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In this paper, we present and analyze the simplest physically meaningful model for stationary black
diholes—a binary configuration of counterrotating Kerr-Newman black holes endowed with opposite
electric charges—elaborated in a physical parametrization on the basis of one of the Ernst-Manko-Ruiz
equatorially antisymmetric solutions of the Einstein-Maxwell equations. The model saturates the Gabach-
Clement inequality for interacting black holes with struts, and in the absence of rotation, it reduces to the
Emparan-Teo electric dihole solution. The physical characteristics of each dihole constituent satisfy
identically the well-known Smarr’s mass formula.
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I. INTRODUCTION

In their paper [1], Emparan and Teo constructed and
analyzed for the first time an exact electrostatic solution of
the Einstein-Maxwell equations describing a nonextremal
dihole—a configuration consisting of two nonextremal
Reissner-Nordström black holes [2,3] endowed with equal
masses and opposite charges of the same magnitude. The
black-hole constituents in the Emparan-Teo solution are
prevented from falling onto each other by a massless strut
(its rough Newtonian analog is a thin rod whose mass can
be neglected), the pressure inside of which permits one to
get information about the interaction force between the
constituents. Various thermodynamical properties of the
interacting static black holes were also studied in Ref. [1],
which became possible thanks to a known nice physical
property of the spacetimes with struts—the struts do not
contribute into the total gravitational energy of the system.
At the end of their paper, Emparan and Teo mentioned that
an extension of their results to the case of rotation might be
an interesting work to be done in the future, and the
problem of obtaining such an extension seems to have been
attacked in a recent paper of Cabrera-Munguia et al. [4]
who constructed a specific four-parameter exact solution
for two oppositely charged counterrotating Kerr-Newman
(KN) black holes [5]. Though technically, Ref. [4] is
correct, the solution itself, in our opinion, exhibits some
unphysical features because of the presence in it of non-
vanishing magnetic charges created by rotation of electric
charges, which contradicts the known cases of a single KN
solution and of the Bretón-Manko (BM) solution [6,7] for a
pair of identical counterrotating KN black holes where the
electric charges generate a dipole magnetic field without
magnetic monopoles. As a consequence, the usual Smarr
mass formula [8] (not taking into account the contribution
of magnetic charges) does not hold for the black-hole
constituents comprising that binary configuration, and,
moreover, the expression of the important geometric
quantity σ obtained in Ref. [4] depends implicitly on the

root of a cubic algebraic equation being, therefore, more
complicated than, for instance, the analogous quantity of
the physically parametrized BM solution.
The present paper aims at working out a unique four-

parameter model for stationary diholes with antiparallel
rotation of its constituents, in which would be absent not
only the total but also individual magnetic charges. To
accomplish this task, we shall make use of a five-parameter
asymptotically flat specialization of the Ernst-Manko-Ruiz
(EMR) equatorially antisymmetric solution [9,10] possess-
ing arbitrary parameters of electric and magnetic dipole
moments, which will enable us to eliminate the individual
magnetic charges of the constituents by choosing appro-
priately the values of the latter dipole parameters. This will
secure the validity of the standard Smarr formula for each
black-hole constituent and, in turn, will enable us to find a
remarkably simple expression for σ in terms of the Komar
quantities [11] which is a key point for elaborating the
physical parametrization of the whole model. After having
reached our main objective, we will prove that, similar to
the BM model of equally charged counterrotating black-
hole constituents, the configuration obtained for KN black
holes with opposite electric charges verifies (and actually
saturates) the inequality for interacting black holes with
struts recently derived by Gabach Clement [12].

II. THE FIVE-PARAMETER ASYMPTOTICALLY
FLAT EMR SOLUTION IN σ REPRESENTATION

A key result of Ref. [4] is its expressions (14) for the axis
data eðzÞ and fðzÞ allowing one to construct in a straight-
forward manner the corresponding entire metric with the
aid of the general formulas of the extended N-soliton
solution [13] (we also refer the interested reader to the
Appendix of Ref. [10] for a complete set of algebraic
relations involved in the construction procedure of the
N ¼ 2 case). However, an explanation the authors of
Ref. [4] give to the origin of those expressions—the
solution (11) of a complicated system of algebraic
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equations for certain metric functions—raises, in turn, the
question of how these formulas (11) were obtained, and
below we will give a simple derivation of their data (14)
with one additional arbitrary real parameter representing a
magnetic dipole moment.
As a starting point of the derivation procedure, we take

the following axis data obtained in Ref. [9] for an
equatorially antisymmetric spacetime [14] with both
electric and magnetic dipole moments:

