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We study dynamics of Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime based on the ghost-
free bigravity theory. Assuming the coupling parameters guaranteeing the existence of de Sitter space as
well as Minkowski spacetime, we find two stable attractors for spacetime with “twin” dust matter fields:
One is de Sitter accelerating universe and the other is matter dominated universe. Although a considerable
number of initial data leads to de Sitter universe, we also find matter dominated universe or spacetime with
a future singularity for some initial data. The cosmic no-hair conjecture does not exactly hold, but the
accelerating expansion can be found naturally. The Λ-CDMmodel is obtained as an attractor. We also show
that the dark matter component in the Friedmann equation, which originates from another twin matter, can
be about 5 times larger than the baryonic matter, by choosing the appropriate coupling constants.
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I. INTRODUCTION

Recent observation has confirmed the big bang scenario
of the expanding Universe. The cosmological parameters
are determined very precisely [1]. Cosmology is now
precision science. However those observations reveal
new unsolved problems in cosmology; dark energy and
dark matter. Dark matter could be explained by unknown
elementary particles, although there may be other possibil-
ities. On the other hand, dark energy, which is the origin of
the current accelerated expansion of the Universe, is one
of the biggest mysteries in modern cosmology [2,3]. The
acceleration might be due to some unknown matter with a
strange equation of state, or might be due to a modification
of general relativity (GR). In this paper, we are interested
in the latter possibility. Among many modified gravity
theories, one natural modification of GR is to consider the
possibility of a massive graviton. The first attempt to
consider a massive graviton was proposed by Fierz and
Pauli [4]. Although a simple nonlinear extension of the
Fierz-Pauli massive gravity theory contains instabilities
called the Boulware-Deser ghost [5], it was recently shown
that the special choice of the interaction term can exclude
such a ghost state [6–12]. However, this theory cannot
describe the flat Friedmann universe, if the fictitious metric
for the Stückelberg field is the one of Minkowski. One may
consider an inhomogeneous metric or extend it to the de
Sitter metric. If we discuss a curved fictitious geometry, it
may be natural for it to be dynamical. In fact the de Rham
Gabadadze Tolley massive gravity theory has been gener-
alized to such a bigravity theory, which is still ghost free. It
contains a massless spin-2 particle and a massive spin-2
particle [13].

Such theories with a massive graviton are also motivated
by the dark energy problem. The accelerating Universe may
be phenomenologically described by the Λ-CDM model.
However, the theoretically expected value of a cosmologi-
cal constant (the vacuum expectation value of some fields)
is too large to explain the observed value of dark energy.
In the massive gravity theory, the nonlinear “mass term”
gives an effective cosmological constant. So the graviton
mass is the scale of the Hubble expansion rate; dark energy
could be explained by the massive gravity theory.
Unfortunately, in the massive gravity, a flat Friedmann

universe with a fiducial Minkowski metric cannot be a
solution. Only an open Friedmann universe solves the
basic equations [14,15]. In order to find a flat Friedmann
universe, the fiducial metric should be more generic. One
possibility is to assume an isotropic and inhomogeneous
metric form [16–20]. However, the coupling constants are
restricted in this model to find an accelerating universe. The
other possibility is that the fiducial spacetime is no longer
the one of Minkowski, but it is assumed to be a curved
spacetime. If one chooses de Sitter spacetime, we find a flat
(or closed) Friedmann universe as well as an open universe.
However, if both metrics are homogeneous and isotropic,
there appears a new type of ghost instability. An anisotropic
fiducial metric may provide a stable flat Friedmann
universe [21–23].
If the fiducial spacetime is a curved spacetime, it may be

natural for its metric to be dynamical as well. Hence, based
on a ghost-free bigravity theory, cosmological models are
also studied [24–34]. In contrast to the massive gravity
theory, these exists a self-accelerating solution for all types
of Friedmann universe in the bigravity theory.
The bigravity theory includes GR with/without a cos-

mological constant as a special case. If both metrics are
proportional, which we call a homothetic solution, the basic
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equations are reduced to two sets of the Einstein equations
with cosmological constants, which originate from the
interaction terms of two metrics [35]. When the cosmo-
logical constant is positive, we have a chance to find a
de Sitter accelerating universe since the vacuum solution is
de Sitter spacetime.
Although considerable literature on bigravity has dis-

cussed the possibility of the accelerating Universe, it has
mainly dealt with the case such that the matter field
interacts only with our physical metric. A little attention
has been paid to the effect from an “exotic” matter which
interacts with another metric. Note that if matter fields
interact with both metrics, it will violate the equivalence
principle, which holds in very high accuracy [36]. Hence
we have to discuss two different matter fields, which
are decoupled with each other and interact only through
two metric interactions. We then call them twin matter
fields [37].
Since GR is consistent with many experiments and

observations [36], homothetic solutions given by those
in GR may be preferred in the bigravity theory as well.
However, in homothetic solutions two matters must satisfy
a fine-tuned condition [27]. Hence, we have to include
another twin matter as well as our matter field in the
dynamics of bigravity and discuss whether we obtain a
homothetic solution as an attractor.
The purpose of this study is to investigate cosmology in

the ghost-free bigravity further. We consider both metrics
are described by the Friedmann-Lemaître-Robertson-
Walker (FLRW) metrics and each metric interacts with
one of twin matter fields, respectively. We assume both are
ordinary matters, in which energy momenta are conserved
individually. However, we do not assume that twin
matter fields satisfy a fine-tuned condition for homothetic
solutions.
Since a vacuum homothetic solution can be de Sitter, we

will analyze whether this de Sitter accelerating universe is
found as an attractor. The result is related to the so-called
cosmic no-hair conjecture [38–44], in which all expanding
universes with a positive cosmological constant are found
asymptotically to approach the de Sitter spacetime. If it
is the case, it will guarantee naturalness of accelerating
expansion in the bigravity theory. The other interesting
point in the present analysis is whether another twin matter
field behaves as dark matter. If we find the de Sitter
universe with twin dark matter as an attractor in the present
model, the Λ-CDM cosmological model, which is phe-
nomenologically favored from observations [1], is obtained
naturally from the bigravity theory.
The paper is organized as follows. Introducing the

ghost-free bigravity, we summarize the basic equations
and present a homothetic solution in Sec. II. In Sec. III, we
show the Friedmann equations in bigravity theory for the
coupling constants which guarantee the existence of the
Minkowski spacetime, and present the vacuum solutions.

We then analyze the dynamics of the Friedmann equations
in Sec. IV. We show that the fate of the Universe is
classified into three types (the self-accelerating de Sitter
spacetime, the decelerating matter dominant universe,
and the universe with a future singularity). The de Sitter
spacetime is found from natural initial conditions.
In Sec. V, we study whether we can find an observationally
consistent model in our cosmological solutions. We find
that the Λ-CDM model is obtained as an attractor, and dark
matter can be explained by another twin matter for the
appropriate coupling constants. We summarize our results
and give some remarks in Sec. VI.

II. BIGRAVITY THEORY

A. Hassan-Rosen bigravity model

In the present paper, we will focus only on the ghost-free
bigravity theory, although many bigravity theories have
been proposed [45–50]. The ghost-free bigravity theory
proposed by Hassan and Rosen [13] is described by the
action

S ¼ 1

2κ2g

Z
d4x

ffiffiffiffiffiffi
−g

p
RðgÞ þ 1

2κ2f

Z
d4x

ffiffiffiffiffiffi
−f

p
RðfÞ

þ S½m�ðg; f;ψg;ψfÞ −
m2

κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
Uðg; fÞ; (2.1)

where gμν and fμν are two dynamical metrics, and RðgÞ and
RðfÞ are those Ricci scalars, respectively. κ2g ¼ 8πG and
κ2f ¼ 8πG are the corresponding gravitational couplings,
while κ is defined by κ2 ¼ κ2g þ κ2f. We assume that the
matter action SðmÞ is divided into two parts:

SðmÞðg; f;ψg;ψfÞ ¼ S½m�
g ðg;ψgÞ þ S½m�

f ðf;ψfÞ; (2.2)

i.e., matter fields ψg and ψf are coupled only to the gmetric
and to the f metric, respectively. This restriction guarantees
the equivalence principle. We call ψg (g matter) and
ψf (f matter) twin matter fluids.
The interaction term between two metrics is given by

Uðg; fÞ ¼
X4
k¼0

bkUkðγÞ; (2.3)

U0ðγÞ ¼ −
1

4!
ϵμνρσϵ

μνρσ;

U1ðγÞ ¼ −
1

3!
ϵμνρσϵ

ανρσγμα;

U2ðγÞ ¼ −
1

4
ϵμνρσϵ

αβρσγμαγ
ν
β;

U3ðγÞ ¼ −
1

3!
ϵμνρσϵ

αβγσγμαγ
ν
βγ

ρ
γ;

U4ðγÞ ¼ −
1

4!
ϵμνρσϵ

αβγδγμαγ
ν
βγ

ρ
γγ

σ
δ; (2.4)
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where bk are coupling constants, while γμν is defined by

γμργ
ρ
ν ¼ gμρfρν: (2.5)

In order to take the square root to obtain the explicit form

of γμν, we shall introduce the tetrad systems, feðaÞμ g and

fωðaÞ
μ g, which are defined by

gμν ¼ ηabe
ðaÞ
μ eðbÞν ; fμν ¼ ηabω

ðaÞ
μ ωðbÞ

ν ; (2.6)

with an additional constraint eμðaÞωμðbÞ ¼ eμðbÞωμðaÞ. This
constraint guarantees that the tetrad description is equiv-
alent to the metric description.
We then find

γμν ¼ ϵηabeμðaÞω
ðbÞ
ν ; (2.7)

where ϵ ¼ �1 comes from the square root. As for the
directions of tetrads, we choose that eð0Þμ dxμ andωð0Þ

μ dxμ are
future directed for dt > 0. Changing the sign of ϵ corre-
sponds to the following transformation:

γμν↔ − γμν; (2.8)

for which the interaction term is invariant by changing the
sign of the coupling constants as

bk↔ð−1Þkbk ðk ¼ 0 − 4Þ: (2.9)

Note that U0ðγÞ and U4ðγÞ do not contribute to the
equations of motion for fμν and gμν, respectively, becauseffiffiffiffiffiffi

−g
p

U0ðγÞ ¼
ffiffiffiffiffiffi
−g

p
; (2.10)

ffiffiffiffiffiffi
−g

p
U4ðγÞ ¼

ffiffiffiffiffiffi
−f

p
; (2.11)

which are just cosmological constants in g spacetime
and f spacetime [51], respectively. The interaction term
is also written by another tensor defined by Kμ

