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Quadratic curvature gravity equations are projected to a complex null coframe by using the algebra of
exterior forms and expressed in terms of the spinor quantities defined originally by Newman and Penrose.
As an application, a new family of impulsive gravitational wave solutions propagating in various Petrov
type D backgrounds is introduced.
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I. INTRODUCTION

Although there is convincing indirect evidence for
the existence of gravitational waves [1], they have not
yet been detected directly. Currently, there are continuing
efforts to directly detect gravitational radiation [2].
The detection will open a new window for the observation
of astrophysical phenomena on cosmological scale.
In parallel to these efforts, theoretical investigations of
the properties of the gravitational radiations are also of
considerable interest in the framework of the general
theory of relativity or in the framework of any viable
alternative, including a modification of the general rela-
tivity theory (GR).
A natural mathematical framework for a theoretical

investigation of radiative solutions, and in general alge-
braically special solutions of the Einstein field equations, is
the spinor formulation of GR by introducing a complex null
coframe by Newman and Penrose [3–5]. A similar null
coframe formulation for a modified gravitational model
may also have some theoretical value that may provide a
convenient formulation in the theoretical search for radi-
ative solutions and their properties in these theories. Such a
null coframe formulation has the potential to facilitate the
comparison of algebraically special solutions to the modi-
fied theories with those of GR.
According to the peeling-off theorem [6], along a null

direction, the leading term for the gravitational radiation
in the radiation zone is of Petrov type N, and therefore
its properties are relevant in an attempt to observe the
gravitational radiation from distant astrophysical sources.
For example, distinct properties of the type N field for
particular gravitational models may provide viability cri-
teria in light of future observational data, e.g., the amplitude
correction resulting from quadratic curvature (QC) inter-
actions (see for example [7]).
Plane-fronted gravitational waves with parallel rays,

pp-wave metrics for short, are exact solutions of Einstein

field equations found quite a long time ago [8,9], and they
have the peculiar property that they linearize the field
equations. They are of Petrov type N and the corresponding
Weyl tensor has a fourfold null eigenvector [10]. pp-wave
metrics belong to the more general Kundt family of metrics
[11], characterized by null geodesic congruence that has
vanishing optical scalars, i.e., a shear-, expansion-, and twist-
free geodesic null congruence. As the defining property,
pp-wave metrics require the null geodesic congruence to be
covariantly constant. However, there are twisting type N
solutions [12,13] that do not belong to the Kundt family of
metrics, or there are type N metrics that have expanding null
geodesic congruence which belongs to the Robinson-
Trautman family of metrics.
There are several methods to construct the gravitational

wave solutions introduced above. For example, by boosting
the Schwarzchild solution to the speed of light and at the
same time reducing its mass to zero in an appropriate way,
one obtains Aichelburg-Sexl solutions corresponding to a
null particle. Later, the boost method is applied to the other
black hole solutions as well. In another direction, for null
particles having sources with multipole structure, pp-wave
metrics are constructed in [14]. Later, pp-wave solutions
with a cosmological constant were introduced [15,16] by
extending the solutions of Aichelburg and Sexl by boosting
the Schwarzchild–de Sitter solution to the speed of light.
The metrics with vanishing curvature invariants are of
the Kundt family with admissible Petrov types of III, N, or
O as discussed in [17]. Previously, pp-wave metrics with
various Petrov type D backgrounds have been studied in
[18,19]. The present work can be considered as an
extension of the works [18,19] to the models based on
the gravitational actions involving the general quadratic
curvature terms in four dimensions.
Another method of obtaining pp-wave solutions is

Penrose’s geometrical construction of the cut and paste
method, where Minkowski spacetime is cut along a null
cone and then the two pieces are reattached with a warp.
For further details of the methods for constructing impul-
sive waves, see [14].
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pp-wave metrics also appear to be exact solutions to
other important geometrical theories as well. They are
solutions to the string theory in all orders of the string
tension [20]. Familiar pp-wave metrics also constitute a set
of solutions common in Brans-Dicke and general relativity
theories [21]. In the context of metric-affine gravity,
pp-wave solutions are generalized to spacetimes equipped
with a metric-compatible connection having nonzero
torsion [22,23]. A complex null coframe formalism con-
structed from an orthonormal coframe, in the spirit of the
present work, was used to study plane waves in super-
gravity theories [24].
The exact solutions to Weyl conformal gravity, which is

a particular type of QC theory, are studied with the (2,2)
decomposability assumption of the metric in [25,26]. Using
Newman-Penrose (NP) spin coefficient formalism, the
geodesic deviation equation for the pp-wave metrics has
been studied in the context of QC gravity [27]. Recently,
AdS-wave solutions to QC gravity have been given in [28]
using a Kerr-Schild-type metric Ansatz. At the same time, a
family of exact solutions to QC gravity belonging to types
N and III, according to the algebraic classification of the
Weyl tensor in higher dimensions [29], is presented in [30].
This paper deals with QC gravity in four spacetime
dimensions and impulsive wave solutions to QC gravity
along the lines of [30].
The outline of the paper is as follows. In the following

section, the metric field equations that follow from the
general quadratic curvature gravity in four spacetime
dimensions are formulated relative to a rigid (i.e., an
orthonormal or null) coframe in terms of some auxiliary
tensor-valued forms. The null coframe formulation is then
applied to a study of pp-wave solutions in various
algebraically special backgrounds in the ensuing sections.
In particular, in Sec. III, the solutions of various type D
background spacetimes of the direct product form for the
QC action are introduced. Subsequently, using the same
metric Ansatz and the coframe associated with the frame
fields of [19], a new family of impulsive wave solutions in
direct product background spacetimes for QC gravity is
discussed and general fourth-order partial differential
equations for the profile function are derived. The impul-
sive wave solutions can be considered as extensions of the
solutions (introduced in the [19]) to general QC gravity in
parallel to the recent gravitational wave solutions in [30].
The paper ends with some general remarks regarding the
extensions and applications of the null coframe formalism
developed.
The essential technical details for the null coframe

formalism are given in the Appendix. As a novel technical
feature in the exposition of the NP field equations in terms
of exterior forms, the Appendix includes a general recipe
for calculation of the complex NP spin coefficients and
curvature spinors. The algebra of exterior forms used in the
present work follows closely the formalism introduced

previously in [31] for general QC gravity formulated in
terms of auxiliary tensor-valued forms. The notation for the
null coframe version of the formalism is established with
the help of the formulas in the Appendix and in particular,
the QC gravity equations are adapted to a null coframe
which are expressible either in terms of the original NP
spinor quantities [3] or as tensorial expressions by making
use of Einstein summation convention.

II. QC FIELD EQUATIONS RELATIVE TO
A RIGID COFRAME

In this section the field equations for the QC models
coupled to Maxwell field will be derived in a form that is
convenient to study the formulation of the metric field
equations relative to a rigid coframe, e.g., a NP null
complex coframe or an orthonormal real coframe.
The metric equations in such a formulation can be

derived from a coframe variational derivative of the action
by using the first order formalism [32]. In this formalism,
one starts with independent connection and the coframe
1-forms as independent gravitational variables and the
metric theory is recovered by constraining the connection
1-forms to be Levi-Civita by introducing appropriate
Lagrange multiplier terms and imposing the metric com-
patibility conditions. The general framework of presenta-
tion here closely follows the one given in [32,33] and for
further in formation on the notation for the exterior
differential forms adopted, the reader is also referred to
[34,35]. In particular, the formulation of QC field equations
in terms of the auxiliary tensor-valued forms defined below,
relative to a local orthonormal coframe, is directly taken
from [31] without a change except that the signature of the
metric here is taken to be mostly minus in order to conform
with the original definitions of NP quantities.
The geometrical definitions and conventions belonging to

a null coframe in the following sections are described in the
Appendix. The null coframe formulation of Einstein field
equations using the exterior algebra of the complex null
coframe has been used before, for example in [4,36–38]. The
formulation below extends the null coframe formulation of
GR to the general QC gravity allowing one to obtain spinor
expressions directly from the corresponding tensorial expres-
sions. Such a formulation, however, requires the metric field
equations to be formulated in terms of differential forms.

A. Total variational derivative by constrained
first-order formalism

The current paper discusses the gravitational model
based on the Einstein-Maxwell model extended by general
quadratic curvature terms and a cosmological constant.
Maxwell field will be taken as the only matter field
minimally coupling to the gravitational action. It is well
known that the most general QC Lagrangian density can be
conveniently be expressed in terms of the differential forms
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R2 � 1, Rα∧ � Rα. The gravitational theory coupled to the
Maxwell field studied below is described by the Lagrangian
density

L ¼ Lg½θα;ωα
β;Ωα

β� þ Lm½F; θα�

¼ 1

κ2

�
1

2
R � 1þ Λ0 � 1

�
þ a

2
R2 � 1þ b

2
Rα∧�Rα

−
1

2
F∧ � F: (1)

The total Lagrangian density L is proportional to the
volume 4-form in a four-dimensional pseudo-
Riemannian manifold, where Λ0 stands for the cosmologi-
cal constant and a; b are constant coupling parameters for
the QC terms. The last term on the right-hand side is the
Maxwell Lagrangian 4-form Lm½F; θα�, expressed in terms
of the Faraday 2-form F ¼ 1

