the equations of linear perturbations and the resulting
bispectrum associated with large-scale structures have been
derived in Refs. [36,42,53,54]. We also caution that the
definition of Y is different from that used in Refs. [36,42]
(the factor −2 multiplied), but it is the same as the notation
of Ref. [15].
Since we have chosen unitary gauge (δχ ¼ 0), the

unit vector nμ orthogonal to constant χ hypersurfaces
is given by

nμ ¼ −γχ;μ; γ ¼ 1ffiffiffiffiffiffiffi−Yp : (103)

From this it follows that

χ;μν ¼ − 1

γ
ðKμν − nμaν − nνaμÞ þ

γ2

2
χ;σY ;σnμnν; (104)

□χ ¼ −
1

γ
K þ χ;σY ;σ

2Y
: (105)

Using these relations and Eq. (6), the three Lagrangians L3,
L4, and L5 can be expressed as [15]

L3 ¼ 2ð−YÞ3=2F3YK − YF3χ ; (106)

L4 ¼ G4Rþ ðG4 − 2YG4YÞðS − K2Þ − 2
ffiffiffiffiffiffiffi−Yp

G4χK;

(107)

L5 ¼
ffiffiffiffiffiffiffi−Yp

F5

�
1

2
KR − U

�
−Hð−YÞ3=2G5Yð2H2 − 2KH þ K2 − SÞ

þ 1

2
YðG5χ − F5χÞRþ 1

2
YG5χðK2 − SÞ; (108)

where F3ðχ; YÞ and F5ðχ; YÞ are auxiliary fields defined by
G3 ≡ F3 þ 2XF3X and G5Y ≡ F5Y þ F5=ð2YÞ. We note

EFFECTIVE FIELD THEORY OF MODIFIED GRAVITY … PHYSICAL REVIEW D 89, 064059 (2014)

064059-11



that Y depends on N through the relation Y ¼ −_χ2=N2,
valid on the FLRW background and also to linear order as
the unitary gauge is imposed. For the Lagrangian (98) with
(99) and (106)–(108), one can show that the conditions (60)
and (62) are satisfied, so this theory does not have
derivatives higher than second order.

B. No-ghost conditions and propagation speeds

For the theories described by the Lagrangian (98),
the conditions for the avoidance of tensor ghosts and of
Laplacian instabilities become

LS ¼ G4 − 2YG4Y −H _χYG5Y − 1

2
YG5χ > 0; (109)

E ¼ G4 þ
1

2
YG5χ − YG5Y χ̈ > 0; (110)

which agree with those derived for the single-field
Horndeski theory [23,55,56]. Note that in the presence
of the Lagrangians L4 and L5 the tensor propagation speed
square c2t ¼ E=LS is generally different from 1.
The term LNX in Eqs. (74) and (75) is given by

LNX ¼ 2_χ2G2YX: (111)

If the two kinetic terms Y and X do not have a direct
coupling, it follows that LNX ¼ 0. In the following we shall
focus on the theories obeying LNX ¼ 0. Then, the no-ghost
conditions (74) and (75) translate to

g1 ¼ 2 _ϕ2G2XX −G2X > 0; (112)

g2 ¼ ð8LSwþ 9W2Þ=3 > 0; (113)

where

w≡ 3LN þ 3LNN=2 − 9HðLKN þ 2HLSNÞ − 18LSH2

¼ −18H2G4 þ 3ðYG2Y þ 2Y2G2YYÞ − 18H _χð2YG3Y þ Y2G3YYÞ − 3YðG3χ þ YG3χYÞ
þ 18H2ð7YG4Y þ 16Y2G4YY þ 4Y3G4YYYÞ − 18H _χðG4χ þ 5YG4χY þ 2Y2G4χYYÞ
þ 6H3 _χð15YG5Y þ 13Y2G5YY þ 2Y3G5YYYÞ þ 9H2Yð6G5χ þ 9YG5χY þ 2Y2G5χYYÞ; (114)

W ¼ 4HG4 þ 2_χYG3Y − 16HðYG4Y þ Y2G4YYÞ
þ 2_χðG4χ þ 2YG4χYÞ − 2H2 _χð5YG5Y þ 2Y2G5YYÞ
− 2HYð3G5χ þ 2YG5χYÞ: (115)

