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We consider an approach to the Brans-Dicke theory of gravity in which the scalar field has a geometrical
nature. By postulating the Palatini variation, we find out that the role played by the scalar field consists in
turning the space-time geometry into a Weyl integrable manifold. This procedure leads to a scalar-tensor
theory that differs from the original Brans-Dicke theory in many aspects and presents some new features.
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I. INTRODUCTION

As is widely known, an important guide to Einstein in
the development of his general theory of relativity was what
he called the principle of equivalence, which, in math-
ematical terms, corresponds to the so-called geodesic
postulate, i.e., the assumption that free particles under
the sole influence of gravity will follow geodesics in a
curved space-time. This, clearly, was the first step towards a
geometrization of the gravitational interaction. The second
step came from setting the field equations, which then
establish how matter curves space-time. Or, in the words of
American physicist John Wheeler, “space-time tells matter
how to move, and matter tells space-time how to curve.”
The interesting fact here is that this elegant theoretical
scheme, which has set the stage for general relativity, works
perfectly with many other metric theories of gravity,
including those whose geometrical framework is not
a priori assumed to be Riemannian or that make use of
physical variables other than the metric and matter fields.
This is the case, for instance, of one of the most popular
alternative theories of gravity, namely, the Brans-Dicke
scalar-tensor theory of gravity, a theoretical framework in
which the space-time manifold is still assumed to be
Riemannian, but the gravitational interaction is described
by two fields: the metric tensor gμν and a scalar field Φ [1].
It turns out, however, that these two fields are of quite a
distinct nature. Indeed, while gμν is essentially geometric,Φ
does not appear in the equations of motion of particles and
photons. In fact, Φ is neither a matter field nor a geometric
field and is traditionally interpreted as the inverse of the
gravitational coupling parameter, which in the Brans-Dicke
theory is not constant and is considered to be determined by
the matter content of the Universe. This nongeometrical
character of Φ has led us to speculate on what kind of

gravitational theory would result if Φ were assigned an
active geometrical role in the dynamics of the gravitational
field as well as in the equations of motion of particles and
light. Surely, in this case we would expect that, being part
of the geometry, Φ should appear explicitly in the geodesic
equations. Moreover, in this new scheme, the gravitational
field would be described not only by gμν, but by the pair
ðgμν;ΦÞ. Of course, such features would immediately
exclude Riemannian geometry as the mathematical frame-
work to be used to describe space-time. Instead, one would
have to look into another geometrical setting which would
operate with a geometric scalar field as one of its in-built
fundamental constituents. This would then lead us to the
question of how to determine, from first principles, the
geometry of the space-time. Well, it seems there are at least
two ways to answer this question: one is to postulate
a priori a certain kind of geometry, as in the case of general
relativity, the Brans-Dicke theory, and many others. The
second way is to chose an action and try to extract the
geometry from the action itself by means of a variational
principle. As we know, there are essentially two distinct
variational principles at our disposal: the one that uses the
Hilbert method, in which the field equations are derived
by performing variations with respect to the metric, and the
so-called Palatini method, which considers independent
variations of the affine connection and the metric [2]. It is
also well known that, when applied to general relativity,
although both methods lead to the same field equations, the
latter has the additional advantage of giving a definite
specification of the Riemannian character of the space-
time. This equivalence, however, is no longer true in the
case of more general actions [3]. In view of this special
feature, i.e., the ability of the Palatini method to determine
the space-time geometry directly from the action, it seems
natural to apply this method, and even extend it, to
investigate the Brans-Dicke action if we are to assign
any geometrical role to the scalar field Φ. In the present
work we begin by applying the Palatini variational method
to the Brans-Dicke action. However, because the scalar
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field Φ is now regarded as an independent geometric field in
its own right, we shall assume that Φ, the metric gμν, and the
connection Γα

μν must be varied independently. As we shall
see, the field equations corresponding to the variation of the
connection will allow us to identify the space-time geometry
as a special case of Weyl geometry, with the scalar field Φ
playing the role of the Weyl field [4]. It is worth noting that a
close connection between the Brans-Dicke theory and Weyl
geometry has already been discovered and may be found in
different contexts. In fact, this connection has been shown to
exist for any scalar-tensor theory in which the scalar field is
nonminimally coupled to the metric [5,6].
It turns out that the change from Hilbert to (an extended)

Palatini variational principle when applied to the Brans-
Dicke action will lead us to a new scalar-tensor theory of
gravity, which presents some distinct features compared
with the original Brans-Dicke gravity. For instance, it will
be found that the space-time is no longer Riemannian but
now has the geometrical structure of what came to be
known in the literature as a Weyl integrable space-time
(WIST) [7]. Moreover, the usual coupling between matter
and gravitation assumed in the Brans-Dicke theory must be
modified if we want the equivalence principle to hold in the
new theory. These departures from the Brans-Dicke theory
lead us to a new scenario, in which the scalar field has a
geometrical meaning and plays a fundamental and active
role in the motion of particles and light.
The paper is organized as follows. In Sec. 2, we obtain the

field equations from the extended Palatini variational
method, where the scalar field Φ is now reinterpreted as a
purely geometric field, hence being regarded as a funda-
mental component of the space-time manifold. In Sec. 3, we
compare the field equations with those of the Brans-Dicke
theory and show that although the two theories are not
physically equivalent they bear strong similarities. We
proceed to Sec. 4 to show that the field equations viewed
in the Riemann frame are formally equivalent to those given
by the general relativistic action corresponding to a massless
scalar field minimally coupled with the gravitation field. In
Sec. 5, this correspondence between the two theories is used
to analyze some typical solar-system experiments in the
context of the geometrical scalar-tensor theory. In Sec. 6, we
briefly discuss the existence of spherically symmetric space-
times by simply looking into some corresponding general
relativistic solutions, and this seems to suggest that we can
view naked singularities and wormholes as geometric
phenomena. We conclude with some remarks in Sec. 7.