ν ¼ δμν − γμν
as

Uðg; fÞ ¼
X4
k¼0

ckUkðKÞ; (2.12)

where the relations between fbkg and fckg are

c0 ¼ b0 þ 4b1 þ 6b2 þ 4b3 þ b4;

c1 ¼ −ðb1 þ 3b2 þ 3b3 þ b4Þ;
c2 ¼ b2 þ 2b3 þ b4;

c3 ¼ −ðb3 þ b4Þ;
c4 ¼ b4: (2.13)

If we require a flat Minkowski spacetime to be a solution
of the field equations, we have to impose the following
condition;

c0 ¼ c1 ¼ 0: (2.14)

Since m is assumed to be the mass of graviton in the
Minkowski background in massive gravity limit, we
should set

c2 ¼ −1: (2.15)

This quadratic term U2ðKÞ gives the Fierz-Pauli term in the
limit of linear massive gravity theory [4].
As a result, fbkg are also given by two free coupling

constants c3 and c4 as

b0 ¼ 4c3 þ c4 − 6;

b1 ¼ 3 − 3c3 − c4;

b2 ¼ 2c3 þ c4 − 1;

b3 ¼ −ðc3 þ c4Þ;
b4 ¼ c4: (2.16)

In the present paper, we shall focus on this choice of the
coupling constants except for some special case such as
the partially massless theory.
In de Sitter spacetime, it is known that there exists the

so-called Higuchi bound

m2
FP ¼ 2

3
Λ; (2.17)

where mFP is the mass of spin-2 particle in the linear
massive gravity theory [4] and Λ is a cosmological
constant. Beyond this bound, no ghost appears and then
five modes of the massive graviton can propagate properly,
while below the bound, the helicity-zero mode becomes a
ghost [52,53]. At the exact bound value, however, the
helicity-zero mode is decoupled and a new gauge symmetry
appears. Such a theory is often referred to as partially
massless (PM). A nonlinear extension is known as the
PM massive gravity, and the extension to bigravity theory
(the PM bimetric theory) is also discussed [54,55]. These
PM theories are characterized by the coupling constants
such that

b1 ¼ b3¼ 0; b0¼ 3b2κ2f=κ
2
g; b4¼ 3b2κ2g=κ2f: (2.18)

We shall discuss this special case separately in Appendix B.

B. The equations of motion

Taking the variation of the action with respect to gμν and
fμν, we find two sets of the Einstein equations:

Gμ
ν ¼ κ2gðT ½γ�μ

ν þ T ½m�μ
νÞ; (2.19)

Gμ
ν ¼ κ2fðT ½γ�μ

ν þ T ½m�μ
νÞ; (2.20)
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where Gμ
ν and Gμ

ν are the Einstein tensors for gμν and fμν,
respectively. The matter energy-momentum tensors are
given by

T ½m�
μν ¼ −2

δS½m�
g

δgμν
; T ½m�

μν ¼ −2
δS½m�

f

δfμν
: (2.21)

The energy-momentum tensors of “gravitons,” which are
from the interaction term, are given by

T ½γ�μ
ν ¼

m2

κ2
ðτμν − UδμνÞ; (2.22)

T ½γ�μ
ν ¼ −

ffiffiffiffiffiffi−gpffiffiffiffiffiffi
−f

p m2

κ2
τμν; (2.23)

with

τμν ¼ fb1U0 þ b2U1 þ b3U2 þ b4U3gγμν
− fb2U0 þ b3U1 þ b4U2gðγ2Þμν
þ fb3U0 þ b4U1gðγ3Þμν
− b4U0ðγ4Þμν:

The energy momenta of matter fields are assumed to be
conserved individually as

∇
ðgÞ

μT ½m�μ
ν ¼ 0; ∇

ðfÞ
μT ½m�μ

ν ¼ 0; (2.24)

where ∇
ðgÞ

μ and ∇
ðfÞ

μ are covariant derivatives with respect to
gμν and fμν. From the contracted Bianchi identities for
(2.19) and (2.20), the conservation of energy momenta for
gravitons is also guaranteed as

∇
ðgÞ

μT ½γ�μ
ν ¼ 0; ∇

ðfÞ
μT ½γ�μ

ν ¼ 0: (2.25)

C. Homothetic solution

Before going to discuss cosmology, first we give one
simple solution, in which we assume that two metrics are
proportional:

fμν ¼ K2gμν; (2.26)

where K is a scalar function. In this case, since we find the
tensor γμν ¼ Kδμν, the energy-momentum tensors from the
interaction term are given by

κ2gT ½γ�μ
ν ¼ −ΛgðKÞδμν;

κ2fT
½γ�μ

ν ¼ −ΛfðKÞδμν;

where

ΛgðKÞ ¼ m2
gðb0 þ 3b1K þ 3b2K2 þ b3K3Þ;

ΛfðKÞ ¼ m2
fðb4 þ 3b3K−1 þ 3b2K−2 þ b1K−3Þ;

with

m2
g ¼

κ2g
κ2
m2 and m2

f ¼
κ2f
κ2

m2 ðm2
g þm2

f ¼m2Þ: (2.27)

From the energy-momentum conservation (2.25), we
find that K is a constant. As a result, we find two sets of the
Einstein equations with cosmological constants Λg and Λf:

GμνðgÞ þ Λggμν ¼ κ2gT ½m�
μν; (2.28)

GμνðfÞ þ Λffμν ¼ κ2fT
½m�

μν: (2.29)

Since two metrics are proportional, we have the constraints
on the cosmological constants and matter fields as

ΛgðKÞ ¼ K2ΛfðKÞ; (2.30)

κ2gT ½m�
μν ¼ κ2fT

½m�
μν: (2.31)

Since (2.30) is a quartic equation ofK, we have at most four
real roots of K, which give four different cosmological
constants. The basic equations (2.28) [or (2.29)] are just the
Einstein equations in GR with a cosmological constant.
Hence, any solutions in GR with a cosmological constant
are always the solutions in the present bigravity theory. We
shall call these solutions homothetic solutions because of
the proportionality of two metrics.
If we assume a flat Minkowski spacetime is one of the

solutions in the case of a vacuum state, that is, if the
coupling constants are given by (2.14) and (2.15), or (2.16),
we find K ¼ 1 is always one of the solutions, which gives
zero cosmological constant [Λgð1Þ ¼ Λfð1Þ ¼ 0]. Among
the remaining three solutions of K, if we find a positive
cosmological constant, we obtain an accelerating expan-
sion of the Universe, which evolves into a de Sitter
solution, if the cosmic no-hair conjecture holds.
In Appendix A, we present the perturbation equations for

homothetic solutions. The mass of massive mode in the
homothetic background is given by

m2
eff ¼

�
m2

g þ
m2

f

K2

�
ðb1K þ 2b2K2 þ b3K3Þ: (2.32)

The homothetic de Sitter solution is stable against linear
perturbations.

III. COSMOLOGY IN BIGRAVITY

Based on the ghost-free bigravity theory as well as the
massive gravity theory, many authors have studied
cosmological models. In this paper, we analyze the details
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of the evolution of the Universe including both matter
fields and study whether an accelerating expansion is
naturally found in the late time. This is related to the so-
called cosmic no-hair conjecture in general relativity
(GR), in which the de Sitter solution is an attractor for
generic initial conditions if there exists a cosmological
constant, especially, we focus on the effect of matter
fields including f matter, which has not been studied
so much.

A. FLRW universe

Now we discuss the FLRW spacetime, whose metrics are
given by [56]

ds2g ¼ −N2
gðtÞdt2 þ a2gðtÞ

�
dr2

1 − kr2
þ r2dΩ2

�
; (3.1)

ds2f ¼ −N2
fðtÞdt2 þ a2fðtÞ

�
dr2

1 − kr2
þ r2dΩ2

�
; (3.2)

where Ng and Nf are lapse functions, while ag and af are
scale factors for gμν and fμν, respectively. Since those
variables must be positive, we choose the tetrads as

feðaÞμ g ¼ diag

�
Ng;

agffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p ; ag; ag sin θ

�
; (3.3)

fωðaÞ
μ g ¼ diag

�
Nf;

afffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p ; af; af sin θ

�
: (3.4)

Hence, the interaction tensor is given by

γμν ¼ ϵdiagðA;B; B; BÞ; (3.5)

where A ¼ Nf=Ng and B ¼ af=ag.
The cosmic times for g and f metrics are defined by

τg ¼
Z

NgðtÞdt; τf ¼
Z

NfðtÞdt; (3.6)

respectively. Using the gauge freedom, in what follows, we
set Ng ¼ 1, in which gauge choice, the time coordinate t is
the same as the cosmic time of the g metric.
Setting ~A ¼ ϵA, ~B ¼ ϵB, we find that the interaction

energy-momentum tensors are given by

T ½γ�μ
g ν ¼ diag½−ρ½γ�g ; P½γ�

g ; P½γ�
g ; P½γ�

g �; (3.7)

T ½γ�μ
f ν

¼ diag½−ρ½γ�f ; P½γ�
f ; P½γ�

f ; P½γ�
f �; (3.8)

where

ρ½γ�g ¼ m2

κ2
ðb0 þ 3b1 ~Bþ 3b2 ~B

2 þ b3 ~B
3Þ; (3.9)

P½γ�
g ¼ −

m2

κ2
½b0 þ b1ð ~Aþ 2 ~BÞ

þ b2ð2 ~A ~Bþ ~B2Þ þ b3 ~A ~B2�; (3.10)

ρ½γ�f ¼ m2

κ2

�
b4 þ

3b3
~B

þ 3b2
~B2

þ b1
~B3

�
; (3.11)

P½γ�
f ¼ −

m2

κ2

�
b4 þ b3

�
1

~A
þ 2

~B

�
þ b2

�
2

~A ~B
þ 1

~B2

�
þ b1

~A ~B2

�
:

(3.12)

We assume that twin matter fields (g-matter and f-matter
fluids) are described by perfect fluids:

T ½m�μ
g ν ¼ diag½−ρgðtÞ; PgðtÞ; PgðtÞ; PgðtÞ�;
T ½m�μ
f ν

¼ diag½−ρfðtÞ; PfðtÞ; PfðtÞ; PfðtÞ�:

Assume that the Universe consists of dust (nonrelativistic
matter) and radiation (relativistic matter) for twin matter
fluids. From the conservation equations,

_ρg þ 3
_ag
ag

ðρg þ PgÞ ¼ 0;

_ρf þ 3
_af
af

ðρf þ PfÞ ¼ 0; (3.13)

where the dot denotes the derivative with respect to t, the
energy densities are described by the scale factors as

κ2gρg ¼ κ2gðρg;m þ ρg;rÞ ¼
cg;m
a3g

þ cg;r
a4g

;

κ2fρf ¼ κ2fðρf;m þ ρf;rÞ ¼
cf;m
a3f

þ cf;r
a4f

; (3.14)

where cg;m, cg;r, cf;m and cf;r are positive integration
constants.
The Einstein equations with the metric ansatz (3.1) and