eðzÞ ¼ z2 − b1zþ b2
z2 þ b1zþ b2

; fðzÞ ¼ c2
z2 þ b1zþ b2

; (1)

where b1, b2, and c2 are arbitrary complex constants. These
data rewritten in an equivalent representation were used in
Ref. [9] for constructing the corresponding Ernst potentials
[15] E and Φ of a six-parameter EMR solution. If,
nevertheless, one opts to work directly with Eq. (1), then
the asymptotic flatness of the solution implies immediately
that b1 is a real constant related to the total mass 2M of the
binary configuration as b1 ¼ 2M. Choosing then the
constant c2 in the form c2 ¼ 2ðqþ ibÞ, the real parameters
q and b being associated, respectively, with the electric and
magnetic dipole moments, and also formally setting
b2 ¼ c − iδ, we arrive at the five-parameter axis data

eðzÞ ¼ e−
eþ

; fðzÞ ¼ 2ðqþ ibÞ
eþ

;

e∓ ¼ z2∓2Mzþ c − iδ; (2)

in which the real constants c and δ should yet be related to
some physical or geometrical characteristics.
Recall now that the extended multisoliton solutions

involve the constants αn which satisfy the algebraic
equation [16]

eðzÞ þ ēðzÞ þ 2fðzÞf̄ðzÞ ¼ 0 (3)

(the bar over a symbol means complex conjugation), and in
the equatorially antisymmetric case, these can be chosen in
the form

α1 ¼ −α4 ¼
1

2
Rþ σ; α2 ¼ −α3 ¼

1

2
R − σ; (4)

where R is a real constant representing the coordinate
separation of the sources, and the parameter σ can take non-
negative real or pure imaginary values (see Fig. 1). Then
instead of the constants c and δ from the axis data (2), one is
able to introduce the new parameters R and σ by equating
coefficients at the same powers of z on the two sides of the
equation

e−
eþ

þ ē−
ēþ

þ 4ðq2 þ b2Þ
eþēþ

¼ 2
Q

4
n¼1ðz − αnÞ
eþēþ

; (5)

thus, yielding

c ¼ 2M2 −
1

4
R2 − σ2;

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 − 4M2ÞðM2 − σ2Þ − 4ðq2 þ b2Þ

q
: (6)

Accounting for Eq. (6), the five-parameter axis data (2)
finally assume the form

eðzÞ ¼ e−
eþ

; fðzÞ ¼ 2ðqþ ibÞ
eþ

;

e∓ ¼ z2∓2Mzþ 2M2 −
1

4
R2 − σ2 − iδ; (7)

and by setting b ¼ 0 in Eqs. (6) and (7), one recovers the
axis data (14) of Ref. [4] [and, consequently, the quantities
β1;2 and f1;2 in Eq. (11) of Ref. [4] via the simple fraction
decomposition of eðzÞ and fðzÞ]. It is worth noting that this
procedure of changing parameters in the axis data was
already described in application to the case of identical
counterrotating uncharged black holes [17] and, moreover,
has been recently used for obtaining a physical para-
metrization of the BM solution [7]. Furthermore, by virtue
of the equatorial antisymmetry, the axis condition for the
solution defined by the axis data (7) is satisfied automati-
cally, and, therefore, there is no need to solve any additional
algebraic equations for the metric functions.
As it is straightforward to elaborate by purely algebraic

computing the explicit form of the Ernst potentials defined
by the axis data (7), as well as the form of the correspond-
ing metric functions f, γ, and ω entering the stationary
axisymmetric line element

ds2 ¼ f−1½e2γðdρ2 þ dz2Þ þ ρ2dφ2� − fðdt − ωdφÞ2;
(8)

FIG. 1. Location of sources on the symmetry axis for two
branches of the dihole solution: (a) a black dihole configuration
composed of two KN black holes (σ ≥ 0); (b) a hyperextreme
dihole configuration composed of two superextreme KN
constituents (pure imaginary σ).
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below we will restrict ourselves to only writing out the final expressions which reproduce and generalize the analogous
formulas of Ref. [4]. Then, for E and Φ, we have

E ¼ A − B
Aþ B

; Φ ¼ C
Aþ B

;

A ¼ R2½M2ðR2 − 4σ2Þ − 4ðq2 þ b2Þ�ðRþ − R−Þðrþ − r−Þ þ 4σ2½M2ðR2 − 4σ2Þ þ 4ðq2 þ b2Þ�ðRþ − rþÞðR− − r−Þ
þ 2RσðR2 − 4σ2Þ½RσðRþr− þ R−rþÞ þ iδðRþr− − R−rþÞ�;

