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We obtain the Schwarzschild solution from thermodynamic considerations using the assumptions of a
quasilocal mass form (the Misner-Sharp mass) and geometric surface gravity in a spherically symmetric
space-time. The deduction is extended to other cases such as the de Sitter, anti–de Sitter, Reissner-
Nordström, and higher-dimensional space-times. This paper demonstrates the simple hypotheses to obtain
these known spherically symmetric solutions via thermodynamics, where essentially the Misner-Sharp
mass is the mass for an adiabatic system.
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I. INTRODUCTION

The Schwarzschild solution is the most important one in
gravity theory and one of the most important solutions in
physics. In principle, we can consider an infinite number
of effects by which general relativity (GR) could be tested.
In practice, however, the gravitational effects of GR are too
tiny to measure in most cases. The Solar neighborhood
closely approximates a spherically symmetric static space-
time, and hence the Solar System presents a suitable arena
to test GR as manifested in the Schwarzschild metric. Three
classical GR effects—the anomalous perihelion precession
of Mercury’s orbit, the deflection of light by the Sun,
and the gravitational redshift of light—only verify the
Schwarzschild metric. On the other hand, Newton’s theory
confronts serious difficulties when applied to the Universe
as a whole. Therefore, GR has been an expectation to
provide a firm foundation in the treatment of cosmology for
a long time. In some sense, we can say that GR predicts a
dynamical universe. However, the recent detailed observa-
tions of the dynamical evolution of the Universe display a
gap between theory and observations. There are still some
serious problems, such as dark matter and dark energy in
relativistic cosmology. That is why numerous modified
theories of gravity are suggested. To sum up, the exper-
imental verifications of GR are actually limited to the
Schwarzschild metric. We can speak in a sense that these
verifications just verify the Schwarzschild solution. Thus, it
is very interesting to check the simple conditions to derive
the Schwarzschild solution rather than the full theory
of GR.
One of the most notable achievements for theoretical

physics to take place in the 1970s was the discovery of a

close relationship between laws of black hole physics
and the ordinary laws of thermodynamics [1]. In fact,
black hole thermodynamics is space-time thermodynamics
in the sense that the physical quantities in black hole
thermodynamics usually have a global nature for a mani-
fold. Moreover, one may be curious about the relation
between the Einstein equations themselves and thermody-
namic laws. In a general space-time, even the physical
quantities like mass, entropy, and angular momentum do
not make sense, since there is no Killing field; hence, it is
very difficult to construct thermodynamics. Furthermore,
the thermodynamics in a general space-time is usually a
nonequilibrium state, one that we know little about even for
ordinary matter. However, this does not prevent us from
exploring the inverse problem, i.e., to derive the Einstein
equations from thermodynamic considerations. Jacobson
got the Einstein equations on a hypersurface tilting to a null
surface by using the local first law of equilibrium thermo-
dynamics, under the assumptions that the entropy is
proportional to the area of the local Rindler horizon of
an infinitely accelerated observer and the temperature is the
Hawking-Unruh temperature sensed by this observer [2].
In fact, the concept of a null observer is suggested in this
research, which is a bold generalization of the concept of
observer.
The Einstein equations are ten second-order partial