2
Fαβθ

αβ.
The field equations then follow from the total variational

derivative of the action integral

I ¼
Z
U
L (2)

defined on a compact submanifold U ⊂ M of a pseudo-
Riemannian manifold M. The variational derivative of a
geometrical object is denoted by a δ and it commutes with
the exterior derivative and integration as well.
In order to derive the variational derivative δI ¼ 0 that

follows from the action (2) in a suitable form, the first order
formalism is used as a convenient mathematical framework.
In this formalism the coframe and connection 1-forms
are taken as independent gravitational variables and the
exterior derivatives of these variables only present in the
gravitational sector therefore, the matter fields are assumed
to couple minimally. The formalism can be used to study a
quite wide range of gravitational subtheories introducing
appropriate constraints by adopting either orthonormal
coframe [32] or a coordinate coframe [39]. For the present
work, the former is suitable and the gravitational field
equations for the pseudo-Riemannian metric can be derived
from the coframe variation of the Lagrangian (1) subject to
the constraints that the torsion tensor Θα ¼ Dθα vanishes
and the torsion free connection is the metric compatible.
Relative to any rigid coframe, (e.g., an orthonormal
coframe, null coframe, or half-null coframe), where the
metric components are constants, the metric compatibility
condition for the connection 1-form reads Dηαβ ¼
−ωαβ − ωβα ¼ 0. It is an advantage of adopting a rigid
coframe that, this algebraic condition for the connection
components can be implemented into the variational
derivative by anti-symmetrization of the coefficients of
δωαβ term, corresponding to the antisymmetry of the
derivative ∂L=∂ωαβ, whereas the torsion-free condition
Θα ¼ 0 can be imposed by extending the original

Lagrangian density to include Lagrange multiplier 2-forms
λα ¼ 1

2
λαμνθ

μν in the form

Le½θα;Ωα
β;Θα; λα; F� ¼ Lþ LLM (3)

with the explicit expression

LLM ¼ LLM½θα;ωα
β; λα;Θα� ¼ λα∧Θα (4)

constraining the independent metric compatible connection
to be Levi-Civita. Then the field equations for pseudo-
Riemannian model that follow from the Lagrangian 4-form
in (1) is explicitly recovered from the constrained first order
formalism as follows.
First, by making use of the variational derivative

expressions

δΘα ¼ Dδθα þ δωα
β∧θβ (5)

and δΩα
β ¼ Dδωα

β, as well, one finds that the total
variational derivative of extended Lagrangian density with
respect to the gravitational variables has the general form

δLe ¼ δωαβ∧
�
D

∂Lg

∂Ωαβ −
1

2

�
θα∧∂LLM

∂Θβ − θβ∧∂LLM

∂Θα

��

þ δθα∧
�∂Lg

∂θα þ ∂Lm

∂θα þD
∂LLM

∂Θα

�
þ δλα∧Θα

(6)

up to a disregarded boundary term. The partial derivative of
the Lagrangian form with respect to a p-forms is very
convenient and an expression for it can be obtained from
the corresponding expressions for the variational derivative.
Although it is not necessary (and also neither helpful nor
practical) in what follows, it is possible to relate the partial
derivatives with respect to forms above to the ordinary
partial derivatives with respect to the associated tensor
components [32].
The general formula (6) is to be applied to the QC gravity

Lagrangian density (3). To this end, the following defi-
nitions of auxiliary tensor-valued forms are convenient for
the study of the corresponding field equations. In particular,
it is convenient to introduce the auxiliary 2-form Xαβ for the
partial derivatives of the gravitational part with respect to
curvature 2-forms as

∂Lg

∂Ωαβ ≡
1

2
� ðXαβ þ κ−2θαβÞ (7)

and it is possible to show that, for the QC terms in the
Lagrangian (1), the auxiliary 2-form Xαβ are explicitly
given by the following expression

Xαβ ¼ −
1

2
½θα∧ðbRβ þ aRθβÞ − θβ∧ðbRα þ aRθαÞ� (8)
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which is already in a suitable form for the projection of the
field equations to a null coframe. The auxiliary 2-form Xαβ

can be written as a linear sum of self-dual and anti-self-
dual parts.
Yet another convenient and useful auxiliary 3-form is

defined by

Παβ ≡D � Xαβ þ ωα
μ∧ � Xμβ þ ωβ

μ∧ � Xαμ (9)

Παβ ¼ −Πβα are related to the connection equations to be
discussed below. In the context of metric-affine gravity
[33], the partial derivatives corresponding to the auxiliary
forms �Xαβ and Παβ are called the gravitational gauge
field momenta in the context of metric-affine gravity,
see also [40]. Moreover, the auxiliary 2-forms Xαβ also
appear in the explicit expression for variational derivative
of the gravitational part with respect to the basis coframe
1-forms. Explicitly, one finds the following partial
derivative

∂Lg

∂θα ¼ 1

κ2
ð− � Gα þ Λ0 � θαÞ þ �Tα½Ωμ

ν; Xμν� (10)

where, the last term on the right-hand side is the derivatives
of the QC part with respect to the coframe 1-forms and it
can be defined by

�Tα½Ωμ
ν; Xμν�≡ −

1

4
ðiαΩμνÞ∧ � Xμν þ 1

4
Ωμν∧iα � Xμν

(11)

for the sake of brevity of the expression (10). Similarly, the
energy-momentum 3-form

∂Lm

∂θα ≡ �τα½F� ¼ 1

2
½ðiαFÞ∧ � F − F∧iα � F� (12)

energy -momentum 3-form of the Maxwell field which is
the only matter field considered. It is easy to write
Maxwell’s equations and the electromagnetic energy-
momentum form in terms of the self-dual Faraday 2-form
F ≡ 1

2
ðF þ i � FÞ relative to a null coframe as well (see

Eq. (A16) in the Appendix below).
In terms of the definitions above, the coframe (metric)

field equations then take the form δLe=δθα ≡ �Eα ¼ 0 in
terms of the vector-valued 1-form Eα ¼ Eα

βθ
β with

�Eα ¼ 1

κ2
ð− � Gα þ Λ0 � θαÞ þDλα þ �Tα½Ωμ

ν; Xμν�
þ �τα½F�: (13)

The metric equations (13) are to be supplemented with the
matter field equations, namely the source-free Maxwell
equations, dF ¼ d � F ¼ 0.
Even though a set of a basis local orthonormal coframe is

adopted in the derivation of the metric equations (13)

derived in [31], the projection of the equations to a null
coframe follows simply by specializing the numerical
indices to a null coframe. In fact, in the form given above
they allow one to introduce a real null coframe [41] or even
a hybrid rigid coframe with half-null and half-orthonormal
basis 1-forms used for example in a study of plane-fronted
waves in arbitrary dimensions [30,40]. Moreover, although
the QC field equations �Eα ¼ 0 relative to a null coframe
are still somewhat lengthy to be written out explicitly even
in the tensorial form, the field equations are such that they
allow the auxiliary tensor fields, for example Xαβ defined
above, to be expressed in terms of the spinor components in
a suitable form. Consequently, if the components of the
differential forms in (13) can be expressed in terms of the
spinor definitions with the help of the formulas given in
Appendix, then (13) yields NP-type complex scalar equa-
tions in terms of spinors.
Returning to the variational derivative with respect to

connection 1-form, where it assumed that it is involved
only in the gravitational sector if one assumes the minimal
coupling of matter and vanishing torsion. The connection
equations lead to an algebraic equation for the forms λα.
They can be written out as

Παβ ¼ 1

2
ðθα∧λβ − θβ∧λαÞ: (14)

The right-hand side of (14) is to be calculated by imposing
the constraint vanishing torsion constraint Θα ¼ 0. Note at
this point that in four dimensions, λα is a vector-valued
2-form, whereas Παβ is an antisymmetric (second rank)
tensor-valued 3-form and they both have, at most, 24
independent components. The equivalence of the tensor-
valued forms implies that the algebraic relation (14) can
uniquely be inverted to have

λα ¼ 2iβΠβα þ 1

2
θα∧iμiνΠμν: (15)

The expression on the right-hand side can be obtained
by calculating two successive contractions of (14).
The properties of the tensor-valued (n − 1) form Παβ

are crucial in the study of Lagrangian densities below
in the sense that it also determines the properties of the
fourth-order terms that contributes to the metric equations.
Consequently, the λα in QC equations (13) explicitly takes
the form

λα ¼ − �D
�
bRα þ

�
2aþ 1

2
b

�
Rθα

�
(16)

by inserting the expression for Xαβ from (8) into (15).
Moreover, as is well known, the contribution of the
Einstein-Hilbert part to λα vanishes identically by impos-
ing the vanishing torsion constraint.
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Eventually, one obtains the metric equations in a form
such that all the fourth-order terms are contained in the
Lagrange multiplier term which are linear in the curvature
and the remaining terms are quadratic in curvature com-
ponents. Finally, variational derivative with respect to
Lagrange multiplier λα yields the equation Θα ¼ 0 and
the connection and coframe equations are evaluated with
the constraint Θα ¼ 0. For a given quadratic curvature
Lagrangian in four dimensions by assuming particular
values for the coupling constants a and b, it is possible
to simplify the field equations further by making use of the
identities that curvature tensor satisfies. Finally, note that
although the most of the following work is confined to four
dimensions, the QC field equations, in fact, holds in
arbitrary dimensions n ≥ 3 [31,42].
The trace of the metric equations can be found by

wedging Eq. (13) with θα and summing over the free
index. In four dimensions, the quadratic curvature part,
namely �Tα, does not contribute to the trace Eα

α ≡ E.
The trace defined by θα∧ � Eα ≡ E � 1 explicitly takes the
form

E � 1 ¼ 1

κ2
ðR � 1þ 4Λ0 � 1Þ

þD � iαD
�
bRα þ

�
2aþ 1

2
b

�
Rθα

�
¼ 0; (17)

involving only the terms linear in the curvature compo-
nents. This peculiar property of the trace for the QC part
of the Lagrangian is unique to four dimensions (see, for
example [31]). The trace expression can further be
simplified by using the contracted second Bianchi iden-
tity, which can be written conveniently as D � Gα ¼ 0
where Gα is the Einstein 1-form Gα ≡Gα

βθ
β ¼

Rα − 1
2
Rθα. Consequently, the left-hand side of the trace

expression simplifies to

1

κ2
ðR � 1þ 4Λ0 � 1Þ þ ð3aþ bÞd � dR ¼ 0: (18)