(3.2) are reduced to the Friedmann equations:

H2
g þ

k
a2g

¼ κ2g
3
½ρ½γ�g þ ρg�; (3.15)

H2
f þ

k
a2f

¼ κ2f
3
½ρ½γ�f þ ρf�; (3.16)

where

Hg ¼
_ag
ag

; Hf ¼
_af

Nfaf
(3.17)

are the Hubble expansion parameters.
The conservation equations for T ½γ�μ

g ν and T ½γ�μ
f ν

are
reduced to one equation:
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�
_af
_ag

− A

�
ðb1 þ 2b2 ~Bþ b3 ~B

2Þ ¼ 0: (3.18)

These are two cases: The first parentheses vanishes or the
second one does so. If the second parentheses vanishes, ~B is

a constant, and then ρ½γ�g ð ~BÞ and ρ½γ�f ð ~BÞ are also constant. As
a result, the Friedmann equations (3.15) and (3.16) are the
same as the ordinary ones in GR with a cosmological
constant. Since the evolution of the Universe is well
analyzed in GR, we will not discuss this case furthermore.
Thus, we assume that the first parentheses vanishes. This

condition holds when

Hg ¼ BHf: (3.19)

From two Friedmann equations [(3.15) and (3.16)] with
the condition (3.19), we find one algebraic equation:

κ2g½ρ½γ�g ð ~BÞ þ ρgðagÞ� − κf
2 ~B2½ρ½γ�f ð ~BÞ þ ρfðafÞ� ¼ 0:

(3.20)

Since af ¼ Bag ¼ ϵ ~Bag, this equation gives the relation
between ~B and ag. It also provides us some information
about the interaction term ρ½γ�g and ρ½γ�f in terms of twin
matter fluids, which will be used in the discussion about
dark matter later.
The above equation (3.20) with (3.14) is rewritten into a

quartic equation for ag as

~BCΛð ~BÞa4g þ ~BCmð ~BÞag þ Crð ~BÞ ¼ 0; (3.21)

where

CΛð ~BÞ ¼ ~B½κ2gρ½γ�g ð ~BÞ − κf
2 ~B2ρ½γ�f ð ~BÞ�

¼ κ2g ~Bðb3 ~B3 þ 3b2 ~B
2 þ 3b1 ~Bþ b0Þ

− κ2fðb4 ~B3 þ 3b3 ~B
2 þ 3b2 ~Bþ b1Þ; (3.22)

Cmð ~BÞ ¼ cg;m ~B − ϵcf;m; (3.23)

Crð ~BÞ ¼ cg;r ~B
2 − cf;r: (3.24)

Solving (3.21), we obtain the relation ag ¼ agð ~BÞ and
then af ¼ ϵ ~Bagð ~BÞ. Plugging this relation into the
Friedmann equation (3.15), we find the equation for ~B as

�
d ~B
dt

�2

þ Vgð ~BÞ ¼ 0; (3.25)

where the potential for ~B is given by

Vgð ~BÞ ¼
a2g
a02g

�
k

a2gð ~BÞ
−
1

3

�
κ2gρ

½γ�
g ð ~BÞ þ cg;m

a3gð ~BÞ
þ cg;r
a4gð ~BÞ

��

with

a0g ¼ −
ðCΛ þ ~BCΛ

0Þa4g þ ð2cg;m ~B − ϵcf;mÞag þ 2cg;r ~B
~Bð4CΛa3g þ CmÞ

:

A prime denotes the derivative with respect to ~B.

B. Vacuum solutions

Since the matter energy densities drop as the Universe
expands, we may expect the spacetime evolves into a
vacuum state asymptotically unless the spacetime encoun-
ters a singularity.
So before solving the dynamical equation (3.25), we

first analyze the vacuum solutions. Equation (3.21) is now
simple as

CΛð ~BÞ ¼ 0: (3.26)

This equation is the same as (2.30). Since ~B is a constant,
we find A ¼ B ¼ K, which gives the homothetic solution
discussed in Sec. II C.
We have at most four real roots ~Blðl ¼ 1;…; 4Þ for

Eq. (3.26). If we assume the existence of Minkowski space,
we always have one trivial root ~BðMÞ ¼ 1ðBðMÞ ¼ 1; ϵ ¼ 1Þ,
which gives zero cosmological constant. The remaining
three roots can be all real or one real and two complex.
First we shall look for a de Sitter (dS) solution. When the

following conditions are satisfied, we find one de Sitter
solution, which is given by BðdSÞ with ϵ ¼ 1:

c3 < 0; c3 þ c4 < 0; 2c23 þ 3c4 > 0 ½region ð1Þ�;
c3 > 3; 3c3 þ c4 < 3; 2c23 þ 3c4 > 0 ½region ð2Þ�:

We show the typical examples (models A and B) for these
regions in Table I.

TABLE I. In the parameter regions (1) and (2), there exists one
de Sitter solution with ~BðdsÞ > 0 (ϵ ¼ 1). In addition, we find
three other vacuum solutions (two anti–de Sitter (AdS) solutions
as well as a trivial Minkowski spacetime). We assume κf ¼ κg.

Model ðc3; c4Þ Region ϵ Bl Λg Vacuum

A ð−1; 0Þ (1) −1 0.523476 −22.0323m2
g AdS1

1 1 0 M
1 1.67319 −0.394464m2

g AdS2
1 6.85028 12.4267m2

g dS
B ð4;−10Þ (2) −1 1.91031 −80.4017m2

g AdS1
1 1 0 M
1 0.145979 0.264813m2

g dS
1 0.59766 −0.140902m2

g AdS2
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For the coupling constants which satisfy

c3 þ c4 > 0; 3c3 þ c4 < 3; 2c23 þ 3c4 > 0 ½region ð3aÞ�;
c3 þ c4 < 0; 3c3 þ c4 > 3; 2c23 þ 3c4 > 0 ½region ð3bÞ�;
c3 þ c4 > 0; 3c3 þ c4 > 3; 2c23 þ 3c4 > 0 ½region ð3cÞ�;

we obtain one de Sitter solution for ~BðdsÞ < 0 ðBðdsÞ > 0;
ϵ ¼ −1Þ. In Table II, we show some examples (models C,
D, and E).
In Fig. 1, we show the regions (1), (2), and (3) where the

de Sitter solution exists are shown on the c3-c4 plane. For
models A–E with appropriate coupling parameters, we will
discuss the dynamics of spacetime later. They are typical
models in each region.

The other two solutions ( ~BðAdS1Þ and ~BðAdS2Þ), apart from
the Minkowski spacetime, in the region (1)–(3) are anti–de
Sitter (AdS) spacetimes (see Tables I and II).
In the white region in Fig. 1, there is no de Sitter solution.

There exists either three or one AdS spacetime. We show
some examples in Table III.
Note that the bare cosmological constant for gμν in the

action is b0, but the effective cosmological constant is given
by Λg through the interaction term. Hence, even if b0 ≤ 0,
as long as Λg is positive, we find de Sitter spacetime as a
vacuum solution.

IV. THE EVOLUTION OF THE UNIVERSE

A. Attractor universes

The matter and radiation densities become equal at the
redshift z ¼ zeq ≈ 3000 in our Universe. Hence, after zeq,
matter density is dominant in g spacetime, which we
assume in what follows since we are interested in the
present acceleration of the Universe. We also assume a flat
universe with k ¼ 0 from observation.1

We mainly discuss when radiation density in f spacetime
can be also ignored. In this case, (3.20) becomes

CΛð ~BÞa3g þ Cmð ~BÞ ¼ 0; (4.1)

which gives

agð ~BÞ ¼ −
�
Cmð ~BÞ
CΛð ~BÞ

�1
3

: (4.2)

The potential for ~B is given by

Vgð ~BÞ ¼ −
3CmC2

Λ

�
κ2gρ

½γ�
g Cm − cg;mCΛ þ 3kC

2
3

ΛC
1
3
m

�
ðCΛC0

m − CmC0
ΛÞ2

: (4.3)

If CΛð ~BÞ ¼ 0 as well as Cmð ~BÞ ¼ 0 initially, ~B is always
constant and then we find the homothetic solution as an
exact solution:

TABLE II. In the parameter region (3), there exists one de Sitter
solution with ~BðdsÞ < 0 (ϵ ¼ −1). We also find three other
vacuum solutions (two AdS solutions as well as a trivial
Minkowski spacetime). The region (3) is divided into three
subregions [(3a), (3b), and (3c)] depending on the properties of
the solutions. We assume κf ¼ κg.

Model ðc3; c4Þ Region ϵ Bl Λg=m2
g Vacuum

C ð1=2; 0Þ (3a) −1 2þ ffiffiffi
3

p
3

ffiffiffi
3

p
dS

−1 2 −
ffiffiffi
3

p
−3

ffiffiffi
3

p
AdS1

1 1 0 M
1 3 −4 AdS2

D ð5=2;−4Þ (3b) −1 2þ ffiffiffi
3

p
−72.3731 AdS1

−1 2 −
ffiffiffi
3

p
0.373067 dS

1 1=3 −4=9 AdS2
1 1 0 M

E (3,0) (3c) −1 0.761557 29.7326 dS
1 0.636672 −0.154054 AdS1
1 1 0 M
1 4.12489 −23.5786 AdS2

FIG. 1 (color online). The de Sitter solutions with ϵ ¼ 1 and
ϵ ¼ −1 are found in the regions (1) and (2) and in the region (3),
respectively. The region (3) is divided into three subregions
[(3a), (3b), and (3c)] by the dynamical behavior of the Universe.

TABLE III. In the white region of Fig. 1, there is no de Sitter
solution. We find only three AdS solutions or one AdS solution in
addition to a trivial Minkowski spacetime. We assume κf ¼ κg.