B ¼ 2MRσðR2 − 4σ2Þ½RσðRþ þ R− þ rþ þ r−Þ − ð2M2 − iδÞðRþ − R− − rþ þ r−Þ�;
C ¼ 4ðqþ ibÞRσ½ðRþ 2σÞðRσ − 2M2 − iδÞðrþ − R−Þ þ ðR − 2σÞðRσ þ 2M2 þ iδÞðr− − RþÞ�; (9)

where

R� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðzþ 1

2
R� σÞ2

r
; r� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − 1

2
R� σÞ2

r
; (10)

while the metric functions are given by the expressions

f ¼ AĀ − BB̄þ CC̄
ðAþ BÞðĀþ B̄Þ ; e2γ ¼ AĀ − BB̄þ CC̄

16R4σ4ðR2 − 4σ2Þ2RþR−rþr−
; ω ¼ −

Im½2GðĀþ B̄Þ þ CĪ�
AĀ − BB̄þ CC̄

;

G ¼ −zBþ Rσf2R½M2ðR2 − 4σ2Þ − 2ðq2 þ b2Þ�ðR−r− − RþrþÞ þ 4σ½M2ðR2 − 4σ2Þ þ 2ðq2 þ b2Þ�ðrþr− − RþR−Þ
þMðRþ 2σÞ½ðR − 2σÞ2ðRσ þ 2M2 − iδÞ − 8ðq2 þ b2Þ�ðR− − rþÞ
þMðR − 2σÞ½ðRþ 2σÞ2ðRσ − 2M2 þ iδÞ þ 8ðq2 þ b2Þ�ðRþ − r−Þg;

I ¼ −zCþ 4Mðqþ ibÞ½R2ð2M2 − 2σ2 þ iδÞðRþrþ þ R−r−Þ þ 2σ2ðR2 − 4M2 − 2iδÞðRþR− þ rþr−Þ�
− 2ðqþ ibÞðR2 − 4σ2Þf2M½ðRσ þ 2M2 þ iδÞRþr− − ðRσ − 2M2 − iδÞR−rþ�
þ Rσ½ðRσ þ 6M2 þ iδÞðRþ þ r−Þ þ ðRσ − 6M2 − iδÞðR− þ rþÞ þ 8MRσ�g: (11)

The t and φ components of the electromagnetic four-
potential are defined by the formulas

At ¼ −Re
�

C
Aþ B

�
; Aφ ¼ Im

�
I

Aþ B

�
; (12)

and these complete the general mathematical description of
the five-parameter EMR solution in σ parametrization.
At this point, several remarks on the formulas (9)–(12)

might be appropriate. First, the above representation of the
five-parameter EMR solution is fully equivalent to the
known description of that solution worked out in
Refs. [9,10] (with the Newman-Unti-Tamburino parameter
ν set equal to zero). Second, it is highly important to
underline that the arbitrary parameter σ of the solution is

not restricted exclusively to real values (contrary to what
was assumed in Ref. [4]) but can also take pure imaginary
values determining the hyperextreme part of the solution.
The significance of this point will be fully understandable
later on when we express σ in terms of the Komar
quantities. Third, the σ representation of the EMR solution
should be only considered as an intermediate parametriza-
tion that could be suitable for elaborating the final physical
representation in which σ must be replaced by a rotation
parameter.
To gain a better insight into the structure of the EMR

solution, let us consider its first four Beig-Simon multipole
moments [18–20], which can be found with the aid of the
Hoenselaers-Perjés procedure [21,22]:

M0 ¼ 2M; M1 ¼ 0; M2 ¼
1

2
MðR2 − 8M2 þ 4σ2Þ; M3 ¼ 0;

J0 ¼ J1 ¼ 0; J2 ¼ 2Mδ; J3 ¼ 0;

Q0 ¼ 0; Q1 ¼ 2q; Q2 ¼ 0; Q3 ¼
1

2
qðR2 − 8M2 þ 4σ2Þ − 2bδ;