II. A GEOMETRICAL APPROACH TO
SCALAR-TENSOR THEORY

Let us start with the Brans-Dicke action [8]

SG ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ΦRþ ω

Φ
Φ;αΦ;α

�
; (1)

which will be supposed to describe the gravitational field
in the absence of matter [1]. Here, we are denoting
R ¼ gμνRμνðΓÞ, and, in what follows, we shall consider
the Ricci tensor RμνðΓÞ as being entirely expressed in terms
of the affine connection coefficients Γα

μν through the
definition of the curvature tensor [9]. Changing to the
new variable ϕ defined by Φ ¼ e−ϕ, it is easily seen that (1)
becomes

SG ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
e−ϕðRþ ωϕ;αϕ;αÞ: (2)

As we have mentioned above, we want to regard the usual
Brans-Dicke scalar field Φ (or, equivalently, e−ϕ) as
possessing an intrinsic geometrical character, which, up
to now, is unknown to us. We shall then apply the extended
Palatini variational method, which amounts to taking
independent variations of the three geometric objects
entering in the action (2), namely, Φ, Γα

μν, and gμν. Let
us first take the variation of (2) with respect to the affine
connection Γα

μν. After simple calculations we obtain

∇αð
ffiffiffiffiffiffi
−g

p
e−ϕgμνÞ ¼ 0; (3)

which is easily verified to be equivalent to

∇αgμν ¼ gμνϕ;α: (4)

It turns out that the above equation expresses nothing else
than the so-called Weyl compatibility condition between
the metric and the connection (also called the Weyl non-
metricity condition). In this way, we see that the scalar field
ϕ acquires a clear geometrical character, while the space-
time is naturally endowed with the Weyl integrable space-
time [7].
After the determination of the space-time geometry, it

seems natural that the next step is to consider a variation of
the action (2) with respect to the geometric scalar field ϕ.
Strictly speaking, this amounts to proposing an extension
of the Palatini variational method, as now we have three
independent geometric entities, namely, the affine con-
nection Γα

μν, the metric gμν, and the scalar field ϕ being
involved in the process of variation. Let us briefly recall the
geometrical role played by these three fields: the metric gμν
is responsible for measuring lengths and angles, and the
connection Γ sets the rules for parallel transport and defines
the covariant derivatives of vector and tensor fields,
whereas the scalar field ϕ defines the nonmetricity, also
participating in the parallel transport of vectors, modifying
their length at each point of the space-time manifold.
Before going further, some comments about the Weyl

geometry are in order [4,10]. Broadly speaking, we can say
that the geometry conceived by Weyl is a simple gener-
alization of Riemannian geometry. Indeed, instead of
regarding the Levi-Civita compatibility condition, Weyl
has extended it to the more general requirement
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∇αgμν ¼ σαgμν; (5)

where σα denotes the components of a one-form field σ,
globally defined in the manifold. If σ is an exact form, i.e.,
σ ¼ dϕ, where ϕ is a scalar field, then we have what has
been called a Weyl integrable geometry. In perfect analogy
with Riemannian geometry, the condition (4) is sufficient to
determine the Weyl connection ∇ in terms of the metric g
and the Weyl scalar field. Thus, it is not difficult to verify
that the coefficients Γα

μν of the affine connection when
expressed in terms of gμν and ϕ are given by

Γα
μν ¼

�
α
μν

�
−
1

2
gαβðgβμϕ;ν þ gβνϕ;μ − gμνϕ;βÞ; (6)

where f αμν g denotes the Christoffel symbols.
At this point, it is vitally important to note that the Weyl

condition (5) remains unchanged when we perform the
following simultaneous transformations in g and σ:

ḡ ¼ efg; (7)

σ̄ ¼ σ þ df; (8)

where f is a scalar function defined on M. These trans-
formations are known in the literature as Weyl transforma-
tions. An important fact that deserves to be mentioned is the
invariance of the affine connection coefficients Γα

μν under
Weyl transformations, which, in turn, implies the invariance
of the affine geodesics.
The set ðM; g;ϕÞ consisting of a differentiable manifold

M endowed with a metric g and aWeyl scalar field ϕwill be
referred to as aWeyl frame. In the particular case of a Weyl
integrable manifold, (8) becomes

ϕ̄ ¼ ϕþ f: (9)