Model ðc3; c4Þ Region ϵ B Λg=m2
g Vacuum

F ð−2;−3Þ (4) −1 0.668907 −53.3156 AdS1
1 1 0 M
1 1.54181 −0.221325 AdS2
1 2.3271 −0.183049 AdS3

G ð0;−1Þ (4) −1 0.537656 −15.3417 AdS1
1 1 0 M

1Even if we consider the closed (k ¼ 1) or open (k ¼ −1)
FLRW universe, our main result will not change.
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A ¼ B ¼ j ~Blj;
cf;m ¼ j ~Bljcg;m: (4.4)

We find the conventional matter dominant universe with/
without a cosmological constant [27,35].
However, CΛð ~BÞ does not usually vanish. For generic

initial data, solving the equation (3.25) for ~B, we obtain the
scale factor ag by Eq. (4.2) with ~BðtÞ, and then another
scale factor af by

afð ~BÞ ¼ ϵ ~Bagð ~BÞ: (4.5)

The ratio A of the lapse functions is also given by

Að ~BÞ ¼ ϵ

�
~Bþ 3CmCΛ

CΛC0
m − CmC0

Λ

�
: (4.6)

The potential Vg satisfies the following conditions at
~B ¼ ~Bl:

Vgð ~BlÞ ¼ 0; (4.7)

V 0
gð ~BlÞ ¼ 0; (4.8)

V 00
gð ~BlÞ ¼ −6Λgð ~BlÞ: (4.9)

The AdS solution with Λg < 0 is isolated because the
potential is not negative definite and then Eq. (3.25) is
satisfied only at ~Bl ¼ ~BðAdSÞ. For the case of Λg > 0, on
the other hand, there are two allowed regions where the
Universe can exist; the left and right regions of the point
~Bl ¼ ~BðdSÞ. The potential near ~BðdSÞ is shown in Fig. 2.
The potential form depends on the ratio of matter densities
rm ≡ cf;m=cg;m as well as the coupling parameters fbig.
Although there are two allowed regions in the equation of
motion for ~B, one side is not physical, that is, it corresponds
to the region where a scale factor becomes negative because
from Eq. (4.2), we can evaluate the scale factor near
~B ¼ ~BðdSÞ as

ag ¼ −
�

cg;m ~BðdSÞ − ϵcf;m
C0
Λð ~BðdSÞÞð ~B − ~BðdSÞÞ

�1=3

∝ ð ~B − ~BðdSÞÞ−1=3 (4.10)

which changes the sign at ~B ¼ ~BðdSÞ. Here C0
Λð ~BðdSÞÞ is a

constant. Which side of regions is physical depends on
the value of rm. For example, for model B (c3 ¼ 4

and c4 ¼ −10), if rm < rðdSÞm ¼ 0.145979, the left region

is physically allowed, while for rm > rðdSÞm , the right region
becomes physically possible (see Fig. 2, in which we plot
both cases of rm ¼ 0, and 0.3).
In both cases, ~B evolves into ~BðdSÞ as an attractor. Near

~BðdSÞ, the potential is approximated as

Vg ≈ −3Λgð ~B − ~BðdSÞÞ2: (4.11)

Hence, we find the solution for ~B as

~B ≈ ~BðdSÞ þ C0exp
�
�

ffiffiffiffiffiffiffiffi
3Λg

q
t
�
; (4.12)

where C0 is an integration constant. The plus sign corre-
sponds to an unstable evolution rolling down from the
potential peak, while the minus sign shows a stable solution
which asymptotically approaches to ~BðdSÞ. The scale factor
evolves as

ag ∝ exp
� ffiffiffiffiffiffi

Λg

3

r
t
�

(4.13)

(see Fig. 3). Hence, the de Sitter accelerating
universe is obtained as an attractor. Note that if
rðdSÞcr < rmð< rðAdSÞm ¼ 1.67319Þ, where rðdSÞcr ¼ 0.41105,
the potential is unbounded from below and diverges at a
finite value of ~B, where a singularity ( _~B ¼ ∞) appears
as we will show later (see the potential with rm ¼ 0.8
in Fig. 2).

FIG. 2 (color online). The potentials Vgð ~BÞ for model B
(c3 ¼ 4, c4 ¼ −10) with rm ¼ 0 (the blue solid curve),
rm ¼ 0.3 (the green dashed curve), or rm ¼ 0.8 (the red dotted
curve). The black dot denotes de Sitter solution ~BðdSÞ.

FIG. 3 (color online). The evolution of the scale factor ag
for the case of c3 ¼ 4, c4 ¼ −10. The bottom curve correspond-
ing to cf;m=cg;m ¼ 2 (dashed green) shows the evolution to a
dust dominated universe, while the top curve corresponding to
cf;m=cg;m ¼ 0 (solid blue) shows the evolution to a de Sitter
spacetime.
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For the case of ~BðMÞ ¼ 1, we find

Vgð ~BðMÞÞ ¼ V 0
gð ~BðMÞÞ ¼ V 00

gð ~BðMÞÞ ¼ 0; (4.14)

since Λg ¼ 0. Evaluating also V 000
g ð ~BðMÞÞ as

V000
g ð ~BðMÞÞ ¼ 54

�
m2

f þm2
grm

1 − rm

�
; (4.15)

we find that V 000
g is positive when rm < 1, then the left

region ( ~B ≤ ~BðMÞ) is physically allowed, while the right
region ( ~B ≥ ~BðMÞ) is allowed if rm > 1.
In this case, the potential is approximated as

Vg ¼ V0ð ~B − ~BðMÞÞ3 (4.16)

with

V0 ¼ 9

�
m2

f þm2
grm

1 − rm

�
: (4.17)

Equation (3.25) is integrated as

−V0ð ~B − ~BðMÞÞ ¼
4

ðt − t0Þ2
; (4.18)

where t0 is an integration constant. As a result, the
asymptotic solution of the scale factor is

ag ∝ ð ~B − ~BðMÞÞ−1=3 ∝ ðt − t0Þ2=3; (4.19)

which is that of a dust matter dominated universe (see
Fig. 3). When ~Bl ¼ ~BðMÞ, a dust matter dominated universe
is found as an attractor.

B. Dynamics of the Universe with twin matter

We are interested in whether the cosmic no-hair con-
jecture holds. Hence, we analyze our system for various
initial data and discuss which initial condition leads to de
Sitter expansion. In order to discuss whether a de Sitter
accelerating universe is naturally achieved as an attractor or
not, we survey all possible allowed initial data. Especially
we focus on the ratio rm of energy densities of twin matter
fluids. The results are summarized on the rm- ~B plane. For
the parameter regions (1) and (2), we show two typical
examples of model A(c3 ¼ −1, c4 ¼ 0) and of model B
(c3 ¼ 4, c4 ¼ −10), in Figs. 4 and 5, respectively. For
region (3), we also present the typical results for model C
(c3 ¼ 1=2, c4 ¼ 0), D (c3 ¼ 5=2, c4 ¼ −4) and E (c3 ¼ 3,
c4 ¼ 0) in Figs. 6, 7, and 8, respectively.
The colored regions denote the ranges of physically

allowed initial data. The universes in the stripe-shaded
light-blue area evolve into de Sitter spacetime, while those
in the crosshatched light-green area evolve into the dust
matter dominated universe. The universes started from the
grey shaded areas eventually find a future singularity.

FIG. 4 (color online). The attractor regions in the rm- ~B plane
are shown for model A (c3 ¼ −1, c4 ¼ 0). The solid, dotted, and
dashed lines denote de Sitter, anti–de Sitter and dust dominated
universes, respectively. rðMÞ

m ¼ 1, rðAdS2Þm ¼ 1.67319, and rðdSÞm ¼
6.85028 give the boundary values, where the properties of
dynamics change. The initial data in the striped-shaded light-
blue and crosshatched light-green regions evolve into the de Sitter
and the dust dominated universe, respectively. BB denotes an
initial big bang singularity (ag ¼ af ¼ 0). The spacetime started
from the other colored region evolves into singularities, which are
shown by dot-dashed curves. There exist two critical values

rðdSÞcr ¼ 2.4328 and rðMÞ
cr ¼ 1.67318. Beyond rðdSÞcr , every space-

time evolves into a de Sitter universe if B > rðAdS2Þm , while all

spacetime with rm < rðMÞ
cr evolves into the matter dominant

universe if B < rðAdS2Þm .

FIG. 5 (color online). The same as Fig. 4 for model B
(c3 ¼ 4, c4 ¼ −10). The boundary values are given by

rðMÞ
m ¼ 1, rðAdS2Þm ¼ 0.59766, and rðdSÞm ¼ 0.145979. Below the

critical value rðMÞ
cr ¼ 0.41105, every spacetime evolves into a

de Sitter universe if B < rðAdS2Þm , while all spacetime with

rm > rðMÞ
cr ¼ 0.597663 evolves into the matter dominant universe

if B > rðAdS2Þm .
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We may probably easily understand that the spacetime
evolves either the de Sitter universe or the matter dominant
universe, depending on the initial conditions, because two
homothetic solutions are attractors. However, we also find
singular spacetime for some initial data. Why does a flat
FLRW universe evolve into a future singularity, which
never happens in GR? To explain how the universe evolves
into a singularity, we consider model B (c3 ¼ 4 and
c4 ¼ −10) (Fig. 5). If rm < rðdSÞcr , the universe starts from
a big bang initial singularity and evolves into de Sitter
spacetime. When rðdSÞcr < rm < rðAdS2Þm , the evolution of ag
is similar to the above case. Starting from a big bang initial
data (ag ¼ 0), it evolves into de Sitter spacetime. However
the behavior of af becomes strange. We show the time
evolution of two scale factors in Figs. 9–11, in which we
set rm ¼ 0.58.
af first increases and then turns to decrease. It eventually

increases again, resulting in an exponential expansion.
In order to analyze the reason why the universe shows a
transient collapse, we show the time evolution of A and B
in Fig. 10. We find that A becomes negative when af
decreases. It means that the time direction in this period
turns to be reverse. It is the reason of the collapse.

FIG. 6 (color online). The same as Fig. 4 for model C
(c3 ¼ 1=2, c4 ¼ 0). The de Sitter solution exists in the case of
ϵ ¼ −1, while the matter dominant universe is found for ϵ ¼ 1.
Hence, we draw two figures of ϵ ¼ �1 separately. because there
appears a singularity at ~B ¼ 0, where ϵ changes the sign. The
boundary values are given by rðMÞ

m ¼ 1, rðAdS1Þm ¼ 2 −
ffiffiffi
3

p
,

rðAdS2Þm ¼ 3, and rðdSÞm ¼ 2þ ffiffiffi
3

p
. Beyond the critical value

rðdSÞcr ¼ 0.489757, every spacetime evolves into the de Sitter
universe if ϵ ¼ −1 and B > rðAdS1Þm , while all spacetime with
rm < rðMÞ

cr ¼ 2.99645 evolves into the matter dominant universe
if ϵ ¼ 1 and B < rðAdS2Þm .

FIG. 7 (color online). The same as Fig. 6 formodelD (c3 ¼ 5=2,

c4 ¼ −4) (ϵ ¼ −1). The boundary values are given by rðMÞ
m ¼ 1,

rðAdS1Þm ¼ 2þ ffiffiffi
3

p
, rðAdS2Þm ¼ 1=3, and rðdSÞm ¼ 2 −

ffiffiffi
3

p
. Below the

critical value rðdSÞcr ¼ 2.04183, every spacetime evolves into the de

Sitter universe if ϵ ¼ −1 andB < rðAdS1Þm , while all spacetimewith

rm > rðMÞ
cr ¼ 0.33729 evolves into the matter dominant universe if

ϵ ¼ 1 and B > rðAdS2Þm .