The conditions (112) and (113) correspond to the no-
ghost conditions for the scalar fields ϕ and χ, respec-
tively. The latter condition coincides with the one
derived in Refs. [23,55,56] in the single-field Horndeski
theory.1

For the Lagrangian (98), we have the relation

LS ¼ Dþ E ¼ LR þ LNR þ 3

2
HLU þHLNU ; (116)

so that the coefficient C3 in Eq. (70) reads

C3 ¼ − 16L2
S

W
: (117)

Using this property, the squares of the two scalar propa-
gation speeds (82) yield

c2s1 ¼
G2X

G2X − 2 _ϕ2G2XX

; (118)

c2s2 ¼
16L2

SðHW þ 2 _ϕ2G2XÞ −W2ð _C3 þ 4EÞ
4g2LS

; (119)

where LS, E, g2, and W are given by Eqs. (109,110,113),
and (115), respectively. The result (118) matches the
propagation speed derived for the single-field k inflation
[57]. In the particular case _ϕ ¼ 0 the second propagation
speed (119) reproduces the one derived in the Horndeski
theory [56], but the presence of the field ϕ modifies the
single-field result. This latter property is consistent with the
result of Ref. [36] derived for a perfect-fluid dark matter.
Under the no-ghost conditions (109,112), and (113), the
instability of scalar perturbations can be avoided for

G2X < 0; (120)

16L2
SðHW þ 2 _ϕ2G2XÞ −W2ð _C3 þ 4EÞ > 0: (121)

C. Equations of dark-matter perturbations

In the following we study the theories where the
Lagrangian L2 describes noninteracting scalar fields

L2 ¼ fðχ; YÞ þ Pðϕ; XÞ; (122)

1Compared to the quantities w1;2;3;4 introduced in Ref. [56],
there are the correspondences w1 ¼ 2LS , w2 ¼ W, w3 ¼ w, and
w4 ¼ 2E.
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while the Lagrangians L3;4;5 are still given by Eqs. (100)–
(102). In this case the field ϕ does not directly couple to
χ, but the latter field has a coupling to gravity through the
Lagrangians L4 and L5. The dark-matter field ϕ indirectly
feels the change of the gravitational law through the
modified Poisson equation.
The energy-momentum tensor of the field ϕ is

Tμν ¼ − 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
Pðϕ; XÞÞ
δgμν

¼ −2PX∂μϕ∂νϕþ gμνP:

(123)

From this, the background energy density arises as
ρ ¼ −T0

0 ¼ 2XPX − P. The isotropic pressure, defined
as the coefficient of δij in Ti

j, is exactly the Lagrangian
P of the scalar field ϕ [57]. We note that Eq. (33) is
equivalent to the continuity equation _ρþ 3Hðρþ PÞ ¼ 0.
The perturbation of the energy density reads

δρ¼−δT0
0¼ðPXþ2XPXXÞδX−ðPϕ−2XPϕXÞδϕ; (124)

where δX ¼ 2 _ϕ2δN − 2 _ϕ _δϕ. The pressure perturbation
δP, defined by δTi

j ¼ δPδij, is

δP ¼ PXδX þ Pϕδϕ: (125)

At the level of the background, the momentum qi ¼ T0
i

vanishes. The momentum perturbation δq, defined by
δT0

i ¼ ∂iδq, becomes

δq ¼ 2PX
_ϕδϕ: (126)

Anisotropic stresses are not included, as they arise only at
second order (they are bilinear in δ∂iϕ due to the fact that
on the background ϕ ¼ ϕðtÞ; hence, ∂iϕ vanishes to
leading order).
Since the field ϕ does not directly couple to χ, the

energy-momentum tensor Tμ
ν obeys the continuity equation

Tμ
ν ;μ ¼ 0. The ν ¼ 0 component of the linearized energy-

momentum tensor satisfies

δTμ
0;μ ¼ _δT0

0 þ ∂iδTi
0 þ δΓi

0iT
0
0 þ Γi

0iδT
0
0 − δΓi

0iT
i
i

− Γi
0iδT

i
i; (127)

where the lhs denotes the variation of the covariant 4-
divergence and the first term on the rhs is the time
derivative of the variation. On using the properties
δTi