Note that if we set f ¼ −ϕ in the above equation, we get
ϕ̄ ¼ 0. In this case, we refer to the set (M, ḡ ¼ e−fg, ϕ̄ ¼ 0)
as the Riemann frame, since in this frame the manifold
becomes Riemannian. Incidentally, it can be easily checked
that (6) follows directly from ∇αḡμν ¼ 0. This simple fact
has interesting and useful consequences. One consequence
is that, since ḡ ¼ e−ϕg is invariant under the Weyl trans-
formations (7) and (9), any geometric quantity constructed
exclusively with ḡ is invariant. Other geometric objects
such as the components of the curvature tensor Rα

βμν, the
components of the Ricci tensor Rμν, and the scalar eϕR are
evidently invariant under the Weyl transformations (7) and
(9). Other invariants that may be constructed with the
help of ḡ ¼ e−ϕg are, for instance, e2ϕRμνRμν and
e2ϕRμναβRμναβ. For reasons of consistency we shall adopt
these as the natural extensions of the usual Riemannian
invariants R̂μνR̂

μν and R̂μναβR̂
μναβ (the Kretschmann scalar)

to a Weyl integrable geometry in a general frame ðM; g;ϕÞ.

It is important to note here that, because the Weyl trans-
formations (7) and (9) define an equivalence relation
between frames ðM; g;ϕÞ, it seems more natural to focus
our attention on the equivalence class of such frames rather
than on a particular one. In this regard, aWeyl manifoldmay
be regarded as a frame ðM; g;ϕÞ that is defined only “up to a
Weyl transformation.” Thus Weyl manifolds may be treated
by selecting a frame in the equivalence class and applying
only invariant constructions to the chosen frame. From this
standpoint, it would be more natural to redefine some
Riemannian concepts to meet the requirements of Weyl
invariance. This viewpoint is analogous to theway one treats
conformal geometry, a branch of geometry, in which the
geometric objects of interest are those that are invariant under
conformal transformation, such as, for instance, the angle
between two directions [11]. In the same spirit, one should
naturallymodify the definitionof all invariant integralswhen
dealing with the integration of exterior forms. For instance,
the Riemannian p-dimensional volume form defined as
Ω ¼ ffiffiffiffiffiffi−gp

dx1∧ � � �∧dxp, which is not invariant under
Weyl transformations, should be replaced by
Ω ¼ ffiffiffiffiffiffi−gp

e−
p
2
ϕdx1∧ � � �∧dxp, and so on. Accordingly, in

aWeyl integrablemanifold itwouldbemorenatural to define
the concept of “length of a curve” in an invariant way. As a
consequence, our notion of proper time as the arc length of
worldlines in four-dimensional Lorentzian space-time
should be modified. In view of this, we shall redefine the
proper time Δτ measured by a clock moving along a
parametrized timelike curve xμ ¼ xμðλÞ between xμðaÞ
and xμðbÞ in such a way that Δτ is the same in all frames.
This leads us to the following definition:

Δτ ¼
Z

b

a

�
ḡμν

dxμ

dλ
dxν

dλ

�1
2

dλ ¼
Z

b

a
e−

ϕ
2

�
gμν

dxμ

dλ
dxν

dλ

�1
2

dλ:

(10)

It should be noted that the above expression may be also
obtained from the special relativistic definition of proper
time by using the prescription ημν → e−ϕgμν. Clearly, the
right-hand side of this equation is invariant under Weyl
transformations and reduces to the known expression of
the proper time in general relativity in the Riemann frame.
We take Δτ, as given above, as the extension to an arbitrary
Weyl frame of the general relativistic clock hypothesis, i.e.,
the assumption that Δτ measures the proper time measured
by a clock attached to the particle.
It is not difficult to verify that the extremization of the

functional (10) leads to the equations

d2xμ

dλ2
þ
��

μ

αβ

�
−
1

2
gμνðgανϕ;β þ gβνϕ;α − gαβϕ;νÞ

�

×
dxα

dλ
dxβ

dλ
¼ 0; (11)
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where f μαβ g denotes the Christoffel symbols calculated

with gμν. Let us recall that in the derivation of the above
equations the parameter λ has been chosen such that

e−ϕgαβ
dxα

dλ
dxβ

dλ
¼ K ¼ const (12)

along the curve, which, up to an affine transformation,
permits the identification of λ with the proper time τ. It
turns out that these equations are exactly those that yield the
affine geodesics in a Weyl integrable space-time, since they
can be rewritten as

d2xμ

dτ2
þ Γμ

αβ

dxα

dτ
dxβ

dτ
¼ 0; (13)

where Γμ
αβ¼f μ

αβ
g−1

2
gμνðgανϕ;βþgβνϕ;α−gαβϕ;νÞ, accord-

ing to (6), may be identified with the components of the
Weyl connection. Therefore, the extension of the geodesic
postulate by requiring that the functional (10) be an
extremum is equivalent to postulating that the particle
motion must follow affine geodesics defined by the Weyl
connection Γμ

αβ. It will be noted that, as a consequence of
the Weyl compatibility condition (3) between the connec-
tion and the metric, (12) holds automatically along any
affine geodesic determined by (13). Because both the
connection components Γμ