B0 ¼ 0; B1 ¼ 2b; B2 ¼ 0; B3 ¼
1

2
bðR2 − 8M2 þ 4σ2Þ þ 2qδ (13)
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(Mi, Ji, Qi, and Bi define, respectively, the mass, angular
momentum, electric, and magnetic multipole moments),
whence it follows the asymptotic flatness of the solution
(J0 ¼ 0), the total mass M0 of the configuration being
equal to 2M, and total angular momentum J1 being zero
due to counterrotation. In the absence of net charges, the
parameters q and b define the electric and magnetic dipole
moments, respectively, which means that the two sources in
the EMR solution are endowed with opposite electric and
magnetic charges.
It is clear from the above form of the multipole moments

that the special b ¼ 0 case of the EMR solution considered
in Ref. [4] is characterized by a zero total magnetic dipole
moment, and this fact explains the intrinsic presence of
magnetic monopoles in that particular solution. Indeed, the
magnetic dipole moment 2b of the five-parameter EMR
solution is a result of the following two nonzero contri-
butions: one coming from the rotating electric charges and
the other originated by the opposite magnetic charges. The
electric contribution is twice the magnetic dipole moment
created by one rotating electric charge, so by demanding
b ¼ 0, Cabrera-Munguia et al. introduced in Ref. [4] a
specific nonvanishing magnetic dipole moment due to
magnetic charges, antiparallel to that created by electric
charges. It would be plausible to suppose that those authors
probably confused the case of counterrotating opposite
charges with the BM configuration in which the counter-
rotating charges have the same signs, and, hence, the total
magnetic and electric dipole moments are both equal to
zero intrinsically. Therefore, a physically meaningful
dihole solution arising from the five-parameter EMR
configuration must have zero individual magnetic charges
and, at the same time, a nonzero magnetic dipole moment
generated by counterrotation of opposite electric charges.
The individual magnetic charges in the five-parameter

EMR solution can be eliminated by means of the condition
[23,24]

Atðρ ¼ 0; z ¼ α1Þ − Atðρ ¼ 0; z ¼ α2Þ ¼ 0; (14)

which can be easily solved for b. Then, from Eqs. (9), (10),
and (12), we get

b2 ¼ 4q2½ðR2 − 4M2ÞðM2 − σ2Þ − 4q2�
ðR2 − 4M2Þ2 þ 16q2

; (15)

and this condition, together with formulas (9)–(12) with
real σ provide one with a σ representation of the physically
meaningful four-parameter model for a stationary black
dihole whose constituents are counterrotating. It can be
verified by a direct calculation that each black-hole
constituent of such a model verifies the well-known
Smarr mass formula identically.

III. THE FOUR-PARAMETER DIHOLE SOLUTION
IN PHYSICAL PARAMETRIZATION

As was already mentioned, the σ representation of the
solution is only an intermediate step on the way of
obtaining the physical parametrization in terms of the
Komar quantities. Once the σ representation is known,
our further actions are the following: we must first try to
express the parameter q in terms of the individual Komar
charge Q of any of the dihole constituents, thus, rewriting
the solution in the parametersM, R, Q, and σ and then find
the form of σ in terms of M, R, Q, and J, J being the
individual Komar angular momentum, from Smarr’s
mass formula, by considering the latter an algebraic
equation for σ. We mention here that although the coor-
dinate distance R is not an invariantly defined quantity, its
introduction instead of the proper distance integralR ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f−1 expð2γÞ
p

jρ¼0dz is justified by the possibility to
obtain simple analytical formulas very suitable for carrying
out the physical analysis.
The mass formula for black holes discovered by Smarr

[8] relates the massM, angular momentum J, and chargeQ
of a black hole to several quantities evaluated on the
horizon: the surface gravity κ, horizon’s area S and angular
velocity ΩH, and the electric potential ΦH. The formula
reads

M ¼ 1

4π
κSþ 2JΩH þQΦH ¼ σ þ 2JΩH þQΦH; (16)

the Komar quantities M, J, and Q being defined by the
integrals [23]

M ¼ −
1

8π

Z
H
ωΩ;zdφdz; (17)

J ¼ 1

8π

Z
H
ω

�
−1 −

1

2
ωΩ;z þ ~AφA0

φ;z þ ðAφA0
φÞ;z

�
dφdz;

(18)

Q ¼ 1

4π

Z
H
ωA0

φ;zdφdz; (19)

with Ω ¼ ImðEÞ, A0
φ ¼ ImðΦÞ, ~Aφ ¼ Aφ þ ωAt (note that

the metric functions ω and γ, as well as the potential ~Aφ,
take constant values on the horizon), while the form of the
constants κ, S,ΩH, and ΦH is given by the formulas [23,25]

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ω−2e−2γ

p
; S ¼ 4πσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ω2e2γ

p
;

ΩH ¼ ω−1; ΦH ¼ −At −ΩHAφ: (20)

For our dihole solution, the calculation of the individual
charge Q of the upper black-hole constituent, whose
horizon is represented by the null hypersurface ρ ¼ 0, 1

