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We consider two different definitions for loop corrections to the primordial power spectra. One of these
is to simply correct the mode functions in the tree order relations using the linearized effective field
equations. The second definition involves the spatial Fourier transform of the two-point correlator.
Although the two definitions agree at tree order, we show that they disagree at one loop using the
Schwinger-Keldysh formalism, so there are at least two plausible ways of loop correcting the tree order
result. We discuss the advantages and disadvantages of each.
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I. INTRODUCTION

It is clear that the tensor [1] and scalar [2] power spectra
from primordial inflation are quantum gravitational effects
by how the approximate tree order results depend upon
Planck’s constant ℏ and Newton’s constant G,

Δ2
hðkÞ ≈

16ℏGH2ðtkÞ
πc5

; Δ2
RðkÞ ≈

ℏGH2ðtkÞ
πc5ϵðtkÞ

: (1)

[Here HðtÞ is the Hubble parameter, ϵðtÞ is the first slow
roll parameter, and tk is the time of first horizon crossing for
the mode of wave number k.1] These effects were predicted
around 1980, and the detection of the scalar power
spectrum in 1992 [3] represents the first quantum gravi-
tational data ever taken. Much more has followed [4,5], as
have increasingly sensitive bounds on the tensor power
spectrum [6,7]. Although using this data to study quantum
gravity has so far been limited by the absence of a
compelling model for inflation, there is no objection to
the revolutionary character of these events.
The tree order results (1) are just the first terms in the

quantum loop expansion in which each higher loop is
suppressed by an additional factor of GH2. Assuming
single-scalar inflation, the best current data bounds this
loop-counting parameter to be no larger than about GH2 ≲
10−10 [8]. That is a very small number, but it has been
suggested that the sensitivity to resolve one-loop correc-
tions might be obtained by measuring the matter power

spectrum out to redshifts of as high as z ∼ 50 [9]. Reaching
that goal would be very difficult, requiring both a unique
model of inflation to pin down the tree order contribution
and a secure understanding of the relevant astrophysics to
extract the primordial signal. However, the work is in
progress [10], and the project does not seem hopeless.
The possibility of resolving one-loop corrections to the

power spectra has motivated theorists to do intensive
studies on the issue [11,12]. Because the effect will
necessarily be very small, much attention has been devoted
to potentially large enhancements from factors of 1=ϵ in the
ζ propagator [13–15], and from the formal infrared diver-
gence [16] of ζ and graviton propagators implied by the
approximate scale invariance of their tree order power
spectra (1). This has raised the issue of precisely defining
what is being loop corrected. The tree order results (1) are
consistent with the spatial Fourier transform of two-point
correlators of the graviton and ζ fields,

Δ2
hðkÞ≡ lim

t≫tk

k3

2π2

Z
d3xe−i~k·~xhΩjhijðt; ~xÞhijðt; ~0ÞjΩi; (2)

Δ2
RðkÞ≡ lim

t≫tk

k3

2π2

Z
d3xe−i~k·~xhΩjζðt; ~xÞζðt; ~0ÞjΩi: (3)

There is no question that one-loop corrections to these
expressions show sensitivity to the infrared cutoff [17].
This sensitivity can be canceled by redefining the “power
spectra” as the expectation values of appropriately chosen
operators [18]. However, such redefinitions tend to alter the
ϵ dependence of loop corrections, and they also introduce
new ultraviolet divergences whose renormalization is not
currently understood [19].
The point of this paper is to consider another generali-

zation of what is meant by the “primordial power spectra.”
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1The definition of tk is the time at which the physical wave

number k=aðtÞ of some perturbation equals the Hubble param-
eter, k ¼ HðtkÞaðtkÞ.
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This alternate generalization is motivated by the relations
which emerge from expressions (2) and (3) when one uses
the free field mode sums for hij and ζ,

Δ2
hðkÞ ¼ lim

t≫tk

k3

2π2
× 64πG × juðt; kÞj2; (4)

Δ2
RðkÞ ¼ lim

t≫tk

k3

2π2
× 4πG × jvðt; kÞj2; (5)

where uðt; kÞ and vðt; kÞ are the plane wave mode func-
tions2 of tensor and scalar perturbations. The alternate
generalization is to simply extend the tree order relations
(4) and (5) to all orders using the mode functions obtained
by solving the linearized Schwinger-Keldysh effective field
equations.3 Even though Eqs. (2), (3) and (4), (5) are two
different approaches of quantum correcting primordial
power spectra, the diagram topology for quantum correc-
tions to the mode function definition is identical to that of
quantum corrections to the correlator.4 Also, note that the
two definitions would agree if the in-out formalism had
been employed. However, one must employ the Schwinger-
Keldysh formalism in cosmological scenarios. It is not so
clear whether or not the two definitions agree at one loop
due to subtle differences in which of the four Schwinger-
Keldysh propagators appears. That is what we shall check.
In this paper we start with briefly reviewing single scalar

inflation, deriving the tree order results and reasoning
alternate definitions. This comprises Sec. II. In Sec. III
we digress to sketch the Schwinger-Keldysh formalism5

and give rules to facilitate our computation. In Sec. IV we
use a worked-out example to demonstrate that two defi-
nitions disagree at one loop. Finally we discuss the
advantages and disadvantages for each definition in Sec. V.

II. TWO ALTERNATE DEFINITIONS FOR
LOOP-CORRECTED PRIMORDIAL

POWER SPECTRA

Primordial power spectra not only allow us to understand
the early Universe, but also serve as a bridge that connects
cosmology with fundamental theory. For example, resolv-
ing the tensor power spectrum would confirm the existence
of gravitons and their quantization. Attaining the sensitivity
to resolve loop corrections to the power spectra would,
along with a unique theory of inflation, direct theorists in

the construction of a renormalizable theory of quantum
gravity.
Two of the many frustrations in the attempt to connect

inflation with fundamental theory are first, we lack a unique
model of inflation—which means we do not know the time
dependence of the scale factor aðtÞ—and second, we do not
have a solution for the tree order mode functions for a
general aðtÞ even if we happened to know it. This means
that approximations must be used even for the tree order
power spectra. It also implies that we must approximate the
propagators which occur in loop integrations because these
propagators are mode sums of products of unknown tree
order mode functions. These are all important problems,
but here we wish to focus on the issue of what theoretical
quantity represents the observed power spectrum. That is,
what quantity would we like to compute, assuming we had
the mode functions and propagators necessary to make the
computation? In particular, is it the spatial Fourier trans-
form of the two-point correlators (2) and (3), or should we
instead use the norm squared of the mode functions (4) and
(5)? We begin with a quick review of single scalar inflation
which is meant to pedagogically demonstrate that the two
definitions coincide at tree order. The burden is that they
disagree at one loop.
The dynamical variables of single-scalar inflation are the

metric gμνðt; ~xÞ and the inflaton field φðt; ~xÞ. Its Lagrangian
density is

L ¼ 1

16πG
R

ffiffiffiffiffiffi−gp − 1

2
∂μφ∂νφgμν

ffiffiffiffiffiffi−gp − VðφÞ ffiffiffiffiffiffi−gp
: (6)

Primordial inflation can be described by homogeneous,
isotropic and spatially flat background metric,

g0μνdxμdxν ¼ −dt2 þ a2ðtÞd~x · d~x; (7)

with the slow roll parameter,

ϵðtÞ≡− _H
H2

; 0 < ϵðtÞ < 1: (8)

Here HðtÞ is the Hubble parameter defined as the first time
derivative of the scale factor aðtÞ,

HðtÞ≡ _a
a
: (9)

It indicates whether or not the Universe is expanding.
We follow the convention of Maldacena [20] and

Weinberg [21] for decomposing the spatial metric,6

gijðt; ~xÞ≡ a2ðtÞe2ζðt;~xÞ ~gijðt; ~xÞ; (10)

2uðt; kÞ and vðt; kÞ are not the one-particle-irreducible (1PI)
one-point functions of hijðt; ~xÞ and ζðt; ~xÞ respectively.

3A curious reader might wonder how the quantum corrected
mode functions are related to the Heisenberg operators which
satisfy the standard commutation relations. We demonstrate
the relation between them using our worked-out example in
Appendix A.

4The generic diagram topology for the two definitions is
derived in Appendix B.

5It is also called the in-in or the closed time path formalism.