αβ and the proper time τ are
invariant when we switch from oneWeyl frame to the other,
Eqs. (13) are invariant under Weyl transformations.
As we know, the geodesic postulate not only makes a

statement about the motion of particles but also determines
the propagation of light rays in space-time. Because the
paths of light rays are null curves, one cannot use the proper
time as a parameter to describe them. In fact, light rays are
supposed to follow null affine geodesics, which cannot be
defined in terms of the functional (10), but, instead, they
must be characterized by their behavior with respect to
parallel transport. We shall extend this postulate by simply
assuming that light rays follow Weyl null affine geodesics.
We have hitherto considered the Brans-Dicke action in

vacuum. However, before we proceed with the variation
with respect to gμν and ϕ, it turns out to be more convenient,
as part of our reasoning, to complete (1) by adding an
action Sm to account for the matter fields. Because we have
already discovered that the space-time must be described
by two geometric fields, namely, gμν and ϕ, it is reasonable
to expect both to couple with matter, preferably in a frame-
independent way. Perhaps a clue to the construction of Sm
is given by the fact, mentioned earlier, that any geometric
quantity constructed ḡ ¼ e−ϕg is invariant under the Weyl
transformations (7) and (9). It seems then that the sought-
for action will be given by

Sm ¼ κ�
Z

d4x
ffiffiffiffiffiffi
−ḡ

p
Lmðḡμν;Ψ;∇ðḡÞ

R ΨÞ

or, equivalently,

Sm ¼ κ�
Z

d4x
ffiffiffiffiffiffi
−g

p
e−2ϕLmðe−ϕgμν;Ψ;∇ΨÞ; (14)

where, as in the Brans-Dicke theory, κ� ¼ 8π
c4 , Lm designates

the matter Lagrangian, Ψ stands generically for the matter
fields, ∇ðḡÞ

R denotes the Riemannian covariant derivative
with respect to the metric ḡ ¼ e−ϕg, and ∇ indicates the
covariant derivative with respect to the Weyl affine con-
nection [12]. Note that Lmðg;ϕ;Ψ;∇ΨÞ is given by the
prescription ημν → e−ϕgμν and ∂μ → ∇μ, where ∇μ denotes
the covariant derivative with respect to the Weyl affine
connection. Let us recall here that Lmðg;ϕ;Ψ;∇ΨÞ≡
Lsr
mðe−ϕg;Ψ;∇ΨÞ, where Lsr

m denotes the Lagrangian of
the field Ψ in flat Minkowski space-time of special
relativity.
With the purpose of obtaining the complete field equa-

tions through the variation of the total action S ¼ SG þ Sm,
we now proceed to the definition of the energy-momentum
tensor in this new geometrical setting. From the same
arguments that led to the building up of the action (14), it
seems natural to define the energy-momentum tensor
Tμνðϕ; g;Ψ;∇ΨÞ of the matter field Ψ, in an arbitrary
Weyl frame ðM; g;ϕÞ, by the formula

δ

Z
d4x

ffiffiffiffiffiffi
−g

p
e−2ϕLmðgμν;ϕ;Ψ;∇ΨÞ

¼
Z

d4x
ffiffiffiffiffiffi
−g

p
e−2ϕTμνðϕ; gμν;Ψ;∇ΨÞδðeϕgμνÞ; (15)

where the variation on the left-hand side must be carried out
simultaneously with respect to both gμν and ϕ. In order to see
that the above definition makes sense, it must be clear that
the left-hand side of Eq. (15) can always be put in the same
form as the right-hand side of the same equation. This can
easily be seen from the fact that δLm ¼ ∂Lm∂gμν δgμν þ ∂Lm∂ϕ δϕ ¼
∂Lm

∂ðeϕgμνÞ δðeϕgμνÞ and that δð ffiffiffiffiffiffi−gp
e−2ϕÞ ¼ − 1

2

ffiffiffiffiffiffi−gp
e−3ϕ

gμνδðeϕgμνÞ.
We are now ready to perform the variation of the

complete action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
e−ϕðRþ ωϕ;αϕ;αÞ

þ κ�
Z

d4x
ffiffiffiffiffiffi
−g

p
e−2ϕLmðe−ϕgμν;Ψ;∇ΨÞ (16)

with respect to the metric gμν. A simple calculation yields

Rμν −
1

2
gμνR ¼ −κ�Tμν − ωϕ;μϕ;ν þ

ω

2
gμνϕ;αϕ;α; (17)
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where it should be kept in mind that we are denoting by Rμν

and R the Ricci tensor and the scalar curvature, respec-
tively, as defined with respect to the Weyl connection (6).
Finally, if we now carry out the variation of the action (16)
with respect to the scalar field ϕ, we obtain

Rþ 3ωϕ;αϕ;α þ 2ω□ϕ ¼ κ�T; (18)

where T ¼ gμνTμν and □ denotes the d’Alembert operator
defined with respect to the Weyl connection [13]. If we now
take the trace of (17), we will get

Rþ ωϕ;αϕ;α ¼ κ�T; (19)

which combined with (18) leads to

□ϕþ ϕ;αϕ;α ¼ 0: (20)