FIG. 8 (color online). The same as Fig. 6 for model E

(c3 ¼ 3, c4 ¼ 0). The boundary values are given by rðMÞ
m ¼ 1,

rðAdS1Þm ¼ 0.636672, rðAdS2Þm ¼ 4.12489, and rðdSÞm ¼ 0.761557.
Every spacetime with ϵ ¼ −1 evolves into the de Sitter universe.
The matter dominant universe is found for all spacetime with

ϵ ¼ 1 and rðAdS1Þm < rm < rðAdS2Þm .
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However there appears a singularity when ~A vanishes,
i.e., _af ¼ 0. Substituting ~A ¼ _af= _ag into the Ricci scalar
RðfÞ, we obtain

RðfÞ ¼ 6

�
1

Nfaf

�
_af
Nf

�
·
þ _a2f
N2

fa
2
f

þ k
a2f

�

¼ 6

�
_agäg
af _af

þ _a2g
a2f

þ k
a2f

�
: (4.20)

äg does not vanish at ~A ¼ 0, because the r-r component of
the field equation of gμν is given by

2
äg
ag

þ _ag2

a2g
þ k
a2g

¼ m2
g½b0 þ b1ð ~Aþ 2 ~BÞ

þ b2ð2 ~A ~Bþ ~B2Þ þ b3 ~A ~B2� − κ2gPg:

(4.21)

Thus, the Ricci scalar RðfÞ diverges at _af ¼ 0 ð ~A ¼ 0Þ
assuming _ag ≠ 0. Note that the Ricci scalar for gμν is finite
at this point. It implies that g spacetime is regular whereas f
spacetime is singular at ~A ¼ 0.
Note that it is possible to solve the equation for ~B by use

of the potential Vg even if we find a singularity in f
spacetime, because the interaction term does not diverge.
However, it is impossible to solve the equation by use of the
cosmic time τf in f spacetime. From Fig. 11, it is almost
trivial that a singularity appears at the turning points of af.

Figure 10 implies that tðτfÞ is not single valued although
τfðtÞ is a single-valued function. As a result, the variables
such as agðτfÞ or afðτfÞ are not single valued (see Fig. 11).
Beyond a singularity, however, since there is no natural

junction condition at the singularity, we can change the sign
of the lapse function Nf, which is negative when A is
negative. Since the tetrad in f spacetime is given by (3.4), if
we change the sign of Nf, we also have to change the sign
of the spatial part. Because the scale factor af must be
positive, we have to reverse the spatial direction, that is, we
should change the parity in f spacetime. Hence, if we keep
the time direction in f spacetime beyond a singularity, we
have to change the parity for the period of A < 0. Although
there is no contraction phase in f spacetime as well as in g
spacetime, the scale factor in the f metric af becomes
discontinuous (see Fig. 12).
The reverse of the above case also occurs, that is, f

spacetime is regular anytime except for a big bang
singularity whereas g spacetime becomes singular at
_ag ¼ 0, when ~A ¼ ∞. The sign of ~A also changes beyond
this singularity. This happens in the case of model A
(c3 ¼ −1, c4 ¼ 0).
In Figs. 4–8, we show the region of ~A < 0, on which

boundary (the solid and dashed curves for ~A ¼ 0 and

FIG. 9 (color online). The time evolution of two scale factors ag
and af for model B (c3 ¼ 4, c4 ¼ −10) with cf;m=cg;m ¼ 0.58.

FIG. 10 (color online). The time evolution of BðtÞ and AðtÞ for
model B with cf;m=cg;m ¼ 0.58.

FIG. 11 (color online). The time evolution of two scale factors
ag and af in terms of τf for model B with cf;m=cg;m ¼ 0.58.
Beyond the singularity, both scale factors decrease in time, and
then increase again after another singularity.

FIG. 12 (color online). The time evolution of two scale factors
for the same parameters as those in Fig. 9. Although both
scale factors increase in time, there still exists a singularity at
A ¼ 0ð _af ¼ 0Þ and af is discontinuous there. The parity of f
spacetime is changed beyond the singularity.

COSMOLOGY IN GHOST-FREE BIGRAVITY THEORY WITH … PHYSICAL REVIEW D 89, 064051 (2014)

064051-11



~A ¼ ∞, respectively) singularities appear. Hence, if the
universe starts from the gray shaded area, it evolves into a
singularity either at ~A ¼ 0 or at ~A ¼ ∞. If the universe
starts from a big bang singularity (ag ¼ af ¼ 0: red solid
line), it evolves into a negative lapse area through a
singularity and eventually goes to a positive lapse area
again, finding the de Sitter accelerating universe (or the
matter dominated universe). For the other initial data in the
grey area, the boundary does not correspond to a big bang
singularity, but the universe is bounced at the boundary.
Either this spacetime evolves directly into a singularity at
~A ¼ ∞, or it first goes to the boundary and then it is
bounced back to the singularity. Going through a negative
lapse area, both cases eventually evolve into a positive
lapse area again. In any case, however, a singularity
formation cannot be avoided if the universe starts from
the grey area.
As shown in Figs. 4–8, there exists critical values

rðdSÞcr ðrðMÞ
cr Þ for rm ¼ cf;m=cg;m, beyond (or below) which

both g and f spacetime are regular and then they evolve into
the de Sitter universe (or the dust matter dominated
universe). The universe never evolves into a singularity.
The critical value rðdS=MÞ

cr can be found as follows: It is
given by an extreme value of boundary curve of ~A ¼ 0 or
~A ¼ ∞, which are given by

rm

����
A¼0

¼ cf;m
cg;m

����
A¼0

¼ ϵ ~B

�
1þ CΛ

3CΛ − ~BC0
Λ

�
; (4.22)

rm

����
A¼∞

¼ cf;m
cg;m

����
A¼∞

¼ ϵ

�
~B −

CΛ

C0
Λ

�
: (4.23)

The extremal condition gives the equation for ~B at the
critical point such that

ðκ2gb1 − κ2fb3Þ ~B2 þ ðκ2gb0 − 3κ2fb2Þ ~B − 2κ2fb1 ¼ 0;

for ~A ¼ 0 or

2κ2gb3 ~B
2 þ ð3κ2gb2 − κ2fb4Þ ~Bþ ðκ2gb1 − κ2fb3Þ ¼ 0

for ~A ¼ ∞, respectively. The roots of the above equation
just provide a candidate for the critical value ~Bcr. Since the
critical point must exist in the physically allowed region,
we have to impose the additional constraint for the critical
value as

Vgð ~Bcr; r
ðdS=MÞ
cr Þ < 0 (4.24)

for ~BðdS=MÞ > ~Bcr > rm or ~BðdS=MÞ < ~Bcr < rm. These

critical values rðdS=MÞ
cr are shown in Figs. 4–8.

We summarize the results in this subsection in Table IV.
We show the conditions for the ratio rm and the initial

value of B under which every spacetime evolves into the de

Sitter universe or the matter dominant universe. The critical
values depend on the coupling constants fbig (or c3 and c4)
and κ2f=κ

2
g. When spacetimes do not satisfy these con-

ditions, the universe will find a singularity unless we fine-
tune the initial conditions.

C. Cosmic no-hair conjecture

In the previous subsection, we discuss several examples,
in which we showed that there are three possibilities for
the fate of spacetime: the de Sitter accelerating universe, the
matter dominant universe, and spacetime with a future
singularity, depending on the initial condition. Hence in the
exact sense, the cosmic no-hair conjecture does not hold,
but the de Sitter universe can be obtained from a wide range
of initial conditions. In this subsection, we shall further
analyze how this result is generic by surveying the possible
coupling parameters fbkg, which are given by two free
parameters c3 and c4 as (2.16).
Here, just for simplicity, we study two typical cases

with one free parameter c3: (I) b4 ¼ c4 ¼ 0 and
(II) b0 ¼ 4c3 þ c4 − 6 ¼ 0. The first and second cases
include the region (1), (3a) and (3c), and the region (2), (3b)
and (3c), respectively. (See the corresponding red dashed
lines in Fig. 1.)
In Figs. 13(a) and 13(b), for those two cases (I) and (II),

we show which range of rm can reach to the de Sitter
universe or the matter dominant universe, The blue solid
curve and green dashed line denote the de Sitter solution
and the matter dominated universe, respectively. For the dS
solutions, the value of ϵ is negative in the regions (3a), (3b),
and (3c) while it is positive in the regions (1) and (2).
In the region (3c), all spacetime evolves into either

de Sitter self-accelerating universe or matter dominant

TABLE IV. The conditions for the de Sitter accelerating
universe or the matter dominant universe. Every spacetime
evolves into the de Sitter universe or the matter dominant
universe, if the given conditions are satisfied for ϵ, rm and the
initial value of B.

Region ϵ rm B

de Sitter accelerating universe
(1) 1 rm > rðdSÞcr B > rðAdS2Þm

(2) 1 rm < rðdSÞcr B < rðAdS2Þm

(3a) −1 rm > rðdSÞcr B > rðAdS1Þm

(3b) −1 rm < rðdSÞcr B < rðAdS1Þm

(3c) −1 No condition No condition
Matter dominant universe
(1) 1 rm < rðMÞ

cr B < rðAdS2Þm

(2) 1 rm > rðMÞ
cr B > rðAdS2Þm

(3a) 1 rm < rðMÞ
cr B < rðAdS2Þm

(3b) 1 rm > rðMÞ
cr B > rðAdS2Þm

(3c) 1 rðAdS1Þcr < rm < rðAdS2Þcr rðAdS1Þcr < B < rðAdS2Þcr
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universe, except for the time reversed ones, which collapse
into a big crunch. On the other hand, in the regions (1), (2),
(3a) and (3b), there exists a critical value rðdSÞcr , beyond
(below) which spacetime with an appropriate initial con-
dition evolves into a de Sitter universe. However, the case
with other initial data will evolve into either a matter
dominant universe or find a singularity. We note the critical

values rðMÞ
cr are extremely close to rðAdSÞm and these appear

only if −1.09 < c3 < 0.55 for case (I) and 2.27 < c3 <
4.09 for case (II). Outside these regions, the magnitude

relation between Bcr and rm is Bcr > rm > rðMÞ
m or

Bcr < rm < rðMÞ
m , which dose not satisfy the additional

constraint (4.24).

In order to see the dependence of gravitational constants
κg and κf, we change the ratio of gravitational constants
κf=κg by fixing the coupling constants fbig. In Figs. 14(a)
and 14(b), we show the results for different values of the
ratio κ2g=κ2g for model B (c3 ¼ 4, c4 ¼ −10) and model E
(c3 ¼ 3, c4 ¼ 0), respectively.
The result is qualitatively the same in model B except for

the existence of rðMÞ
cr , while it is quite different in model E.