2
R −

σ ≤ z ≤ 1
2
Rþ σ leads to a cubic equation for qwhich has to
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be solved in order to pass from the latter q to the Komar Q
in the formulas determining the solution. It is remarkable,
however, that the need to solve a cubic equation can be
circumvented by an appropriate change of the parameter q.
Thus, by introducing a new parameter q via the relation

q2 ¼ q2 þ b2; (21)

which has some analogy with a duality rotation of the
electromagnetic Ernst potential, we find from Eqs. (15) and
(21) the form of q and b in terms of q,

q ¼ qðR2 − 4M2Þ=τ; b ¼ 2qδ0=τ;

δ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 − 4M2ÞðR2 − σ2Þ − 4q2

q
;

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 − 4M2ÞðR2 − 4σ2Þ − 16q2

q
; (22)

and this redefinition of the parameter q permits us to obtain
from Eq. (19) a simple expression for the Komar charge Q
in terms of q,

Q ¼ −2qðRþ 2MÞ=τ; (23)

whence we readily get the inverse dependence of q on Q,

q ¼ −
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 − 4M2ÞðR2 − 4σ2Þ

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþ 2MÞ2 þ 4Q2

p : (24)

The above formula for q permits us, by rewriting the
dihole solution in terms of the parameters M, R, Q, and σ,
to obtain the quantities ΩH and ΦH that we need for
finding σ:

ΩH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR − 2MÞ½ðRþ 2MÞ2 þ 4Q2�½ðRþ 2MÞðM2 − σ2Þ −Q2ðR − 2MÞ�

p
ðRþ 2MÞ½2MðRþ 2MÞðM þ σÞ −Q2ðR − 4M − 2σÞ� ;

ΦH ¼ QðR − 2MÞ½ðRþ 2MÞðM þ σÞ þ 2Q2�
ðRþ 2MÞ½2MðRþ 2MÞðM þ σÞ −Q2ðR − 4M − 2σÞ� : (25)

Finally, after the substitution of Eq. (25) into the Smarr formula (16) in which we can put J ¼ Ma, a being the angular
momentum per unit mass of the upper black hole, we obtain by a simple calculation the desired expression for σ in terms of
the physical quantities M, a, Q, and R:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −

�
M2a2½ðRþ 2MÞ2 þ 4Q2�
½MðRþ 2MÞ þQ2�2 þQ2

�
R − 2M
Rþ 2M

s
: (26)

This formula for σ is the central result of our paper. Now the dihole solution can be rewritten in the physical parameters,
its Ernst potentials E and Φ assuming the form

E ¼ A − B
Aþ B

; Φ ¼ C
Aþ B

;

A ¼ R2ðM2 −Q2νÞðRþ − R−Þðrþ − r−Þ þ 4σ2ðM2 þQ2νÞðRþ − rþÞðR− − r−Þ
þ 2Rσ½RσðRþr− þ R−rþÞ þ iMaμðRþr− − R−rþÞ�;

B ¼ 2MRσ½RσðRþ þ R− þ rþ þ r−Þ − ð2M2 − iMaμÞðRþ − R− − rþ þ r−Þ�;
C ¼ 2C0Rσ½ðRþ 2σÞðRσ − 2M2 − iMaμÞðrþ − R−Þ þ ðR − 2σÞðRσ þ 2M2 þ iMaμÞðr− − RþÞ�; (27)

where the dimensionless quantities μ, ν, and C0 are defined as

μ ¼ R2 − 4M2

MðRþ 2MÞ þQ2
; ν ¼ R2 − 4M2

ðRþ 2MÞ2 þ 4Q2
; C0 ¼ −

QðR2 − 4M2 þ 2iMaμÞ
ðRþ 2MÞðR2 − 4σ2Þ ; (28)

and the final form of the metric coefficients f, γ, and ω is the following:
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f ¼ AĀ − BB̄þ CC̄
ðAþ BÞðĀþ B̄Þ ; e2γ ¼ AĀ − BB̄þ CC̄

16R4σ4RþR−rþr−
; ω ¼ −

Im½2GðĀþ B̄Þ þ CĪ�
AĀ − BB̄þ CC̄

;

G ¼ −zBþ RσfRð2M2 −Q2νÞðR−r− − RþrþÞ þ 2σð2M2 þQ2νÞðrþr− − RþR−Þ
þM½ðRþ 2σÞðRσ − 2M2 þ iMaμÞ þ 2ðR − 2σÞQ2ν�ðRþ − r−Þ
þM½ðR − 2σÞðRσ þ 2M2 − iMaμÞ − 2ðRþ 2σÞQ2ν�ðR− − rþÞg;