Furthermore, for the QC coupling parameters satisfying
3aþ b ¼ 0, it is well known that the QC part of the
Lagrangian (1) is equivalent to conformally invariant
Weyl gravity and, accordingly, the QC part does not
contribute to the trace in this case.
As a final remark on the structure of the general QC

equations and the auxiliary forms introduced above in
comparison to the Einstein-Hilbert Lagrangian LEH, and
the Einstein field equations, note that it is possible to
rewrite the Einstein-Hilbert Lagrangian form as

LEH ¼ −
1

2
Ωαβ∧ � θαβ

¼ 1

2
dθα∧ � Fα þ dðθα∧ � dθαÞ

¼ 1

2
ðdθα∧θβÞ∧ � ðdθβ∧θαÞ − 1

4
ðdθα∧θαÞ

∧ � ðdθβ∧θβÞ þ dðθα∧ � dθαÞ (19)

(see [34,43] for more details). The third line above follows
from the definition the familiar Sparling-Thirring 2-form
�Fα as

�Fα ≡ −
1

2
ωμν∧ � θαμν

¼ θβ∧ � ðdθβ∧θαÞ − 1

2
θα∧ � ðdθβ∧θβÞ: (20)

The Einstein-Hilbert Lagrangian in (19) is explicitly in a
form that is quadratic in the variable dθα∧θβ. Accordingly,
by eliminating the Levi-Civita connection 1-forms in favor
of dθα and its contractions, the Einstein vacuum field
equations can be written in a Maxwell-like form as

d � Fα − ðiαdθβÞ∧ � Fβ þ dθβ∧iα � Fβ ¼ 0 (21)

in terms of the variables fθαg and exterior derivative fdθαg.
This form of the vacuum Einstein field equations has
formal structural similarity with the generic QC vacuum
field equations when they are written in terms of the
auxiliary forms in the form

−D �D
�
bRα þ

�
2aþ 1

2
b

�
Rθα

�

−
1

4
ðiαΩμνÞ∧ � Xμν þ 1

4
Ωμν∧iα � Xμν ¼ 0: (22)

Note however that Eqs. (19) are second order in the
derivatives of θα (equivalently, in the metric components),
whereas the field equations (22) are second-order deriva-
tives of the curvature components.
An important feature of the field equations (13) and (16)

for the discussion below is that they are valid relative to any
rigid coframe, and thus they provide convenience for the
calculational scheme relative to a null coframe. In particu-
lar, the auxiliary forms of the QC gravity introduced above
are suitable for this purpose.

B. QC field equations relative to a null coframe

In order to write down the field equations for the QC
model (1) relative to a NP null coframe, one has to identify
the tensorial components in terms of the complex spinor
scalars (the spin coefficients and the curvature spinors,
etc.). Therefore, it is convenient and advantageous to
adopt NP null coframe conventions similar to those in

GRAVITATIONAL WAVE SOLUTIONS OF QUADRATIC … PHYSICAL REVIEW D 89, 064054 (2014)

064054-5



[4] (see also [37]). Although the expressions of the QC field
equations are also lengthy relative to the null coframe, the
formulas and definitions for the field equations for the QC
gravity above allow one to introduce the NP spinor
quantities in terms of convenient auxiliary tensor-
valued forms.

All the numerical indices below refer exclusively to the
null coframe. Relative to a NP null coframe description of
the geometrical quantities in terms of differential forms
given in the Appendix, it is convenient to express the
auxiliary 2-forms Xαβ in terms of the complex traceless-
Ricci spinors Φik and the scalar curvature R as

X0
3 ¼

1

2
b½−Φ00n∧m − Φ01ðl∧nþm∧m̄Þ þ Φ02l∧m̄� þ 1

12

�
aþ 1

4
b

�
Rl∧m

X1
2 ¼

1

2
b½þΦ20n∧mþ Φ21ðl∧nþm∧m̄Þ − Φ22l∧m̄� þ 1

12

�
aþ 1

4
b

�
Rn∧m̄

1

2
ðX0

0 − X3
3Þ ¼

1

2
b½þΦ10n∧mþ Φ11ðl∧nþm∧m̄Þ − Φ12l∧m̄� − 1

24

�
aþ 1

4
b
�
Rðl∧n −m∧m̄Þ: (23)

These expressions can readily be obtained by making
use of the curvature spinor definitions provided in the
Appendix and specializing (8) to a NP null coframe.
There are six number of real and independent auxiliary
form Xαβ and the remaining complex three can be
obtained by complex conjugation of the ones above.
The expressions (23) then can be used to express

�Tα½Ωμ
ν; Xμν� in terms of Ricci spinors and the

scalar curvature relative to a null coframe. Note that
Xαβ has anti-selfdual terms, namely the terms in square
brackets on the right-hand side and scalar curvature terms
are self-dual. The expressions for the auxiliary 2-form
Xαβ is to be used in the expression for auxiliary
form Tα½Ωμ

ν; Xμν�

�T0½Ωμ
ν; Xμν� ¼ −

1

4
ðil♯ΩμνÞ∧ � Xμν þ 1

4
Ωμν∧il♯ � Xμν

�T1½Ωμ
ν; Xμν� ¼ −

1

4
ðin♯ΩμνÞ∧ � Xμν þ 1

4
Ωμν∧in♯ � Xμν

�T2½Ωμ
ν; Xμν� ¼ þ 1

4
ðim♯ΩμνÞ∧ � Xμν −

1

4
Ωμν∧im♯ � Xμν (24)

and by definition the third components can be obtained from the second one by complex conjugation
T̄2½Ωμ

ν; Xμν� ¼ T3½Ωμ
ν; Xμν�.

The covariant exterior derivative of the auxiliary form Xαβ also appears in the fourth-order part of the metric field
equations. By making use of the antisymmetry properties ωαβ þ ωβα ¼ 0 and Xαβ þ Xβα ¼ 0, one can find the following
expression for covariant derivative of D � Xα

β ≡ Πα
β

D � X0
3 ¼ d � X0

3 − ω0
3∧ � ðX0

0 − X3
3Þ þ ðω0

0 − ω3
3Þ∧ � X0

3

D � X1
2 ¼ d � X1

2 þ ω1
2∧ � ðX0

0 − X3
3Þ − ðω0

0 − ω3
3Þ∧ � X1

2

D � ðX0
0 − X3

3Þ ¼ d � ðX0
0 − X3

3Þ þ 2ω0
3∧ � X1

2 − 2ω1
2∧ � X0

3: (25)

These equations can be written out in terms of spin coefficients with the help of the expressions (A2). In consequence, by
calculating the contraction of the expressions above one can calculate the components of the Lagrange multiplier form λα

with the help of the general formula (15) which read

λ0 ¼ −2il♯Π01 þ 2im♯Π03 þ 2im̄♯Π02 þ l∧ðil♯in♯Π10 − il♯im♯Π13 − il♯im̄♯Π12 − in♯im♯Π03 − in♯im̄♯Π02 þ im♯im̄♯Π23Þ
λ1 ¼ þ2in♯Π01 þ 2im♯Π13 þ 2im̄♯Π12 þ n∧ðil♯in♯Π10 − il♯im♯Π13 − il♯im̄♯Π12 − in♯im♯Π03 − in♯im̄♯Π02 þ im♯im̄♯Π23Þ
λ2 ¼ þ2in♯Π02 þ 2il♯Π12 − 2im♯Π23 þm∧ðil♯in♯Π10 − il♯im♯Π13 − il♯im̄♯Π12 − in♯im♯Π03 − in♯im̄♯Π02 þ im♯im̄♯Π23Þ (26)

with λ3 ¼ λ̄2. These general expression has sufficient generality to calculate λα for a given Lagrangian. For the QC
Lagrangian above, the explicit form of the Lagrange multiplier 2-forms then take the form
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λ0 ¼ �
�
d

�
bR0 þ

�
2aþ 1

2
b

�
Rl

�
þ ω0

0∧
�
bR0 þ

�
2aþ 1

2
b

�
Rl

�

þ ω̄0
3∧

�
bR2 þ

�
2aþ 1

2
b

�
Rm

�
þ ω3

0∧
�
bR3 þ

�
2aþ 1

2
b

�
Rm̄

��

λ1 ¼ �
�
d

�
bR1 þ

�
2aþ 1

2
b

�
Rn

�
− ω0

0∧
�
bR1 þ

�
2aþ 1

2
b

�
Rn

�

þ ω1
2∧

�
bR2 þ

�
2aþ 1

2
b

�
Rm

�
þ ω̄1

2∧
�
bR3 þ

�
2aþ 1

2
b

�
Rm̄

��

λ2 ¼ �
�
d

�
bR2 þ

�
2aþ 1

2
b

�
Rm

�
− ω3

3∧
�
bR2 þ

�
2aþ 1

2
b

�
Rm

�

þ ω̄1
2∧

�
bR0 þ

�
2aþ 1

2
b

�
Rl

�
þ ω0

3∧
�
bR1 þ

�
2aþ 1

2
b

�
Rn

��
(27)

which can be obtained more directly by making use of (16)
as well.
Finally, the expressions obtained by the above formulas

for the Lagrange multiplier forms are to be inserted into the
expression of for the covariant derivative of the Lagrange
multiplier and the covariant exterior derivatives of a vector
valued 2-form λα relative to null coframe explicitly read

