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Nonlocal-in-time action for the fourth post-Newtonian
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We complete the analytical determination, at the 4th post-Newtonian (4PN) approximation, of the
conservative dynamics of gravitationally interacting two-point-mass systems. This completion is obtained
by resolving the infra-red ambiguity which had blocked a previous 4PN calculation [P. Jaranowski and
G. Schifer, Phys. Rev. D 87, 081503(R) (2013)] by taking into account the 4PN breakdown of the usual
near-zone expansion due to infinite-range tail-transported temporal correlations found long ago
[L. Blanchet and T. Damour, Phys. Rev. D 37, 1410 (1988)]. This leads to a Poincaré-invariant
4PN-accurate effective action for two masses, which mixes instantaneous interaction terms (described
by a usual Hamiltonian) with a (time-symmetric) nonlocal-in-time interaction.
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I. INTRODUCTION

The prospect of detecting, in the coming years, the
gravitational wave signals emitted by coalescing binary
systems of compact bodies (neutron stars or black holes)
provides a strong incentive for pushing the analytical
theory of two-body systems to the highest possible
accuracy. Post-Newtonian (PN) theory is one of the key
techniques for analytically describing the dynamics of
binary systems. Some time ago, the conservative dynamics
of binary systems has been obtained at the 3rd post-
Newtonian (3PN) accuracy through a sequence of works
[1-9] that culminated in Ref. [10] (see also [11-14] for later
rederivations). Recently, several works have obtained a
partial knowledge of the conservative dynamics at the 4th
post-Newtonian (4PN) accuracy [15-23] (see also [24] for
a closed-form expression valid to all PN-orders, at first
order in Newton’s gravitational constant). We shall show
here how to complete this line of work by determining the
full effective action describing the 4PN-accurate
conservative two-body dynamics.

The stumbling block of Ref. [22] was the appearance
of irreducible IR divergences in the calculation of the PN-
expanded Hamiltonian Hpn(X1, X5, Py, P2) of the binary
system. These IR divergences (separated as HI =
[ d3xhE in [22]) will be further studied here and will
be shown to be directly related to an old result of Blanchet
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and Damour [25]. Reference [25] found that the usual PN
scheme, based, in particular, on a formal near-zone expan-
sion of the flat-spacetime gravitational propagator, of the

type

Gg(r,x;1,x")

I\t
= —4rx A—?at

1 1
= —4rn (A—l + ?Aﬂa% + ?A*a;‘ + - ) s(t—1),
(1.1)

incurred a fundamental breakdown precisely at the 4PN
level. Indeed, at this level of accuracy it is crucial to take
account of the fact that the gravitational propagator
G,(t.x;7,x') in the curved spacetime g generated by the
binary system contains, even when both spatial positions x
and x’ are well within the usually defined near-zone (i.e.,
when |x|,|x'| <% with Z=cQ~! denoting the reduced
wavelength associated to the orbital frequency ), a sig-
nificant fail contribution whose support is not limited to
lightlike intervals, |t—7|=|x —x'|/c, but extends to
strongly time-nonlocal intervals |t — 7| > |x — X/|/c.
Reference [25] computed (for the case of the retarded
propagator) the near-zone effect of these infinite-range
tail-transported temporal correlations, and we shall show
below how the time-symmetric version of their result (related
to the conservative part of the dynamics) is precisely
consistent with the IR divergences occurring when using
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(as was done in [22]) the standard PN near-zone expansion
Eq. (1.1). This will allow us to remove these unphysical IR
divergences and to replace them by their physical origin, a
specific time-nonlocal interaction.

We employ the following notation: x = (x') (i = 1,2, 3)
denotes a point in the 3-dimensional Euclidean space R3
endowed with a standard Euclidean metric and a scalar
product (denoted by a dot). Letters a and b (a, b = 1, 2) are
body labels, so x, € R? denotes the position of the ath
point mass. We also define r,=x-x,, r,=|r,]
n,=r,/r,; and for a #b, vy, =X, —Xp, Iy =
N, =r,/"w; |- | stands here for the Euclidean length
of a vector. The linear momentum vector of the ath body is
denoted by p, = (p.;), and m, denotes its mass parameter.
We abbreviate 5(x —x,,) by &, Extensive use has been
made of the computer-algebra system MATHEMATICA.

II. REDUCED (FOKKER-TYPE) ACTION
OF A TWO-BODY SYSTEM

We are interested in the (reduced) action S[xy,x%]
describing the conservative dynamics of an isolated,
gravitationally interacting two-body system. This
Fokker-type action is formally obtained by eliminating
the gravitational field g,,, conveying the time-symmetric
(half-retarded-half-advanced) gravitational interaction, in
the total (gauge-fixed) action S,,[x4:g,,] describing the
particles-plus-field system [26—28]. When working in the
harmonic gauge, the Fokker action can be written as an
infinite series Sgee + S1p + - - -, Where Sgee = — [mds; —

[ myds, (with ds, =

the one-graviton-exchange interaction [29]

Sia[x1, %] = 2G//d51d52 flfy(sl)

X Guap(x1(51) = xz(Sz))t(zlﬁ(SZL

—1,,dxzdx4) is the free action, S,

@2.1)

with linear source terms #; (s,) = m,(dx/ds,)(dx4/ds,),
gravitational propagator (in D = 4 spacetime dimensions)

gm/,aﬁ = (']/m”yﬂ - %nﬂv’/]aﬁ)g’ with g(x’ x/) = _47[[15_}’1111 =
81, (x* — x"*)(x* = x'*)), and where the higher-order
terms + - - - are given by more complicated Feynman-like

integrals of the type (suppressing indices)

S~ G [ [[ asidstassdtan s (i)

x 00G(x; —x)G(x} —x)G(x — x,), (2.2)
where the concatenation of source terms, propagators, and
vertices (here at the intermediate field point x) is defined by
the (gauge-fixed) Einstein-Hilbert action [30]. The explicit
form of the Poincaré-invariant equations of motion at order
G? has been obtained in Refs. [31,32]. For the definition
and computation of the PN-expanded version [using
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Eq. (1.1)] of the harmonic-gauge Fokker action see
Refs. [14,33-35].