Of course, we can rewrite all the field equations derived
above in a Riemannian form. All we have to do is to express
theWeylian geometric quantities Rμν and R in terms of their
Riemannian counterparts, which will be denoted by R̂μν

and R̂, both calculated directly from the metric gμν and the
Christoffel symbols f μ

αβ g. In this way, after some straight-
forward calculations and taking into account (6), we can
rewrite (17), (18), and (20), respectively, as

R̂μν−
1

2
gμνR̂¼−κ�Tμν−

w
Φ2

�
Φ;μΦ;ν−

1

2
gμνΦ;αΦ;α

�
−
Φμ;ν

Φ
;

(21)

R̂þ w
Φ2

Φ;αΦ;α ¼ κ�T; (22)

□̂Φ ¼ 0; (23)

where w ¼ ω − 3
2
, □̂ denotes the d’Alembert operator

defined with respect to the Riemannian connection, and,
in order to make comparisons with the Brans-Dicke field
equations, we are working with the field variable Φ ¼ e−ϕ.

III. SIMILARITIESWITH BRANS-DICKE THEORY

Equations (17), (18), and (20), which we have derived in
the previous section, bear strong similarities to the field
equations of the Brans-Dicke theory. In fact, connections
between gravity theories based on Weyl integrable geom-
etry and Jordan-Brans-Dicke theories are known to exist
and have already been pointed out in the literature (see,
for instance, [10]). Let us recall that Brans-Dicke field
equations may be written in the form [1]

R̂μν −
1

2
gμνR̂ ¼ −

κ�

Φ
Tμν −

ω

Φ2

�
Φ;μΦ;ν −

1

2
gμνΦ;αΦ;α

�

−
1

Φ
ðΦ;μ;ν − gμν□ΦÞ; (24)

R̂ − 2ω
□Φ
Φ

þ ω

Φ2
Φ;αΦ;α ¼ 0; (25)

where we are keeping the notation of the previous section,
in which R̂μν and R̂ denote the Ricci tensor and the
curvature scalar, respectively, calculated with respect to
the metric gμν. By combining (24) and (25) we can easily
derive the equation

□Φ ¼ κ�T
2ωþ 3

; (26)

which is the most common form of the scalar field equation
usually found in the literature [14]. In this way, we see that
in the vacuum case, i.e., when Tμν ¼ 0, Brans-Dicke field
equations are formally identical to (21) and (23) if we set
w ¼ ω − 3

2
. However, the two theories are not physically

equivalent, since in the Brans-Dicke theory test particles
follow metric geodesics and not affine Weyl geodesics.

IV. SIMILARITIES WITH EINSTEIN’S GRAVITY

In developing a geometric scalar-field gravity theory, we
have hitherto confined ourselves to a generic Weyl frame
ðM; g;ϕÞ, that is, a frame in which space-time is regarded
as a differentiable manifoldM endowed with a metric g and
a non-null Weyl scalar field ϕ. We now wonder how the
action and, consequently, the field equations will be
affected if we go to the Riemann frame (M, ḡ ¼ e−ϕg,
ϕ̄ ¼ 0). To carry out the change of frames, let us apply the
Weyl transformations (7) and (9), with f ¼ −ϕ to (2). It is
not difficult to verify that in the new frame the action
reads [15]

S ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p ðR̄ðḡ; 0Þ þ wϕ;αϕ;αÞ þ Smðḡ;Ψ;∇ḡΨÞ;
(27)

where R̄ðḡ; 0Þ ¼ ḡμνR̄μνðḡ; 0Þ are purely Riemannian terms
(as ϕ̄ ¼ 0) and we are denoting ϕ;αϕ;α ¼ ḡαβϕ;αϕ;β.
It is clear that, by construction, the matter action and
the energy-momentum tensor Tμν are invariant with respect
to these transformations, that is, Smðḡ; 0Þ ¼ Smðg;ϕÞ and
Tμνðḡ; 0Þ ¼ Tμνðg;ϕÞ. On the other hand, if we rescale the
scalar field ϕ by defining the new field variable φ ¼ ffiffiffiffi

w
p

ϕ,
we are finally left with the following equations [16]:

R̄μν −
1

2
ḡμνR̄ ¼ −κ�Tμν − φ;μφ;ν þ

1

2
ḡμνφ;αφ;α (28)

and
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□̄φ ¼ 0; (29)

where R̄μν, R̄, and □̄φ are all defined with respect to the
metric ḡ ¼ e−ϕg. Therefore, the field equations of this
geometric scalar-field theory, viewed in the Riemann
frame, are given by the general relativistic action corre-
sponding to a massless scalar field minimally coupled with
the gravitation field, with the only proviso that the Einstein
constant κ must be replaced by κ�.