Dλ0 ¼ dλ0 þ ω0
0∧λ0 þ ω̄0

3∧λ2 þ ω0
3∧λ3

Dλ1 ¼ dλ1 − ω0
0∧λ1 þ ω1

2∧λ2 þ ω̄1
2∧λ3

Dλ2 ¼ dλ2 þ ω̄1
2∧λ0 þ ω0

3∧λ1 − ω3
3∧λ2 (28)

and that Dλ3 ¼ Dλ̄2. Consequently, with the help of
(23)–(28) and also using spinor components of the Ricci
1-form Rα using (A13), the expression (13) for �Eα can
straightforwardly be projected to a NP null coframe in full
generality and the Lagrange multiplier terms can be
calculated in stages by using (27) in (28).
In the general case, (28) eventually yields a set of

equations involving the second-order derivatives of the
curvature spinors. Therefore, in QC gravity, instead of
determining the Ricci spinors algebraically via Einstein
field equations, �Gα ¼ κ2 � τα, and subsequently to use
them in Ricci identities, the QC field equations yield
second-order equations for curvature spinors which cannot
be just inserted into the Ricci identities. However, the use of
the NP spin coefficient formalism may still provide a
convenient simplifying scheme of calculations in a study of
exact solutions to the QC general gravity. Although the QC
field equations �Eα ¼ 0 yield equations for second-order
derivatives of the Ricci spinors, a NP null coframe
formulation may still provide a convenient scheme for
an investigation of algebraically special solutions to the
general QC gravity in a manageable form compared to the
tensorial methods.
The integrability conditions for the Cartan’s second

structure equations, or the Bianchi identities, DΩα
β ¼ 0,

relative to a real orthonormal coframe can be considered as

the set of equations for 3-forms and component-wise they
add up to a total of 24 equations. Relative to a complex null
coframe, on the other hand, the number of Bianchi
identities is reduced to 12 by making use of the complex
curvature 2-forms Ω0

3, Ω1
2 and 1

2
ðΩ0

0 −Ω3
3Þ. Thus,

Cartan’s second structure equations for each of the complex
curvature 2-form leads to four scalar equations. In their
seminal work[3], Newman and Penrose introduced eight
complex scalar equations for the Bianchi identity, all of
which can explicitly be derived from the components of the
three form equations DΩ0

3 ¼ 0 and DΩ1
2 ¼ 0. The scalar

equations for the second Bianchi identity in the literature is
usually given as a set of eleven number of complex scalar
equations [4,10]. Out of total eleven, eight scalar equations
can be derived from the components of the three form
equations DΩ0

3 ¼ DΩ1
2 ¼ 0 while the remaining three

scalar equations follow from the contracted Bianchi iden-
tity. More precisely, instead of the equations that follow
from DðΩ0

0 −Ω3
3Þ ¼ 0, the scalar equations that follow

from D � G0 ¼ 0, D �G1 ¼ 0 and D � G2 ¼ D � Ḡ3 ¼ 0

are included in scalar equations of the Bianchi identity [10].
The Bianchi identities, in the complex scalar form, involve
first-order derivatives of the curvature spinors. However,
it is well known that contracted Bianchi identities,
D � Gα ¼ d � Gα þ ωα

β∧ � Gβ ¼ 0, are independent of the
field equations as they follow from the diffeomorphism
invariance of the Einstein-Hilbert action.
In the light of these remarks, returning now to the QC

gravity model (1) above, the identities resulting from the
diffeomorphism invariance now becomes D � Eα ¼
d � Eα þ ωα

β∧ � Eβ ¼ 0 [32] and these equations involve
the third- order derivatives of the curvature spinors in
addition to the Bianchi identities DΩα

β ¼ 0.
Since null coframe formulation provides a quite efficient

framework in the study of exact solutions and in particular
the radiative metrics in the general theory of relativity, one
can expect that NP-like null coframe formulation of the QC
model to have an analogous potential efficiency. It may also
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find application, for example, in obtaining perturbative
gravitational wave solutions of the QC gravity as discussed
in [7] in terms of an expansion in the QC coupling
constants.
In the following section, the above formulas are applied,

as an application of the above null coframe formulation of
the QC field equations, to study a particular impulsive wave
solutions propagating in algebraically special backgrounds
of Petrov type D. The discussion in the following two
sections can be considered as extensions of the previous
exact solutions reported in [19] to general QC gravity.

III. AN APPLICATION OF THE FORMALISM

A relatively simple application the formalism provided
above in terms of exterior algebra and auxiliary tensor-
valued forms is the discussion of the wave solutions dealing
with metrics that are slightly more complicated then the
usual pp-wave metrics. Before introducing a new family
of gravitational wave solutions on algebraically special
background spacetimes that are all of the direct product of
the form M1 ×M2 with the further assumption that both
M1 and M2 are constant curvature spacetimes, it is first
convenient to show that these are actually the solutions of
QC gravity models provided that a system of algebraic
equations for the parameters of such two-spacesM1 andM2

are satisfied.

A. Direct product solutions

In general, for a study of a radiative spacetime metric it is
both natural and advantageous to adopt the NP spin
coefficient formalism in one form or another. In the present
framework, this is achieved by simply introducing a null
coframe and formulate the field equations derived above
with respect to a null coframe. It is also desirable to relate
the null coframe components of tensors and forms to the
spinor quantities in the NP spin coefficient formalism. This
is provided in the Appendix. Recently, in parallel to the
work in this section, a new family of exact solutions to QC
gravity in five dimensions in the form of direct product of
two spaces have been introduced in [44].
The background metrics that will be considered for

impulsive gravitational waves will be assumed to be of
the direct product of two two-dimensional manifolds
M1 ×M2 of the form

g ¼ 1

Ω2
ðdu ⊗ dvþ dv ⊗ duÞ − 1

P2
ðdζ ⊗ dζ̄ þ dζ̄ ⊗ dζÞ

(29)

where the (real) conformal factors of the two dimensional
parts are assumed to be of the form

Ωðu; vÞ ¼ 1 −
k1
2l21

uv; Pðζ; ζ̄Þ ¼ 1þ k2
2l22

ζζ̄ (30)

respectively. u; v are real null coordinates on M1 with
Lorentzian signature whereas ζ is complex spacelike
coordinate on M2 with Euclidean signature. The constants
k1 and k2 take the values 0;∓1 and l1 and l2 are constants
related to constant curvatures of the two dimensional
spaces M1 and M2 respectively. These type D spacetimes
[45–48] are listed in Table I for convenience and for further
properties of these spacetimes, the reader is referred
to [5,18].
In terms of local null coordinates fxag ¼ fu; v; ζ; ζ̄g, it

is natural to define the local null coframe basis 1-forms
fθαg as

l ¼ 1

Ω
du; n ¼ 1

Ω
dv; m ¼ 1

P
dζ; m̄ ¼ 1

P
dζ̄

(31)

for α ¼ 0, 1, 2, 3 respectively and the metric then assumes
the standard form

g ¼ l ⊗ nþ n ⊗ l −m ⊗ m̄ − m̄ ⊗ m: (32)

l is the repeated principle null eigen 1-form. The class of
distribution-valued metrics of the form (29) has previously
been introduced by constraining six dimensional pp-wave
metrics [18]. The associated set of null frame fields feαg ¼
fn♯; l♯;−m̄♯;−m♯g are

Δ ¼ Ωð∂u −H∂vÞ; D ¼ Ω∂v;

δ̄ ¼ −P∂ζ; δ ¼ −P∂ ζ̄ (33)

for α ¼ 0, 1, 2, 3 respectively. In terms of the null coframe
1-forms, the exterior derivative operator has the expansion

d ¼ lΩ∂u þ nΩ∂v þ Pm∂ζ þ Pm̄∂ ζ̄ (34)

acting on scalars. Using the exteriors derivatives of the
basis coframe 1-forms relative to the null coframe, by
specializing indices of the Cartan’s first structure equations

dθα þ ωα
β∧θβ ¼ 0 (35)

to the null coframe, and taking the metric compatibility
relation for the connection 1-forms, ηαμωμ

β þ ηβμω
μ
α ¼ 0

into account, (35) can be solved for the Levi-Civita
connection 1-forms ωα

β as

ω0
0 ¼

k1
2l21

ðvl − unÞ; ω3
3 ¼

k2
2l22

ðζ̄m − ζm̄Þ (36)

with all other components vanishing (see also the general
formulas for the connection 1-forms in the Appendix). All
the other connection 1-form can be obtained from (50) by
complex conjugation or else by the metric compatibility
relation ηαμω

μ
β þ ηβμω

μ
α ¼ 0 relative to the null coframe.
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The nonvanishing spin coefficients relative to the null
coframe adopted then have the following expressions

γ ¼ −
k2
2l21

v;

α ¼ −β̄ ¼ k2
2l22

ζ̄ (37)

The corresponding curvature spinors and the null
coframe components of the curvature 2-form can be
calculated by using the Cartan’s second structure
equations (A8) which yield the following expressions

Ω0
3 ¼ 0 Ω0

0 ¼
k1
2l21

l∧n

Ω1
2 ¼ 0 Ω3

3 ¼
k2
2l22

m∧m̄: (38)

As in the case of the connection 1-form the remaining
curvature 2-forms are related to (38) by means of either
complex conjugation or the first Bianchi relations
ηαΩμ

β þ ηβμΩμ
α ¼ 0. By comparing the result (38) with

the definitions of the curvature spinors as components of
curvature 2-forms given in the Appendix, the above
expressions can be used to obtain the curvature spinors
corresponding to (29) as

Φ11 ¼
1

4

�
−
k1
l21

þ k2
l22

�
R ¼ 2

�
k1
l21

þ k2
l22

�

Ψ2 ¼ −
1

6

�
k1
l21

þ k2
l22

�
(39)

where nonvanishing Weyl spinor Ψ2 indicates that the
spaces are not conformally flat and in fact they are of Petrov
type D. For k1=l21 þ k2=l22 ≠ 0, the solution to the Einstein
field equations require a cosmological term with a constant
electromagnetic field. The Einstein field equations explic-
itly takes the form

�G0 ¼ −Λþ � lþ Λ− � l; �G2 ¼ −Λþ �m − Λ− � m̄;

�G1 ¼ −Λþ � nþ Λ− � n; �G3 ¼ −Λþ �m − Λ− � m̄:

(40)

where the constants Λ�, which are defined as

Λþ ≡ 1

2
ðk1=l21 þ k2=l22Þ; Λ− ≡ 1

2
ðk1=l21 − k2=l22Þ;

(41)

corresponding to a trace and a trace free part of the Einstein
3-form respectively. Thus, by construction, they stand for
an effective cosmological term and a constant electromag-
netic field spinor, respectively (see Eq. (A13) below).
Note that the Ricci curvatures are covariantly constant,
DRα ¼ dRα þ ωα