Previous works [1,36,37] have shown that a useful
approach for computing the reduced gravitational action is
the canonical formalism of Arnowitt, Deser, and Misner
(ADM) [38]. There are less propagating degrees of free-
dom in this approach than in harmonic gauge. Essentially
Joo and go; have been eliminated, to leave only the spatlal
metric g;; and its canonically conjugated momentum 7"/
The computation of the reduced two-body action (1n
spacetime dimension D = d + 1) within the ADM for-
malism goes through five steps. Step (i) consists in fixing
the gauge by requiring that g;; and 7'/ have the forms
(ADMTT gauge)

= A($)8;; + hi}l, (2.3a)
i = 7 (VA) + il (2.3b)
where
Alg) = (1 + %4)) Y
BV =0 40V = 250005 @4

and where the TT pleces hlj , ﬂ’TJT are transverse and
traceless, i.e., satisfy 0,11 = 0 = 6"} with f = h or x.

Step (ii) consists in solving with respect to ¢ and V' the

Hamiltonian and momentum constraints, i.e., (in units
where 162G, = 1 = ¢)
R— L gt _ L iy2
V9 —% Girxgjet T _m@zj” )
+ ) (m2 + gd paiPaj)?bar (2.5)
a
-2D 7l = Zga Paja (2.5b)

Here, the usual geometrical quantities (spatial scalar
curvature R, spatial covariant derivative D;, ...) refer to a
d-dimensional space, and g denotes ¢”/(x,). We dimen-
sionally continue d in the complex plane before letting d
tend back to 3 at the end of the calculation.

The constraints (2.5) yield an elliptic system for ¢ and V'
which has the structure

_Zma(1+...)5a+...’

(2.6a)
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(pat+"')5a+"'

. 2 ]
AVi4 (1=2)0,Vi =
+( d)a,,v -
(2.6b)

One can perturbatively solve this system in powers of
My, pa; and of h™T and zrp (that enter the ellipsis).

Step (iii) then consists in computing the Hamiltonian of
the total particles-plus-field system

ij

Htot[xa’ Pas h};r’ ”TT] / ddXAqﬁ[Xa’ Pas h;ET’ ﬂzl!T]

Q2.7

Two more steps are then needed to derive the reduced
action for the particles. One must Legendre transform the
above Hamiltonian with respect to the field variables to get
the “Routhian” [1,20,22],

R[X oo Do W 1) = Hig / el 28

Finally, the reduced (Fokker-type) action for the particle
system (in Hamiltonian form) is
S=3%,/p.dx, — [dtH[x,,p,], where the particle
Hamiltonian H[x,,p,] is formally obtained by “integrating

out” the field variables h?;T, h, j » 1.e., by replacing them by

their solutions as a functional of the particle variables

H[X4.Pa] = R[X4. Pa h;'[;'r(xa’ Pa): h;'l;r(xav p.). (29)
We shall discuss below the subtleties linked to this formal
elimination of the field variables (beyond the well-
understood elimination of higher-order time derivatives of
x, and p, through the use of lower-order equations of
motion [28,39,40]).

III. IR AMBIGUITY IN THE NEAR-ZONE
EXPANSION OF THE 4PN REDUCED ACTION

Equations (2.1) and (2.2) for the general structure (in
harmonic coordinates) of the reduced two-body action
S[x (s1),x5(s,)] clearly show that this action is, a priori,
nonlocal-in-time, i.e., is a functional of the two world lines
x(s1), x5(s,) which involves arbitrarily large proper-time
separations |s; — s5|. In the ADM gauge, this nonlocality is
less severe because the PN most prominent field degrees of
freedom (¢ and V') have instantaneous propagators [see
Eq. (2.6)]. However, the trme nonlocality arises when one
integrates out k" and hl , because these field variables
propagate at the velocr[y of light. At low PN orders (up to
3PN included) it is possible (by using many integrations by
parts) to express the reduced Hamrltonran entirely in terms
of ¢p), P V23), h( 2)ij? and h 4)ij [1,10]. [Here, the
numbers wrthrn parentheses denote the formal order in
the inverse velocity of light, e.g., ¢o) ~ Gm/(c*r“=?).] The
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elimination of A1T (@)ij -and h< 4)ij can then be done by means of
instantaneous propagators using

TT _ ¢TT
Ahgyij = S(ayij» 3.1
with the source term
— PaiPaj d-2
S(ayij = —Z P 6 — 20d-1) b0yt 32)

a a

After this the 3PN-accurate Hamiltonian can be obtained
(by computing an IR-convergent spatial integral) as a local-
in-time function of x, and p,.

The situation changes at the 4PN level. At this level there
appear (in any gauge) irreducible IR divergences. However,
we could isolate the IR divergences in a few contributions.
By using many integrations by parts (both in space and in
the time domain), we could decompose the 4PN-level
integrand for the Routhian, Eq. (2.8), into two parts (details
of the computation will be published elsewhere [41]), say

rqpN = réll-PN + rﬁPN. (33)
The part rlpy (Which contains most of the contributions) is
made of terms that are either IR convergent or whose IR
behavior can be unambiguously regularized to zero. The
part ripy collects the few terms that contain ambiguous IR
divergences (generating logarithms) at r= |x| - co. It
explicitly reads

1 ST
r42tPN = 2(d—1) ¢(2)hg‘;5ijh(4)i/

- 1
hgayi) + (m by (AR,

~i] 1y IT
<2>ﬂé>)>A HAgayis)-

It
— g hauh

d—-20
d— 101 (¢ 3.4
From the technical point of view, the crucial feature of
Eq. (3.3) is that all its terms (involving various inverse
Laplacians) can be explicitly computed, and that the
corresponding contributions to the Hamiltonian (obtained
by integrating over space) can also be fully evaluated (in
d =3 dimensions) by using techniques developed in
Refs. [1,42,43].

Many of the integrals (both in rjpy and in rjpy) contain
UV divergences, i.e., divergences near the particles, as r; =
|x —x;| = 0orr, =|x — x| = 0. All the UV divergences
are conveniently regularized by using dimensional regu-
larization, in the way described in Refs. [10,22]: i.e., by
computing the (locally generated) difference between
the dimensionally regularized integral and its Riesz-
implemented Hadamard-regularized version. The impor-
tant result (reported in [22]) is that all the UV divergences
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[i.e., all the poles in 1/(d — 3)] can be removed from the
Hamiltonian by adding a total time derivative.