6This spatial metric gij is from Arnowitt-Deser-Misner (ADM)
decomposition [22]: g00 ≡−N2 þ gijNiNj, g0i ≡−gijNj,
gij ≡ gij.
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~gijðt; ~xÞ≡ ðehðt;~xÞÞij ¼ δij þ hij þ
1

2
hikhkj þ � � � ; (11)

where the ζðt; ~xÞ and hijðt; ~xÞ fields are the scalar and
tensor perturbations respectively. During the 50 e-foldings
of primordial inflation which is required to explain the
horizon problem, many modes must experience first
horizon crossing, k ¼ aðtkÞHðtkÞ. After that time they
became almost constant and survived to be detected today.
Therefore the tensor and scalar power spectra are defined
(for D ¼ 4 spacetime dimensions) as in (2) and (3).
Maldacena [20] and Weinberg [21] employ Arnowitt-

Deser-Misner (ADM) notation but they do not fix the gauge
by specifying lapse Nðt; ~xÞ and shift Niðt; ~xÞ functions.
They instead fix the surface of simultaneity using the
background value of the inflaton, φðt; ~xÞ ¼ φ0ðtÞ, and
impose the spatial transverse gauge condition,
∂jhijðt; ~xÞ ¼ 0. The lapse and shift functions hence7 can
be determined as nonlocal functionals of graviton fields
from solving the gauged fixed constraint equations.
Substituting those solutions into the original Lagrangian,
it is not so hard to obtain the quadratic part,

Lh2 ¼
aD−1
64πG

�
_hij _hij − 1

a2
∂khij∂khij

�
; (12)

Lζ2 ¼
ðD − 2ÞϵaD−1

16πG

�
_ζ2 − 1

a2
∂kζ∂kζ

�
: (13)

From expression (12) we see that each of the 1
2
ðD − 3ÞD

graviton polarizations is
ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
times a canonically

normalized, massless, minimally coupled scalar. Its plane
wave mode function uðt; kÞ obeys

üþ ðD − 1ÞH _uþ k2

a2
u ¼ 0 with u _u� − _uu� ¼ i

aD−1 :

(14)

Expression (13) implies that the free field expansion for
ζðt; ~xÞ is ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8πG=ðD − 2Þp
times a canonically normalized

scalar whose plane wave mode functions vðt; kÞ obey

v̈þ
�
ðD − 1ÞH þ _ϵ

ϵ

�
_vþ k2

a2
v ¼ 0

with v _v� − _vv� ¼ i
ϵaD−1 :

(15)

To derive Eqs. (4) and (5) (inD ¼ 4 spacetime dimensions)
for the primordial power spectra one substitutes the free
field expansions for hijðt; ~xÞ and ζðt; ~xÞ into Eqs. (2)
and (3).

From the tree order derivation for the tensor power
spectrum we establish the following relation8:

k3

2π2
lim
t≥tk

�Z
d3xe−i~k·~xhΩjh0ðt; ~xÞh0ðt;0ÞjΩi ¼ #juðt; kÞj2

�
.

(16)

Here we suppress tensor indexes and # is a constant which
depends upon the field we consider. Each side of Eq. (16)
has a clear generalization to higher orders,

•

Z
d3xe−i~k·~xhΩjh0ðt; ~xÞh0ðt; 0ÞjΩi

⟶

Z
d3xe−i~k·~xhΩjhðt; xÞhðt; 0ÞjΩi; (17)

•#ju0ðt; kÞj2⟶#

����uðt; kÞ þ
X
l¼1

Δulðt; kÞ
����
2

¼ #fjuðt; kÞj2 þ Δu1ðt; kÞu�ðt; kÞ
þ Δu�1ðt; kÞuðt; kÞ þ � � �g; (18)

where higher order mode functions can be solved by the
linearized Schwinger-Keldysh effective field equation,9

D½Δulðt; kÞei~k·~x� ¼
Z

d4x0
Xl

k¼1

fM2þþðx; x0Þ

þM2þ−ðx; x0ÞgkΔul−kðt0; kÞei~k· ~x0 :
(19)

HereD is the kinetic operator. Note that k3

2π2
limt≥tk in (16) is

a common factor for both definitions. To simplify later
discussion we drop it without changing the generic struc-
ture of the two definitions. At this step it is clear that one
could compute the loop-corrected power spectra either by
spatially Fourier transforming the two-point corrector (17)
or exploiting the mode function definition (18).

III. SCHWINGER-KELDYSH FORMALISM

The purpose of this section is to give the rules for the
various Schwinger-Keldysh vertices and propagators. We
also introduce the linearized Schwinger-Keldysh effective
field equation and demonstrate that a causal result in φ3

theory can be obtained by exploiting these rules.
For most of the problems we encounter in elementary

particle physics we are allowed to assume that quantum
fields begin in free vacuum at asymptotically early times
and end up the same way at asymptotically late times, for
example, scattering processes in flat space. However, this is

7N½ζ; h�ðt; ~xÞ can be solved exactly [8] but there only exists a
perturbative solution for Ni½ζ; h�ðt; ~xÞ.

8The relation for the scalar power spectrum reaches the same
form.

9Δu0ðt0; kÞ≡ uðt0; kÞ.
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not valid for cosmological settings in which the in vacuum
does not evolve to the out vacuum. The use of the in-out
formalism would result in quantum correction terms
dominated by events from the infinite future! A realistic
scenario corresponding to what we measure would rather
be that the Universe is released from a prepared state at a
finite time and allowed to evolve as it will. The Schwinger-
Keldysh formalism can give a correct description of this.

Employing it [23–29,31] also guarantees that the compu-
tation is both real and causal.
It is convenient to sketch the in-in formalism by employ-

ing a scalar field φðxÞ. The basic construction is to evolve
fields forwards with

R ½dφþ�eS½φþ� from the time i to the
time f and backwards with

R ½dφ−�eS½φ−�. To avoid a
lengthy digression, we give the key relation between the
canonical operator and the functional integral [30–32],

hΨjT̄�ðO2½φ�ÞT�ðO1½φ�ÞjΨi ¼
Z

½dφþ�½dφ−�δ½φ−ðfÞ − φþðfÞ�O2½φ−�O1½φþ�Ψ�½φ−ðiÞ�ei
R

f

i
dtfL½φþðtÞ�−L½φ−ðtÞ�gΨ½φþðiÞ�;

(20)

where T� stands for a time-ordering symbol, except that any
derivatives are taken outside the time ordering, whereas T̄�
is anti-time-ordered. Based on the same field in (20)
being represented by two different dummy functional
variables, φ�ðxÞ, several modified Feynman rules can be
inferred,

(i) Each line has a polarity of either þ or −.
(ii) Vertices (and counterterms) are either all þ or all −.
(iii) Vertices (and counterterms) with þ polarity are the

same as for the usual Feynman rules and those with
− polarity have an extra minus sign.

(iv) External lines from the time-ordered operator carry
þ polarity and those from the anti-time-ordered
operator carry − polarity.

(v) Propagators can be þþ, −þ, þ− and −−.
Note also that we can directly read off the four

propagators from substituting the free Lagrangian in place
of the full Lagrangian in expression (20),

iΔþþðx; x0Þ ¼ hΩjTðφðxÞφðx0ÞÞjΩi0; (21)

iΔ−þðx; x0Þ ¼hΩjφðxÞφðx0ÞjΩi0; (22)

iΔþ−ðx; x0Þ ¼hΩjφðx0ÞφðxÞjΩi0; (23)

iΔ−−ðx; x0Þ ¼hΩjT̄ðφðxÞφðx0ÞÞjΩi0: (24)

The subscript 0 indicates vacuum expectation values in
the free theory. A careful reader might have noticed that the
þþ propagator is the usual Feynman propagator and the
−− one is its complex conjugate; the −þ propagator is
similarly the conjugate of the þ− one.
We close by employing the Schwinger-Keldysh

formalism to show that a causal result is achieved in scalar
field theory with interaction − 1

6
λφ3. To facilitate this

simple computation we introduce the linearized

Schwinger-Keldysh effective field equation without deriv-
ing it [30–32],10

δΓ½φþ;φ−�
δφþðxÞ

����
φ�¼φ

¼ δS½φ�
δφðxÞ −

Z
d4x0½M2þþðx; x0Þ þM2þ−ðx; x0Þ�φðx0Þ:

(25)

The two squared self-masses in φ3 theory can be expressed
as

M2
þ�ðx; x0Þ ¼ ∓i

λ2

2
½iΔþ�ðx; x0Þ�2

¼ ∓i
λ2

2

Γ2ðD
2
− 1Þ

16πD

�
1

Δx2þ�ðx; x0Þ
�
D−2

; (26)

and the two invariant intervals in the denominator of (26)
are

Δx2þþðx; x0Þ ¼ ∥~x − ~x0∥2 − ðjt − t0j − iδÞ2; (27)

Δx2þ−ðx; x0Þ ¼ ∥~x − ~x0∥2 − ðt − t0 þ iδÞ2: (28)

First of all, we notice that Δx2þþ equals Δx2þ− while the
time t0 is in the future of the time t. A direct consequence of
this is that the contribution from M2þþðx; x0Þ cancels that
from M2þ−ðx; x0Þ. This implies no contributions from t0 in
the future of the time t. Second, when the time t0 lies in the
past of the time t, Δx2þ−ðx; x0Þ is the complex conjugate of
Δx2þþðx; x0Þ, which indicates iΔþ−ðx; x0Þ ¼ ½iΔþþðx; x0Þ��.
The combination of the two self-squared masses can be
written as

10Although there are four two-point 1PI (one particle irreduc-
ible) functions in the in-in formalism, we only need two of them
in the Schwinger-Keldysh effective equation.
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½M2þþ þM2þ−�ðx; x0Þ ¼ −i λ
2

2
f½iΔþþðx; x0Þ�2

− ð½iΔþþðx; x0Þ��Þ2g⟶real:

(29)

One can infer from Eq. (29) that all contributions from the
past of the time t are real. Further, when the points xμ and
x0μ are spacelike separated the real parts of the invariant
intervals are positive and the different infinitesimal imagi-
nary parts are irrelevant. Hence the þþ and þ− contri-
butions cancel. In summary, we have established that the
sum of M2þþðx; x0Þ and M2þ−ðx; x0Þ is zero except when x0μ
lies on or within the past light cone of xμ. Using the
linearized Schwinger-Keldysh effective equation (25) also
guarantees that the result derived from it must be real and
causal.