β∧Rβ ¼ 0 for α ¼ 0, 1, 2, 3, with the
above curvature and connection expressions of the Ansatz.
In order to write out the QC field equations for the direct

product Ansatz above explicitly, one first finds the corre-
sponding auxiliary 2-forms Xαβ. In this case, the explicit
expressions for Xαβ reduce to

X0
3 ¼ ð4aþ bÞΛþl∧m

X1
2 ¼ ð4aþ bÞΛþn∧m̄

1

2
ðX0

0 − X3
3Þ ¼ −

�
2aþ 1

2
b

�
Λþðl∧n −m∧m̄Þ

−
1

2
bΛ−ðl∧nþm∧m̄Þ (42)

because only the nonvanishing Ricci spinors are on the
diagonal, namely Φ11 and R. Note that relative to a null
coframe X̄1

2 ¼ X1
3, X̄0

3 ¼ X0
2; X0

0 is real while X3
3 is

imaginary. These results imply that, for (42), Παβ ¼ D �
Xαβ ¼ 0 identically for all α; β. In consequence, the
corresponding Lagrange multiplier 2-forms vanish, λα ¼
0 for all α. The only contribution of the QC part then comes
from �Tα½Xμν;Ωμν�

�T0¼−ð4a−bÞΛþΛ− � l �T2¼ð4a−bÞΛþΛ− �m
�T1¼−ð4a−bÞΛþΛ− �n �T3 ¼ð4a−bÞΛþΛ− � m̄:

(43)

The QC metric equations then admit an electromagnetic
field of the form F ¼ ϕ1ðl∧n −m∧m̄Þ. For a constant ϕ1

and with the background metric Ansatz (29), the source-
free Maxwell’s equations are satisfied identically dF ¼ 0.
Eventually, the metric field equations for electrovacuum
simplify to

�Eα ¼ −
1

κ2
�Gα þ Λ0

κ2
� θα þ �Tα½Ωμ

ν; Xμν� þ �τα½F� ¼ 0

(44)

and these equations reduce to a system of equations for the
parameters of the metric Ansatz (29). The diagonal com-
ponents of Eα, namely the equations E0

0 ¼ E1
1 ¼ 0 and

E2
2 ¼ E3

3 ¼ 0 provide two algebraic equations for the

TABLE I. Possible direct product spacetimes M1 ×M2with
l1 ¼ l2. See, Chapter 7 in [5] or [18].

Spacetime M1 ×M2 k1 k2 Φ11 Λ0

Minkowski Rð1;1Þ × R2 0 0 ¼ 0 ¼ 0
Nariai dS2 × S2 þ1 þ1 ¼ 0 > 0
anti-Nariai AdS2 ×H2 −1 −1 ¼ 0 < 0
Bertotti-Robinson AdS2 × S2 −1 þ1 > 0 ¼ 0

Plebański-Hacyan
Rð1;1Þ × S2 0 þ1 > 0 > 0
AdS2 × R2 −1 0 > 0 < 0
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parameters of the Ansatz. For a given Λ0 and ϕ0 these
equations determine the parameters of the Ansatz as

Λþ ¼ −Λ0

Λ− ¼ 2κ2ϕ1ϕ̄1

1þ ð4a − bÞκ2Λ0

: (45)

Note that b ¼ 4a turns out to be a peculiar case for the QC
part with no apparent physical motivation. Otherwise, the
QC part of (1) modifies the expression for Λ− and that
the equations admit a background solution with ϕ1 ≠ 0.
Moreover, note that pure QC part of the model does not
support a cosmological constant because the auxiliary form
�Tα has a vanishing trace.
It is worth to emphasize that the background spacetimes

above have Petrov type D unlike a maximally symmetric
solution which belong to Petrov type O. Recall that, in four
dimensions a constant curvature spacetime with curvature
2-form

Ωαβ ¼ −
1

3
Λ0θ

αβ; (46)

satisfies the Einstein field equations �Gα ¼ −Λ0 � θα.
These metrics are all conformally flat and thus all Weyl
spinors vanish Ψk ¼ 0. For the general Lagrangian (1), the
maximally symmetric metric of (46) produces �Tα ¼ 0.
In this case, the pure QC equations are identically satisfied
where the corresponding Dλα and �Tα vanish separately
making the constant curvature spaces somewhat trivial
solutions to the QC equations.

B. Impulsive wave solutions in direct
product backgrounds

In this section, Petrov type N impulsive wave solutions
will be studied. These waves propagate in various type D
background spacetimes of the form of a direct product
tabulated in the previous section. The Ansatz for the
Maxwell field in the previous section is also valid for
the impulsive wave metric Ansatz below.
Shear- and twist-free nondiverging null geodesic vector

field and the pp-wave Ansatz is a subclass of the Kundt
metrics for which a null geodesic vector field is assumed to
be covariantly constant. pp-wave space-times admit cova-
riantly constant real null basis 1-form with vanishing
optical scalars and they are space-times are Petrov type
N for which all the quadratic curvature invariants namely,
R2 � 1, Rα∧ � Rα, Ωαβ∧ �Ωαβ vanish.
The wave metrics that will be discussed have a form that

are slightly more general then the standard pp-wave metric
and they are introduced on the manifolds which are of the
form of direct product of two two-dimensional manifolds
with an appropriate profile function. Explicitly, they are
assumed to be of the form

g ¼ 1

Ω2
ðdu ⊗ dvþ dv ⊗ duþ 2Hðu; ζ; ζ̄Þdu ⊗ duÞ

−
1

P2
ðdζ ⊗ dζ̄ þ dζ̄ ⊗ dζÞ (47)

The real profile function is assumed to be of the
distributional-valued form Hðu; ζ; ζ̄Þ ¼ δðuÞhðζ; ζ̄Þ and
for k1 ¼ k2 ¼ 0 the metric (47) regain the Kerr-Schild
form of pp-wave metric [8,9]. The metric Ansatz is simple
enough for the QC field equations yet it slightly more
complicated then usual pp-wave Ansatz that and it leads to
a more general equation for the profile function H on a two
dimensional manifolds M2. A convenient set of basis null
coframe 1-forms fθαg for α ¼ 0, 1, 2, 3, in conjunction
with the background coframe of the previous section,
consists of the 1-forms

l ¼ 1

Ω
du; n ¼ 1

Ω
ðdvþHduÞ;

m ¼ 1

P
dζ; m̄ ¼ 1

P
dζ̄: (48)

The set of frame fields associated to the coframe in (48) is
identical to the set of frame fields [19] except for the sign of
the profile function H. As will be shown below, the metric
Ansatz (47) linearizes the metric field equations constraining
the constant parameters of the two-spaces M1 and M2.
The connection and the curvature forms corresponding

to basis coframe 1-forms (48) can be calculated as follows.
First, note that in terms of the null coframe 1-forms the
exterior derivative operator then takes the form

d ¼ lΩð∂u −H∂vÞ þ nΩ∂v þ Pm∂ζ þ Pm̄∂ ζ̄: (49)

Using this expression, the Cartan’s first structure equations
can be solved for the corresponding connection 1-forms
ωα

β as

ω0
3 ¼ 0 ω0

0 ¼
k1
2l21

ðvl − unÞ

ω1
2 ¼ PHζl ω3

3 ¼
k2
2l22

ðζ̄m − ζm̄Þ (50)

and by making use of the spin coefficient definitions in the
Appendix in (A2), the nonvanishing spin coefficients are

ν ¼ −PHζ γ ¼ −
k2
2l21

v

ϵ ¼ k2
2l21

u α ¼ −β̄ ¼ k2
2l22

ζ̄ (51)

where coordinate subscript denotes partial derivative with
respect to the coordinate. At this point it is instructive to
compare the metric Ansatz (47) with the original pp-wave
Ansatz. In parallel to the original pp-wave metric, the null
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frame tangent to the real null vector field l♯ ¼ Δ ¼ e1 is
twist-free since l∧dl ¼ 0, has a vanishing shear (σ ¼ 0), a
vanishing divergence (ρ ¼ 0) and it satisfies the geodesic
equation

∇l♯l ¼
k1
2l21

ul (52)

since the pseudo-Riemannian covariant derivative ∇ com-
mutes with the linear map ♯ and its inverse. Consequently,
the basis (co)frame field l is not covariantly constant
unless k1 ¼ 0.
The corresponding curvature spinors and the null coframe

components of the curvature 2-form can be calculated by
using the Cartan’s second structure equations as

Ω0
3 ¼ 0 Ω0

0 ¼ −
k1
l21
l∧n

Ω1
2 ¼ −ðP2HζÞζl∧m − P2Hζζ̄l∧m̄

Ω3
3 ¼ −

k2
l22
m∧m̄ (53)

where the identity uH ¼ uδðuÞhðζ; ζ̄Þ ¼ 0 for the
distribution-valued profile function has been used in the
derivation. These curvature expressions reduce to those
of pp-waves in Minkowski background for k1=l21 ¼ k2=
l22 ¼ 1. By using the definitions of the spinor quantities
given in the Appendix, the above curvature expressions can
be used to obtain the corresponding curvature spinors as

Φ11 ¼
1

4

�
−
k1
l21

þ k2
l22

�

Φ22 ¼
1

2
ΔH

Ψ2 ¼ −
1

6

�
k1
l21

þ k2
l22

�

Ψ4 ¼ ðPHζÞζ
R ¼ 2

�
k1
l21

þ k2
l22

�
(54)

where Δ is the two dimensional Laplacian defined on M2

spanned by the complex coordinates fζ; ζ̄g and in terms
of local coordinates it explicitly reads Δ≡ 2P2∂ζ∂ ζ̄.
In comparison to the background spacetimes of the previous
section, one has now a nonvanishing Ricci spinor Φ22 and
the Weyl spinor Ψ4 which is confined to the null cone
defined by u ¼ 0 representing transverse gravitational
waves. Moreover, these terms do not contribute to �Tα.
Finally, note that for the pp-wave metric the Einstein forms
of the background, (40) modify accordingly as