From the conceptual point of view, Eq. (3.3) is partly
unsatisfactory because, for eliminating hTJT and h;; , it used
the (time-symmetric) PN expansion (1.1) of the propagator
-1 entermg the TT propagator for 4", In particular, it is
the O(c™2) correction term in Eq. (1. 1) Wthh is responsible
for the appearance of all the terms in Eq. (3.4), which have
the following structure

fij(X)A_l(ilr([:ll;ij) (3.5)

= fij (X) A—2a?s’(l;;l;ij

[the second term in Eq. (3.4) has also this structure modulo
an integration by parts with respect to time]. Before
discussing in detail the physical meaning of these IR
divergences, let us study the ambiguities arising when
formally regulating them. We used several ways to regulate
these IR divergences (while maintaining the possibility to
explicitly compute the Hamiltonian). In all cases, one needs
to introduce a new length scale, say s. For instance, in all
the problematic terms of the type (3.5) [1nclud1ng the factor

h<TT) in Eq. (3.4), rewritten as A(A~ h
the replacement

TT r\Eorr [T
A ) — A K;) h<4)u’]

and then take the finite part of the pole occurring at B = 0
in 3 dimensions (and displaced at B =2(d —3) in d
dimensions; see Sec. VIII in [44]). Alternatively one can
multiply, before integrating it over space, the full integrand
by a factor (2)*(2)/ and take the finite part of the IR pole
occurring at a 4+ § = 2(d — 3). Both methods conveniently
allow one to detect, and subtract, the logarithmic IR
divergence linked to a decay of (parts of) the integrand
r—373(4=3) a5 r — co. We have checked that both methods
yield the same result modulo (a time derivative and) a change
in the constant C introduced below. We shall denote the
result of the specific IR-regularization (3.6) of the (separately

UV-regularized, as explained above) reduced PN-expanded

Hamiltonian as Hypy ) By explicitly calculating this

near-zone-related 4PN-accurate Hamiltonian [which used
the formal, IR-delicate, near-zone expansion (1.1), regulated
by an IR scale s, say as in Eq. (3.6)], we found that it has the
structure

;7)1 one can make

(3.6)

Jyhe-zone (s)

4PN [Xa’ pu] = Hlﬁfg [Xuv pa}

+ F[X,, Pd) <ln2 + C)
s

+ SG[XW P, 3.7

dr
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where the coefficient of the IR-dependent logarithm is equal
(after separating some total time derivative, incorporated in
the last term) to

%GzM(I@)Z
5 ¢8 VW

F[Xav pa] = (3.8)

Here M := m; + m,, the superscript (3) denotes a third
time derivative, and /;; denotes the (Newtonian) quadrupole
moment of the b1nary system

6”x >

e ot

Here, and below [as well as in Eq. (2.9) above], we use
brackets, rather than parentheses, around the dynamical
arguments X,, p, to signal that the considered quantity
might depend not only on the instantaneous values of x,, and
P, but also on several of their time derivatives [and even, in
the case of Eq. (2.9), on the full time evolution of the
dynamical variables].

We have added to the logarithm in Eq. (3.7) an arbitrary
constant C to remind us that the IR-regularization scale is
arbitrary. (Replacing s by s’ =e™s is equivalent to
replacing C by C' = C + 1)

(3.9)

IV. ADDITIONAL TAIL CONTRIBUTION
TO THE 4PN REDUCED ACTION

The result (3.7) given by the usual PN approximation
scheme can only be an incomplete representation of the
two-body conservative dynamics because it depends (for a
given choice of the scale s) on the arbitrary constant C. This
incompleteness of a (near-zone limited) 4PN-level calcu-
lation is in precise accord with an old result of Blanchet and
Damour [25] (see [45] for a recent rederivation). Indeed,
Ref. [25] found that, precisely at the 4PN level, there
occurred a fundamental breakdown of one of the basic
tenets of the usual post-Newtonian approximation scheme.
At the 4PN level, it becomes impossible (in any gauge) to
express the near-zone metric (and therefore, also, the two-
body equations of motion) as a functional of the instanta-
neous state of the material source. Because of correlations
transported over arbitrarily large time differences by tail
effects (viewed in the near-zone), the equations of motions
at time 1 depend on the state of the system at all times ¢ < ¢
(when considering retarded interactions). [Such long-range
correlations are already a priori contained in the Fokker-
action contributions such as Eq. (2.2). However, the work
of [25] shows that this becomes physically important only
at the 4PN level.] Reference [25] used a technique of
matching between the near-zone r < 4 (where PN expan-
sions should be adequate) and the exterior zone r > ry,
(where multipolar post-Minkowskian (MPM) expansions
[46] are adequate) to compute the near-zone effect of
tail-transported correlations. Their result depends on an
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arbitrary length scale that they denoted r; = cP. As we
have allowed for an arbitrary additional constant C in
Eq. (3.7), we can, and will, identify the length scale r; =
cP used in [25] with the length scale s used in the previous
section. We note that the length scale r; = cP = s was
introduced in the MPM formalism [46] in a form very
similar to Eq. (3.6) above. Though this length scale is
arbitrary it can play the role (both here, and in
Refs. [25,46]) of an intermediate scale between the scale
of the system ry, and the wavelength 4 = ¢/Q. Indeed, if
rip < s < 4 both the PN expansion and the MPM one
should be valid (and can be matched to each other) at
distances r ~ s.

Independently of this interpretation, the main result of
[25] was their Eq. (6.33), saying that 4PN-level inner
metric is the sum of a PN-like instantaneous functional of
the source variables h}j}f‘ (involving the logarithm of s), and
of a specific nonlocal-in-time “tail” contribution equal (in a
suitable gauge) to

il il sym (s rad reac
hoo é(lP)N(t X) = hgy 41§N( '+ his 3555 (4.1a)
ail sym (s 4G2M i
hBMZN( ) = —g 10 x'x!
“+o00 dv
x Py {/ —(1516-)(t—v) +I,(»?>(t+v)) )
0 v
(4.1b)
4G°M . .
h%)%dé{lgzll\? = 75 0 x'x!
+oo d
< [T -0 -1 ). @0
0 v ’

Here, we have integrated by parts and decomposed the
retarded-propagator result of [25] in its time-symmetric
(conservative) and time-antisymmetric (radiation-reaction
[47]) parts. The symbol Pf; denotes a Hadamard partie
finie with time scale T (with T := 2s/c = 2P)

Pty [T 00 = [T L) - g0+ [T L),
[ = [ LS

4.2)

Equivalently, Pf7 can be defined as the finite part in the
Laurent expansion around B = 0 (FPp) of the analytic
continuation in the complex parameter B of the integral
obtained by multiplying the integrand v~'g(v) by a factor
(lv|/T)B. [This second definition can be more convenient
when working, as we shall do below, with two-sided
integrals FP [** duv(|v|/T)®(...), or with double integrals
FPy [ [dedd (|t —7|/T)5(...)).
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The contribution to the equations of motion of the two-
body system following from the time-symmetric 4PN tail
metric derives from the action

/ dth

where the extra factor 5 (beyond the usual U = ‘hoo one)
comes from the symmetnc bilinear functional dependence
of S@!s¥Y™ on [;,(¢). Inserting (4.1b) into (4.3) and operating
three times by parts yields

ta11 sym
hoo 4pn (1 X4)

(4.3)

ail sym (s 1G2M

4PN
dtdz’
XPf2$/c//| f’| z] (t ij (/)

(Reference [45] considered a related, but different, action
depending, a la Schwinger-Keldysh, on a ‘“doubled”
quadrupole moment.) The action (4.4) formally corre-

4.4)

tail sym (s)

sponds to a nonlocal Hamiltonian (S,py

— [de HEY™ O (1)) equal to

il sym (s 1G°M 3
Hip™™ V(1) = =< 17 (0)

+oo dp 3
fozS/c/_w mlﬁj)(wr v).