differential equations which correspond to the ten compo-
nents of symmetric metric gμνðxÞ. Any metric whatever is a
“solution” if no restriction is imposed on the energy-
momentum tensor TμνðxÞ, since the Einstein equations
become just a definition of Tμν. A general metric could
be, of course, far from equilibrium. The technical details of
this problem are studied in Ref. [3], which shows that the
order of the local Killing vector is problematic. When this
problem is overcome, a stationary space-time is obtained.
This confirms the previous arguments about the relation
between equilibrium thermodynamics and stationary
space-time. The nonequilibrium problem is solved in part
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in Verlinde’s entropic force approach for the space-time
thermodynamics [4]. He works in a stationary space-time;
i.e., a timelike Killing vector exists. The space-time slices
are identical to each other when we shift along the integral
curves of the Killing vector. It is reasonable to assume that
this space-time is in equilibrium and thus legal to apply
thermodynamics for equilibrium states on such a manifold.
Strictly speaking, the derived Einstein equations in this
approach are just valid in stationary space-times. Also,
Newton’s second law and gravity law are explained by
thermodynamics. But the derived Newtonian laws must be
different from the classical ones, since the Unruh temper-
ature is used in the derivation, which concentrates on the
4-acceleration rather than the 3-acceleration. The resulted
Newtonian laws respect Lorentz invariance, which can be
treated as the Newtonian laws reformed by Sommerfeld [5].
The entropic force approach is followed by several works
[6], and some problems are pointed out—for example, the
position of the holographic screen may lead to a negative
temperature [7]—and the experiments by using ground-
based ultracold neutrons seem to contradict the concept of
entropic force [8]. Therefore, we restrain our ambitions to a
smaller project, that is, to derive the Schwarzschild solution
by some “simple” assumptions, coming or not coming from
thermodynamics. In the previous derivations of GR from
thermodynamics, one has to introduce a concept essentially
from quantum theory, i.e., the Unruh temperature for an
accelerated observer. Our derivation of Schwarzschild in
this work is strictly restricted in classical theory without
any concepts from quantum theory.
This paper is organized as follows. In Sec. II, we present

our two conditions that can yield the Schwarzschild solution.
In Sec. III, we discuss some related topics, including
asymptotic de Sitter (dS), anti–de Sitter (AdS), Reissner-
Nordström, and higher-dimensional Schwarzschild cases.
The conclusion is given in Sec. IV.

II. DERIVATION OF THE SCHWARZSCHILD
SOLUTION

We take a static spherical metric ansatz as follows:

ds2 ¼ −fðrÞdt2 þ hðrÞdr2 þ r2dΩ2
2; (1)

where fðrÞ and hðrÞ are any functions of r, Ω2 denotes a
unit 2-sphere, and ∂

∂t is the timelike Killing vector (maybe
not a global one). Now we consider the thermodynamics
of this space-time. First, we consider the gravitational
energy (mass) in a finite volume. Opposite to intuition,
the gravitational mass is a very intricate problem. It is
natural that gravity is associated with energy; otherwise,
gravity waves become senseless. But a rigorous local form
of gravitational energy-momentum is forbidden by the
equivalence principle. Therefore, its quasilocal form
becomes interesting. Numerous forms for quasilocal
gravitational mass have been suggested [9]. However, a

universally accepted form is still in absence. In Ref. [10],
Bergqvist showed that various quasilocal masses are
different from each other for the Kerr metric including ones
given by Komar, Hawking, Penrose, Ludvigsen-Vickers,
Bergqvist-Ludvigsen, and Kulkarni-Chellathurai-Dadhich.
Although there are still several possibilities, the situation
is comparatively simple in a spherically symmetric space. A
famous form is the Misner-Sharp energy, which has been
explored for various cases in numerous works [11]. In a
spherically symmetric space-time described by the metric
(1), the Misner-Sharp mass inside the sphere with radius r
reads

Mms ¼
r
2
ð1 − h−1Þ: (2)

The spherically symmetric space-time described by the
metric (1) with Misner-Sharp mass is called a Misner-
Sharp system in this paper. Considering an adiabatic
Misner-Sharp system, we write the first law as follows:

δMms ¼ 0; (3)

which implies

h2 − hþ rh0 ¼ 0; (4)

where a prime denotes the derivative with respect to r.
Solving the above equation, we immediately obtain

h ¼
�
1 −

C
r

�
−1
; (5)

where C is an integration constant. Backsubstituting h into
the form of Misner-Sharp (2), we get

C ¼ 2Mms: (6)