�G0 ¼ −Λþ � lþ Λ− � l;
�G1 ¼ −ΔH � l − Λþ � nþ Λ− � n;
�G2 ¼ −Λþ �m − Λ− � m̄;

�G3 ¼ −Λþ �m − Λ− � m̄: (55)

For Λ∓ ¼ 0, the usual pp-wave metric equation in GR
with flat Minkowski background is recovered where the
only nonvanishing component of the Ricci tensor Rαβ is
that of l ⊗ l. The above expressions for the curvature
spinors imply that the metric Ansatz lead to constant scalar
curvature, unlike the original pp-wave metric which has
vanishing curvature invariants, and therefore R ¼ 0. Note
that vanishing scalar curvature renders the introduction of a
cosmological constant incompatible with the pp-wave
Ansatz in a Minkowski background.
It is possible to obtain the explicit expressions for the

quadratic curvature scalars for the metric Ansatz (47). In
terms of the constants in metric Ansatz, they are given by

Ωαβ∧ � Ωαβ ¼ ðΛ2þ þ Λ2
−Þ � 1 (56)

and

Rα∧ � Rα ¼ 4ΛþΛ− � 1 (57)

The geometrical properties of the Ansatz given above
are sufficient to calculate the auxiliary forms for the QC
part. For the pp-wave Ansatz Xαβ now become

X0
3 ¼ ð4aþ bÞΛþl∧m

X1
2 ¼ ð4aþ bÞΛþn∧m̄

þ 1

2
bΔHl∧m̄

1

2
ðX0

0 − X3
3Þ ¼ −

�
2aþ 1

2
b

�
Λþðl∧n −m∧m̄Þ

−
1

2
bΛ−ðl∧nþm∧m̄Þ: (58)

The auxiliary forms of the previous section retain their
form, except that X1

2 receives an additional l∧m compo-
nent (and hence its complex conjugate X1

3) in contrast to
corresponding auxiliary form X1

2 of the previous section.
Then one can use these auxiliary forms to find an explicit
expression for the corresponding Lagrange multiplier
form Παβ. By using the general expressions for the field
equations (15) for the auxiliary fields, one finds that Π0

0 ¼
Π3

3 ¼ Π0
3 ¼ 0 together with the nonvanishing component

Π1
2 ¼ −

1

2
bPðΔHÞ;ζ̄ � l ¼ Π̄1

3: (59)

Using the general formula for the covariant exterior
derivatives of the vector-valued Lagrange multiplier 2-forms
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above, the explicit expressions for the Lagrange multiplier
2-forms can now be calculated using this result. One finds

λ1 ¼ −bP½ðΔHÞζ � ðl∧mÞ þ ðΔHÞζ̄ � ðl∧m̄Þ� (60)

and λ0 ¼ λ2 ¼ 0. Eventually, one arrives at the expression
for the only one nonvanishing fourth-order term which
explicitly reads

Dλ1 ¼ b

�
ΔΔH þ k2

2l22
P½ζðΔHÞζ þ ζ̄ðΔHÞζ̄�

�
� l; (61)

which contributes to the l ⊗ l component of Eαβ (corre-
sponding to the off-diagonal component E1

0). The equations
�Eα ¼ 0 (13) naturally separate the fourth-order Lagrange
multiplier part Dλα that are linear in curvatures and the part
that are nonlinear in curvature and the background quantities
are involved only in the latter part. The background
solutions, which are studied in the previous section, are
remained untouched and do not involve in the expression for
λα. Obviously, for the impulsive wave Ansatz above, the pure
QC part of the model gives rise to a term that is linear in the
profile function H appearing in the off-diagonal term (61).
The last two terms on the right-hand side of (61) vanish for
k2 ¼ 0 and accordingly with Δ↦2∂ζ∂ ζ̄, the equations for
the pp wave with flat background are obtained.
Using the expression for G1

0 in (55) and assuming that
the parameters of the background configuration are sat-
isfied, the only equations for the impulsive wave metric
Ansatz (47) reduces to E1

0 ¼ 0 and this equation explicitly
reads

ΔðΔþ L−2Þhþ ðΛþ − Λ−ÞP½ζðΔhÞ;ζ þ ζ̄ðΔhÞ;ζ̄� ¼ 0

(62)

with the constant L−2 ≡ ðbκ2Þ−1. Apparently, a slight
modification ofpp-metric Ansatz entails a more complicated
partial differential equation for the corresponding profile
function.
Provided that the profile function, which is assumed to

be of the form Hðu; ζ; ζ̄Þ ¼ δðuÞhðζ; ζ̄Þ, satisfies the
complex fourth-order partial differential equation (62),
the metric (47) defines a family of impulsive gravitational
wave solution propagating in Petrov type D backgrounds to
the gravitational model based on the Lagrangian (1). The
second term in (62) is related to the type D background and
it drops out for k2 ¼ 0 in accordance with the previous
result, cf. for example, [49]. Note that the M1 part of the
metric Ansatz and, hence the metric function Ω, does not
enter into the equation for the profile function (62) and
show up only in the equations for the background therefore.
The second term in (62) does not appear on the Plebanski-
Hacyan background spacetime of the form AdS2 ×R2

whereas for Nariai (anti-Nariai) type background, (62) is
an equation on S2ðH2Þ. It is worth to emphasize that at this

point that the set of solutions to the equation (62) defines a
new family of algebraically special solutions to the QC
model based on the total Lagrangian (1).
The familiar vacuum pp-waves equations for the

vacuum on flat background is recovered by setting
k1 ¼ k2 ¼ 0, Λ0 ¼ 0 and F ¼ 0. In this subcase, α ¼ 1
component of the metric field equations (13) reduce to

�E1 ¼ ðbd � dþ κ−2�ÞR1 ¼ 0: (63)

The expression on the right side in (63) follows from
�T1½Ωμν; Xμν� ¼ 0, DR1 ¼ dR1 and Dλ1 ¼ dλ1 for the pp-
metric with flat background with R1 ¼ −2Hζζ̄l. The field
equation (63) reflects the efficiency of the coframe formu-
lation and the exterior form language, in that it is possible to
show by construction that the original pp-wave metric
linearize the QC field equations in a straightforward
manner by retaining the terms linear in curvature, namely
the term D �DRα in the simplified form d � dRα since the
only nonzero connection 1-form is ω1

2 having a single
nonzero component (see also the discussion in Section C of
the Appendix). In addition, it is straightforward to show
that for the pp-wave metric the operator d � d on M1 ×
M2 ≅ Rð1;3Þ becomes the Laplacian operator on M2 ≅ R2

acting on the profile function Hðu; ζ; ζ̄Þ.

IV. CONCLUDING REMARKS

The current work introduces a new family of impulsive
gravitational waves propagating in various product back-
ground spacetimes for a general QC gravity model based on
the Lagrangian form (1) in four dimensions. The gravita-
tional sector of the model contains an Einstein-Hilbert term,
a cosmological constant, and the quadratic curvature terms.
The only matter coupling to the geometry is assumed
to be the electromagnetic field with the Lagrangian
− 1

2
F∧ � F ¼ − 1

4
FαβFαβ � 1 ¼ − 1

4
FabFab � 1. With the

help of the expression for the inner product Rα∧ � Rα ¼
RαβRα

μθ
β∧ � θμ ¼ RαβRαβ � 1 which follows from θβ∧�

θμ ¼ ηβμ � 1, the Lagrangian density (1) can be rewritten in
the form

L ¼
�

1

2κ2
Rþ Λ0

κ2
þ a

2
R2 þ b

2
RabRab −

1

4
FabFab

�

×
ffiffiffiffiffi
jgj

p
dx0∧dx1∧dx2∧dx3 (64)

where Rab stands for the components of the Ricci tensor
relative to a coordinate frame, R ¼ ηαβRαβ ¼ gabRab is the
scalar curvature and the invariant volume element is written
in the form �1 ¼ ffiffiffiffiffijgjp

dx0∧dx1∧dx2∧dx3.
The field equations that follow from the Lagrangian form

(64) admit solutions with the metric of the form
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g ¼ du ⊗ dvþ dv ⊗ duþ 2δðuÞhðζ; ζ̄Þdu ⊗ du

ð1 − k1
l2
1

uvÞ2

−
dζ ⊗ dζ̄ þ dζ̄ ⊗ dζ

ð1þ k2
l2
2

ζζ̄Þ2 (65)

which is slightly more general then the familiar Kerr-Schild
form of the impulsive pp-wave metric. For a vanishing
profile function, the background spacetimes of the product
form M1 ×M2 are solutions to the field equations if
the constants k1 ¼ l21ðΛþ þ Λ−Þ and k2 ¼ l22ðΛþ − Λ−Þ
are determined by the relations

Λþ ¼ −Λ0 (66)

Λ− ¼ 2κ2ϕ1ϕ̄1

1þ ð4a − bÞκ2Λ0

(67)

in terms of the cosmological constant Λ0, the constant
electromagnetic field spinors ϕ1, and the QC coupling
constants a; b. These background spacetimes provide a
family of algebraically special solutions to the QC model
defined by (64). Furthermore, the distributional-valued
profile function δðuÞhðζ; ζ̄Þ appears only in the terms that
are linear in the derivatives of the curvature components in
the field equations, and thus h satisfies the following
fourth-order equation on M2,

ΔðΔþ L−2Þhþ ðΛþ − Λ−ÞP½ζðΔhÞ;ζ þ ζ̄ðΔhÞ;ζ̄� ¼ 0;