I ¼ −zCþ 2C0M½R2ð2M2 − 2σ2 þ iMaμÞðRþrþ þ R−r−Þ þ 2σ2ðR2 − 4M2 − 2iMaμÞðRþR− þ rþr−Þ�
− C0ðR2 − 4σ2Þf2M½RσðRþr− − R−rþÞ þ ð2M2 þ iMaμÞðRþr− þ R−rþÞ�
þ Rσ½RσðRþ þ R− þ rþ þ r−Þ þ ð6M2 þ iMaμÞðRþ − R− − rþ þ r−Þ þ 8MRσ�g: (29)

It should be noted that σ in Eqs. (27)–(29) is no longer an
independent parameter, having conceded that role to the
constant a. From Eq. (26), it follows that σ depending on
interrelations between the parameters M, a, Q, and R can
automatically take on (non-negative) real or pure imaginary
values, thus, describing not only the binary configurations
of black holes but also of hyperextreme objects. That is
why σ’s taking pure imaginary values (along with the real
ones) in the EMR solution (9) is highly important for the
mathematical equivalence of the parameter sets (M, Q, R,
σ) and (M, Q, R, a) and, consequently, for the correctness
of the entire reparametrization procedure. However, since
our primary interest lies in the black-hole sector (σ ≥ 0) of
the dihole solution, we may always restrict ourselves to
those values of the physical parametersM, Q, R, and a that
preserve the reality of σ.

IV. THE LIMITS AND PHYSICAL PROPERTIES
OF DIHOLE SOLUTION

The main limits of the dihole solution can be well seen
from the formula (26) for σ. Thus, in the absence of rotation
(a ¼ 0), the solution reduces to the Emparan-Teo electro-
static nonextreme dihole spacetime [1] whose physical form
was found inRef. [26]. In the purevacuum limit (Q ¼ 0,) the
solution represents a vacuum specialization of the BM
equatorially antisymmetric binary configuration whose
physical parametrization was elaborated in Ref. [17] on
the basis of Varzugin’s expression for the quantity σ [27].
When R → ∞ (no interaction between the dihole constitu-
ents), one gets fromEq. (26) σ ¼ ðM2 − a2 −Q2Þ1=2, which
is characteristic of a single KN black hole.
By construction, the upper KN constituent has mass M,

angular momentum Ma, and charge Q, whereas the
analogous characteristics of the lower constituent are M,

−Ma, and −Q, respectively. The strut separating the two
constituents provides us with the information about the
interaction force [28], the latter being defined by the
expression

F ¼ 1

4
ðe−γ0 − 1Þ

¼ M2ðRþ 2MÞ2 þQ2R2

ðRþ 2MÞ2ðR2 − 4M2Þ

¼ 1

R2 − 4M2

�
M2 þQ2 −

4MQ2ðRþMÞ
ðRþ 2MÞ2

�
; (30)

where γ0 is the value of the metric function γ on the strut,
and one can see that F cannot take zero value at any finite
separation R of the constituents so that the strut is
irremovable generically. It is worth mentioning that for-
mula (30) differs from the analogous expression obtained in
Ref. [4], as our F does not contain a contribution due to
magnetic charges. Note also that F admits a geometrical
interpretation in terms of the conical deficit quantity δ via
the formula F ¼ −δ=ð8πÞ and that the absence of the
angular momentum J in formula (30) does not mean at all
that the spin-spin interaction is not present in our dihole
model since, as has already been rightly observed in
Ref. [29], the angular momenta contribution (attractive)
will enter explicitly into the above formula after the use of
the proper distance integral instead of the coordinate
distance R.
Turning now to the thermodynamical quantities κ, S,ΩH,

and ΦH entering the Smarr mass formula (16), it may be
observed that these must be calculated only for the upper
black-hole constituent because the analogous set for the
lower constituent is just κ, S, −ΩH, and −ΦH. Then, for the
upper constituent, we get

κ ¼ Rσ½ðRþ 2MÞ2 þ 4Q2�
ðRþ 2MÞ2½2ðM þ σÞðMRþ 2M2 þQ2Þ −Q2ðR − 2MÞ� ; (31)
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S ¼ 4π

�
1þ 2M

R

��
2MðM þ σÞ −Q2ðR − 2MÞðR − 2σÞ

ðRþ 2MÞ2 þ 4Q2

�

¼ 4π

RðRþ 2σÞ
�
ðRþ 2MÞ2ðM þ σÞ2 þ M2a2ðR2 − 4M2Þ2

ðMRþ 2M2 þQ2Þ2
�
; (32)