Thus we get a “half” Schwarzschild metric. Note that the
above demonstration shows that the Misner-Sharp mass is
essentially in an adiabatic system; otherwise, we would
obtain a wrong form had we introduced the term TdS at the
right-hand side of (3). We then compare the surface gravity
with the generic geometric surface gravity in a spherically
symmetric space-time. The geometric surface gravity given
in Ref. [12] in a spherically space-time is required by the
unified first law. The unified first law is a significant
approach in gravithermodynamics. Traditional black hole
thermodynamics relies on the global properties of the
space-time, which depend on the asymptotic behavior of
a manifold. We can use the black hole thermodynamics if
we know everything about a manifold. By contrast, the
unified first law cares only about a patch of a manifold,
which can be applied without the knowledge of the whole
manifold. The quantities involved are quasilocal ones rather
than global ones, and hence they can be easily applied to
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dynamical space-times [13]. The energy adapted to the
unified first law is just the Misner-Sharp mass. This is a key
point to make our reasoning be a self-consistent one.
The surface gravity is calculated as the product of the

magnitude of the 4-acceleration for a particle resting at the
static coordinates and ð−g00Þ1=2. In the spherically sym-
metric space-time, the position of a rest particle reads

Xμ ¼ ðt; r0; θ0;ϕ0Þ; (7)

where ðθ;ϕÞ are the inner coordinates of the unit 2-sphere.
By definition, the 4-velocity of this particle Uμ reads

Uμ ¼ dXμ

dτ
; (8)

where τ represents the proper time of the particle.
The 4-acceleration for this rest particle can be written as

Aμ ¼ Uν∇νUμ; (9)

where the derivative operator ∇ is compatible with the
metric. We calculate the magnitude by

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgμνAμAνj

q
; (10)

and hence the surface gravity κ:

κ ¼ a
ffiffiffiffiffiffiffiffiffiffi
−g00

p ¼ a
ffiffiffi
f

p
¼ 1

2
ðfhÞ−1=2f0: (11)

The geometric surface gravity adapted to the first law
reads

κ ¼ Mms

r2
− 4πrw; (12)

where r is just the coordinate r in (1). w is the work term:

w ¼ −
1

2
IabTab; (13)

where h is the two-dimensional induced metric,

I ¼ −fðrÞdt2 þ hðrÞdr2; (14)

and Tab is the energy-momentum. A vacuum implies
Tab ¼ 0. We note that this definition of surface gravity is
more generic and more reasonable than the ordinary Killing
surface gravity. A nice example is given in Ref. [14].
For the vacuum, we have

1

2
ðfhÞ−1=2f0 ¼ Mms

r2
: (15)

Substituting Eqs. (5) and (6) into Eq. (15), we obtain

f ¼
��

1 −
2Mms

r

�
1=2

þD

�
2

; (16)

where D is an integration constant. The metric should
reduce to the Minkowskian one when Mms ¼ 0, and thus
we obtain D ¼ 0, since the coordinates are written in
standard form and even have no free constant to adjust. We
call this the Minkowskian condition. The second road to get
D is to consider the Newtonian approximation. Any
physical metric has to satisfy the Newtonian approxima-
tion. The Newtonian form for a spherically metric is written
as usual:

ds2 ¼ −ð1þ 2ϕÞdt2 þ ð1 − 2ϕÞdr2 þ r2dΩ2
2; (17)

where ϕ ¼ −M=r is the Newtonian potential and M labels
the central mass. The Newtonian massM is just the Misner-
Sharp mass Mms in a spherically symmetric case [15].
Expanding f for large r, we obtain

f ¼ 1 −
2Mmsð1þDÞ

r
þ 2DþD2: (18)

Therefore we obtain immediately

ϕ ¼ −
Mmsð1þDÞ

r
þDþD2

2
: (19)

Also, we have to set D ¼ 0 to match the Newtonian law.
Thus we complete the derivation of the Schwarzschild

solution via thermodynamics considerations. The key points
are an adiabatic Misner-Sharp system and the geometric
surface gravity in the unified first law.