0 ¼ a−2ð2XPX∂iψ − ∂iδqÞ, Γi
0j ¼ Hδij, and δΓi

0j ¼
_ζδij for the metric (10) with the gauge choice E ¼ 0, it
follows that

_δρþ3HðδρþδPÞþðρþPÞ
�
3_ζ−∂2ψ

a2

�
þ 1

a2
∂2δq¼ 0:

(128)

From Eqs. (85) and (86) we can express ∂2ζ=a2 in terms of
_ζ, ∂2ψ=a2, δϕ, and _δϕ. Substituting this relation into
Eq. (88), rewriting δϕ and _δϕ in terms of δρ and δP,
and using the properties g3 ¼ 2 _ϕPX, g4 ¼ 0, g6 ¼
Pϕ þ 2 _ϕ2PϕX þ 6H _ϕPX, and (117), we can also
derive Eq. (128).22

Similarly, from the continuity equation δTμ
i ;μ ¼ 0,

we obtain

_δqþ 3Hδqþ ðρþ PÞδN þ δP ¼ 0: (129)

One can easily confirm that δq given in (126) satisfies
Eq. (129) by using the background Eq. (33).
From the perturbations δρ and δq we can construct the

following gauge-invariant variables

δ̂ρ≡ δρ − 3Hδq; δ̂≡ δ̂ρ

ρ
¼ δ − 3Hv; (130)

where δ≡ δρ=ρ and v≡ δq=ρ. We define the “adiabatic
sound speed” ca of the field ϕ, as

c2a ≡
_P
_ρ
¼ w − _w

3Hð1þ wÞ ; (131)

where w≡ P=ρ is the equation of state. We also introduce
the “general sound speed” cx, as

c2x ≡ δP
δρ

: (132)

For a perfect fluid, c2x is identical to c2a, but for an imperfect
fluid like a scalar field, c2x is generally different from c2a. In
order to address this difference, we define the following
entropy perturbation [49,58]:

δs≡ ðc2x − c2aÞδ ¼
δP
ρ

− c2a
δρ

ρ
: (133)

In the scalar-field rest frame, we have δq ¼ 0 and δ̂ ¼ δ,
so that the entropy perturbation reads δ̂s ¼ ðĉ2x − c2aÞδ̂.
Here ĉ2x ¼ ˆδP=δ̂ρ can be obtained by setting δϕ ¼ 0 in
Eqs. (124) and (125), that is

ĉ2x ¼ c2s1 ¼
PX

PX þ 2XPXX
; (134)

where c2s1 is given in Eq. (118). Using the property that the
entropy perturbation (133) is gauge invariant, the pressure
perturbation can be generally expressed as

2It is convenient to notice the following relation:

2MplK12
_ζ þ 2K22

_δϕ − B22δϕ ¼ ðδρþ PϕδϕÞM2
pl= _ϕ:
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δP¼c2s1δρ−3Hðc2s1−c2aÞδq¼c2s1δ̂ρþ3Hc2aδq: (135)

Using the quantities δ̂, v, c2s1, c
2
a, and w, the perturbation

Eqs. (128) and (129) in Fourier space read

_̂δþ 3Hðc2s1 − wÞδ̂þ
�
9H2ðc2a − wÞ þ 3 _H − k2

a2

�
v

þ 3H _vþ ð1þ wÞ
�
3_ζ þ k2

a2
ψ

�
¼ 0; (136)

_vþ 3Hðc2a − wÞvþ ð1þ wÞδN þ c2s1δ̂ ¼ 0: (137)

D. Effective gravitational couplings
for subhorizon perturbations

For perturbations related to large-scale structures, we are
interested in the subhorizon modes with k2=a2 ≫ fH2; j _Hjg.
Let us consider cold dark matter obeying the conditions
jwj ≪ 1 and j _w=Hj ≪ 1. The k-essence dark-matter model
with the Lagrangian PðXÞ ¼ F0 þ F2ðX − X0Þ2 [31] can
satisfy these conditions in the early matter era. Taking the
time derivative of Eq. (136) and using Eq. (137), the matter
perturbation on subhorizon scales approximately obeys the
following equation:

̈δ̂þ 2H _̂δþ c2s1
k2

a2
δ̂þ k2

a2
Ψ≃ 0; (138)

where Ψ≡ δN þ _ψ is the gauge-invariant gravitational
potential [48]. For the theories with c2s1 > 0, the gravitational
growth of δ̂ is prevented by the pressure perturbation.
Substituting the relation (117) into Eq. (91) and using

the fact that g4 ¼ 0 for the theories we are studying now,
it follows that

Ψ ¼ −
�
_LS

LS
þH

�
ψ − E

LS
ζ: (139)

Since the first two terms of Eq. (138) are at most of the
order ofH2δ̂, the gravitational potentialΨ can be estimated
as Ψ ∼ ðaH=kÞ2δ̂. For the modes deep inside the Hubble
radius (k ≫ aH), it follows that jΨj ≪ jδ̂j. In the following
we use the quasistatic approximation on subhorizon scales,
under which the contributions of metric perturbations in
field equations are neglected unless they are multiplied by
the factor k2=a2.
From Eq. (128) the order of the momentum perturbation

can be estimated as Hδq≃ ðaH=kÞ2δρ so that jHδqj ≪
jδρj and δ̂ρ≃ δρ for k ≫ aH. From Eq. (126) the

momentum perturbation δq is proportional to δϕ, whereas
the density perturbation δρ in Eq. (124) involves both _δϕ
and δϕ. Under the subhorizon approximation the dominant
contribution to δρ comes from the _δϕ-dependent terms.
From Eq. (86) the metric perturbation δN inside the term
δX of Eq. (20) does not contain terms involving _δϕ. Hence
the gauge-invariant density perturbation is approximately
given by

δ̂ρ≃ δρ≃−2 _ϕðPX þ 2XPXXÞ _δϕ ¼ 2 _ϕg1 _δϕ: (140)

Under the quasistatic approximation on subhorizon
scales, Eq. (85) reads

W
k2

a2
ψ þ 4LS

k2

a2
ζ − ρδ̂≃ 0: (141)

Neglecting the variation of ζ in Eqs. (87) and (88),
it follows that

2MplG11

k2

a2
ζ þ

�
2G12

k2

a2
þ 2M12 − _B21 − 3HB21

�
δϕ

þ ðB12 − B21 þ 2 _K12 þ 6HK12Þ _δϕþ 2K12δ̈ϕ≃ 0;

(142)

2MplG12

k2

a2
ζ þ

�
2G22

k2

a2
þ 2M22 − _B22 − 3HB22

�
δϕ

þ 2ð _K22 þ 3HK22Þ _δϕþ 2K22δ̈ϕ≃ 0: (143)

Instead of the curvature perturbation ζ, we can also employ
the gauge-invariant Mukhanov-Sasaki variable δχζ ≡ δχ −
_χζ=H [59] (δχζ ¼ −_χζ=H in unitary gauge). If we rewrite
Eqs. (87) and (88) in terms of δχζ, there appears a term
associated with the mass mχ of the dark energy field χ. By
neglecting the time derivatives of ζ in Eqs. (142) and (143),
we also drop the contribution of such a mass term. This
approximation is valid for a light scalar field with mχ much
smaller than the physical wave number k=a of interest. For
the models in which the dark energy field becomes heavy in
the past, we need to take into account such a mass term
(along the line of Refs. [40,42]). Since such a heavy field
merely recovers the general relativistic behavior in the past,
our treatment of a nearly massless dark energy field is
sufficient to understand the modification of gravity at the
late cosmological epoch.
From Eqs. (142) and (143) we can express ζ in terms of

_δϕ and δϕ, as

k2

a2
ζ ≃ ðB12 − B21 þ 2 _K12ÞK22 − 2K12

_K22

2MplðG12K12 −G11K22Þ
_δϕþ ð _B22 þ 3HB22 − 2M22ÞK12 − ð _B21 þ 3HB21 − 2M12ÞK22

2MplðG12K12 −G11K22Þ
δϕ; (144)

where we used the property G22K12 ¼ G12K22. On using Eqs. (126) and (140), it follows that
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k2

a2
ζ ≃ ðB12 − B21 þ 2 _K12ÞK22 − 2K12

_K22

4g1 _ϕMplðG12K12 −G11K22Þ
δ̂ρþ ð _B22 þ 3HB22 − 2M22ÞK12 − ð _B21 þ 3HB21 − 2M12ÞK22

4PX
_ϕMplðG12K12 −G11K22Þ

δq: (145)