ΩH ¼ Ma½2ðM − σÞðMRþ 2M2 þQ2Þ −Q2ðR − 2MÞ�
ð4M2a2 þQ4ÞðMRþ 2M2 þQ2Þ ; (33)

ΦH ¼ Q½Q2ðM − σÞðMRþ 2M2 þQ2Þ þ 2M2a2ðR − 2MÞ�
ð4M2a2 þQ4ÞðMRþ 2M2 þQ2Þ ; (34)

where S is given in two different forms suitable for
recovering the known limiting cases. The substitution of
Eqs. (31)–(34) into Eq. (16) shows that the above expres-
sions satisfy identically Smarr’s formula for black holes.
It has been recently shown [7] that the equally charged

black-hole constituents of the BM configuration saturate
the Gabach-Clement inequality for black holes with struts
[12] which reads

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4F

p
≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8πJÞ2 þ ð4πQ2Þ2

p
S

: (35)

In this respect, it would be interesting to clarify whether the
oppositely charged constituents of our dihole model saturate
the inequality (35) too. The saturationmeans that the extremal
dihole constituents must satisfy Eq. (35) with the equality
sign. The extremality condition σ ¼ 0 yields from Eq. (26)
the value of a at which the black-hole degeneration occurs:

a2 ¼ ðMRþ 2M2 þQ2Þ2½M2ðRþ 2MÞ −Q2ðR − 2MÞ�
M2ðR − 2MÞ½ðRþ 2MÞ2 þ 4Q2� ;

(36)

and by substituting this a into Eqs. (32) and (35), we get
(J ¼ Ma)

S¼ 4πðRþ2MÞ2½2M2ðRþ2MÞ−Q2ðR−4MÞ�
R½ðRþ2MÞ2þ4Q2� ;

ð8πJÞ2þð4πQ2Þ2

¼ 16π2ðRþ2MÞ½2M2ðRþ2MÞ−Q2ðR−4MÞ�2
ðR−2MÞ½ðRþ2MÞ2þ4Q2� : (37)

Taking into account that F does not depend explicitly on
a, it is easy to check that Eqs. (30) and (37) verify the
equality in Eq. (35) identically. Therefore, independent of
whether the KN black holes in a binary system have equal
or opposite charges, the interaction force between them is
governed by the Gabach-Clement inequality. We mention
here one more common feature shared by the BM and
dihole configurations: the extreme limit is achieved in both
of them at a larger absolute value of a (for some given M
and Q) than in the case of a single KN black hole whose
extremality condition is simply a2 ¼ M2 −Q2.
We mention that in Ref. [4] the Ernst potentials defining

the extreme limit of the four-parameter solution are given
with errors. Therefore, we find it useful to give below the
expressions for these potentials and corresponding metric
functions of the entire five-parameter EMR solution in the
extreme limit σ → 0:

E ¼ A − B
Aþ B

; Φ ¼ C
Aþ B

; f ¼ N
D
; e2γ ¼ N

α8ðx2 − y2Þ4 ; ω ¼ −
4α2δyðx2 − 1Þð1 − y2ÞW

N
;

A ¼ M2α2ðx4 − 1Þ þ α2ðα2 −M2Þðx2 − y2Þ2 þ ðq2 þ b2Þð1 − y4Þ þ 2iα2δðx2 − 2x2y2 þ y2Þ;
B ¼ 2Mαx½α2ðx2 − y2Þ − ðM2 − iδÞð1 − y2Þ�; C ¼ −2ðqþ ibÞy½α2ðx2 − y2Þ − ðM2 þ iδÞð1 − y2Þ�;
I ¼ −αxyC − 2ðqþ ibÞðM þ αxÞð1 − y2Þ½ðM þ αxÞ2 þ ðM2 − α2Þy2 þ iδð1þ y2Þ�;
N ¼ ½M2α2ðx2 − 1Þ2 þ α2ðα2 −M2Þðx2 − y2Þ2 − ðq2 þ b2Þð1 − y2Þ2�2 − 16α4δ2x2y2ðx2 − 1Þð1 − y2Þ;
D ¼ fM2α2ðx4 − 1Þ þ α2ðα2 −M2Þðx2 − y2Þ2 þ ðq2 þ b2Þð1 − y4Þ þ 2Mαx½α2ðx2 − y2Þ −M2ð1 − y2Þ�g2