IV. A WORKED-OUT EXAMPLE

When one considers loop corrections to the scalar or
tensor power spectra, one inevitably needs higher order
interaction vertices. Even though it is tedious to obtain
them from the gauge-fixed and constrained Lagrangian,
several of them have been worked out:

(i) the ζ3 interaction by Maldacena [20];
(ii) simple results for the ζ4 terms by Seery, Lidsey, and

Sloth [13];
(iii) the interactions of ζ5 and ζ6 discussed by Jarnhus

and Sloth [14];
(iv) the lowest ζ-graviton interactions, ζh2; ζ2h and

ζ2h2, given by Xue, Gao, and Brandenberger [15].
Many diagrams are possible with these interactions but the
simplest consists of a single loop with two three-point
vertices. We lose nothing to consider a scalar theory with a
cubic interaction in flat spacetime,

L ¼ − 1

2
∂μφ∂νφgμν − λ

3!
φ3; (30)

because the diagram topology is the same as for scalar-
driven inflation but the actual computation is vastly
simpler.
In this section we use this worked-out example to

compute the one-loop correction to the power spectrum.
We employ both the mode function definition (18) and the
corrector definition (17). What we show is that two
definitions disagree at one loop. The curious reader can
find the explicit and finite results for each definition
worked out in Appendix D.

A. The mode function definition

In this subsection we first give some identities to
facilitate the computation. We then use the linearized
Schwinger-Keldysh effective field equation to solve for
the first order correction to the mode function. Finally the

formal expression for the corresponding power spectrum of
φ3 theory at one loop is presented.
The correction to the power spectrum by definition (18)

at one-loop order is

Δu1ðt; kÞu�ðt; kÞ þ Δu�1ðt; kÞuðt; kÞ: (31)

Here uðt; kÞ is the tree order mode function. Its relation
with the free field expansion is

φ0ðt; ~xÞ ¼
Z

d3k
ð2πÞ3 fuðt; kÞαðkÞe

i~k·~x

þ u�ðt; kÞα†ðkÞe−i~k·~xg: (32)

Applying (32) to (21)–(24) we obtain the propagators with
different polarities in terms of the mode functions,

iΔþþðx; yÞ ¼
Z

d3k
ð2πÞ3 e

i~k·ð~x−~yÞ

×

�
θðx0 − y0Þuðx0; kÞu�ðy0; kÞ
þθðy0 − x0Þu�ðx0; kÞuðy0; kÞ

�
; (33)

iΔ−þðx; yÞ ¼
Z

d3k
ð2πÞ3 e

i~k·ð~x−~yÞuðx0; kÞu�ðy0; kÞ; (34)

iΔþ−ðx; yÞ ¼
Z

d3k
ð2πÞ3 e

−i~k·ð~x−~yÞu�ðx0; kÞuðy0; kÞ

¼ ½iΔ−þðx; yÞ��; (35)

iΔ−−ðx; yÞ ¼ ½iΔþþðx; yÞ��

¼
Z

d3k
ð2πÞ3 e

−i~k·ð~x−~yÞ

×

�
θðx0 − y0Þu�ðx0; kÞuðy0; kÞ
þθðy0 − x0Þuðx0; kÞu�ðy0; kÞ

�
(36)

The symbol Δu1ðt; kÞ in (31) denotes the first order
correction to the mode function. For convenience of later
discussion we drop the subscript of Δu1ðt; kÞ. It obeys

D½Δuðt;kÞei~k·~x�

−
Z

d4y½M2þþðx;yÞþM2þ−ðx;yÞ�uðy0;kÞei~k·~y¼0; (37)

and can be solved formally,

Δuðt; kÞ ¼
Z

d4yGRetðx; yÞ
Z

d4y0½M2þþ þM2þ−�ðy; y0Þ

× ei~k·ð ~y0−~xÞuðy00; kÞ: (38)
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Here GRetðx; yÞ is the retarded Green’s function for the
operatorD and can be expressed in terms of the Schwinger-
Keldysh propagators (21)–(24),

GRetðx; yÞ ¼ −i½iΔþþ − iΔþ−�ðx; yÞ: (39)

Also note that the various � polarities of the self-mass-
squared for φ3 theory are

−iM2
��ðy; y0Þ ¼ − λ2

2
½iΔ��ðy; y0Þ�2;

−iM2
�∓ðy; y0Þ ¼

λ2

2
½iΔ�∓ðy; y0Þ�2:

(40)

Inserting (38), (39) and their complex conjugates given by
(35), (36) to (31) we get

Δuðt; kÞu�ðt; kÞ þ Δu�ðt; kÞuðt; kÞ ¼
Z

d4y
Z

d4y0

×

� ½iΔþþ − iΔþ−�ðx; yÞ½−iM2þþ − iM2þ−�ðy; y0Þei~k·ð ~y0−~xÞu�ðt; kÞuðy00; kÞ
þ½iΔ−− − iΔ−þ�ðx; yÞ½−iM2−þ − iM2−−�ðy; y0Þe−i~k·ð ~y0−~xÞuðt; kÞu�ðy00; kÞ

�
.

(41)

Besides, there is no harm to shift the spatial coordinates in (41),

~y0⟶ ~y0 þ ~x; ~y⟶~yþ ~x; (42)

and it can be written as

Δuðt; kÞu�ðt; kÞ þ Δu�ðt; kÞuðt; kÞ ¼
Z

d4y
Z

d4y0e−i~k· ~y0

×

� ½iΔþþ − iΔþ−�ðt; ~0; yÞ½−iM2þþ − iM2þ−�ðy; y0Þu�ðt; kÞuðy00; kÞ
þ½iΔ−− − iΔ−þ�ðt; ~0; yÞ½−iM2−þ − iM2−−�ðy; y0Þuðt; kÞu�ðy00; kÞ

�
. (43)

In the next step we employ the following identities11:

½iΔþþ − iΔþ−�ðx; yÞ ¼ −½iΔ−− − iΔ−þ�ðx; yÞ ¼ θðx0 − y0Þfhφ0ðxÞφ0ðyÞi − hφ0ðyÞφ0ðxÞig; (44)

½−iM2þþ − iM2þ−�ðy; y0Þ ¼ −½−iM2−þ − iM2−−�ðy; y0Þ ¼ − λ2

2
θðy0 − y00Þfhφ0ðyÞφ0ðy0Þi2 − hφ0ðy0Þφ0ðyÞi2g; (45)

in (43) and a further simplification is

Δuðt; kÞu�ðt; kÞ þ Δu�ðt; kÞuðt; kÞ ¼ −
λ2

2

Z
t

0

dy0
Z

y0

0

dy00
Z

d3y
Z

d3y0e−i~k· ~y0 ½hφ0ðt; ~0Þφ0ðyÞi − hφ0ðyÞφ0ðt; ~0Þi�

× ½hφ0ðyÞφ0ðy0Þi2 − hφ0ðy0Þφ0ðyÞi2�½uðt; kÞu�ðy00; kÞ þ u�ðt; kÞuðy00; kÞ�: (46)

B. The two-point correlator definition

In this subsection we compute the first order corrections
to the power spectrum by spatially Fourier transforming
the two-point correlators. Within the in-in formalism the
external legs of two-point correlators could have the
following polarities: ðþþÞ, ð−þÞ, ðþ−Þ, and ð−−Þ. We
begin with the ð−þÞ two-point correlator and compute
the power spectrum by employing the correlator definition.

We found that the result does not agree with (46). We also
show that none of the other in-in correlators, nor any linear
combination of them, can resolve the disagreement.
The spatial Fourier transform of the two-point correlators

of φ3 theory is

Z
d3xe−i~k·~xhΩjφðt; ~xÞφðt; ~0ÞjΩi: (47)

We begin with the ð−þÞ two-point correlator at one-loop
order. The generic diagram topology is depicted in Fig. 1.11hφ0ðxÞφ0ðyÞi is the abbreviation of hΩjφ0ðxÞφ0ðyÞjΩi.
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The explicit form is

Z
d3xe−i~k·~x

Z
d4y

Z
d4y0

8>>>>><
>>>>>:

þiΔ−þðx; yÞ½−iM2þþðy; y0Þ�iΔþþðx0; y0Þ
þiΔ−þðx; yÞ½−iM2þ−ðy; y0Þ�iΔþ−ðx0; y0Þ
þiΔ−−ðx; yÞ½−iM2−þðy; y0Þ�iΔþþðx0; y0Þ
þiΔ−−ðx; yÞ½−iM2−−ðy; y0Þ�iΔþ−ðx0; y0Þ

9>>>>>=
>>>>>;
; (48)

¼
Z

d4y
Z

d4y0e−i~k·~y ×

8>>>>>><
>>>>>>:

uðt; kÞu�ðy0; kÞ
�þ½−iM2þþðy; y0Þ�iΔþþðx0; y0Þ
þ½−iM2þ−ðy; y0Þ�iΔþ−ðx0; y0Þ

�

þfθðt − y0Þu�ðt; kÞuðy0; kÞ þ θðy0 − tÞuðt; kÞu�ðy0; kÞg

×

�þ½−iM2−þðy; y0Þ�iΔþþðx0; y0Þ
þ½−iM2−−ðy; y0Þ�iΔþ−ðx0; y0Þ

�

9>>>>>>=
>>>>>>;
: (49)