III. RELATED TOPICS

Slight improvements of the deduction in the above
section can help us to obtain some other spherical solutions.
We first deal with asymptotic dS and AdS space-times.
The metric assumption (1) and the definition of (2) remain
the same in this case. For the first law in an adiabatic
Misner-Sharp system, a pressure term should be introduced
in the right-hand side of (3):

δMms ¼ −PdV; (20)

where P ¼ const (dS or AdS depends on the sign of P) is
the pressure and V is the volume in consideration. Then we
obtain hðrÞ for this asymptotic dS:

h ¼
�
1 −

C
r
þ 8πP

3
r2
�

−1
: (21)

Following the usual symbol, we define

Λ ¼ −8πP: (22)
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Backinstituting (21) into (2), we get the Misner-Sharp mass
for asymptotic dS and AdS:

Mmsd ¼
C
2
þ Λ

6
r3: (23)

The work term reads

w ¼ 1

8π
Λ: (24)

In this case, (12) becomes

κ ¼ C
2r2

−
Λr
3
: (25)

And (11) takes the same form, since it does not depend on
the concrete forms of f and h. The equality of the surface
gravity (15) becomes

1

2
ðfhÞ−1=2f0 ¼ C

2r2
−
Λr
3
: (26)

Thus,

f ¼
��

1 −
C
r
−
Λ
3
r2
�

1=2
þD1

�
2

; (27)

where D1 is an integration constant. Similar to the former
case, we obtain D1 ¼ 0 by using the Minkowskian con-
dition under C ¼ 0 and Λ ¼ 0 or the Newtonian condition
under Λ ¼ 0 and the large r approximation.
Next, we consider a solution with an electromagnetic

field. We still adopt (1) and (2) as the starting point. The
first law in an adiabatic Misner-Sharp system is changed to

δMms ¼ Φdq; (28)

where Φ ¼ q=rmarks the electric potential and q labels the
charge residing at r ¼ 0. Solving the above equation, we
arrive at

h ¼
�
1 −

C
r
þ q2

r2

�−1
: (29)

The Misner-Sharp mass Mmsq in this case is

Mmsq ¼
C
2
−
q2

2r
; (30)

and the work term reads

w ¼ q2

8πr4
: (31)

Thus we reach

κ ¼ C
2r2

−
q2

r3
: (32)

Similar to the above section on the discussion of the
asymptotic behavior of the metric, we obtain

f ¼ 1 −
C
r
þ q2

r2
: (33)

Finally, we explore the higher-dimensional case. For a
spherically symmetric n-dimensional space-time,

ds2 ¼ −fðrÞdt2 þ hðrÞdr2 þ r2dΩ2
n−2; (34)

the Misner-Sharp mass inside the sphere with radius r reads

Mms ¼
1

16πGn
ðn − 2ÞΩn−2rn−3ð1 − h−1Þ; (35)

where Gn denotes the n-dimensional Newton constant and
Ωn−2 represents thevolumeof an (n − 2)-dimensional sphere.
It is easy to check that the abovemass degenerates to (2)when
n ¼ 4.WehavesetG4 ¼ 1 in theabovediscussions.Similar to
the procedure in the four-dimensional case, we reach the n-
dimensional Schwarzschild solution:

ds2 ¼ −ð1 − C=rn−3Þdt2 þ ð1 − C=rn−3Þ−1dr2
þ r2dΩ2

n−2: (36)

IV. CONCLUSION AND DISCUSSIONS

The previous derivations of the Einstein equations from
thermodynamics meet fundamental logic and practical
difficulties. Generally, the symmetry of a solution of a
theory is higher than that of the theory itself. We restrict
our aspiration in deriving the most soundly tested solution
of GR, i.e., the Schwarzschild solution. Under the
assumption that the Misner-Sharp mass is essentially in
an adiabatic system, we get a half Schwarzschild solution.
Then, by using the definition of the surface gravity in the
unified first law we obtain the Schwarzschild solution. We
also discuss the derivations about dS and AdS, Reissner-
Nordström, and higher-dimensional cases. What is the
physical significance of the fact that a mass form implies
the whole information of a metric? In some sense, the
quasilocal mass form can be regarded as an example of
the holographic principle [16], which says that the total
information of n-dimensional space-time can be com-
pletely mapped to an (n − 1)-dimensional hypersurface.
Hence, one may not be surprised that a property of a
hypersurface (the quasilocal mass) implies the property of
the whole manifold (space-time metric). Furthermore, we
will consider space-times with other symmetries [17] in
further coming work.
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