The second term on the rhs of Eq. (145) is much smaller than the first term for the modes deep inside the Hubble radius, and
hence,

k2

a2
ζ ≃ ðB12 − B21 þ 2 _K12ÞK22 − 2K12

_K22

4g1 _ϕMplðG12K12 −G11K22Þ
ρδ̂: (146)

Substituting Eq. (146) into Eq. (141), we have

k2

a2
ψ ≃ g1 _ϕMplðG12K12 −G11K22Þ þ 2LSK12

_K22 − LSK22ðB12 − B21 þ 2 _K12Þ
g1 _ϕWMplðG12K12 −G11K22Þ

ρδ̂: (147)

Finally, plugging the relations (146) and (147) into Eq. (139), we obtain

k2

a2
Ψ≃−

�
_LS þHLS

WLS
þ f4LSð _LS þHLSÞ − EWgf2K12

_K22 − K22ðB12 − B21 þ 2 _K12Þg
4g1 _ϕLSWMplðG12K12 −G11K22Þ

�
ρδ̂: (148)

The rhs of Eq. (148) works as a driving force for the growth
of the density perturbation δ̂ in Eq. (138).
Let us first consider the theory described by the

Lagrangian (34), i.e., two minimally coupled scalar fields
in the framework of general relativity (GR). Since this
Lagrangian reduces to (35), we have that LS ¼ E ¼ M2

pl=2
and W ¼ 2HM2

pl. Then the second term in the square
bracket of Eq. (148) vanishes so that

k2

a2
Ψ≃− 1

2M2
pl

ρδ̂ ¼ −4πGρδ̂; (149)

where G ¼ 1=ð8πM2
plÞ is the Newton’s gravitational con-

stant. For the models with c2s1 ≪ 1, the matter perturbation
grows as δ̂ ∝ a during the deep-matter era.
In modified gravitational theories, the second term in the

square bracket of Eq. (148) does not generally vanish so
that the Poisson equation is subject to change. We note that
the result (148) has been derived for a scalar-field dark
matter, whereas in a number of past works [38,40,42,44],
the modified Poisson equation was obtained for a pressur-
eless perfect fluid. If we consider a purely kinetic scalar
Lagrangian PðXÞ [31], then c2s1 ¼ PX=ðPX þ 2XPXXÞ is
equivalent to the adiabatic sound speed square c2a. In this
case the scalar field ϕ behaves as a perfect fluid [43] with
the limit c2s1 → 0 for cold dark matter.
In order to confirm that the result (148) can reproduce the

effective gravitational coupling derived for some modified
gravity models, let us study the model described by the
Lagrangian

L ¼ 1

2
MplχR −MplωBD

2χ
Y þ PðXÞ: (150)

This is the Brans-Dicke (BD) theory [60] (with the BD
parameter ωBD) in the presence of a dark energy field
χ coupled to R and a purely kinetic dark matter. From
Eq. (107), the Lagrangian (150) can be expressed as

L ¼ 1

2
MplχðRþ S − K2Þ −Mpl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−YðNÞ
p

K

−MplωBD

2χ
YðNÞ þ PðXÞ: (151)

From the background equations of motion (31)–(33) we
obtain

χ̈ ¼ −2 _Hχ þH _χ − ωBD _χ
2=χ þ 2PX

_ϕ2=Mpl; (152)

ϕ̈ ¼ 3HPX
_ϕ=g1: (153)

The quantities such as LS , E, and W depend on the field
χ, as LS¼E¼Mplχ=2 andW ¼ Mplð_χ þ 2HχÞ. Evaluating
other quantities in Eq. (148), using Eqs. (152) and (153),
and taking the limit PX=ðXPXXÞ → 0 (i.e., c2s1 → 0),
Eq. (148) reduces to

k2

a2
Ψ≃−4πGeffρδ̂; Geff ¼

4þ 2ωBD

3þ 2ωBD

Mpl

χ
G: (154)

The effective gravitational coupling agrees with the one
derived for a pressure-less perfect-fluid dark matter
[38,40,42,44]. In the limit that ωBD → ∞ and χ → Mpl,
we recover the GR behavior Geff → G. For the general BD
parameter, the gravitational coupling differs from G, which
modifies the growth rate of δ̂ through Eq. (138).
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VI. CONCLUDING REMARKS