After comparing (49) with (43) we interchange y with y0 in (49),

Z
d4y

Z
d4y0e−~k· ~y0 ×

8>>>>>>>><
>>>>>>>>:

�
iΔþþðt; ~0; yÞ½−iM2þþðy; y0Þ�
þiΔþ−ðt; ~0; yÞ½−iM2−þðy; y0Þ�

�
uðt; kÞu�ðy00; kÞ

þ
�
iΔþþðt; ~0; yÞ½−iM2þ−ðy; y0Þ�
þiΔþ−ðt; ~0; yÞ½−iM2−−ðy; y0Þ�

�

×fθðt − y00Þu�ðt; kÞuðy00; kÞ þ θðy00 − tÞuðt; kÞu�ðy00; kÞg

9>>>>>>>>=
>>>>>>>>;
: (50)

Here we used iΔ�∓ðy; xÞ ¼ iΔ∓�ðx; yÞ and iΔ��ðy; xÞ ¼ iΔ��ðx; yÞ.
To simplify (50), we combine the first line with the third and the second line with the fourth. We then extract out the

common expression from each of the combinations. The total result in (50) consists of two parts. One of them is
proportional to θðt − y0Þθðy0 − y00Þ and the other to θðt − y00Þθðy00 − y0Þ. We could use these theta functions to restrict the
range of temporal integrations and give the final expressions in a more concise form denoted by ðAÞ and ðBÞ,

ðAÞ ¼ − λ2

2

Z
t

0

dy0
Z

y0

0

dy00
Z

d3y
Z

d3y0e−i~k· ~y0 ½hφ0ðt; ~0Þφ0ðyÞi − hφ0ðyÞφ0ðt; ~0Þi�

× ½hφ0ðyÞφ0ðy0Þi2uðt; kÞu�ðy00; kÞ − hφ0ðy0Þφ0ðyÞi2u�ðt; kÞuðy00; kÞ�; (51)

ðBÞ ¼ − λ2

2

Z
t

0

dy0
Z

t

y0
dy00

Z
d3y

Z
d3y0e−i~k· ~y0 ½uðt; kÞu�ðy00; kÞ − u�ðt; kÞuðy00; kÞ�

× ½hφ0ðy0Þφ0ðyÞi2hφ0ðt; ~0Þφ0ðyÞi − hφ0ðyÞφ0ðy0Þi2hφ0ðyÞφ0ðt; ~0Þi�: (52)

In order to compare (51) þ (52) with (46), we make several reformulations of (51) and (52). At the first step we convert
mode functions to the vacuum expectation value (VEV) of the products of two fields. Equations (51) and (52) can be
written as

FIG. 1. One-loop contribution to the ð−þÞ two-point correlator. We define the coordinates of the two external legs to be xμ ¼ ðt; ~xÞ
and x0μ ¼ ðt; ~0Þ.
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ðAÞ ¼ − λ2

2

Z
t

0

dy0
Z

y0

0

dy00
Z

d3y
Z

d3y0
Z

d3xe−i~k·~x

×

� hφ0ðyÞφ0ðy0Þi2hφ0ðt; ~xÞφ0ðy0Þi½hφ0ðt; ~0Þφ0ðyÞi − hφ0ðyÞφ0ðt; ~0Þi�
þhφ0ðy0Þφ0ðyÞi2hφ0ðy0Þφ0ðt; ~xÞi½hφ0ðyÞφ0ðt; ~0Þi − hφ0ðt; ~0Þφ0ðyÞi�

�
; (53)

ðBÞ ¼ − λ2

2

Z
t

0

dy00
Z

y00

0

dy0
Z

d3y
Z

d3y0
Z

d3xe−i~k·~x

×

� hφ0ðy0Þφ0ðyÞi2hφ0ðt; ~0Þφ0ðyÞi½hφ0ðt; ~xÞφ0ðy0Þi − hφ0ðy0Þφ0ðt; ~xÞi�
þhφ0ðyÞφ0ðy0Þi2hφ0ðyÞφ0ðt; ~0Þi½hφ0ðy0Þφ0ðt; ~xÞi − hφ0ðt; ~xÞφ0ðy0Þi�

�
: (54)

Note that we have rearranged the order of the temporal
integrations in (54). Before executing the second step, we
introduce two key identities,

hφðt; ~xÞφðy0; ~yÞi ¼ hφðt; ~0Þφðy0; ~y − ~xÞi; (55)

hφðt; ~xÞφðy0; ~0Þi ¼ hφðt;−~xÞφðy0; ~0Þi: (56)

The identity (55) comes from spatial translation invariance
and the identity (56) is the consequence of spatial rotation
invariance.
At the second stage we repeatedly apply (55) and (56) to

the contribution (B) in (54) and leave (53) unchanged. The
first manipulation we make is

hφ0ðt; ~0Þφ0ðyÞi ¼ hφ0ðt; ~0Þφ0ðy0;−~yÞi;
hφ0ðyÞφ0ðt; ~0Þi ¼ hφ0ðy0;−~yÞφ0ðt; ~0Þi; (57)

and then shift the spatial coordinates for all of the terms in
(54),

~y⟶~yþ ~x; ~y0⟶ ~y0 þ ~x: (58)

This change would not affect the range of integrations or
the VEV of φ0ðyÞφ0ðy0Þ. Here we only present what has
been changed by these transformations. The first part
proportional to hφ0ðy0Þφ0ðyÞi2 becomes

hφ0ðt; ~0Þφ0ðy0;−~yþ ~xÞi½hφ0ðt; ~xÞφ0ðy00; ~y0 þ ~xÞi
− hφ0ðy00; ~y0 þ ~xÞφ0ðt; ~xÞi�; (59)

and the second part proportional to hφ0ðyÞφ0ðy0Þi2 has been
changed to

hφ0ðy0;−~yþ ~xÞφ0ðt; ~0Þi½hφ0ðy00; ~y0 þ ~xÞφ0ðt; ~xÞi
− hφ0ðt; ~xÞφ0ðy00; ~y0 þ ~xÞi�: (60)

In the next step we apply first (56) and then (55) to the
first term of (59) and (60),

hφ0ðt; ~0Þφ0ðy0;−~yþ ~xÞi ¼ hφ0ðt; ~0Þφ0ðy0; ~y − ~xÞi
¼ hφ0ðt; ~xÞφ0ðy0; ~yÞi;

hφ0ðy0;−~yþ ~xÞφ0ðt; ~0Þi ¼ hφ0ðy0; ~y − ~xÞφ0ðt; ~0Þi
¼ hφ0ðy0; ~yÞφ0ðt; ~xÞi; (61)

and employ spatial translation invariance (55) in the
remaining terms of (59) and (60). Take the final two terms
of (59) as an example,

½hφ0ðt; ~xÞφ0ðy00; ~y0 þ ~xÞi − hφ0ðy00; ~y0 þ ~xÞφ0ðt; ~xÞi�
⟶½hφ0ðt; ~0Þφ0ðy00; ~y0Þi − hφ0ðy00; ~y0Þφ0ðt; ~0Þi�: (62)

After gathering all manipulations we made so far, the
contribution (54) can be expressed as

ðBÞ ¼ − λ2

2

Z
t

0

dy00
Z

y00

0

dy0
Z

d3y
Z

d3y0
Z

d3xe−i~k·~x

×

� hφ0ðy0Þφ0ðyÞi2hφ0ðt; ~xÞφ0ðyÞi½hφ0ðt; ~0Þφ0ðy0Þi − hφ0ðy0Þφ0ðt; ~0Þi�
þhφ0ðyÞφ0ðy0Þi2hφ0ðyÞφ0ðt; ~xÞi½hφ0ðy0Þφ0ðt; ~0Þi − hφ0ðt; ~0Þφ0ðy0Þi�

�
: (63)
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At the final step we interchange y with y0 in (63). It turns out that the outcome is exactly the same as the one in (53). This
means that the contribution ðAÞ precisely equals ðBÞ. Hence the total result could be written as 2 × ð51Þ or 2 × ð53Þ. We
choose the form which is close to the expression derived from the mode function definition (46),

ðAÞ þ ðBÞ ¼ − λ2

2

Z
t

0

dy0
Z

y0

0

dy00
Z

d3y
Z

d3y0e−i~k· ~y0 ½hφ0ðt; ~0Þφ0ðyÞi − hφ0ðyÞφ0ðt; ~0Þi�

× ½2hφ0ðyÞφ0ðy0Þi2uðt; kÞu�ðy00; kÞ − 2hφ0ðy0Þφ0ðyÞi2u�ðt; kÞuðy00; kÞ�: (64)

Equations (64) and (46) both have the same integrations and the common factor ½hφ0ðt; ~0Þφ0ðyÞi − hφ0ðyÞφ0ðt; ~0Þi� so we
could just focus on the rest of the integrands. The two integrands differ by having the factors

hφ0ðyÞφ0ðy0Þi2u�ðt; kÞuðy00; kÞ and − hφ0ðy0Þφ0ðyÞi2uðt; kÞu�ðy00; kÞ (65)

in Eq. (46) replaced with

hφ0ðyÞφ0ðy0Þi2uðt; kÞu�ðy00; kÞ and − hφ0ðy0Þφ0ðyÞi2u�ðt; kÞuðy00; kÞ: (66)

Therefore we conclude that the mode function definition disagrees with the spatial Fourier transform of the ð−þÞ two-point
correlator at one loop.
We close this subsection by exploring the other Schwinger-Keldysh correlators. First of all, we summarize several key

points learned from the reduction of the ð−þÞ two-point correlator:
(i) The contribution (A) in (51) equals (B) in (52) implies,

Z
d4y

Z
d4y0½θðt − y0Þθðy0 − y00Þ þ θðt − y00Þθðy00 − y0Þ�

⟶2

Z
t

0

dy0
Z

y0

0

dy00
Z

d3y
Z

d3y0 ¼ 2

Z
d4y

Z
d4y0θðt − y0Þθðy0 − y00Þ: (67)

(ii) The same theta functions, θðt − y0Þθðy0 − y00Þ and
θðt − y00Þθðy00 − y0Þ, appear as well in the ðþ−Þ,
ðþþÞ, and ð−−Þ correlators.