V. SPHERICALLY SYMMETRIC SOLUTIONS

Once one has set up a theory of gravity, the first question
to be addressed is whether the predictions of the new
proposal are in agreement with the so-called solar-system
experiments. In the case of the present geometrical approach
to the scalar-tensor theory, we have seen in the previous
section that the mathematical formalism of Weyl trans-
formations allows us to establish a close connection of
the theory with Einstein’s gravity minimally coupled with a
massless scalar field. We shall take advantage of this fact to
briefly investigate the existence of spherically symmetric
space-times by simply looking into some corresponding
general relativistic solutions already known in the literature.
Scalar fields in general relativity have long been studied

with great interest, usually as classical approximation to
some effective field theory. Also, many attempts at unifying
gravity with other interactions, from Kaluza-Klein theories
to superstring models, predict the existence of a massless
scalar field, not to mention that, according to the standard
model, the Higgs boson is described by a scalar field [17].
Historically, the first static spherically symmetric solution
of the coupled Einstein–massless-scalar-field equations
was found by Fisher [18]. This solution was later redis-
covered by some authors, and now it is often referred to as
the Janis-Newman-Winicour solution [19]. A generaliza-
tion of the Fisher solution to n dimensions (n≧ 4) was
recently obtained in Ref. [20] and further analyzed in detail
in Ref. [21].
The connection between the mathematical framework of

the geometrical scalar-tensor theory and that of general
relativity sourced by a massless scalar field leads naturally
to the question of to what extent the physics described in
one framework may be transported to the other. [This point
remind us of the controversial issue regarding the equiv-
alence between the so-called Jordan and Einstein frames in
scalar-tensor theory and in fðRÞ cosmology [22].] With
regard to physical phenomena that depend solely on the
motion of particles moving under the influence of gravity
alone or on the propagation of light rays, both descriptions
are completely equivalent. The reason for this lies in the
fact that geodesics are invariant with respect to Weyl
transformations, and hence the causal structure of space-
time remains unchanged in all Weyl frames. Moreover, as a
consequence of the above-mentioned connection between
the two frameworks, all results concerning the classical

solar-system tests of gravity predicted by the Fisher
solution may be carried over automatically to the geomet-
rical approach.
Thus, let us consider the static, spherically symmetric

vacuum asymptotically flat solution of the field equa-
tions (28) and (29). As we have mentioned above, this
solution, denoted here by ḡμν, was first found by Fisher, and
its line element may be written as

ds̄2 ¼
�
1 −

r0
r

�M
η

dt2 −
�
1 −

r0
r

�
−M

η

dr2

− r2
�
1 −

r0
r

�
1−M

η ðdθ2 þ sin2θdψ2Þ; (30)

φ ¼ Σ
η

ffiffiffi
2

p ln

����1 − r0
r

����; (31)

where r0 ¼ 2η, η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Σ2

p
, and M > 0 is the body’s

mass in the center of these coordinates [23]. It turns out that
by using the parametrized post-Newtonian formalism it has
been shown that for a wide range of values of the massless
scalar field Σ the Fisher solution predicts the same effects
on solar-system experiments as the Schwarzschild solution
does [24]. We therefore conclude that, as far as solar-
system experiments are concerned, due to invariance of the
geodesics under change of frames, the geometrical scalar-
tensor theory yields the same results predicted by general
relativity.

VI. NAKED SINGULARITIES AND WORMHOLES
AS GEOMETRICAL PHENOMENA

The possibility of converting the present geometrical
version of the scalar-tensor theory into general relativity
plus a massless scalar field brings up some interesting
points. As is well known, it has been shown that the
presence of a massless scalar field in general relativity
causes the event horizons of Schwarzschild, Reissner-
Nordström, and Kerr solutions to be reduced to a point
and hence leads to the appearance of naked singularities
[25]. In fact, naked singularities, which were predicted to
appear in the process of a spherically symmetric collapse of
a massless scalar field, has later been found in other
systems, such as axisymmetric gravitational waves, radi-
ation, and perfect fluids, and so on [26].
In the case of the Fisher solution, given by (30) and (31),

the invariant scalar R̄ðḡ; 0Þ ¼ ḡμνR̄μνðḡ; 0Þ gives [21]

R̄ ¼ Σ2

r4

�
1 −

r0
r

�ðMη−2Þ
; (32)

which means we have a naked singularity at r ¼ r0,
since M

η ¼ Mffiffiffiffiffiffiffiffiffiffiffi
M2þΣ2

p < 1.

It is important to note that the scalar (32), obtained from
(30), may be looked upon as the Weyl invariant eϕR,

ALMEIDA et al. PHYSICAL REVIEW D 89, 064047 (2014)

064047-6



calculated in the Riemann frame (M, ḡ, ϕ̄ ¼ 0). As we have
already pointed out in Sec. 2, this scalar is invariant under
the Weyl transformations (7) and (9). This means that if we
go back to the Weyl frame ðM; g;ϕÞ, where the field
equations are (19) and (20), we still have a space-time
singularity at r ¼ r0.
It is interesting to have a look at the Fisher solution when

viewed in the Weyl frame ðM; g;ϕÞ. The Weyl trans-
formation that does this task leads to the metric given by

gμν ¼ eϕḡμν ¼ e
φffiffi
w

p
ḡμν ¼ e

Σ
η
ffiffiffi
2w

p ln j1−r0
r jḡμν;

whereas ϕ ¼ Σ
η
ffiffiffiffi
2w

p ln j1 − r0
r j is the geometric scalar field in

this frame. The line element corresponding to this metric
will be written as

ds2 ¼
�
1 −

r0
r

�M
ηþ Σ

η
ffiffiffi
2w

p
dt2 −

�
1 −

r0
r

�
−M

ηþ Σ
η
ffiffiffi
2w

p
dr2

− r2
�
1 −

r0
r

�
1−M

ηþ Σ
η
ffiffiffi
2w

p
ðdθ2 þ sin2θdψ2Þ: (33)