Combining the result (3.7) of the previous section
(corresponding to the effect of h;}}f‘, left undetermined
in [25]), with the additional nonlocal term (4.5), we
conclude that the two-body action describing the
conservative 4PN dynamics must correspond to the non-

local Hamiltonian

4.5)

Hip = ™ O BT @)

A first indication of the correctness of this result is that
the dependence on the arbitrary scale s cancels between the
two contributions on the right-hand side of (4.6). Indeed,
the s-dependence of the tail contribution (4.5) is easily seen
to be

2 G2M
5

Hipy™ = 4+ 575 (17 (0) In(2s/c) - (4.7)
to be compared with Egs. (3.7) and s3 .8). Note that the scale
s is a UV cutoff (small v) in Hypy"" ) and an IR one
(large r) in Hypy ©) This confirms the usefulness of
thinking of s as being an intermediate scale between the
size of the system r;, and the wavelength 2 = ¢/Q (similar
to the introduction of an intermediate scale when
decomposing the calculation of the Lamb-shift in two
complementary parts).
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On the other hand, the dependence of (4.6), via (4.7),
on Inc is meaningful and agrees with the logarithms
arising at 4PN in the two-body dynamics [15-20,22,23]

V. COMPLETION OF THE DETERMINATION
OF THE 4PN REDUCED ACTION

The 4PN contribution to the reduced action,

1 G2M ded? 3
S4PN 2S/C | | 1/

near- ZOHC
/d,HM |

NI (¢)
5.1

still contains an unknown constant C, entering Eq. (3.7). To
determine it analytically we mneed a calculation
which fully takes into account the transition between the
near zone and the wave zone, without losing any informa-
tion in the process. Such a calculation was recently
performed in Ref. [23], in the particular case of the
dynamics of circular orbits. Before using this result to
complete the analytic determination of the 4PN two-body
action, let us report on a very satisfactory feature of
the Hamiltonian (4.6) [and the action (5.1)]. We have
explicitly computed, in an arbitrary (nonmass-centered)
frame, the quite complicated main contribution
H'$9[x,,p,] to the Hamiltonian in Eq. (3.7) (see the
Appendix). It has a polynomial structure in p,, 1/r,
and n, of the type

8 6 4 2
r.r . 7. 72,
Tz T Iy T I

HEQ ~ ' + (5.2)

. 1 1 1 1
E§4PN(.];I/) = _E'MCZF (1 +Z(9+I/)?+

<53703 <65817r2

8

128 512 1920 5

where yg = 0.577...

1 1
—(81—71/4—1/2)]_—44— (

4
989911 64 16 8875 412%\ , 37
S\ et ) vt (G e )Y e T
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We have then proven that the 4PN-accurate dynamics,
defined by H'9)\ = Mc?+ Hy+ Hpx + Hopx + Hypn+
H'$0, was Poincaré-invariant in the usual sense [4] of
admitting ten conserved quantities [and notably the
crucial boost generator K'(X,, Py, 1) = G' (X4, Pa)—
tPi(x,,p,)] whose brackets realize the full
(PN-expanded) Poincaré algebra. In addition, as ry,, F

[Eq. (3.8)], and also IE?(I)IS)(t’ ) are Galileo invariant,
both the logarithmic local contribution F(In(r,/s)+

C) in Hypy “one(s) and, formally, the nonlocal tail contri-

bution (4.4) to the action are consistent with Poincaré
invariance, independently of the value of the constant C.

In view of this result, we shall write down in the main
text only the simpler center-of-mass expression of H py
[see the Appendix for the expression of the general-frame
Hamiltonian H(x,,p,), as well as the center-of-energy
vector G'(x,, p,)]. Before doing this, let us indicate how to
determine the value of C. The simplest way to determine it
is to compare the (gauge-invariant) functional link E(j;v)
between the 4PN-accurate binding energy H — Mc? and the
(reduced, dimensionless) angular momentum j := cJ/
(Gmym,) along circular orbits, predicted by our Hpx(C),
to the corresponding result derived from the effective one-
body formalism [48,49], when using the recently determined
4PN-accurate radial potential Aspn(u) [23]. (Note that our
determination of the value of C does not rely on the various
resummations entering the effective one-body formalism, but
only on its PN-expanded Hamiltonian content.)

Using the notation  j:=cJ/(Gmim,), p:=
mymy/(my +my), and vi=p/M = mymy/(my 4 my)?,
the 4PN-accurate effective one-body radial potential [23]
yields

3861+ 417? _ 8833 5u2+51/3 1
64 32 192 32 64) j°

)

384 64 64 ﬁ

(5.3)

denotes Euler’s constant. Let us note that the above 4PN-accurate expansion of E(j;v) contains

(when using the relation dE = QdJ) the same information as the sometimes used PN expansion E(x;v) of
the binding energy as a function of the dimensionless frequency parameter x == (GMQ/c®)*3. Explicitly, we have the

4PN-accurate links

1 v 1
== 1+<3+—>
12< 3)

289697
1134 -
- ( i < 768 2880 3

x(jiv)

g L WAL (o (41 8TT9) 2 14
7)) 2 7 )" T3 e )

4449821 128 16 20399 77972\ , 54 354 1
— zyE+1nj—2 vt (22— Pt )7

216 288 54 243

(5.4a)
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1 (300 B (200417
=x(1- = )x+—ux —_—
j(xv)? 3 1" 72 12

<182637[2 1294339 128

768 2880

from which follows
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611/+ 2 3
—+—|ux
12 " 81)"

108 ' 243

274772 90985
288 432 )

1812 12
i i )ux“). (5.4b)