(iii) Based on these two facts, we lose nothing by
imposing the time ordering t > y0 > y00 before
making any further simplification.

(iv) One can further infer

θðt − y0Þθðy0 − y00ÞfiΔþþðx; yÞ ¼ iΔ−þðx; yÞg;
(68)

θðt − y0Þθðy0 − y00ÞfiΔþþðx0; y0Þ ¼ iΔ−þðx0; y0Þg;
(69)

θðt − y0Þθðy0 − y00ÞfiΔ−−ðx; yÞ ¼ iΔþ−ðx; yÞg;
(70)

θðt − y0Þθðy0 − y00ÞfiΔ−−ðx0; y0Þ ¼ iΔþ−ðx0; y0Þg:
(71)

Second, we employ the rules developed in the preceding
paragraph. It is convenient to display all of the distinct
forms for the spatial Fourier transform of the in-in
correctors. Because each of these forms has the same
integration 2

R
d3xe−i~k·~x

R
d4y

R
d4y0, it is enough to only

list the integrand, from the ð−þÞ two-point correlator,

θðt − y0Þθðy0 − y00Þ

×

8>>>>><
>>>>>:

þiΔ−þðx; yÞ½−iM2þþðy; y0Þ�iΔþþðx0; y0Þ
þiΔ−þðx; yÞ½−iM2þ−ðy; y0Þ�iΔþ−ðx0; y0Þ
þiΔ−−ðx; yÞ½−iM2−þðy; y0Þ�iΔþþðx0; y0Þ
þiΔ−−ðx; yÞ½−iM2−−ðy; y0Þ�iΔþ−ðx0; y0Þ

9>>>>>=
>>>>>;
; (72)
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from the ðþ−Þ two-point correlator,
θðt − y0Þθðy0 − y00Þ

×

8>>><
>>>:

þiΔþþðx; yÞ½−iM2þþðy; y0Þ�iΔ−þðx0; y0Þ
þiΔþþðx; yÞ½−iM2þ−ðy; y0Þ�iΔ−−ðx0; y0Þ
þiΔþ−ðx; yÞ½−iM2−þðy; y0Þ�iΔ−þðx0; y0Þ
þiΔþ−ðx; yÞ½−iM2−−ðy; y0Þ�iΔ−−ðx0; y0Þ

9>>>=
>>>;
; (73)

from the ðþþÞ two-point correlator,

θðt − y0Þθðy0 − y00Þ

×

8>>><
>>>:

þiΔþþðx; yÞ½−iM2þþðy; y0Þ�iΔþþðx0; y0Þ
þiΔþþðx; yÞ½−iM2þ−ðy; y0Þ�iΔþ−ðx0; y0Þ
þiΔþ−ðx; yÞ½−iM2−þðy; y0Þ�iΔþþðx0; y0Þ
þiΔþ−ðx; yÞ½−iM2−−ðy; y0Þ�iΔþ−ðx0; y0Þ

9>>>=
>>>;
; (74)

from the ð−−Þ two-point correlator,
θðt − y0Þθðy0 − y00Þ

×

8>>><
>>>:

þiΔ−þðx; yÞ½−iM2þþðy; y0Þ�iΔ−þðx0; y0Þ
þiΔ−þðx; yÞ½−iM2þ−ðy; y0Þ�iΔ−−ðx0; y0Þ
þiΔ−−ðx; yÞ½−iM2−þðy; y0Þ�iΔ−þðx0; y0Þ
þiΔ−−ðx; yÞ½−iM2−−ðy; y0Þ�iΔ−−ðx0; y0Þ

9>>>=
>>>;
. (75)

Applying the relations (68), (69), and (71) to the first two
lines of (73) and the relations (69), (70), and (71) to the
bottom two lines of (73), the integrands of the ðþ−Þ and
ð−þÞ two-point correlators reach the same form. The
differences between (74) and (72) are those two-point
functions propagating between x and y. They become
identical after the relations (68) and (70) are employed.

Expression (75) also differs from (73) by the propagators
between the coordinates x and y, and they agree with each
other after the same reduction as in the previous case is
employed.
What we have just observed implies that the integrands

of the four Schwinger-Keldysh correlators reach the same
expression after imposing the time ordering t > y0 > y00.
An alert reader might also have noticed that enforcing
relations (68)–(71) directly to each term of Eqs. (72)–(75)
all gives

θðt − y0Þθðy0 − y00Þ

×

8>>><
>>>:

þiΔ−þðx; yÞ½−iM2þþðy; y0Þ�iΔ−þðx0; y0Þ
þiΔ−þðx; yÞ½−iM2þ−ðy; y0Þ�iΔþ−ðx0; y0Þ
þiΔþ−ðx; yÞ½−iM2−þðy; y0Þ�iΔ−þðx0; y0Þ
þiΔþ−ðx; yÞ½−iM2−−ðy; y0Þ�iΔþ−ðx0; y0Þ

9>>>=
>>>;
. (76)

Recall that Eqs. (72)–(75) have the same integration,

2

Z
d3xe−i~k·~x

Z
d4y

Z
d4y0:

Hence spatially Fourier transforming all the one-loop
Schwinger-Keldysh correlators gives the same answer
displayed in (64). Even making a linear combination of
them would not compensate for all the terms in (46).
Therefore we have explicitly demonstrated that the two-
point correlator definition disagrees with the mode function
definition at one loop.
One can also obtain a simple form for the difference

between the one-loop correction to the two-point correlator
(64) and the one-loop correction to the definition based on
the mode function (46),

− λ2

2

Z
d3xe−i~k·~x

Z
d4y

Z
d4y0θðt − y0Þθðy0 − y00Þ½hφ0ðyÞφ0ðy0Þi2 þ hφ0ðy0Þφ0ðyÞi2�

× ½hφ0ðt; ~0Þφ0ðyÞi − hφ0ðyÞφ0ðt; ~0Þi�½hφ0ðt; ~xÞφ0ðy0Þi − hφ0ðy0Þφ0ðt; ~xÞi�: (77)

Also note that this difference involves two retarded Green’s
functions,12

−iθðt − y0Þ½hφ0ðt; ~0Þφ0ðyÞi − hφ0ðyÞφ0ðt; ~0Þi�
−iθðt − y00Þ½hφ0ðt; ~xÞφ0ðy0Þi − hφ0ðy0Þφ0ðt; ~xÞi�: (78)

V. EPILOGUE

We have analyzed loop corrections to two different ways
of defining the primordial power spectra which happen to
coincide at tree order (16). One of these definitions involves
the norm squared of the mode functions (18). It can be
generalized by using the linearized Schwinger-Keldysh
effective field equation to quantum correct the mode
function. The other definition involves the spatial
Fourier transform of the two-point correlator (17), which
is generalized by simply computing the correlator to higher
orders using the Schwinger-Keldysh formalism. To sim-
plify our analysis we employed φ3 theory in flat space. The

12(77) seems to have a similar structure as Eq. (4.39) in [33]
and (C18) in [34] for the in-in correlator of the metric perturba-
tions including loop corrections from matter fields. It corresponds
to the contribution named as “induced fluctuations.”
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fact that its interactions have the same topology as those of
inflationary cosmology justifies this simplification. What
we have found is that the two definitions do not agree even
at one-loop order.
The two-point correlator definition has the advantage of

representing each power spectrum in terms of a single
expectation value. However, it has been claimed that the
coincident limit of its spatial Fourier transform is singular
in the gravitational case [33]. That implies that this quantity
suffers from a new sort of ultraviolet divergence, beyond
the usual ones which Bogoliubov, Parasiuk, Hepp and
Zimmerman (BPHZ) renormalization absorbs. No one
currently understands how to remove this new divergence;
at a minimum it would require a composite operator
renormalization. This means that the tensor power spec-
trum, for example, cannot be based on the expectation value
of hijðt; ~xÞhijðt; ~0Þ but rather this plus some higher order
operator with which its one-loop corrections mix. Even
more disturbing, from the perspective of cosmology, this
new divergence arises from late time correlations between
fluctuations of matter fields, rather than from anything that
happened during primordial inflation. We believe these late
time effects should be removed, the same way one edits out
infrared radiation from Jupiter, the galactic plane, and other
known sources, and the same way the observed spectrum—
with its acoustic oscillations—is fitted using the late time
transfer function to infer the almost perfectly scale invariant
primordial spectrum.
It is therefore reasonable to pursue alternatives to the usual

definition of the power spectrum. The mode function
definition, which cannot be expressed as a single VEV,
does seem strange at first, but a closer look reveals some
advantages. First, it is free of the late time artifacts once the
appropriate 1PI two-point function has been renormalized.
Second, it is arguably a reasonable translation of what we
should be doing. Cosmic microwave background photons do
not acquire their redshifts at the surface of last scattering but
rather by propagating through the perturbed geometry
between the surface of last scattering and the late time
observer. The original computation by Sachs and Wolfe [35]
expresses the temperature fluctuation as an integral of the
metric perturbations along the photon’s worldline. The time
evolution for these metric perturbations comes from solving
the linearized equations in the background geometry of late
times, but the initial conditions come from primordial
inflation. It seems at least as reasonable to take these initial
conditions from the quantum corrected mode functions as
from the correlator.
What we are interested in is what theoretical objects

represent the primordial power spectra. How we define the
power spectra is still an open question. Loop corrections to
them might be observable in the far future, assuming that
theorists can find a unique model of inflation to fix the tree
order prediction, that astronomers can measure the matter
power spectra in three dimensions, and that astrophysicists

can develop expertise needed to extract the primordial
signal from foregrounds.