The EFTof cosmological perturbations is a powerful tool
to deal with a variety of dark energy and modified gravity
models in a unified way. The starting Lagrangian depends
on the lapse function N and all the possible geometric
scalar quantities constructed by the 3þ 1 decomposition of
the ADM formalism [15]. In this setup there is one scalar
degree of freedom χ whose perturbation can be absorbed
into the gravitational sector by choosing unitary gauge. The
field χ manifests itself in the perturbation equations of
motion through the lapse dependence of the kinetic energy
Y ¼ gμν∂μχ∂νχ and also through a possible explicit time
dependence.
In this paper we have extended the single-field EFT of

dark energy to the case in which another scalar field ϕ is
present. In the Lagrangian, we have included the explicit
dependences on ϕ and its kinetic energy X, in addition to
the scalar quantities of geometric type which arise in the
single field case (with origin in the ADM decomposition).
Our interest is the application of the multifield EFT of
cosmological perturbations to a joint description of dark
matter and dark energy. The second field ϕ plays the
role of scalar dark matter, whereas the first scalar degree
of freedom χ is responsible for the late-time cosmic
acceleration. Our formalism can be applied to multifield
inflation as well.
In such a two-field system we expanded the action up to

second order in the perturbations around the flat FLRW
background. Despite the original Lagrangian containing
several gravitational variables, their geometrical origin implies
that some of the variables in the first-order Lagrangian density
are interrelated, leaving only three of them as independent.
The first-order Lagrangian density (30) gives rise to the
background Eqs. (31)–(33). When the fields are noninteract-
ing, an integrability condition of these equations ensures that
each of them obeys a continuity equation—a natural require-
ment, which however in this case should not be imposed by
hand, as it already follows at the level of the action.
We derived the second-order perturbed Lagrangian density

(51), which contains the new contributions Qi (i ¼ 1; 2; 3)
generated by the field ϕ. By employing the Hamiltonian
and momentum constraints, we reduce the Lagrangian
density L2 to the simpler form (58). The sufficient
conditions to eliminate the spatial derivatives higher than
second order are given by Eq. (60), whose result coincides
with those derived in Ref. [15]. In the multifield system,
however, the Lagrangian L2 generally contains the term
C14∂2ζ _δϕ=a2, which is the product of temporal and
spatial derivatives at combined order higher than two.

The sufficient conditions for the absence of this new term
are presented in Eq. (62).
We proceeded by investigating such second-order the-

ories satisfying the conditions (60) and (62). The no-ghost
conditions for scalar perturbations were obtained as
Eqs. (72) and (73). In the small-scale limit we also derived
the squares of two scalar propagation speeds, given in
Eq. (82), both required to be positive in order to avoid
Laplacian-type instabilities. The additional conditions (95)
and (97) associated with the absence of tensor ghosts and of
Laplacian instabilities further restrict the viable model
parameter space.
In Sec. V we applied our results to the Horndeski theory

augmented by the scalar field ϕ with the Lagrangian (99).
In the absence of the coupling between the two kinetic
terms (LNX ¼ 0), the no-ghost conditions agree with those
derived in earlier works. In this case one of the propagation
speeds cs1 is associated with dark matter, whereas another
speed cs2 carries the information on the modification of
gravity. We note that cs2 is also affected by the presence of
the field ϕ, exhibiting properties consistent with the
findings of Ref. [36] for a perfect-fluid dark matter.
For the two-field system described by the Lagrangian

Pðϕ; XÞ plus the Horndeski Lagrangian, we have also
derived the equations of gauge-invariant perturbations of
dark matter. Under the quasistatic approximation on sub-
horizon scales we have obtained the modified Poisson
Eq. (148), associated with the growth rate of matter
perturbations. This is valid for an imperfect-fluid dark
matter described by the k-essence Lagrangian Pðϕ; XÞ.
Dark matter with a purely kinetic Lagrangian PðXÞ behaves
as a perfect fluid, in which case the effective gravitational
coupling in the presence of a Brans-Dicke scalar field
χ reduces to the one known in the literature.
Since we have derived the full linear perturbation

equations of motion in this general multifield setup, our
formalism is useful for constructing realistic scalar-field
dark matter and modified gravity models, compatible with
observations. We leave the detailed analysis of the evolu-
tion of matter perturbations and the confrontation of these
models with observational constraints for future work.
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