Eomn(x:0) = pEx (| (3L v (L2 1 P (675, (34445 20527\ 1ssR 3SR
PNIB V) =TT 4 12)" 8 '8 24)" 64 576~ 96 )Y 96 s5184)"

3969 /90372 123671 448

- - 0 2ys +1In(16

+< 128 +< 1536~ 5760 15 (Zretind x>)>”
315722 498449 30153 T4
T 2 LA IV (5.5)
576 3456 1728 ' 31104

It is straightforward to derive the E(j;v) link following from
our nonlocal Hamiltonian (4.6). It involves the evaluation
of the nonlocal piece (4.5) along circular motion (without
any differentiation). We proceed as follows. Combining the
s-dependent piece (4.5) with the F1n(r,/s) piece in (3.7)
(which has the effect of replacing the scale s by the scale
r1») yields the integral

ail sym (r 1 G2M toodo
HEL (r2) _ ~5 & PfQ,IZ/L./_ —f(v), (5.6

5 ]

where f(v) = IE?(I)IS?(I + v). Along a circular motion

one has f(v) = f(0) cos(2Qv), where

£0) = (1) (1)? = 32(u@ 13, 5.7)
Using the result (for @ > 0)
+oo dyp
P, / L cos(n) =~ + (D)), GH)
0

Eq. (5.6) can be written as

L eom 2G2M 4Q
Hip"™ " =+ f(@(yﬁln(%)) (5.9)

5

Note how the effective replacement of the arbitrary,
intermediate scale s by ry, in the tail contribution has
generated the combination yg+In4 accompanying
In(Qr,/c) = —Inj in Eq. (5.3). In addition, we found

that the z° contribution associated to these terms is already

contained in H'%Y. Finally, when precisely defining the

IR-regularized piece H'35? by the procedure (3.6), we find
that the Hamiltonian (3.7) (where the total derivative term
does not contribute) yields a circular link E(j;v) in full
agreement with Eq. (5.3) if the constant C in (3.7) is equal

to the rational number

1681
=———. .1
¢ 1536 (.10

This result completes the determination of the 4PN
conservative dynamics.

Let us summarize our results by writing the total 4PN
Hamiltonian in its center-of-mass form (in terms of the
reduced variables r :== X,/(GM), p = pi/p = —P2/1).
It reads

Hapx[r, p] = Higy (r. p) + HER, (5.11)
where the nonlocal piece can be written as
1G*M
nonloc _ 3)
Hpa> (1) = 58 ;7 (1)

+o0 d
X szm/c/ |—”|1§j)(r +o), (5.12)

o |V

and where the final local piece, H'j = HS + CF[r, p],
incorporating the value (5.10) of C, is explicitly
given by
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8192

127 4035%
2048

3

64
105

(2
e
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218377
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1920 16384
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32 19200
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19200 1600 >(n'p) P
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28800
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100992 21827 0\ 5 !
49152 3840 e
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1024
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(375;:
<
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[
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<6237772

Here, we have reduced the order of time derivatives,
which is allowed modulo suitable variable redefinitions
[28,39,40]. Concerning the time derivatives entering the

nonlocal piece (5.12) via Igj)(t), we can either consider

that IS) is defined as the third time derivative of the
center-of-mass quadrupole moment

. 1 .
Lij=p (xllzlez - gx%25u>

= (GM)Z,u <rirj - %rzéi«i) (5.14)

and does depend on r, r, r, and T [which might be
convenient for integrating (5.12) by parts], or define
(5.12) by inserting in it the order-reduced value

169199 ) 74037°
2400

(5.13)

589189\, ,., (63347
)( ) *‘( 1024

2

)(n-p)“)v2
> 5 (3401779 286917

r
1256 1
3072 45 r

of Ifj) , namely (at the Newtonian accuracy, which is
sufficient)
(3) G,uM
(Iij )red =-2—3
"2

3 N
<4x§20& . <n,2.vu)xgxﬁg>. (5.15)
12

Here (ij) denotes a symmetric tracefree projection. This
Galileo-invariant result (with vy, :=p;/m; —po/m,)
is valid in an arbitrary frame. In the center-of-mass
frame one only needs to interpret x;, as GMr and vy,
as p.

A partially explicit, partially parametrized formula for
the 4PN local Hamiltonian in the center-of-mass frame was
given in Ref. [22] [see Egs. (4.2)-(4.4) there]. The
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comparison of this formula with our Eq. (5.13) shows
that all the numerical coefficients explicitly displayed in
[22] coincide with the corresponding coefficients in
Eq. (5.13). Moreover, the values of the six coefficients
that were not determined in Ref. [22] (namely c411, 412,
C413> C2115 C2125> Co1)> can now be read off from Eq. (5.13).
The logarithmic terms o Inr/§ displayed in Eq. (4.2) of
Ref. [22] correspond (modulo a total time derivative) to the
term Flnr,/s in Eq. (3.7) with F defined by Eq. (3.8),
with

PHYSICAL REVIEW D 89, 064058 (2014)

Hamiltonian A _py = (Hypy — Mc?)/u reads

= Hy(r,p) + Hpx(r, p) + Hopn(r,p)
+ Hipx(r.p) + Hypx[r. pl.

a <apn[T, P
(5.16)

where the Hamiltonian H ,py is determined by Eqs. (5.11)—
(5.13) and the (purely local) Hamiltonians HN to H 3pN are
equal to

2
1
fiy(r.p) =5 ——. (5.17a)
1 r
3
GA(1y)P(r.p) = 507 (12p = 11(n - p)?).
. 1 1
Hpx(r,p) = §(3V - 1)(p?)* - 5{(3 +v)p’
For the convenience of the reader, let us complete the 5 1 1
4PN-level Hamiltonian obtained above by the explicit +v(n-p) };"'W’ (5.17b)
center-of-mass expressions of the lower-PN-levels
Hamiltonians. The 4PN-accurate reduced center-of-mass
|
4 ! 2 (0213 4 L 2\(n2)2 2 212 2 nl
c*Hypyn(r, p) :—6(1 —5v+50%)(p?) +§{(5—20u—31/ )(p?)* = 2v*(n - p)*p* — 3v*(n - p) };
1 1 1 1
+-{(5+8)p* +3v(n-p)*} 5 -~ (1+3v) 5, (5.17¢)
2 rr 4 r
6 73 1 4, 1 3
c®Hp(r, p) ——8( =54 350 — 700% 4+ 35%) (p?)* + 16{( —7 +42v - 5317 — 5.°) (p?)
1
+(2=3v)*(n-p)*(p?)* + 3(1 —v)*(n - p)*p? = 50 (n - p)°} —
,
1 1 5o 1 1
+ (=27 + 136w + 10922)(p*)* +— (17 + 30v)v(n - p)*p* + — (5 +43v)v(n - p)* b
16 16 12 r
n 5 x* 335 231/2 2, 85 3722 T (n-p)? 1
—_— —_—— ——— ——— U .
3 T \ea T as g )P 16 64 4 P 3
1 109 21 1
+{ +(___ 2) }_4_ (5.17d)
’