(68)

with L2 ≡ bκ2, Δ≡ 2P2∂ζ∂ ζ̄, and Λ∓ given as in (66) and
(67). Consequently, the impulsive wave solutions defined
by the metric (65) for various product backgrounds has the
property that the resulting field equation is linear in the
profile function with the parameters of the two manifolds
satisfying some algebraic equations.
The evaluation of the field equations relative to a suitable

null coframe by using an impulsive wave-type metric
Ansatz presented above provides an example for the
scheme of calculations developed and it is possible to
write out the metric field equations �Eα ¼ 0 in terms the
spinor quantities by using Eqs. (A10) and their appropriate
contractions in full generality. Thus, the formulas of Sec. II
provides a practical and alternative approach for more
complicated metric Ansatz towards the efforts in finding the
solutions to the QC field equation by taking algebraic type
into the account.
The following remarks regarding the breadth of the

applicability of the null coframe formalism developed
above can be stated. Although the discussion in this work
is confined to four spacetime dimensions, the mathematical
framework of the NP spin coefficient formalism expressed
in the language of exterior differential forms has the

prospect in generalization to higher dimensions which
needs further scrutiny of the above formulas in conjunction
with the previous work [50]. In this regard, the use of
exterior algebra may provide formal simplification for the
extension of Newman-Penrose formalism to higher dimen-
sions recently studied in a series of papers [29,50–52].
It is possible to extend the above discussion to three

spacetime dimensions as well. In particular, the new
massive gravity Lagrangian [53] with cosmological con-
stant can be obtaining by setting a ¼ − 3

8
b in the

Lagrangian (1). The field equations for the new massive
gravity expressed in terms of the Cotton 2-form [31] then
can be formulated in terms of a seminull coframe by
making use of spinor formulation of topologically massive
gravity introduced in [54].
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APPENDIX

The following set of formulas provides a glossary of the
NP quantities in relation to the associated tensorial quan-
tities used in the main text, see, for example, [4] for the
discussion in terms of a set of null frame fields. The spinor
definitions in terms of the components of the tensor-valued
forms and the exterior forms are in accordance with the
original NP definitions [3]. The numerical indices refer to a
complex null coframe throughout the Appendix.

1. NP spinor definitions

The notation used in the paper allows one to carry out
tensorial calculations using the algebra of exteriors forms
relative to a local null coframe denoted by fθαg ¼
fl; n;m; m̄g for α ¼ 0, 1, 2, 3 respectively. l, n is a pair
of real null vectors, whereas m, m̄ is a pair of complex-
conjugate spatial null vectors. (A bar over a quantity
denotes complex conjugation). A set of null coframe
1-forms fθαg defines a set of associated frame vectors
feαg ¼ fn♯; l♯;−m̄♯;−m♯g which are denoted by fΔ; D;
−δ̄;−δg in the NP spin coefficient formalism, respectively.
The isomorphism ♯maps a coframe 1-form to an associated
basis frame field. n♯ is the vector field associated with the
1-form n ¼ nadxa, i.e., n♯ ¼ na∂a with na ¼ gabnb.
Relative to a null frame, the contraction operator can be
written conveniently using the map ♯, for example,
ie0 ≡ i0 ¼ in♯ . The definition of the map ♯ facilitates the
calculation of the contractions, such as in♯l ¼ lana ¼
gabnalb ¼ 1 where g ¼ gabdxa ⊗ dxb.
The numerical indices relative to the null coframe are

raised and lowered by the metric with nonvanishing
components η01 ¼ −η23 ¼ 1 and η01 ¼ −η23 ¼ 1. For
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example, G3 ¼ η3αGα ¼ −G2 and as another example, for
the indices of the curvature 2-form, one has Ω0

0 ¼
Ω10 ¼ Ω01, etc.
The Hodge dual operator acting on a p-form is denoted

by *. In terms of a NP null coframe, the orientation is
chosen so that the invariant volume 4-form takes the form
�1 ¼ −il∧n∧m∧m̄. Accordingly, the corresponding per-
mutation symbol can be defined as lanbmcm̄dϵabcd ¼
ϵ0123 ¼ −i can also be employed to calculate Hodge duals
relative to null coframe. The Hodge duality relations for the
basis p-forms then follows from the relations

�l ¼ þil∧m∧m̄ � ðl∧nÞ ¼ þim∧m̄
�n ¼ −in∧m∧m̄ � ðl∧mÞ ¼ −il∧m
�m ¼ −il∧n∧m � ðn∧m̄Þ ¼ −in∧m̄; (A1)

where the Hodge duals of the basis 3-forms can be found
by using �� ¼ id acting on 3-forms and in general for any
p-form �� ¼ ð−1Þpðn−pÞþsid, where s is signature of the
metric.
In connection with the Hodge dual, the contraction

operator iX, and the wedge product ∧, the identities iX �
ω ¼ �ðω∧X♭Þ and X♭∧ � ω ¼ ð−1Þðpþ1Þ � iXω are fre-
quently used in tensorial manipulations as well as in
explicit computations. Here X is a vector field, ω is a
p-form, and ♭ is the inverse of the map ♯ [34].

In the present mathematical framework, the expressions
for the NP spinor scalars [3] can be read off from an
associated tensorial expressions. In particular, the twelve
complex NP spin coefficients correspond to the following
components of the Levi-Civita connection 1-form ωα

β:

ω0
3 ¼ þτlþ κn − ρm − σm̄

ω1
2 ¼ −νl − πnþ λmþ μm̄

1

2
ðω0

0 − ω3
3Þ ¼ −γl − ϵnþ αmþ βm̄: (A2)

Relative to an orthonormal coframe, there are six indepen-
dent connection 1-forms, whereas relative to a NP null
coframe there are only three complex connections. In either
case, and for an arbitrary vector field X, they can also be
defined by ∇Xθ

α ¼ −iXðωα
βÞθβ from which the original

definitions of the spin coefficient expressions relative to a
coordinate basis in terms of covariant derivatives can be
recovered. The covariant exterior derivative denoted by D
can be derived from the definition of ∇X, and acting on
tensor-valued forms, it is often more convenient to use.
The spin coefficient definitions (A2) can be used in

Cartan’s first structure equations to find the exterior
derivatives of the basis coframe 1-forms as [55]

dlþ ðϵþ ϵ̄Þl∧n − ðαþ β̄ − τ̄Þl∧m − ðᾱþ β − τÞl∧m̄þ κ̄n∧mþ κn∧m̄ − ðρ − ρ̄Þm∧m̄ ¼ 0

dnþ ðγ þ γ̄Þl∧nþ ðαþ β̄ − πÞn∧mþ ðᾱþ β − π̄Þn∧m̄ − νl∧m − ν̄l∧m̄ − ðμ − μ̄Þm∧m̄ ¼ 0

dmþ ðπ̄ þ τÞl∧n − ðγ − γ̄ þ μ̄Þl∧m − λ̄l∧m̄ − ðϵ − ϵ̄ − ρÞn∧mþ σn∧m̄þ ðᾱ − βÞm∧m̄ ¼ 0: (A3)

These 2-form equations are completely equivalent in
content to the commutator relations ½Δ; D�; ½Δ; δ�; ½D; δ�;
½δ; δ̄� for the basis vector fields. The commutators can
be used to derive the commutators by making use of
the operator identity ½LX; iY � ¼ i½X;Y� acting on null basis
1-forms for the Lie derivative LX ¼ diX þ iXd and the
contraction operator [34].
In terms of a null coframe, the exterior derivative

operator, denoted by d, has the general expression

d ¼ lΔþ nD −mδ̄ − m̄δ (A4)

acting on scalars. The expressions (A3) and (A4) can
be used to calculate the exterior derivative of an arbitrary
p-form relative to a given null coframe. Note that (A3)
provides an algebraic system of equations for calculation of
the spin coefficients.
As a more practical alternative, it is possible to

obtain the general formulas for the NP spin

coefficients by making use of Cartan’s first structure
equation,

Θα ¼ Dθα ¼ 0 ¼ dθα þ ωα
β∧θβ; (A5)

where Θα ¼ 1
2
Tα

μνθ
μν is a torsion 2-form with Tα

μν

denoting the components of the torsion tensor. With
the assumptions of the vanishing torsion 2-form and
nonmetricity, these equations can be solved for the
Levi-Civita connection 1-forms [43] to find

ωα
β ¼

1

2
iαiβðdθμ∧θμÞ − iαdθβ þ iβdθα: (A6)

For a concise derivation of this formula using the exterior
algebra, see, for example, [56]. The general formula is valid
in a null or orthonormal coframe, and in particular, relative
to a null coframe and with due attention paid to the signs,
one can find the following expressions:
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ω0
3 ¼ −

1

2
il♯im♯ðl∧dnþ n∧dl −m∧dm̄ − m̄∧dmÞ þ il♯dm − im♯dl

ω1
2 ¼ −

1

2
in♯im̄♯ðl∧dnþ n∧dl −m∧dm̄ − m̄∧dmÞ þ in♯dm̄ − im̄♯dn

ω0
0 ¼ þ 1

2
il♯in♯ðl∧dnþ n∧dl −m∧dm̄ − m̄∧dmÞ − il♯dnþ in♯dl

ω3
3 ¼ −

1

2
im̄♯im♯ðl∧dnþ n∧dl −m∧dm̄ − m̄∧dmÞ þ im̄♯dm − im♯dm̄: (A7)

for the connection 1-forms used in the discussion above.
The general formulas in (A7) reduce the main labor in
calculation of the spin coefficients (i.e., the Ricci rotation
coefficients) to the calculation of the exterior derivatives
dl; dn, and dm with the help of (A4) and expressing in
terms of the basis 2-forms, namely l∧n, l∧m, l∧m̄, n∧m,
n∧m̄ and m∧m̄. Subsequently, by carrying out the
contractions indicated in (A7) and then identifying the
components of the resultant expression with (A2), it is
straightforward to find the NP spin coefficients by
hand.
The conventions for the curvature spinors also follow

the original NP spin coefficient formalism to facilitate
the comparison with the literature [3]. In particular,
the Ricci 1-form can conveniently be defined by Rα ≡
iβΩαβ in terms of the contraction of the curvature
2-form Ωα

β ¼ 1
2
Rα

βμνθ
μν and that the Ricci 1-form explic-

itly reads Rα ¼ Rαμ
μβθ

β. The scalar curvature can be
defined as the contraction R ¼ iαRα. In terms of the

curvature 2-forms, Cartan’s second structure equation
reads

Ωα
β ¼ dωα

β þ ωα
μ∧ωμ

β: (A8)