In order to see that we still have a naked singularity in the
frame ðM; g;ϕÞ, let us recall that the area of the surface Γ
defined by t ¼ const, r ¼ r0 must be calculated with the
invariant integral A ¼ R

Γe
−ϕ

ffiffiffiffiffiffijhjp
dθ∧dψ , where h denotes

the determinant of the metric on Γ induced by (33). Since A
is invariant under Weyl transformations and A ¼ 0 in the
Riemann frame, we conclude that (33) indeed represents a
space-time with a naked singularity.
It is well known that the existence of naked singularities

in Fisher space-time is a consequence of the presence of a
massless scalar field, a field that is related to a massless
particle of zero spin. Up to now, no such particles have been
discovered, and all known spin-zero particles are massive;
hence, models with massless scalar fields do not seem to be
realistic. Also, it is still not clear whether such a solution
can be considered as a result of gravitational collapse,
thereby representing a violation of the cosmic censorship
conjecture [27]. In the present approach, however, it should
be noted that the scalar field is not a physical field but
should be regarded as an essential part of the geometric
structure of space-time. Violation of the cosmic censorship
conjecture in this case occurs in quite a different context
compared with its general relativistic counterpart.
It should be noted that in deriving the field equations (28)

we have implicitly considered w > 0. If we do not want to
impose any restriction on the value of w, it is preferable to
work with the field variable ϕ, and in this case the field
equations in the Riemann frame read

R̄μν −
1

2
ḡμνR̄ ¼ −κ�Tμν − wϕ;μϕ;ν þ

w
2
ḡμνϕ;αϕ;α; (34)

□̄ϕ ¼ 0: (35)

These equations, in which the coupling constant w appears
explicitly, were first considered by Bergmann and Leipnik
[28]. The most general spherically symmetric solution to
the coupled Einstein–massless-scalar-field equations were
obtained by Wyman and, in fact, includes Fisher’s solution
as a particular case [19]. The line element and the scalar
field corresponding to Wyman’s solution are given by

ds̄2 ¼ e
α
Rdt2 − e−

α
R

� γ
R

sinhðγRÞ
�
4

dR2

− R2e−
α
R

� γ
R

sinhðγRÞ
�
2

ðdθ2 þ sin2θdψ2Þ; (36)

V ¼ 1

R
; (37)

where α and γ are constants and V is the scalar function
defined by Wyman. The coupling constant μ defined by
Wyman is related to α and γ through the expression

γ ¼ ð
ffiffiffiffiffiffiffiffiffiffi
α2þ2μ

p
Þ

2
. It is not difficult to verify that the Fisher

solution is a particular case of the Wyman solution for
w > 0. Indeed, if we define the coordinate R by

e−
2η
R ¼ 1 − 2η=r, it is straightforward to see that (30) and

(31) become, respectively,

ds̄2 ¼ e−
2M
R dt2 − e

2M
R

� η
R

sinhðηRÞ
�
4

dR2

− R2e
2M
R

� η
R

sinhðηRÞ
�
2

ðdθ2 þ sin2θdψ2Þ; (38)

ϕ ¼ −Σ
ffiffiffiffi
2

w

r
1

R
; (39)

recalling that φ ¼ ffiffiffiffi
w

p
ϕ. Therefore, if we set α ¼ −2M,

γ ¼ η, we see that Wyman’s solution reduces to Fisher’s
solution provided that w > 0 and Σ ¼ −

ffiffiffi
w
2

p
λ, where λ is an

arbitrary constant with units of length [29]. Incidentally, it
has been shown that Wyman’s solution leads to three types
of space-times according to the value assigned to wλ2: a
naked singularity (w > 0), a Schwarzschild black hole
(w ¼ 0), and a wormhole solution (−2M2 < wλ2 < 0)
[30]. It should be clear that all these configurations carry
over to the Weyl frame ðM; g;ϕÞ.

VII. SUMMARY AND DISCUSSION

The fact that in the Brans-Dicke theory of gravity the
scalar field has no geometrical origin, while in general
relativity the gravitational sector of the action is purely
geometric, has motivated some authors to look for what we
might call a geometric scalar-tensor theory of gravitation.
Let us briefly comment on some of the attempts that are
known to us. In one of them, the scalar field is given a
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geometrical interpretation in the spirit of the Rainich-
Misner-Dicke geometrization of the electromagnetism,
although it is restricted to the vacuum case [31]. In another
approach, it is shown that a Brans-Dicke scalar field can be
derived from pure geometry if the space-time geometry is
assumed to be the Lyra manifold [32]. Weyl integrable
geometry also appears in a scalar-tensor theory which is
directly obtained from general relativity by writing the
gravitational sector of the Einstein-Hilbert action in an
arbitrary Weyl frame [33]. (It can be shown, however, that
the resulting theory, which does not consider matter
couplings, is completely equivalent to general relativity
and is also conformally related to the Brans-Dicke theory
for ω ¼ − 3