For model B, the critical value rðMÞ
cr appears only if κ2f=κ

2
g <

1.26 as shown in Fig. 13. For model E, all spacetime evolves
into the de Sitter universe if 0.522408 < κ2f=κ

2
g < 13.0711,

otherwise a critical value appears as model B.
Hence we can conclude that no-hair conjecture does not

always hold in the exact sense, but a self-accelerating
universe can be found from natural (not fine-tuned) initial
data for general coupling parameters and gravitational
constants.
We should note the effect of radiation. Although the

present radiation density is much less than matter density in

FIG. 13 (color online). The de Sitter solution (blue curves) and
the necessary condition of rm for self-acceleration (the stripe-
shaded light-blue regions) are shown. We also show the matter
dominate universe (the cross-hatched light-green curve) and its
necessary condition of rm. The dashed red curves show AdS
solutions with Λg < 0. If the universe starts from the yellow
region, it evolves into a singularity. The critical value rðdSÞcr exists
in the regions (1), (2), (3a), and (3b). Another critical value rðMÞ

cr

appears if −1.09 < c3 < 0.55 for case (I) and 2.27 < c3 < 4.09
for case (II), respectively.

FIG. 14 (color online). Similar to Fig. 13 for different values
of κ2f=κ

2
g. We plot the results for (a) model B (c3 ¼ 4, c4 ¼ −10)

and (b) model E (c3 ¼ 3, c4 ¼ 0). For model B, in addition
to the critical value rðdSÞcr another critical value rðMÞ

cr appears if
κ2f=κ

2
g < 1.26. For model E, no critical value appears if

0.522408 < κ2f=κ
2
g < 13.0711. All spacetime approaches the de

Sitter universe.
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our universe, it may not be the case for f-matter fields.
Analyzing the case that f-radiation density is not ignorable,
we find that the dynamics of the universe does not change
so much from the matter dominated case, although the
interpretation of “dark matter” component will be different
(see Sec. V D).

V. TOWARD THE Λ-CDM UNIVERSE

A. Effective Friedmann equation

As we show, the de Sitter accelerating universe is
realized for generic initial conditions in bigravity theory.
One may wonder whether our present observed Universe is
found in this model. Among many cosmological models,
the Λ-CDM model is most preferable from the observa-
tional viewpoint [1]. The amount of cold dark matter is
5 times as large as the baryonic matter. Can we obtain such
a model in the present theory as an attractor or without any
fine-tuning?
In order to study it, assuming the spacetime approaches

the homothetic solution ( ~B ¼ ~Bl), we describe our basic
equation (3.15) in the form of a standard Friedmann
equation. Since de Sitter spacetime or the matter dominant
universe is an attractor in the present model, ~Bl ¼ ~BðdSÞ
or ~BðMÞ.
We rewrite the interaction term ρ½γ�g in terms of the energy

densities of twin matter fluids, ρg and ρf. Near ~B ¼ ~Bl, this
term is expanded as

κ2gρ
½γ�
g ≈ Λg þ R1ð ~B − ~BlÞ þOðð ~B − ~BlÞ2Þ; (5.1)

where

R1 ≡ ðκ2gρ½γ�g Þ0ð ~BlÞ ¼ 3m2
gðb1 þ 2b2 ~Bl þ b3 ~B

2
lÞ: (5.2)

To evaluate ð ~B − ~BlÞ in terms of matter densities, we
expand Eq. (3.21) as

~BlCmð ~BlÞag þ Crð ~BlÞ þ ½ ~BlCΛ
0ð ~BlÞa4g

þ ½Cmð ~BlÞ þ ~BlCm
0ð ~BlÞ�ag þ Cr

0ð ~BlÞ�ð ~B − ~BlÞ
þOðð ~B − ~BlÞ2Þ ¼ 0;

where we use CΛð ~BlÞ ¼ 0. In the limit of ~B → ~Bl, if the
Universe is expanding, dropping the higher-order terms of
a−1g because ag is increasing, we find

~B − ~Bl ≈ −
1

CΛ
0ð ~BlÞ

�
Cmð ~BlÞ

a3g
þ Crð ~BlÞ

~Bla4g

�
þO

�
1

a6g

�
:

(5.3)

Note that ð ~B − ~BlÞ ∼Oða−3g Þ. Plugging (5.3) into (5.1), we
find

κ2gðρ½γ�g þρgÞ≈Λgþκ2gρ
ðmÞ
g

2
41− ð1− ϵrm

~Bl
Þ�

1− 2Λg

3m2
eff

��
1þ κ2f

~B2
lκ

2
g

�
3
5

þκ2gρ
ðrÞ
g

2
41− ð1− rr

~B2
l
Þ�

1− 2Λg

3m2
eff

��
1þ κ2f

~B2
lκ

2
g

�
3
5þO

�
1

a6g

�
;

(5.4)

where ρg; ðmÞ and ρg;ðrÞ are energy densities of gmatter and g
radiation, respectively, and rr ¼ cf;r=cg;r. meff is the grav-
iton mass in the present background spacetime, which is
defined by Eq. (2.32).
Since the energy density of f-matter fluids in the present

limit is approximated by

κ2fρf ¼ cf;m
a3f

þ cf;r
a4f

¼ rm
~B3

cg;m
a3g

þ rm
~B4

cg;r
a4g

≈
rm
~B3
l

cg;m
a3g

þ rr
~B4
l

cg;r
a4g

þOða−6g Þ; (5.5)

replacing rm and rr by f-matter fluids, we finally obtain a
standard form of the effective Friedmann equation in the
present model as

H2
g þ

k
a2g

¼ Λg

3
þ κ2eff

3
½ρg þ ρD�; (5.6)

where

κ2eff ¼ κ2g

"
1 −

1�
1 − 2Λg

3m2
eff

��
1þ κ2f

~B2
lκ

2
g

�#; (5.7)

ρD ¼ κ2f ~B
2
l

κ2g
h�

1 − 2Λg

3m2
eff

��
1þ κ2f

~B2
lκ

2
g

�
− 1

i ρf: (5.8)

κ2eff is the effective gravitational constant, which is always
smaller than the bare gravitational constant κg2 , if the
Higuchi bound is satisfied (m2

eff > 2Λg=3). ρD is regarded
as “dark sector” whose origin is another one of twin matter.
In particular, when dust matter fluids are dominant, ρD is
regarded as dark matter.
Although the effective Friedmann equation (5.6) is

valid both for an asymptotic de Sitter universe
( ~Bl ¼ ~BðdSÞ) and for an asymptotic matter dominant uni-
verse ( ~Bl ¼ ~BðMÞ ¼ 1), in what follows, we discuss only
the case of ~BðdSÞ to explain the present observed universe.

B. Effective gravitational constant

First of all, we discuss the effective gravitational constant
κ2eff , which must be positive in order for gravitational force
to be attractive. In Table V, we summarize the value of κ2eff
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as well as m2
eff for five models (models A–E), where we

assume κ2f ¼ κ2g. From Table V, we can reject two models
(models A and C) because those models predict a negative
gravitational constant.
To see more general cases, we calculate the effective

gravitational constant κ2eff for two one-parameter families
[(I) b0 ¼ 0 and (II) b4 ¼ 0], which we discussed in
Sec. IV C. Figure 15 shows κ2eff with respect to c3. We
find the constraint on c3 as c3 > 1.67845 for case (I), while
c3 > 2.61963 for case (II).
For most general parameters, in Fig. 16, we also show

the range of κ2eff > 0 by the stripe-shaded light-blue region
in the c3-c4 plane.
If we change the ratio of κ2f=κ

2
g, the critical curve

for c3 and c4 moves. We show the ranges of the positive

FIG. 15 (color online). The effective gravitational constant κ2eff
for two one-parameter families of coupling constants [(a) b0 ¼ 0
and (b) b4 ¼ 0]. We plot three cases of κ2f=κ

2
g ¼ 0.1, 1.0, and 10.

FIG. 16 (color online). The contour maps of the effective
gravitational constant κ2eff in the c3-c4 plane for three cases of
κ2f=κ

2
g ¼ 0.1 (a), 1.0 (b), and 10 (c). The red thick curves denote

the contour of κ2eff ¼ 0, below which (the stripe-shaded light-blue
region) we find the region of κ2eff > 0, which is physically
required.

TABLE V. The effective gravitational constant and the effective
graviton mass in de Sitter background for models A–E. We
assume κ2f ¼ κ2g.

Model κ2eff=κ
2
g meff=m

A −0.0880972 6.43151
B 0.976813 0.938869
C −0.108741 3.30578
D 0.920396 0.885782
E 0.0283764 3.99107
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gravitational constant for κ2f=κ
2
g ¼ 0.1 and 10 in Fig. 15

for cases (I) and (II), and the contour maps of κ2eff in Fig. 16
in the c3-c4 plane. When κ2f=κ

2
g decreases, the physically

allowed region with a positive effective gravitational
constant then increases in the range of c3 > 0, but
decreases in the range of c3 < 0, and vice versa.
We may have also another constraint on the effective

gravitational constant. The effective gravitational constant
κ2eff is different from the bare value κ2g. In particular, model
E with κ2f ¼ κ2g gives a big discrepancy. One may wonder
whether such a discrepancy is acceptable or not, because
we know that the difference between the local gravitational
constant (Newtonian gravitational constant) and the cos-
mological one should not be so large [57]. If the local
gravitational constant is κ2g or very close to it, we will find a
stronger constraint on the coupling parameters (c3 and c4)
as well as the ratio of κ2f=κ

2
g. For example, for model E, if

κ2f=κ
2
g < 0.0366125, we find κ2eff=κ

2
g > 0.9, which may be

consistent with observations. Although we expect that the
local gravitational constant is close to the bare gravitational
constant κ2g, to confirm the above constraint, we have to
calculate the local gravitational constant assuming that the
Vainshtein mechanism is working.

C. Dark matter

Next we discuss the possibility to explain the dark matter
component in the Friedmann equation by another one of
twin matter fluids. In Table VI, we show the ratio of dark
matter density ρD to that of g matter ρg;m for models B, D,
and E. Its value, of course, depends on the ratio rm. If ρg;m
consists only of a baryonic matter, it gives the ratio of
dark matter to a baryonic matter, which is about 5 from
the cosmic pie [1]. So choosing rm appropriately as in
Table VI, we find the observed value.
However, in order for the de Sitter attractor to be natural,

we have the constraint on rm as we discussed in Sec. IV B.
For example, for model B, if rm < rðcrÞm ¼ 0.41105, the
universe approaches to de Sitter spacetime for any possible
initial value ~Bð< ~BðAdS2Þ ¼ 0.59766Þ. This critical value
gives ρD=ρg < 0.0656841, which is too small to explain the
present amount of dark matter. To find ρD=ρg ∼ 5, we need
rm ∼ 30, for which a fine-tuning of initial data is required to
find the de Sitter universe. Similarly model D requires a
fine-tuning for de Sitter spacetime. Only model E gives a
model which explains the amount of dark matter as well as

de Sitter accelerating universe, because any initial value of
~B leads an de Sitter attractor, assuming ϵ ¼ −1. In this case,
however, the effective gravitational constant may be too
small. For example, κ2eff=κ

2
g ¼ 0.0283764 for κ2g ¼ κ2f.