In terms of the connection forms above, (A8) explicitly
reads

Ω0
3 ¼ dω0

3 − ω0
3∧ðω0

0 − ω3
3Þ

Ω1
2 ¼ dω1

2 þ ω1
2∧ðω0

0 − ω3
3Þ

Ω0
0 −Ω3

3 ¼ dðω0
0 − ω3

3Þ þ 2ω0
3∧ω1

2: (A9)

The 18 scalar field equations, namely (4.2a)–(4.2r) of [3],
involving the curvature spinors (Ricci spinors Φik,
Weyl spinors Ψk, and scalar curvature R) can be derived
from the components of Cartan’s second structure
equation (A9), by using (A2) together with the following
definition of curvature spinors,

Ω0
3 ¼ C0

3 þ ½−Φ00n∧m − Φ01ðl∧nþm∧m̄Þ þ Φ02l∧m̄� þ 1

12
Rl∧m

Ω1
2 ¼ C1

2 þ ½Φ20n∧mþ Φ21ðl∧nþm∧m̄Þ − Φ22l∧m̄� þ 1

12
Rn∧m̄

1

2
ðΩ0

0 −Ω3
3Þ ¼

1

2
ðC0

0 − C3
3Þ þ ½Φ10n∧mþ Φ11ðl∧nþm∧m̄Þ − Φ12l∧m̄� − 1

24
Rðl∧n −m∧m̄Þ; (A10)

where Cα
β are the Weyl curvature 2-forms with the

following identification of components,

C0
3 ¼ −Ψ0n∧m̄ −Ψ1ðl∧n −m∧m̄Þ þΨ2l∧m

C1
2 ¼ þΨ2n∧m̄þΨ3ðl∧n −m∧m̄Þ −Ψ4l∧m

1

2
ðC0

0 − C3
3Þ ¼ þΨ1n∧m̄þΨ2ðl∧n −m∧m̄Þ −Ψ3l∧m;

(A11)

in terms of Weyl spinors Ψk. The curvature spinor
definitions (A10) and (A11) follow from the familiar
decomposition of the curvature 2-form into the parts
that are irreducible representations of the Lorentz
group as

Ωα
β ¼ Cα

β −
1

2
ðθα∧Sβ − θβ∧SαÞ − 1

12
Rθα∧θβ (A12)

with the indices specialized relative to a NP coframe. The
Weyl 2-form, denoted by Cα

β, is an irreducible traceless
fourth rank part, whereas Sα ¼ Rα − 1

4
Rθα is the second

rank traceless Ricci 1-form part, and the remaining term R
is the trace part. The second rank part is anti-self-dual,
whereas the remaining parts comprise the self-dual parts.
For an elegant discussion of the self-dual and the anti-self-
dual properties of the irreducible parts in terms of differ-
ential forms, see for example [57].
There are 11 complex scalar equations for the second

Bianchi identity in the NP formalism and, in general, in
terms of the covariant exterior derivative of the curvature
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2-form, it readsDΩα
β ¼ 0. More precisely, the components

of the 3-form equations DΩ0
3 ¼ 0 (four scalar equations),

DΩ1
2 ¼ 0 (four scalar equations), and D �Gα ¼ 0 (two

real scalar equations for α ¼ 0, 1 and a complex scalar
equation for α ¼ 2) comprise the Bianchi identity
expressed as scalar equations in the NP formalism. The
formulas in terms of exterior forms to this point then
embody the field equations in the NP spin coefficient
formalism succinctly.

The Einstein field equations, �Gα ¼ κ2 � τα, expressed
in the above notation, allow one to replace Ricci spinors
with the components of matter energy-momentum forms
�τα relative to a null coframe (κ2 ≡ 8πGc−4). For a given
matter energy-momentum content, the Ricci spinor com-
ponents can be obtained from the Einstein field equations,
provided that one has the following identification of the
components of the Einstein 3-forms in terms of Ricci
spinors relative to a NP null coframe,

�G0 ¼ þiΩ̄0
3∧m − iΩ0

3∧m̄þ iΩ3
3∧l ¼ −2

�
Φ11 þ

1

8
R

�
� l − 2Φ00 � nþ 2Φ10 �mþ 2Φ01 � m̄

�G1 ¼ −iΩ1
2∧mþ iΩ̄1

2∧m̄ − iΩ3
3∧n ¼ −2Φ22 � l − 2

�
Φ11 þ

1

8
R

�
� nþ 2Φ21 �mþ 2Φ12 � m̄

�G2 ¼ −iΩ0
0∧mþ iΩ̄1

2∧l − iΩ3
0∧n ¼ −2Φ12 � l − 2Φ01 � nþ 2

�
Φ11 −

1

8
R

�
�mþ 2Φ02 � m̄

�G3 ¼ iΩ0
0∧m̄ − iΩ1

2∧lþ iΩ̄0
3∧n ¼ −2Φ21 � l − 2Φ10 � nþ 2Φ20 �mþ 2

�
Φ11 −

1

8
R

�
� m̄; (A13)

where Gα ≡Gα
βθ

β ¼ ðRα
β − 1

2
δαβRÞθβ. In actual calcu-

lations, explicit expressions for the Einstein 3-forms can be
derived from the expressions on the right-hand side in
(A13) in terms of the curvature 2-forms. At the same time,
(A13) can also be used to identify the tensorial components
of the traceless Ricci 1-forms in terms of Ricci spinors Φik.
Even a more compact null coframe formulation of the NP
field equations and the Einstein 3-forms was introduced in
[58,59] by utilizing matrix-valued differential forms. Yet
another null coframe approach was introduced in [60] by
making use of complex quaternionic differential forms.

2. Maxwell spinor definitions

Because the NP formalism makes use of complex
geometrical quantities defined relative to a null coframe,
any matter source should be projected to the complex null
coframe accordingly. Relative to a null coframe, Maxwell’s
equations can be written by introducing the complex
2-form

F ¼ 1

2
ðF þ i � FÞ; (A14)

which is a self-dual 3-form �F ¼ −iF by definition.
In terms of F , the original Maxwell spinor definitions of
NP follow from

F ¼ ϕ0n∧m̄þ ϕ1ðl∧n −m∧m̄Þ − ϕ2l∧m; (A15)

where the basis 2-forms n∧m̄, l∧m, and l∧n −m∧m̄
are self-dual, whereas their complex conjugates are
anti-self-dual. The NP form of the Maxwell’s equations,
the set of scalar equations (A1) in [3], in terms of complex

spinors ϕk and the spin coefficients, follow from the
equation dF ¼ 0 vanishing componentwise. Finally, with
the help of the definition (A14), the energy-momentum
form of the Maxwell field (12) can be written as

�τα½F� ¼
1

2
½ðiαFÞ∧ � F − F∧iα � F�

¼ 2iðiαF Þ∧F̄; (A16)

where the expression in the second line is sometimes more
convenient and ταβ ¼ 2F αμF μ

β. By combining the defi-
nitions (A16) and (A13), one can show that the Einstein-
Maxwell equations �Gα ¼ κ2 � τα½F� then determine the
Ricci spinors as Φik ¼ κ2ϕiϕ̄k. Subsequently, these rela-
tions are to be inserted into the structure equations (A10)
or into the scalar NP field equations (commonly referred to
as Ricci identities), which constitute the components of
the tensorial relation given in (A10). Therefore, as in the
Einstein-Maxwell case, the null coframe formalism in
general allows one to consider the components of the
Weyl 2-form together with the Ricci tensor components at
the same time at the level of the structure equations. This is,
in fact, one of the reasons why NP formalism provides a
mathematically robust and convenient mathematical frame-
work to discuss algebraically special metrics in contrast to
the usual tensorial methods.

3. Prime symmetry

The prime symmetry provides valuable and practical
consistency checks for the field equations in the NP
formalism. As a discrete symmetry, it can be defined as
the exchange symmetry l↔n and m↔m̄ for a basis
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coframe 1-form. It can be considered as a map of the
complex Cartan’s structure equations onto themselves and
therefore can be extended to the tensorial objects and their
components in the exterior algebra. In terms of the
numerical indices belonging to a null coframe, it amounts
to the exchanges 0↔1 and 2↔3. For example, for the
curvature 2-forms, it corresponds to the exchanges
Ω0

3↔Ω1
2, Ω0

0↔Ω1
1, and Ω2

2↔Ω3
3. The prime sym-

metries of the spin coefficients and the curvature spinors
follow from the associated tensorial prime symmetry.
For a pp-wave metric Ansatz (47) with Ω ¼ P ¼ 1, the

associated coframe can be chosen in two different ways that
are related by the prime symmetry. In this case, the prime
symmetric companion of the coframe (48) leads to
ω1

2↦ω0
3 ¼ Hζ̄n, ω

3
0↦ω1

2 ¼ 0. Consequently, the non-
vanishing prime companion curvature 2-forms are

Ω1
2↦Ω0

3 ¼ −Hζζ̄n∧m −Hζ̄ ζ̄n∧m̄. Accordingly, the cor-
responding Einstein form �G1 ¼ �R1 ¼ −2Hζζ̄ � l ¼ −d �
dn is a prime companion to �G0 ¼ �R0 − 2Hζζ̄ � n ¼ −d �
dl as well.
The prime symmetry relating for the two possible

choices of the basis coframes for the pp-wave metric
can be extended to the auxiliary tensor-valued forms
defined above for the QC equations. For example, one
has the prime symmetry companions Π1

2↔Π0
3,

Π0
0↔Π1

1 ¼ −Π0
0, Π3

3↔Π2
2 ¼ −Π3

3. Likewise, as an
example of the prime symmetry for the QC part, one has
the prime companions E1

1↔E0
0, which results from the

exchange symmetry l ⊗ l↔n ⊗ n, in the same way as G1
1

and G0
0 are the prime companion components of the

Einstein tensor for the usual pp-wave Ansätze in GR.
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