VI. DISCUSSION

The results presented here complete a line of work which
has been started years ago. The most striking new feature of
our result (5.11) for the 4PN-accurate action is its explicit
time-symmetric nonlocality in time. This nonlocality was
to be a priori expected in view of the structure of the higher-
order contributions to the action, such as Eq. (2.2). Note,
however, that the explicit calculation of the (gradient of) the
O(G?) action [Eq. (2.2), together with other terms] in
Ref. [32], using straight (nonparallel) world lines, did not
give rise to any IR problem, and led to a final result
expressed in terms of (quasilocal) lightlike related quan-
tities on the two world lines. In the ADM approach, the
nonlocality of the action is more concentrated than in the

|
harmonic-gauge action because the PN most prominent
interactions mediated by the scalar (¢) and vector (V?)
degrees of freedom are both instantaneous. The time-
nonlocality is only due to the interaction mediated by
hi", which starts contributing at the 2PN level. At the 4PN
level one can no longer approximate the propagator of h};r
by a PN expansion of the type (1.1) because one must take
into account the backscatter of the h}}T propagator due to its
coupling to the space curvature linked with ¢,

Note, however, that, when completing the equations of
motion deriving from Eq. (5.11) [or Eq. (5.1)] by adding
the corresponding 4PN-level radiation-reaction force, act-
ing on each body (p}, = F,>™
Eq. (4.1c)

+ Firadreac) namely, from
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) 1
I = + o mc OG-
4AGPM
= 5 c8 m,Xa

(6)

ij

(t—v) = 19(t + v)),

/+oo dov
X —(
0 v

the “advanced” piece (with time argument ¢+ v) in this
time-antisymmetric radiation reaction precisely cancels
a corresponding advanced contribution in the time-
symmetric conservative force deriving from the nonlocal
piece in Eq. (5.1). [This cancellation is also clear
in Eq. (4.1).]

Our results open new avenues for further investigations.
Here, we have only considered the consequences of our
action for the dynamics of circular orbits. For these orbits,
our nonlocal action induces an ordinary, local radial
potential A(r) when cast within the effective one-body
framework. We leave to future work the full recasting of our
action within the effective one-body formalism. Our work
also indicates that the further logarithmic contributions
entering the radial potential A(r) beyond the 4PN level
[16-19,50] will all be associated with nonlocal actions of
the type of Eq. (4.4) (involving higher multipoles, or PN
corrections to the quadrupole). (This is clear from the
derivation in [50] where one sees that these logarithms are
associated with hereditary contributions in the inner metric
linked with tail effects in higher multipoles.)
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APPENDIX: NONCENTER-OF-MASS
4PN-ACCURATE HAMILTONIAN
AND THE BOOST VECTOR

In this appendix we show, for completeness and con-
venience of the reader, the generic (i.e., noncenter-of-mass)
form of the 4PN-accurate local Hamiltonian H'%3. .
It reads -

=Mc? + HN(Xw pa) + HlPN(Xa’ pa)
+ Hopn(Xas Pa) + Hapn(Xa, Pa)
+ HiH (Xas Pa)

HZN (Xa- Pa)

(A

where the 4PN local piece, HSU(x,,p,) =
Higd%(x,,p,) + CF(X,,p,), incorporates the value
(5.10) of the constant C. [On the other hand, it does not
contain any logarithmic contribution « F(x,,p,)In(r»/s);
indeed, we have incorporated these logarithmic contribu-
tions in the definition (5.12) of the complementary nonlocal
4PN Hamiltonian, as per Eq. (5.11)].

The Hamiltonians Hy to Hspy are equal to [the operation
“+(1 <> 2)” used below denotes the addition for each term,
including the ones which are symmetric under the
exchange of body labels, of another term obtained by

ACKNOWLEDGMENTS the label permutation 1 < 2]

P.J. gratefully acknowledges support of the Deutsche p?>  1Gmm,
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|
> 1Gmm (P1-P2) , , (M2-p1)(ny2 - po)
2y ,_()71212 14 PP 12°P1)(y2 - P2
¢ 1PN(Xa pa) 8 m% +8 ri» + miymy miymy
1
_Gm1m2 G(m1 + m2> T (1 - 2)’ (A2b)
4 T2
A Hopn (X0, Pa) = L(P%P 1Gmym, 5 (p)’ _n Pip3 _ (p1-P2)’ pi(n; - po)’
PRI md T8 my 2 mims  mim} mim3
—6 (P1-P2)(mpp-py)(mpp - po) 3 (mgp p1)’(myp - po)’
mim3 2 mim3
1G*mym p? p 1 27(py - p2) + 6, -py)(nps-p
’ 21 2<m2<10 1+]9 2) §(m1+mz) (P1-P2) (- py)(ny2 - P2)
L&D 1 m2 nmiymy,
_1Gmim, Gz(m?+5';ﬁmz+m§)+<l -2 (A2¢)
8 rio r12
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5 (p)* 1 Gmym, <_14(P%)3 +4((P1 “P2)” +4pip3)Pi +6P%(“12‘P1)2(n12'l’2)2

6
C’H3pn(Xg, Py) = —
(X4 Pa) 128 m’ll 32 rp m? m‘fm% m‘l‘m%

(P%(nlz 'Pz)2 +P%(“12'P1)2)P% P%(Pl ‘P2)(nyn-py)(nyy-py)
-10 T +24 T
mymy; mymy

n ZP%(Pl Pp2)(my; - Pz)2 n (7P%P% —10(p, 'Pz)z)(nlz “P1)(nys-po)
mim mims

(P%P% =2(p: 'Pz)z)(l’l “P2) (Pi-p2)(ny2- Pl)z(nlz ‘py)?