Although this value can become close to κ2g if we choose
κ2f=κ

2
g ≪ 1, we need a fine-tuning of initial data to find the

de Sitter universe. [See Fig. 14(b).]
A more natural model is found if we choose the coupling

constants in the left-bottom region in the c3-c4 plane. One
example is model H with c3 ¼ −4, c4 ¼ −10, which is
plotted by the dot H in Fig. 16, and which data and
properties are given in Table VII and in Fig. 17.
We present the two following examples for the appro-

priate values of κ2f=κ
2
g and the ratio rm:

model HI∶κ2f=κ2g ¼ 60; rm ¼ 180;

model HII∶κ2f=κ2g ¼ 1000; rm ¼ 3000: (5.9)

Wefindκ2eff=κ
2
g ¼ 0.946314andρD=ρg ¼ 5.54065 formodel

HI, while κ2eff=κ
2
g ¼ 0.996608 and ρD=ρg ¼ 5.41619 for

model HII, both of which are consistent with observations.

D. Λ-CDM model

Although the ratio of dark matter to baryonic matter is
constant, their total amount is time dependent. Hence, in
order to explain the present ratio of each component in the

FIG. 17 (color online). The same as Fig. 4 for model HI

(c3 ¼−4, c4 ¼ −10 and κ2f=κ2g ¼ 60).We have rðAdS2Þm ¼ 1.35254,

rðdSÞm ¼ 1.84303, rðMÞ
cr ¼ 1.34987, and rðdSÞcr ¼ 1.35313.

TABLE VI. The ratio of the dark sector energy density to the
matter energy density in g spacetime. rm is the ratio of twin matter
energy densities.

Model ρD=ρg

B 0.16261rm
D 0.32278rm
E 44.9613rm

TABLE VII. Bl and Λg for model H.

Model ðc3; c4Þ Region ϵ Bl Λg Vacuum

H ð−4;−10Þ (1) −1 −42.9813 −1.22 × 106m2
g AdS1

1 1 0 M

1 1.35254 −0.193237m2
g AdS2

1 1.84303 0.256594m2
g dS
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cosmic pie (the pie chart of the content of the Universe),
we have to analyze the evolution of the Universe. In the
earlier stage of the Universe, that is, when ~B is not close
to ~BdS, the Friedmann equation is not described by the
standard form (5.6). The interaction term cannot be written
only by the linear combination of Λg; ρg, and ρf with κ2eff .
So we redefine the density of dark sector ρ̄D by

κ2eff ρ̄D ¼ κ2gρ
½γ�
g − Λg − κ2effρg; (5.10)

which includes higher-order terms of ð ~B − ~BdSÞ. Note that
ρ̄D → ρD as ~B → ~BdS, which provides the present amount
of dark matter.
Introducing the density parameters, which are defined by

ΩΛ ¼ Λg

3H2
g
; ΩD ¼ κ2eff ρ̄D

3H2
g
;

Ωm ¼ κ2effρg;m
3H2

g
; Ωr ¼

κ2effρg;r
3H2

g
; Ωk ¼ −

k
H2

g
;

we obtain the Friedmann equation for g spacetime as

ΩΛ þ ΩD þ Ωm þ Ωr þΩk ¼ 1: (5.11)

From the observation, our Universe is almost flat and
the radiation energy is ignorable. Hence, we assume that
Ωr ¼ 0 and Ωk ¼ 0. The present ratio of dark energy
(a cosmological constant) is about 70%, while that of the
matter density including dark matter is about 30% [1], i.e.,

ΩΛj0 ≃ 0.7; ðΩD þ ΩmÞj0 ≃ 0.3:

We also know that the baryonic density is given by
Ωbj0 ∼ 0.05 [1].
In order to analyze whether our cosmological model is

consistent with the history of the Universe as well as the
present observations, we show the time evolution of the
density parameters. We choose one successful model with
the appropriate values of κ2f=κ

2
g and rm (models HI and HII).

In Fig. 18, we show the results for those two models. The
present time, which is shown by the dashed lines in the
figures, is fixed by the observed value of the deceleration
parameter q ¼ −äa= _a2 ¼ −0.527� 0.026 [1]. We find
that the present total matter density ðΩD þ ΩmÞj0 is about
0.3 and the dark energy ΩΛj0 is about 0.7, respectively, as
shown in Fig. 18. This result does not depend on the choice
of initial value of ~B.
Since the ratio ρD=ρg ∼ 5 for both models, we find

ΩDj0 ∼ 0.25 and Ωmj0 ∼ 0.05, which must consist of
baryonic matter because Ωbj0 ∼ 0.05. We need not intro-
duce nonbaryonic dark matter in g spacetime. Another twin
matter fluid plays a role of dark matter in the effective
Friedmann equation. We should, of course, ask whether
another twin matter fluid can really play a role of dark
matter in the other situations such as the cosmic structure
formation or the missing mass in a galactic scale. For such a

purpose, we have to analyze an inhomogeneous spacetime
(either perturbations or nonlinear but Newtonian system).
Since the value of ~B is finite in any time because of the

potential form, then the interaction energy density ρ½γ�g ð ~BÞ
and then the dark matter density ρD are also finite. On the
other hand, the ordinary matter density ρg is proportional to
a−3g and then it dominates the Universe in the early phase.
The equal time when two energy densities become the

same is after recombination for model HI while before for
model HII. For model HI, the dark energy density is smaller
than the baryonic density at recombination. This fact may
show a difficulty of this model in considering the structure
formation because the baryon density fluctuation at recom-
bination era is strongly constrained by cosmic microwave
background observation.
We note that the above scenario will be changed if we

have a large amount of f radiation at present. Since the dark
sector ρD is dominated by radiation, it does not provide a
dark matter component. Hence, the ρg term must contain
dark matter as a usual scenario. ρD gives just a dark
radiation, which may be strongly constrained [1].

VI. CONCLUDING REMARKS

We have studied the dynamics of homogeneous and
isotropic FLRW spacetime in the ghost-free bigravity
theory including twin matter sources. Assuming the

FIG. 18 (color online). The time evolution of density param-
eters for model HI (κ2f=κ

2
g ¼ 60 and rm ¼ 180) and for model HII

(κ2f=κ
2
g ¼ 1000 and rm ¼ 3000). ag ¼ 1 is the present time.
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coupling parameters guaranteeing the existence of de Sitter
space as well as Minkowski spacetime, we find two stable
attractors for spacetime with twin dust matter fields: One is
the de Sitter accelerating universe and the other is the
matter dominated universe. We also find the universe with a
future singularity for some initial data. However a consid-
erable number of initial data leads to the de Sitter universe.
Hence, although the cosmic no-hair conjecture does not
exactly hold, the accelerating de Sitter universe is found
naturally. The Λ-CDM model is obtained as an attractor.
We also show that the dark matter component in the
Friedmann equation, which originates from another twin
matter, can be about 5 times larger than the baryonic matter,
by choosing the appropriate coupling constants. For such a
model, our matter field consists just of baryons.
One interesting remaining question is whether another

twin matter can behave really as dark matter. Dark matter is
required not only in the big bang scenario but also in the
cosmological structure formation and as dark matter halos
existing around galaxies. In order to clarify such a question,
we have to analyze inhomogeneous models, either in a
perturbative approach or by nonlinear analysis. The linear
perturbation analysis is now in progress. Another important
question is whether the bigravity theory will dynamically
recover GR with/without a cosmological constant. That
is, is a homothetic solution an attractor in more general
spacetime? This question may be related with the above
nonlinear analysis. One simple analysis could be perfor-
med in a spherically symmetric system. A spherical static
spacetime including a black hole has also been studied
both in the massive gravity and bigravity theories [58–62].
Although the perturbation analysis shows the existence of
some instability [63,64], since the time scale is about the
age of the present universe, we are interested in whether
we find a homothetic solution (GR) in a local dynamical
free-fall time scale. It is under investigation.
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APPENDIX A: THE PERTURBATIONS AROUND
THE HOMOTHETIC SOLUTION

Since the homothetic spacetimes are given by the
solutions in GR, such solutions are important if they are
stable. So we shall discuss the perturbations around such a
homothetic solution. The basic equations are Eqs. (2.19)
and (2.20). The unperturbed spacetimes are assumed to be
homothetic, i.e.,

g
ð0Þ

μν and f
ð0Þ

μν ¼ K2 g
ð0Þ

μν; (A1)

which are the solutions of

G
ð0Þμ

νð g
ð0ÞÞ ¼ −ΛgðKÞδμν þ κ2g T

ð0Þ½m�μ
ν; (A2)

G
ð0Þμ

νð f
ð0Þ
Þ ¼ −ΛfðKÞδμν þ κ2fT

ð0Þ½m�μ
ν: (A3)

A constant K is determined by a solution of Eq. (2.30), and

κ2fT
ð0Þ½m�μ

ν ¼
1

K2
κ2g T

ð0Þ½m�μ
ν: (A4)

We then consider the following perturbations:

gμν ¼ g
ð0Þ

μν þ ϵhμν; (A5)

fμν ¼ K2 ~fμν ¼ K2ð gð0Þμν þ ϵkμνÞ; (A6)

where ϵ ≪ 1. The suffixes of kμν as well as hμν are moved

by the background metric g
ð0Þ

μν. The energy-momentum
tensors of twin matter fluid and those from the interaction
terms can be expanded as

κ2gT ½m�μ
ν ¼ κ2g

h
T
ð0Þ½m�μ

ν þ ϵT
ð1Þ½m�μ

ν þ � � �
i
;

κ2fT
½m�μ

ν ¼ κ2f

h
T
ð0Þ½m�μ

ν þ ϵT
ð1Þ½m�μ

ν þ � � �
i
; (A7)

and

κ2gT ½γ�μ
ν ¼ −Λgδ

μ
ν þ ϵκ2g T

ð1Þ½γ�μ
ν; (A8)

κ2fT
½γ�μ

ν ¼ −Λfδ
μ
ν þ ϵκ2fT

ð1Þ½γ�μ
ν; (A9)

respectively, where

κ2g T
ð1Þ½γ�μ

ν ¼ m2
g

h
τ
ð1Þμ

νðh; kÞ − δU
ð0Þ
ðh; kÞδμν

i
; (A10)

κ2fT
ð1Þ½γ�μ

ν ¼ −
m2

f

K4

h
ðh − kÞ τð1Þμν þ τ

ð1Þμ
νðh; kÞ

i
; (A11)

with

τ
ð1Þμ

ν ¼ −
1

2
½ðb1K þ 2b2K2 þ b3K3Þðhμν − kμνÞ

þ ðb2K2 þ 2b3K3 þ b4K4Þðh − kÞδμν�;