2
, hence implying that the scalar field has no

dynamics [34].) Finally, a geometrical scalar-tensor theory
was constructed by using a non-Riemannian geometry, in
which the scalar field is related to a scalar torsion field
[35,36]. In this case, the theory does not consider the matter
coupling, and the vacuum field equations are identical to
those of the Brans-Dicke theory written in the
Einstein frame.
In this work, we have also developed a scalar-tensor

theory in which the scalar field plays a definite geometrical
role in the description of the gravitational field. Basically,
our procedure consists in considering the original formu-
lation of the Brans-Dicke theory as a starting point and
modifying it by letting the Palatini formalism decide what
kind of geometry should we assign to space-time. This
leads in quite a natural way to Weyl geometry, which
possesses an interesting property, namely, the invariance of
geodesics under a well defined group of transformations. In
fact, this suggests that we are concerned here with a whole
class of geometries, or space-time manifolds, that are
related by a Weyl transformation. According to this view,
it seems natural that the geometric objects of interest are
those that are invariant under the invariance group of
transformations. By following consistently this idea, we
are naturally led to redefine our familiar notions of proper
time, space-time singularities, etc., in a way that these
notions retain their invariance character; i.e., they must be
the same in all frames. Surely, this approach will lead to
new physical insights as far as a gravitational theory
constructed in this framework is concerned. Consider,
for instance, the principle of equivalence. It is clear that
it will hold in every Weyl frame inasmuch as geodesics do
not change by a Weyl transformation. Of course, we have
quite a distinct situation in the original formulation of the
Brans-Dicke theory of gravity as regards a change of
frames [37]. For example, it is widely known that freely
falling particles do not move on geodesics in the so-called
Einstein (conformal) frame, and also measurements made
by rods and clocks are not invariant under a change of
frames [38].
Another comment is in order. It is important to call

attention to the fact that, in obtaining Eq. (3) by applying

the Palatini formalism, we have completely ignored the
matter action and considered only the action corresponding
to the gravitational sector. There is, in fact, a methodo-
logical reason to justify this procedure: it is assumed, as a
principle, that what really determines the space-time
geometry is the gravitational sector. Once the geometry
is found, then completing the action by later adding the
matter action will not affect (3), since any dependence on
the affine connection may be entirely reduced to depend-
ence on the geometric fields g and ϕ through (6). This
permits us to proceed with our reasoning without having to
make the usual assumption that the matter sector is func-
tionally independent of the (nonmetric) connection [3].
At this point, one might remark that neither the action

nor the field equations of the proposed theory are invariant
under Weyl transformations, and, in view of the connection
of the theory with usual general relativity coupled with a
massless scalar field, it would perhaps be desirable, at least
from the aesthetic viewpoint, that the whole theory should
exhibit Weyl invariance. We believe that this is an impor-
tant point which should be addressed here. First of all, let us
point out that as far as we know no gravitational theory
defined in a Weyl integrable space-time is constructed with
a Weyl-invariant action (see, for instance, the references in
[7]). The reason for this is that, in any theory based on an
action with the property of being invariant under Weyl
transformations, the scalar field ϕ is completely unneces-
sary and trivial in the sense that there is always a frame (the
Riemann frame) in which ϕ can be made to completely
disappear. In this case, the scalar field has no extra degree
of freedom and no dynamics, as it may be clearly illustrated
by formulating general relativity in a Weyl integrable
space-time (see [34].) However, despite this noninvariance
of the action, it should be emphasized that all physical and
geometric objects of the theory are constructed in such a
way that they are automatically invariant under Weyl
transformations: the geodesic motion, the proper time of
massive particles, all the scalar invariants such as defined in
Sec. II, which include the generalized Kretschmann scalar.
Finally, is interesting to note that the reason why the field

equations (21) and (23) derived in Sec. 2 coincide with
those of the Brans-Dicke theory only in the case of vacuum
is that in the latter the scalar field does not participate
directly in the way matter couples with the gravitational
field. Indeed, in the Brans-Dicke theory the action describ-
ing ordinary matter is postulated to be of the form
Sm ¼ κ�

R
d4x

ffiffiffiffiffiffi−gp
Lmðgμν;Ψ;∇ΨÞ, which is a necessary

requirement to ensure that freely falling particles follow
Riemannian geodesics. However, in the geometrical scalar-
tensor theory we are considering, freely falling particles
should follow affine geodesics in a Weyl integrable space-
time, and the only matter coupling which is consistent with
this requirement is the one given by (14). This can easily be
seen, for instance, by considering the field equations (17) in
the case where Tμν represents the energy-momentum tensor
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of a pressureless perfect fluid (“dust”). Then, it is not
difficult to verify that, by taking the covariant divergence
(with respect to the Weyl connection) of both sides of (17),
we are led to (13) [39].
In conclusion, we remark that scalar-tensor theories have

been extensively discussed in the literature. One of the most
important areas of their application is cosmology, where the
scalar field is sometimes considered as a quintessence field
[40]. Scalar-tensor theories have also been investigated in
the context of braneworld scenarios [41]. Thus, a natural

followup of the ideas we have discussed in the present
article would be an application of the geometric scalar-
tensor theory to modern cosmology. We leave this for
future work.
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