þ 4α2δ2½αðx2 − 2x2y2 þ y2Þ þMxð1 − y2Þ�2;
W ¼ Mα2½ðα2 −M2Þðx2 − y2Þð3x2 þ y2Þ þM2ð3x4 þ 6x2 − 1Þ þ 8Mαx3� − ðq2 þ b2Þ½4αxy2 −Mð1 − y2Þ2�;

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðα2 −M2Þ − q2 − b2

q
; α ¼ 1

2
R; (38)
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where the prolate spheroidal coordinates (x, y) are related
to the cylindrical coordinates (ρ, z) by the formulas

x ¼ 1

2α
ðrþ þ r−Þ; y ¼ 1

2α
ðrþ − r−Þ;

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz� αÞ2

q
; (39)

and where we have also given the explicit extremal form of
the function I defining the magnetic potential Aφ via
formula (12).
As it follows from Eq. (13), the magnetic field in our

dihole solution differs considerably from that of the
particular b ¼ 0 specialization of the EMR solution con-
sidered in Ref. [4]: in the former case, it has a dipole
character, while in the latter case, it behaves like a magnetic
octupole (B3 ¼ 2qδ). In Figs. 2 and 3 this difference is
illustrated by the plots of magnetic lines of force for two
characteristic particular cases.
We end this section by observing that the singularity

structure of solution (27), which is determined by zeros of
the denominator Aþ B of the Ernst potentials E and Φ, is
essentially the same as that of the solution considered by
Cabrera-Munguia et al., i.e., no ring singularities appear for
ρ > 0 in the positive mass case M > 0 (this has been
checked numerically for a wide range of parameters of our
solution), while for M < 0 there arise two massless ring
singularities outside the location of the sources, in agree-
ment with a recent study [30] of the single KN spacetime
endowed with negative mass.

V. CONCLUSIONS

In our paper, we succeeded in elaborating a physically
consistent four-parameter model for stationary diholes
whose exceptionality consists in the fact that it is the only
four-parameter member of the five-parameter EMR class
not containing magnetic charges (whereas, on the other
side, there is an infinite number of four-parameter special-
izations of the latter class with individual magnetic charges
of the constituents). This model generalizing the known
dihole electrostatic solution earlier obtained by Emparan
and Teo is comprised of two identical (up to the sign of
charges) counterrotating KN black holes supported from
falling onto each other by a massless strut. Curiously, its
finding and correct mathematical description has turned out
to be a more sophisticated task than in the case of
counterrotating equally charged KN black holes repre-
sented by the BM solution because the knowledge of a
more general five-parameter EMR solution was needed for
getting rid of the specific individual magnetic charges
initially present in the dihole components. The solution’s
physical representation was advantageous for a direct check
that the binary configuration it describes really saturates the
Gabach-Clement inequality for interacting black holes.
Since the aforementioned inequality also takes into

account the possibility for the black holes to carry magnetic
charges as independent parameters, we would like to
mention that our dihole solution can be very easily
generalized to the case when the two KN constituents,
besides the opposite electric charges, would have arbitrary
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FIG. 2. Magnetic lines of force plotted for the dihole solution in
the particular case R ¼ 8, M ¼ 3=2, a ¼ 1=8, Q ¼ 1=2.
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FIG. 3. Magnetic lines of force plotted for the specific EMR
solution considered in Ref. [4]; the parameter choice (in the
original notation for the charge parameter) is R ¼ 8, M ¼ 3=2,
σ ¼ 1=4, Q0 ¼ 1=2.
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opposite magnetic charges too, thus, representing a pair of
dyons [31]. To introduce an arbitrary magnetic charge B
into our dihole model, one only needs to make the
following substitutions in the formulas (26)–(29): change
Q to Q ¼ Q − iB, and Q2 to jQj2 ¼ Q2 þ B2 in all the
occurrences. For instance, our expression (26) for σ will
then assume the form

σ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−

�
M2a2½ðRþ2MÞ2þ4jQj2�
½MðRþ2MÞþ jQj2�2 þjQj2

�
R−2M
Rþ2M

s
:

(40)

We underline that the parameter B thus introduced will be a
genuine individual magnetic charge of the upper black
hole, and this can be readily verified by means of the
formula

B ¼ 1

4π

Z
H
ωAt;zdφdz: (41)

It is easy to see that the dyonic dihole model, which is, of
course, equivalent to the five-parameter EMR solution, will
also saturate the Gabach-Clement inequality because the
electric and magnetic charges Qi and Bi enter that inequal-
ity only in the combination Q2

i þ B2
i [12]. We mention also

that the introduction of the magnetic charge does not
actually modify seriously the Smarr mass formula (16),
provided the substitutions described above are carried out
properly in the term QΦH.
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