δU
ð0Þ

¼ −
1

2
ðb1K þ 3b2K2 þ 3b3K3 þ b4K4Þðh − kÞ;

h ¼ hαα; k ¼ kαα:

The first order perturbation equations are given by

g
ð0Þμρ

R
ð1Þ

ρνðφÞ − R
ð0Þρðμ

φνÞρ ¼ M
ð1Þ½m�μ

ν −
1

4
m2

eff ½2φμ
ν þ φδμν�;

(A12)
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g
ð0Þμρ

R
ð1Þ

ρνðψÞ − R
ð0Þρðμ

ψνÞρ ¼ M
ð1Þ ½m�μ

ν; (A13)

where we have introduced new variables φμν and ψμν from
two metric perturbations as

φμν ≔ hμν − kμν; ψμν ≔ m2
fhμν þ K2m2

gkμν; (A14)

and defined by

M
ð1Þ½m�μ

ν ¼ κ2g

�
T
ð1Þ½m�μ

ν −
1

2
T
ð1Þ½m�

δμν

�

− K2κ2f

�
T
ð1Þ½m�μ

ν −
1

2
T
ð1Þ½m�

δμν

�
;

M
ð1Þ ½m�μ

ν ¼
κ2gκ

2
f

κ2
m2

��
T
ð1Þ½m�μ

ν −
1

2
T
ð1Þ½m�

δμν

�

þ K4

�
T
ð1Þ½m�μ

ν −
1

2
T
ð1Þ½m�

δμν

��
: (A15)

ψμν and φμν describe a massless and massive modes,
respectively. meff denotes graviton mass of the massive
mode in the homothetic background spacetime, which is
given by

m2
eff ¼

�
m2

g þ
m2

f

K2

�
ðb1K þ 2b2K2 þ b3K3Þ: (A16)

If the background is the Minkowski spacetime (K ¼ 1), we

findmeff ¼ m. R
ð1Þ

μν is the linear perturbation operator of the
Ricci tensor, which is defined for metric perturbation hμν by

R
ð1Þ

μνðhÞ¼
1

2

h
−∇
ð0Þ

μ∇
ð0Þ

νh−□

ð0Þ
hμνþ∇

ð0Þα
ð∇
ð0Þ

νhαμÞþ∇
ð0Þα

ð∇
ð0Þ

μhανÞ
i
:

(A17)

The Bianchi identity (∇μGμ
ν ¼ 0) gives the conservation of

graviton γμν, i.e.,

∇μT ½γ�μ
ν ¼ 0; (A18)

which perturbation gives the constraint on the massive
mode φαβ:

∇
ð0Þ

μκ
2
g T
ð1Þ½γ�μ

ν ¼
m2

g

2
ðb1K þ 2b2K2 þ b3K3Þ

×
h
−∇
ð0Þ

μφ
μ
ν þ ∇

ð0Þ
νφ
i
¼ 0: (A19)

Since m2
eff ≠ 0, we find

∇
ð0Þ

μφ
μ
ν ¼ ∇

ð0Þ
νφ: (A20)

Taking a trace of Eq. (A12) and using Eq. (A20), we find

ð3m2
eff − 2ΛgÞφ ¼ κ2g

�
2T
ð0Þ½m�

αβ φ
αβ − T

ð0Þ½m�
φ
�
þ 2M

ð1Þ½m�α
α:

(A21)

Equations (A20) and (A21) give five constraint equations
on φαβ, which is consistent with five degrees of freedom
for the massive graviton mode. There is no gauge freedom
because φαβ is a gauge invariant tensor. Using these
constraints, we rewrite the above perturbation equations as

∇
ð0Þ

μ∇
ð0Þ

νφ − □

ð0Þ
φμν − 2R

ð0Þ
μ

α

ν

β

φαβ

þm2
eff

�
φμν þ

1

2
φ g
ð0Þ

μν

�
¼ 2M

ð1Þ½m�
μν ; (A22)

−∇
ð0Þ

μ∇
ð0Þ

νψ −□

ð0Þ
ψμνþ2∇

ð0Þ
ðν
h
∇
ð0Þα

ψμÞα
i
−2R

ð0Þ
μ

α

ν

β

ψαβ¼2M
ð1Þ ½m�

μν ;

(A23)

where we have used

∇
ð0Þα�

∇
ð0Þ

νχμα
�
¼∇

ð0Þ
ν

�
∇
ð0Þα

χμα
�
þ R

ð0Þ
μ

αβ

ν χαβþ R
ð0Þρ

νχμρ: (A24)

We shall discuss two decoupled modes separately.

1. Massless mode ψμν

Introducing a new variable by

ψ̄μν ¼ ψμν −
1

2
ψ g
ð0Þ

μν; (A25)

and imposing the transverse-traceless conditions by use of
gauge freedom,

∇
ð0Þμ

ψ̄μν ¼ 0;

ψ̄ ¼ 0; (A26)

we find the perturbation equation as

□

ð0Þ
ψ̄ ðTTÞ
μν þ 2R

ð0Þ
μ

α

ν

β

ψ̄ ðTTÞ
αβ ¼ −2M

ð1Þ ½m�
μν : (A27)

In the case of a vacuum spacetime, i.e.,

R
ð0Þμ

ν ¼ Λgδ
μ
ν; R

ð0Þ
¼ 4Λg;

M
ð1Þ ½m�

μν ¼ 0: (A28)

We obtain the perturbation equation as
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□

ð0Þ
ψ̄ ðTTÞ
μν þ 2C

ð0Þ
μ

α

ν

β

ψ̄ ðTTÞ
αβ −

2

3
Λgψ̄

ðTTÞ
μν ¼ 0: (A29)

If the background is de Sitter spacetime (or a spacetime
without a Weyl tensor), we find

□

ð0Þ
ψ̄ ðTTÞ
μν −

2

3
Λgψ̄

ðTTÞ
μν ¼ 0: (A30)

Then we can show that de Sitter expanding spacetime is
stable against this perturbation mode [40].

2. Massive mode φμν

In the case of vacuum state with Eq. (A28), the trace
equation (A21) is now

ð3m2
eff − 2ΛgÞφ ¼ 0: (A31)

If 3m2
eff ≠ 2Λg, we find φ ¼ 0. The massive mode φμν must

satisfy the transverse and traceless conditions [(A20) and
(A31)]:

∇
ð0Þμ

φμν ¼ 0; φ ¼ 0: (A32)

The perturbation equation is now

□

ð0Þ
φμν þ 2C

ð0Þ
μ

α

ν

β

φαβ

−
�
2

3
Λg þm2

eff

�
φμν ¼ 0: (A33)

We can show that de Sitter expanding spacetime (with zero
Weyl curvature) is stable against the massive perturbation
mode too.
The case of 3m2

eff ¼ 2Λg is called “partially massless,”
which contains an additional gauge freedom. There are
only four propagation modes [55].

APPENDIX B: COSMOLOGY IN PARTIALLY
MASSLESS THEORY

In this Appendix, we discuss cosmology in partially
massless (PM) bigravity theory. In the PM theory, all
coefficients of CΛð ~BÞ vanish. Then we have to deal with
this case separately. However it turns out to be simpler than
the general case.
The coupling constants can be described by only one free

parameter b2 such that

b1 ¼ b3 ¼ 0; b0 ¼ 3b2κ2f=κ
2
g; b4 ¼ 3b2κ2g=κ2f: (B1)

By use of the relation (B1), we find the Friedmann
equation as

H2
g þ

k
a2g

¼ κ2g
3
ðρ½γ�g þ ρgÞ; (B2)

where ρg is the ordinary matter energy density. The
interaction term gives the energy density of graviton,
ρ½γ�g , which is given by

ρ½γ�g ¼ 3m2b2
κ2

�
~B2 þ κ2f

κ2g

�
: (B3)

Since the coupling constant b2 always appears
with m2, it can be absorbed into the definition of m,
fixing the constant as b2 ¼ 1 in the PM bigravity
theory.
The algebraic relation (3.21) between ag and ~B becomes

~BCmð ~BÞag þ Crð ~BÞ ¼ 0; (B4)

which gives

~B¼ ~B�≔�
cf;magþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2f;ma

2
gþ4cf;rðcg;magþcg;rÞ

q
2ðcg;magþcg;rÞ

; (B5)

where we have used the positivity conditions of cg;m, cg;r,
cf;m, and cf;r. In order to write down the effective
Friedmann equation from Eq. (B2), assuming the
Universe is expanding, we expand Eq. (B5) as

~B� ¼ �
�
cf;m
cg;m

þ
�
cf;r
cf;m

−
cf;mcg;r
c2g;m

�
1

ag

þ
�
−
c2f;rcg;m
c3f;m

þ cf;mc2g;r
c3g;m

�
1

a2g

þ
�
2c3f;rc

2
g;m

c5f;m
−
c2f;rcg;r
c3f;m

−
cf;mc3g;r
c4g;m

�
1

a3g
þO

�
1

a4g

��

(B6)

as ag → ∞. Using this equation, we find the effective
Friedmann equation as

H2
g þ

k
a2g

≈
Λg

3
þ κ2g

3
ðρg;m þ ρ1 þ ρ2 þ ρ3Þ; (B7)

where

Λg ¼ 3m2
g

�
r2m þ κ2f

κ2g

�
;

κ2gρ1 ¼ 2ðrr − r2mÞ
�
cg;r
cg;m

�
1

ag
;

κ2gρ2 ¼
�ð−rr þ r2mÞðrr þ 3r2mÞ

r2m

��
cg;r
cg;m

�
2 1

a2g
;

κ2gρ3 ¼ 2

�ðrr − r2mÞðr2r þ rrr2m þ 2r4mÞ
r4m

��
cg;r
cg;m

�
3 1

a3g
;
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with rm ¼ cf;m=cg;m and rr ¼ cf;r=cg;r. ρ3 is an additional
matter, ρ2 behaves as a correction of the curvature term,
and ρ1 describes unusual matter with the equation of state
P ¼ − 2

3
ρ. Since the Λ-CDM model with zero spatial

curvature describes the present universe very well, the last
two terms (ρ1 and ρ2) must be very small. Such a condition
gives a strong constraint on both radiation components.
In particular, when we can ignore the radiation terms, we
find the Λ-CDM model. No additional dust component

comes from the f-spacetime matter. Dark matter must be
found in ρg;m. Another one of twin matters is not regarded
as dark matter. The cosmological constant Λg, however in
this case, depends on the ratio of twin matter fluids rm.
If κf ≪ κg, then Λ ≈ 3m2

gr2m. The cosmological constant
depends on matter fluids. It may give us a hint to solve
the so-called “coincidence problem,” which is a mystery
why the amount of dark energy is close to that of
matter fluid.
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