ACKNOWLEDGMENTS

We have profited from conversations on this subject with
M. Fröb, A. Roura and R. P. Woodard. S. P. M. was
supported by NWO Veni Project No. 680-47-406. S. P.
is supported by the Eberly Research Funds of The
Pennsylvania State University. The Institute for
Gravitation and the Cosmos is supported by the Eberly
College of Science and the Office of the Senior Vice
President for Research at the Pennsylvania State University.
S. P. M. is grateful for the hospitality of the University of
Crete where the final draft was prepared. S. P. acknowl-
edges the hospitality of the University of Utrecht where the
main computation was conducted.

APPENDIX A: THE CANONICAL RELATION
FOR THE MODE FUNCTION

In this section we elucidate the relation between the
Heisenberg operator and its mode function using the cubic
interaction in our worked-out example. We start with
solving for the field operator perturbatively from the
equation of motion and then compute the expectation value
of its commutator with the creation operator. The section
closes by giving the canonical relation for the mode
function which is solved from the Schwinger-Keldysh
effective field equation.
The equation of motion for the case we consider (30) is

∂2φ ¼ λ

2
φ2: (A1)

Solving for the field operator perturbatively means

φ ¼ φ0 þ λφ1 þ λ2φ2 þOðλ3Þ; (A2)

and the field operators at the order of λ0, λ1 and λ2 obey

∂2φ0 ¼ 0 ∂2φ1 ¼
1

2
φ2
0 ∂2φ2 ¼

1

2
½φ0φ1 þ φ1φ0�:

(A3)

Note that we consider the initial value data to be zeroth
order so that φ1 and φ2 etc. all vanish at t ¼ 0, as do their
first time derivatives. Hence φ1, φ2 can be expressed in
terms of φ0,

φ1ðxÞ ¼
1

2

Z
d4yGRetðx; yÞφ2

0ðyÞ;

φ2ðxÞ ¼
1

4

Z
d4y

Z
d4y0GRetðx; yÞGRetðy; y0Þ

× ½φ0ðyÞφ2
0ðy0Þ þ φ2

0ðy0Þφ0ðyÞ�: (A4)
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Even though this theory is not free, we can still organize the
initial values of the full field and its first time derivative in
terms of free creation and annihilation operators,

αð~kÞ≡ _u�ð0Þ ~φð0; ~kÞ − u�ð0Þ _~φð0; ~kÞ
uð0Þ _u�ð0Þ − _uð0Þu�ð0Þ ;

α†ð~kÞ≡
�
_u�ð0Þ ~φð0; ~kÞ − u�ð0Þ _~φð0; ~kÞ
uð0Þ _u�ð0Þ − _uð0Þu�ð0Þ

�†
:

(A5)

These operators define the free ground state jΩi,

αjΩi ¼ 0 ¼ hΩjα†; hΩjΩi ¼ 1: (A6)

The mode function is the matrix element of the full field
between the t ¼ 0 free vacuum and the t ¼ 0 free one
particle state, hΩjφα†jΩi. We first commute the α† through
the φ,

½φðt; ~xÞ; α†� ¼ ½φ0ðt; ~xÞ þ λφ1ðt; ~xÞ þ λ2φ2ðt; ~xÞ þOðλ3Þ; α†�

¼ Φ0ðt; ~xÞ þ λ

Z
d4yGRetðx; yÞφ0ðyÞΦ0ðyÞ þ

λ2

2

Z
d4y

Z
d4y0GRetðx; yÞGRetðy; y0Þ

× fφ2
0ðy0ÞΦ0ðyÞ þ ½φ0ðyÞφ0ðy0Þ þ φ0ðy0Þφ0ðyÞ�Φ0ðy0Þg; (A7)

where Φ0ðt; ~xÞ is a c-number,

Φ0ðt; ~xÞ ¼ ½φ0ðt; ~xÞ; α†� ¼ uðt; kÞei~k·~x: (A8)

Taking the expectation value of Eq. (A7) actually simplifies the expression because the second term with a single integral
vanishes and the first term of the final line is properly by a vacuum shift. For our purpose only the last two terms matter,

hΩj½λ2φ2; α†�jΩi ¼
λ2

2

Z
d4y

Z
d4y0GRetðx; yÞGRetðy; y0Þ½iΔ−þ þ iΔþ−�ðy; y0ÞΦ0ðy0Þ

¼ −i
λ2

2

Z
d4y

Z
d4y0θðy0 − y00ÞGRetðx; yÞ½iΔ2

−þ − iΔ2þ−�ðy; y0ÞΦ0ðy0Þ: (A9)

Here the second equality is obtained by employing
Eqs. (39).
Our quantum corrected mode function comes from

solving the linearized effective field equation (37). For
convenience, we rewrite Eq. (38) as

Δuðt;kÞei~k·~x ¼
Z

d4yGRetðx;yÞ
Z

d4y0½M2þþ þM2þ−�ðy;y0Þ

uðy00;kÞei~k· ~y0 ; (A10)

and applying (45) and (A8) to (A10) gives

Δuðt; kÞei~k·~x ¼ −i
λ2

2

Z
d4y

Z
d4y0θðy0 − y00Þ

×GRetðx; yÞ½iΔ2
−þ − iΔ2þ−�ðy; y0ÞΦ0ðy0Þ:

(A11)

Comparing Eq. (A9) with (A11) demonstrates the canoni-
cal relation for the quantum corrected mode function,

Δuðt; kÞei~k·~x ¼ hΩj½λ2φ2ðt; ~xÞ;α†�jΩi: (A12)

APPENDIX B: THE DIAGRAM TOPOLOGY
FOR QUANTUM CORRECTIONS TO THE

MODE FUNCTION

In the preceding section we have derived the relation
(A12) between the quantum-corrected mode function and
the canonical formalism. This also indicates that the
expectation value of the commutator of the field and the
creation operator has the same topology as the mode
function [36]. The diagrammatic expression is depicted
in Fig. 2. The main purpose of this section is to show that
the mode function definition and the two-point correlator
definition share the same topology.
The diagram for the usual definition, the spatial Fourier

transform of the two-point correlator, looks likeZ
d3xei~k·~x × ðFig: 1Þ; (B1)

whereas the diagram for the Δuðt; kÞu�ðt; kÞ13 part of the
mode function definition is

ðFig: 2Þ × uðy00; kÞei~k· ~y0 × u�ðt; kÞ: (B2)

13One can see that the phase terms in Eqs. (A8) and (A12)
cancel out.
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Note that the final three components in Eq. (B2) can be
rewritten as

ei~k·
~y0uðy00; kÞu�ðt; kÞ ¼

Z
d3x0ei~k· ~x0iΔ−þðy0; x0Þ: (B3)

Actually each single propagator with different Schwinger-
Keldysh polarity takes the form of the linear combination of
uu� and u�umultiplying by a distinct theta function. Hence
the mode function definition has the diagrammatic form,

Z
d3x0ei~k· ~x0 × ðFig: 1Þ: (B4)

Therefore we conclude that the generic diagram topology
of the mode function definition is identical to that of the
correlator definition.