+ +15
3 3 33
mym; mym;

2(nyy - np,-py)° n,-p;)Plng-p)’ G*mym, (1 2)2

_18P1( 12 P13)(312 P2) +5( 12 pl)3< 312 P2) )+ 21 2(_(m1_27m2)(P12

mim; min; 1 16 m

_US  pieiopy) 1 25(pipo)’ 4 371pips  17pi(n-pi)? L S (M -py)*
16" mim, 487 mm3 16 m 2w

1 (15pi(ny; - pa) + 11(p1 - P2)(npy - p1)) (12 - py) 3. (n12-p1)° (12 Pa)

8! m3n, 2! mim,
125 (Pl'Pz)(nlz'Pl)(nlz'P2)+Em2 (n12-p1)’(n1 - po)?

757 M2
12 mimj3 3 mim3

1 Pi(np-py)*\ | GPmymy (1 3 p?
—@(2201711 +193m,) o + 3 ~13 425m? + ( 473 —ZJTZ mym, + 150m3 o

1 1 (P1-p2) 1 3 (np-py)?

1 . .
+—<21(m%+m§)+ <119+§n’2>m1m2> (np-py)(ny, Pz))

16 myny

1G* 3 227 21
+§ Zﬁlmz((T_?ﬂ2>m1+l’ﬂ2>+(l<—>2). (A2d)
12

The formula for the Hamiltonian H'3s% is very large, therefore we display it in smaller pieces. This Hamiltonian has the
following structure

: 7(p7)]° | Gmym, G*mm,
CSHLOP%S}(Xa’ pa) = 256;”? + 1 H48(Xa’ pa) + 7”%2 m1H46(Xav pa)
G’mm
r3l 2 (m%H441 (Xa’ pa) + m1m2H442(Xm pu))
12
G*m,m
r41 2 (m}Hap1 (Xo Pa) + mimaHu (X4, P,))
12
G mym
+ =5 Hag(X0oPa) + (1 2), (A3)
12

where
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- ms.
16 1024 2400 2 6144 7200 172 &

The 4PN-accurate dynamics defined by the Hamiltonian (A1) [to be augmented by the Galileo-invariant nonlocal piece
(5.12)] is Poincaré-invariant in the sense of admitting ten conserved quantities whose standard Poisson brackets realize the
full (PN-expanded) Poincaré algebra [4]. To prove this, the construction of the (unique) boost generator

K (X4, Part) = G (X4, pg) — t PI(X,,P,), With P{(X,,P,) = p1; + P2i» and with a center-of-energy vector G'(X,, p,)s
which can be written as

G'(Xq:Pa) = Z(Ma(xbv Py)xo + No(Xp. Py) Pai): (AS)

a
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is crucial. The functions M, and N, possess the following 4PN-accurate expansions

1 1 1 1
Mo =mq+ 5 M + g MY + - MY + = MR, (A6a)
! 2PN 1 3PN ! 4PN
No = NG + NI + 5 NG™. (A6b)

The 3PN-accurate parts of these expansions were constructed in Ref. [4]. For completeness we give here their explicit
expressions. They read

1 p% 1 Gm1m2

M]PN — s A7
1 2m1 2 rin ( a)
MPN = _l(p%})z 1Gmym, (_51’_%2 _P_%z 7 (p1 - P2) n (nj, -py)(n;, 'Pz))
8 my 4 rp my  mj m N, mn,
+1Gm1m2 G(m1 +m2) ’ (A7b)
4 2
gy = LD L Gmmy (0 (p1)? (D) | PIP3 , (P1oP2)?, S Pi(M-Po)’
Tl md 16 m?t + mt memE T mlm2 + m2m?
1 12 1 2 1My 1m3 1M
7P%(n12 'Pl)2 12 (1 -P2)(ny - py)(my; - pa) 3 (ny - pl)z(nlz : P2)2
* mem? m2m2 - 2m2
1M 1mM3 M3
1 G2m1m2 p% P% 1 (pl pZ)
— = (112 45 — + (15 2m,)—= — = (209 115 - ==
2% 7, (( my + mz)m% + (15my + 2m,) 2 2( my + 115m,) .
n . n . n . 2 n . 2
—(31m,+5m2)( 12 P1)(np P2)+( 12" P1) _( 12 Pz))
niymy my my
1 Gmymy G*(m? + 5mymy + m3) ",
_g r r2 ’ C)
12 12
and
NN =2 A8
=7y (ny3 - pa), (A8a)
1 G
NN = gm(z(l’l P2)(nyy - p2) —p3(myn - py) +3(my - py) (g - P2)?)
1 G?
+ 87, (19my(ny; - py) + (130m; + 137m,)(ny; - ps)). (A8b)

We have extended the method of undetermined coefficients employed at the 3PN level in Ref. [4] to the next 4PN level
and have found unique functions M4™N and NN, The function M{™N has the structure

5(p3)*  Gmym G*mym
M‘]‘PN(Xavpa) =- 1§81)7 . 2M46(Xm P.) + %(’”154441("(1,1341) + myMyg (X4, Pa))
ml rp r12
G mym G*mym
% (m%M421(Xm Po) + mimyMy (X, pa) + m%M423(Xa? P.)) + #Mm(xa, Pa)s (A9)
12 12

where
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_ 13(p7)° _ 15(ny, - p1)* (s - p2)* | 45(mpp - pi)* (i P2)°pi _ 91(ny; - po)*(p1)*
32m$ 256mym3 128mim3 256mim3
_ 5(ni;-pi)’(niz - p2)(Pi - P2) + 25(ng; - py) (2 - P2)Pi(Pr - P2) | Sz - P1)*(Pr - P2)’
32mim3 32mim3 64mim3
7pi(pi-p2)® | 1o -py)'p; _ 47(niz po)’pips | 91(PD)’P)
64mim3 256mm3 128m{m3 256m{m3
5y -p1)’(np - pa)’ _ Ty - py) (12 - P2)°pi + 15(ny; - p1)° (g2 - P2)*(P1 - P2)
32mim3 32mim3 32mim3
7(ny; - p2)’Pi(P1 - P2) _ 5y -py)(nip - pa)(p1 - P2)’ _ (P1-P2)’ _ 1(n,-p1)’(n1; - p2)P3
32mim3 16m3m3 16m3m3 32mim3
7 py) (M- P2)PIP;  S(ip - p1)*(P1 - P2)P3 | Pi(P1-P2)P3

3,3 3,3 3.3
32mim; 32mim; 32mim;

15 - pi)°(niy - po)*  11(ny - po)*pt | S(myp-py)(npy - P2)*(P1P2)  S(myp-p2)’(Pi-p2)°

256m?m} 256m3m; 32mim} 64m3m}

21y - py)?(nyy - p2)?p3 | Ty - p2)?pip3  (myn - pi)(nya - po)(Py - P2)P3
- + 2 4 - 2 4
128mim3; 32mim;

My6(X4P0) =

+

+

+

+

+

+

128m?m;
(P -pz)zp%Jr11(n12-p1>2(p%)2+37p%(p%)2 (p3)?