APPENDIX C: KÄLLEN REPRESENTATION

In this subsection we will point out the necessary
conditions for Källen representation to hold through
deriving it step by step. Although this familiar material
has been covered in a textbook of quantum field theory, the
purpose here is to remind readers that the familiar repre-
sentation becomes nontrivial when applying it to
Friedmann-Robertson-Walker (FRW) background in a
theory without a mass gap.
In an interacting theory the two-point correlation func-

tion is

hΩjϕðxÞϕðyÞjΩi: (C1)

It is free to insert a partition of unity between the two field
operators,

I ¼ jΩihΩj þ
Z

d3k
ð2πÞ3

1

2ω
jkihkj

þ
Z

d3k1
ð2πÞ3

1

2ω1

Z
d3k2
ð2πÞ3

1

2ω2

jk1k2ihk1k2j þ � � � : (C2)

The two-point correlation function (C1) can be written as

hΩjϕðxÞϕðyÞjΩi ¼ hΩjϕðxÞjΩihΩjϕðyÞjΩi

þ
Z

d3k
ð2πÞ3

1

2ω
hΩjϕðxÞjkihkjϕðyÞjΩi

þ
Z

d3k1
ð2πÞ3

1

2ω1

Z
d3k2
ð2πÞ3

1

2ω2

× hΩjϕðxÞjk1k2ihk1k2jϕðyÞjΩi þ � � � :
(C3)

The first term of (C3) can be subtracted from ϕ so the VEV
of it is zero if the quantum field has been properly defined,

hΩjϕðxÞjΩi ¼ ϕ0; (C4)

and the resulting sum begins with the contribution from
one-particle states. Had a theory possessed Poincaré
symmetry, we can implement the following steps:

hΩjϕðxÞjki ¼ e−ik
μxμhΩjϕð0Þjki

¼ e−ik
μxμhΩjϕð0Þj~0i≡ ffiffiffiffi

Z
p

e−ik
μxμ : (C5)

The first equality is from the spacetime14 translation
invariance of the three-momentum state jki and the vacuum
hΩj whereas the second equality is due to the Lorentz boost
invariance of ϕð0Þ and the vacuum hΩj. This is not a
problem at all for a quantum field theory with a mass gap in
a flat background. The first nonzero term of (C3) is

Z
d3k
ð2πÞ3

1

2ω
Ze−ik

μðx−yÞμ ¼
Z

d4k
ð2πÞ4

iZe−ik
μðx−yÞμ

k2 −m2 þ iϵ
: (C6)

Here we have assumed x0 > y0 for convenience. Therefore
we reach the familiar expression,

hΩjϕðxÞϕðyÞjΩi ¼
Z

d4k
ð2πÞ4 e

−ikμðx−yÞμ
�

iZ
k2 −m2 þ iϵ

þ
X iZðμÞ

k2 − μ2 þ iϵ

�
: (C7)

The first term of (C7) is the one-particle contribution and
the second term is the multiparticle continuation.
The primordial power spectrum is computed in FRW

geometry which only possesses spatial rotation and spatial
translation invariance rather than Poincaré symmetry.
Hence the two-point correlation function is not able to
reach the same expression as (C7). As a result, there are no
exact one-particle states, nor even exact energy eigenstates.
Nor is the VEV of the field zero, or even constant.
Furthermore the graviton in FRW geometry experiences
much more severe IR divergences than in flat background

FIG. 2. This diagram characterizes the partial topology of the
mode function (A10). The external leg denoted by a dashed line
comes from the retarded Green’s function whereas the remaining
part is the two-point 1PI diagram.

14The metric convention here is þ − −− rather than −þþþ
in general relativity or cosmology.
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because a rapid spacetime expansion makes IR divergence
much stronger.15 So it is also impossible to take the initial
state back to a distant infinity and to define the unique
vacuum as we did for a theory with a mass gap in flat
spacetime.
Our toy model is in flat space background. However,

because it is massless, φ3 theory, the vacuum decays and it
does not have either time translation invariance or boost
invariance [37]. It would indeed have an IR divergence if
the computation had been done in four-momentum space.
However, in position space in the Schwinger-Keldysh (in-
in) formalism there is no IR divergence as long as the state
is released at a finite time. What we would instead get is a
growth of the VEV of the field [38].
Based on the arguments being discussed in the preceding

paragraphs, the mode function definition cannot recover the
one-particle states in Källén representation either for
quantum gravity in cosmology or for our toy model in
flat spacetime. We also can see this from the diagram
topology. The one-particle contribution has infinite correc-
tions from summing up a series of the two-point correlator
with more and more 1PI insertions as being shown in
Eq. (7.43) of [39]. The topology of the mode function
definition has been derived in Eq. (B4) which shares the
same topology as the spatial Fourier transform of the two-
point correlator. The two definitions both do not receive
infinite corrections as the one-particle states do. If the
theory is Poincaré invariant and has a mass gap, then we
would get the same answer in both the in-out and in-in
formalisms by taking the initial time to minus infinity.
However, the subtle points the two definitions disagree at
loop orders are that when there are particle productions
(which there is for cosmology and for massless, φ3 even in
a flat space) and when we cannot take the initial time to
minus infinity.

APPENDIX D: THE ISSUES OF DIVERGENCES

In this subsection we renormalize the ultraviolet diver-
gences of the two definitions in our toy model using a mass
counterterm. For further clarification of the renormalized
results we have emphasized the distinction between infra-
red divergences and secular growth. Finally, we discuss the
extra, composite operator divergence which can occur in a
model with derivative interactions, owing to the fact that the
two times coincide.

1. The power spectrum from the mode function
definition for φ3 theory

Before computing the lowest order correction to the
power spectrum from the mode function definition (18), we
need to obtain the first order correction to the mode

function using (37). Instead of employing the formal
expression (38) and (46), the best way to get the finite
result is to remove the ultraviolet divergence of the self-
mass squared and then integrate the finite part against the
tree order mode function. Even though the last step to solve
for Δuðt; kÞ from (37) still requires one more integral
coming from the retarded Green’s function, it is actually not
so hard to perform because it only involves with a temporal
integration.
Recall that the primitive part of the one-loop self-mass

squared in φ3 theory is

−iM2
þ�ðx; x0Þ ¼ ∓ λ2

2

Γ2ðD
2
− 1Þ

16πD
1

Δx2D−4
þ� ðx; x0Þ ; (D1)

where Δx2þ�ðx; x0Þ is defined in (27) and (28). Note that
integrating expression (D1) with respect to x0μ in D ¼ 4
dimensions would produce a logarithmic divergence due to
the singularity at x0μ ¼ xμ. We can make the expression
integrable by extracting a d’Alembertian with respect to xμ,

Z
d4x0

1

Δx2D−4
þ� ðx; x0Þ ¼

1

2ðD − 3ÞðD − 4Þ

× ∂2

Z
d4x0

1

Δx2D−6
þ� ðx; x0Þ : (D2)

The remaining obstacle to taking the D → 4 limit is of
course the explicit factor of 1=ðD − 4Þ in expression (D2).
The next step is to segregate the divergence into a local

delta function by adding zero in the form

∂2

�
1

ΔxD−2þþ

�
−
i4π

D
2δDðx − x0Þ
ΓðD

2
− 1Þ ¼ 0 ¼ ∂2

�
1

ΔxD−2þ−

�
: (D3)

[For simplicity, we here and henceforth suppress the two
arguments of the coordinate separation Δx2ðx; x0Þ.] We can
then take the D → 4 limit of the nonlocal part, leaving the
divergence restricted to the delta function. For the þþ case
the result is

1

ðD − 4Þ
�
∂2

�
1

Δx2D−6þþ
−

μ2D−4

ΔxD−2þþ

�
þ μD−4i4π

D
2

ΓðD
2
− 1Þ δ

Dðx − x0Þ
�

¼ μD−4

ðD − 4Þ
i4π

D
2

ΓðD
2
− 1Þ δ

Dðx − x0Þ − ∂2

2

�
lnðμ2Δx2þþÞ

Δx2þþ

�

þOðD − 4Þ: (D4)

At this point it is clear that the divergent part of the þþ
self-mass squared is

15The Bloch-Nordesick procedure for a massless theory in flat
spacetime cannot entirely cure the IR problem in cosmology.
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−iλ2

24π
D
2

ΓðD
2
− 1Þ

ðD − 3Þ
μD−4

ðD − 4Þ δ
Dðx − x0Þ; (D5)

and it can be absorbed by a mass counterterm.16 Because
there is no delta function for the þ− term in expression
(D3), the þ− self-mass squared has no ultraviolet diver-
gence. This accords with the fact that the Schwinger-
Keldysh formalism has no counterterms with mixed �
polarities [27,28,31].
It is simpler to perform the integral (37) by extracting

one more d’Alembertian,

�
lnðμ2Δx2þ�Þ

Δx2þ�

�
¼ ∂2

8
fln2ðμ2Δx2þ�Þ − 2 lnðμ2Δx2þ�Þg: (D6)

With the two simplifications,

lnðμ2Δx2þ�Þ¼θðt− t0ÞθðΔt−Δx̄Þfln½μ2ðΔt2−Δx̄2Þ�� iπg;
(D7)

the finite part can be written as

M2þþ þM2þ− ¼ −λ2

28π3
∂4fθðt − t0ÞθðΔt − Δx̄Þ

× ðln½μ2ðΔt2 − Δx̄2Þ� − 1Þg: (D8)

Here Δt2 and Δx̄2 are defined as ðt − t0Þ2 and ‖~x − ~x0‖2
respectively.
At this stage we are ready to integrate (D8) against the

tree order mode function,

Z
d4x0½M2þþðx; x0Þ þM2þ−ðx; x0Þ�uðt0; kÞei~k· ~x0

¼ −λ2ei~k·~x

28π3
∂4

Z
t

0

dt0
Z

Δt

0

drr2dΩ

× fln½μ2ðΔt2 − Δx̄2Þ� − 1g e
−ikt0þi~k·~rffiffiffiffiffi

2k
p : (D9)

Here we set ~r as ~x0 − ~x. After executing the angular
integration and change the variable r ¼ j~rj ¼ zΔt, the
expression can be simplified,

−λ2

26π2
ei~k·~x

k
ð∂2

0 þ k2Þ2
Z

t

0

dt0
e−ikt

0

ffiffiffiffiffi
2k

p Δt2

×
Z

1

0

dzz sinðkzΔtÞf2 lnðμΔtÞ þ lnð1 − z2Þ − 1g:

(D10)

To perform the z integration we employ several special
functions,

SiðxÞ≡ −
Z

∞

x
dt

sinðtÞ
t

¼ −
π

2
þ
Z

x

0

dt
sinðtÞ
t

;

CiðxÞ≡ −
Z

∞

x
dt

cosðtÞ
t

¼ γ þ lnðxÞ þ
Z

x

0

dt

�
cosðtÞ − 1

t

�
;

ξðαÞ≡
Z

1

0

dzz sinðαzÞ lnð1 − z2Þ ¼ 1

α2

�
2 sinðαÞ − ½cosðαÞ þ α sinðαÞ�

�
Sið2αÞ þ π

2

�

þ ½sinðαÞ − α cosðαÞ�
�
Cið2αÞ − γ − ln

�
α

2

���
: (D11)

With these the renormalized result can be expressed as

−λ2

26π2
ei~k·~x

k3
ð∂2

0 þ k2Þ2
Z

t

0

dt0
e−ikt

0

ffiffiffiffiffi
2k

p

×
�
α2ξðαÞ þ

�
2 ln

�
μα

k

�
− 1

�
½sinðαÞ − α cosðαÞ�

�
:

(D12)

Here α is kΔt.
Because the integrand of (D12) behaves like Δt3 lnðΔtÞ

near t0 ¼ t we can pass three of four derivatives through the

integral sign to simplify the integrand. Passing the first two
derivatives through gives

−λ2

25π2
ei~k·~x

k
ð∂0 þ ikÞð∂0 − ikÞ

×
Z

t

0

dt0
e−ikt

0

ffiffiffiffiffi
2k

p
�
− cosðαÞ

Z
2α

0

ds
sinðsÞ
s

þ sinðαÞ
�Z

2α

0

ds
cosðsÞ − 1

s
þ 2 ln

�
2μα

k

���
: (D13)

Extracting the temporal phase factor and passing one more
derivative through the integral gives

16Recall that λ has the dimension of mass in φ3 theory so mass
is not multiplicatively renormalized.
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−λ2

25π2
ei~k·~xð∂0 þ ikÞ

Z
t

0

dt0
e−ikt

0

ffiffiffiffiffi
2k

p e−ikΔt

×
�Z

2α

0

ds
eis − 1

s
þ 2 lnð2μΔtÞ

�

¼ −λ2

25π2
e−iktþi~k·~xffiffiffiffiffi

2k
p ∂0

Z
t

0

dΔt × 1

×

��Z
2kΔt

0

ds
eis − 1

s

�
þ 2 lnð2μΔtÞ

�
: (D14)

Here we have used ð∂0 þ ikÞe−ikt ¼ 0. Further simplifica-
tion can be accomplished by performing the Δt integration
and acting the final derivative. The final result is

−λ2

25π2
e−iktþi~k·~xffiffiffiffiffi

2k
p

�Z
2kt

0

ds
eis − 1

s
þ 2 lnð2μtÞ

�
≡ −SðtÞei~k·~x:

(D15)

According to (37) the Δuðt; kÞ we want to solve for
obeys

D½Δuðt; kÞei~k·~x� ¼ −ð∂2
0 þ k2ÞΔuðt; kÞei~k·~x

¼ −SðtÞei~k·~x ⇒
ð∂2

0 þ k2ÞΔuðt; kÞ ¼ SðtÞ ⇒ Δuðt; kÞ

¼
Z

∞

0

dt0Grðt; t0ÞSðt0Þ: (D16)

Here Grðt; t0Þ ¼ θðt − t0Þ sinðkΔtÞk is the retarded Green’s
function. Plugging the explicit forms of Grðt; t0Þ and
Sðt0Þ into (D16) gives

Δuðt; kÞ ¼ λ2

25π2
e−ikt

ið2kÞ32
Z

t

0

dt0fe2ikΔt − 1g

×
�Z

2kt0

0

ds
eis − 1

s
þ 2 lnð2μt0Þ

�
: (D17)

It remains to perform the four t0 integrations and collect
terms. The result is

Δuðt; kÞ ¼ λ2

25π2
e−ikt

ð2kÞ32
��

1

2k
þ it

� Z
2kt

0

ds
eis − 1

s

−
e2ikt

2k

Z
2kt

0

ds
e−is − 1

s

þ
�
1 − e2ikt

k
þ 2it

�
lnð2μtÞ − itþ 1 − e2ikt

2k

�
:

(D18)

Combining ðD 18Þ × ½u�ðt; kÞ ¼ e−iktffiffiffiffi
2k

p � with its complex
conjugate gives the lowest-order correction to the power
spectrum,

Δuðt; kÞu�ðt; kÞ þ c:c:¼ λ2

27π2
1

k3

�
½1− cosð2ktÞ�

×

�
1− γþCið2ktÞ þ ln

�
2μ2t
k

��

− ½sinð2ktÞ þ 2kt�
�
π

2
þ Sið2ktÞ

��
:

(D19)

2. The power spectrum from the correlator definition
for φ3 theory

We begin by removing the ultraviolet divergence of the
self-mass squared embedded in the two-point correlator
using the same procedure prescribed in the previous
subsection. We also perform two partial integrations and
carry out the spatial Fourier transforms.
Even though the two-point correlator carries various

polarities on the self-mass squared and the external legs
(Fig. 1), we suppress the polarities and the relative signs17

in order to investigate the generic pattern,

−λ2

2

�
ΓðD

2
− 1Þ

4π
D
2

�
4
Z

dDy
1
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�

1

Δx2ðx0; y0Þ :

(D20)

To reach the third line, we have employed (D2) to make the
function integrable with respect to y0μ inD ¼ 4 dimensions.
We then segregated the ultraviolet divergence into a local
delta function using (D3) and absorbed it with a mass
counterterm, just as in the previous subsection.
Because the derivative only acts on a function of the

coordinate separation, we can replace ∂2
y with ∂2

y0 and then
partially integrate to reach the form

ln½μ2Δx2ðy; y0Þ�
Δx2ðy; y0Þ

�
∂y

02 1

Δx2ðx0; y0Þ
�
þ two surface terms:

(D21)

After dropping the surface terms, the y0 integration can be
carried out using (D3),

iλ2

29π6

Z
d4y

1

Δx2ðx; yÞ
ln½μ2Δx2ðy; x0Þ�

Δx2ðy; x0Þ : (D22)

17We used the convention for the usual, in-out diagram.
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Note that only the first and third diagrams of Fig. 1 survive
because their right external legs carry the same polarity.
Further reduction can be accomplished by extracting

another d’Alembertian using (D6), performing a partial
integration and then carrying out the y integration,

λ2

210π4
fln2½μ2Δx2−þðx; x0Þ� − 2 lnðμ2Δx2−þðx; x0Þ�g

þ two surface terms: (D23)

It is clear that the final survival term is from the third
diagram of Fig. 1 because its two external legs carry the
same polarity. Because xμ ¼ ðt; ~xÞ and x0μ ¼ ðt; ~0Þ have the
same time components, the coordinate separation
Δx2ðx; x0Þ in (D23) is purely spatial. The spatial Fourier
transform of (D23) can be easily performed to give

λ2

210π4

Z
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���
: (D24)

Two special integrals [40] have been employed in the last
equality,

Z
∞

0

dz
sinðzÞ
z

¼π

2
;

Z
∞

0

dz
sinðzÞ
z

lnðzÞ¼π

2
γ; γ≡Euler’s constant: (D25)

The lowest correction to the power spectrum by the
correlator definition is therefore

Z
d3xe−i~k·~xhΩjφðt; ~xÞφðt; 0ÞjΩi1 loop

¼ λ2

26π2
1

k3

�
1

2
þ γ − ln

�
μ

k

��
: (D26)

3. Discussions of infrared and ultraviolet divergences

There is an unfortunate tendency in the literature to
employ the term “infrared divergence” to describe perfectly
finite, temporally growing effects such as (D19). Of course
a true infrared divergence is an infinite constant, with no
spacetime dependence. That neither definition for the
power spectrum can give rise to an infrared divergence
is a simple consequence of the Schwinger-Keldysh for-
malism with the initial states being released at finite times.
In order to produce a true infrared divergence, interactions
must contribute from arbitrarily large spatial distances, and
this is precluded by causality as long as the initial state is
released at any finite time.
Ultraviolet divergences can and do occur in the

Schwinger-Keldysh formalism, just as they do in the in-
out formalism. In both formalisms it is important to
distinguish between the ultraviolet divergences of non-
coincident 1PI functions, which are eliminated by conven-
tional BPHZ renormalization, and the new divergences
which can occur when one or more of the coordinates are
related. These new divergences require an extra, composite
operator renormalization. The case of the power spectrum
is especially tricky because only the time components of
the two spacetime points are made to coincide. For the case
of our toy φ3 model, this produces no extra divergence. The
vertices of quantum gravity contain derivatives, which
increases the tendency for divergences. Frob, Roura, and
Verdaguer have claimed that this is enough to cause the
one-loop correction to the correlator definition of the power
spectrum to harbor a new, composite operator divergence.
One of our points is that the mode function definition is free
from this new divergence.
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