64m2m? 256m2m? 256m3m%  32m§’

+

(A10a)

Mgy (X0, p.) = 7711(ny; - py)* _ 2689(ny, - py)°p7 | 2683(pi)’ _ 67(ny; - pi)*(n1z - P2)
iR Ba 3840m? 3840m? 1920m? 30m3m,
1621(nyy - py)(myp - po)PT  411(ny5 - p1)*(P1 - P2)  25021pi(py - Pa)
1920m?m2 1280m%m2 3840m%m2
289(nyp - p1)’(nyp - po)° _ 259(nyy - p2)°pT | 689(ny; - pi)(miz - P2) (P - P2) i 11(p: - p2)°
128m?mj3 128m?m?3 192m?m}3 48m3m3
_ 147(ny5 - p1)’p3 | 283pip; | 7(np - py)(np - po)’ + 49(ny; - p2)*(P1 - P2)
64m3m3 64m3m3 12m,m3 48m,m3
T -pi)mip-p2)p3  7(pi PP 9(P3)°
6mm3 48mmj3 32m3

(A10b)

_45<P%)2 pi(P1 - P2) I Ty - pi)(np2 - P2)PY _ 49y, P1)°(P1 - P2)
32m¢ 48m3m, 6mim, 48m3im,
_ Ty, - pi)*(my - pa) + 7(pi - P2)° | 635pip3 _ 983(n; - p1)°P3
12m3m, 24m3m3 192m3m3 384m?m3
413(nyp - py)°(n1; - pa)° _ 331(nyp - p2)°p7 | 437(n1y - py)(n1 - P2) (P - P2)
384m3m3 192m2m3 64m3m3
n 1(n-pi)(nip-pa)’  1349(n; - pa)’(Pi-P2)  5221(ny; - py)(myz - P2)P3
15mm3 1280m;m3 1920m;m3
_ 2579(p1 - P2)P3 | 6769(ni> - p2)°p3 _ 2563(p3)° _ 2037(ny; - p)*
3840mm3 3840m3 1920m3 1280m5

My (X4 P,) =

(A10c)

179843p7  10223(p; -p,) 15p3 | 8881(nyy - p;)(nyy - py) n 17737(ny; - py)?

M sPa) — — - )
21(Xa:Pa) = = 4400m3 " 1200mim,  16m3 2400m,m, 16002

(A10d)
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822572 12007> p% (143 3 7r_2> (pl .pz) (655 796971'2) p_%

My (X4 Py) = (

16384 1152 ) m? " \ 16  64) mym, 1152 16384 ) m2
69637> 40697\ (ny;-p,)* (119 n 37*\ (nyz-py)(nyz - pa) n 30377 77312\ (n;3 - py)?
16384 3840 m3 16 64 mni, 3840 16384 m3 '
(A10e)
35pi | 1327(p; - py) , 52343p;  2581(ny; - pi)(nip-py)  15737(nyp - py)°
M ) = — - - RN
43(Xa: Pa) 16m? ' 1200mm, ' 14400m3 2400m,m, 1600m2 (A10D)
m3 33712 6701 20321 74037° m3
M , =1 ———|m? _— 2 -2, Al0
w(XaPa) =6t < 6144 1440)'"1'"2 (1440 6144 >m1m2 16 (A10g)
The structure of the function NiPN is a bit simpler,
4PN G*my
NT (X4 Pa) = GmaNys (X4, Pa) + o (miNg31 (X4, Pa) + MmNz (X4, Pa))
G3m2 2 2
+T(m1N411(xa, Po) + MmNy (X, Pa) + m3Nai3 (X4 Pa)) (A11)
12
where
Nus(Xg.pa) = _5(1112 p1)’(nyy - po)? T (1 - p1)(ni - P2)°PY i 5y - p1)*(miz - p2)(P1 - P2)
AT Fa 64mim3 64mim3 32m3im3
(ni2 - P)PI(P1 - P2) | 3o P)(P1-P2)* (M2 -P1)’P3  (miz-PI)PIPS
—_ + —_ —_
32mim3 32m3m3 64m3m3 64m3m3
+ (12 - p1)’(nz - po)’° _ Ty P2)°Pi |, 3 pi)(nip - P2)*(P1 - P2) n (1 - P2)(P1 - P2)’
32mim3 32mim3 16m3m3 16m3m3
_ 9> - p1)* (N2 P2)P3 + 5(nyy - p2)PiP3 _ 3y pi)(P1 - P2)P3 _ 1(ny, - py)(my; - po)*
32mim3 32mim3 16m3m3 128m;mj
+ (13- P2)*(P1 - P2) + Ty -py)(np - P2)°P3 + (n12 - P2)(P1 - P2)P3 _ 3(nyy - py)(p3)’ (A12a)
32mym} 64m,m} 32mymj 128mym3
Nusi(Xa, Pa) = _387(1112 p1)’ 4 10429(ny; - p, )P _ 751(ny5 - pi)*(ny2 - Pa) T 2209(n); - p,)P7
BT Ha 1280m3 3840m3 480m2m, 640m2m,
_ 6851(nyy - p1)(P1 - P2) 4 43(np - py)(ng; - pa)? _ 125(ny; - po)(Ps - P2) i 25(n; - p1)P3
1920m?m, 192mmj3 192mmj3 48m m3
7 pa)? 7 . 2
_ (ngszz) T (n 1122;32)1)2 , (Al2b)
2 2
N (X0, Pa) = Ty p2)Pi | 72 - P1)(P1 - P2) _49(n12 P (M- py) | 295(nyy - py)(my - Po)°
324 %ar Ba 48m3m, 24m3m, 48m3m, 384m;m3
- 5(npz - p2)(P1 - P2) _ 155(n; - p1)P3 _ 5999(ny; - pa)° 4 11251(ny; - p,)p3 (A12¢)
24m,m3 384m;m3 3840m3 3840m3 ’
7397 . 12311 .
Nt (X Pa) :_3 397(ny, P1)_ 311(ny; - po) (A12d)

7200m, 2400m,
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N412(Xa’ pa) = (

50057[2 81643 (nlz . pl) 7737[2 61177 (n12 . pz) (A12e)
8192 11520 my 2048 11520 m,
7073 .
Nui3(X4.pa) = N0 p) (A12)
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