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We study the structure of scalar-tensor theories of gravity based on derivative couplings between the scalar
and the matter degrees of freedom introduced through an effective metric. Such interactions are classified by
their tensor structure into conformal (scalar), disformal (vector), and extended disformal (traceless tensor), as
well as by the derivative order of the scalar field. Relations limited to first derivatives of the field ensure
second-order equations of motion in the Einstein frame and hence the absence of Ostrogradski ghost degrees
of freedom. The existence of a mapping to the Jordan frame is not trivial in the general case, and can be
addressed using the Jacobian of the frame transformation through its eigenvalues and eigentensors. These
objects also appear in the study of different aspects of such theories, including the metric and field
redefinition transformation of the path integral in the quantum mechanical description. Although second-
order in the Einstein frame, generic disformally coupled theories are described by higher-order equations of
motion in the Jordan frame. This apparent contradiction is solved by the use of a hidden constraint: the
contraction of the metric equations with a Jacobian eigentensor provides a constraint relation for the higher
field derivatives, which allows one to express the dynamical equations in a second-order form. This signals a
loophole in Horndeski’s theorem and allows one to enlarge the set of scalar-tensor theories which are
Ostrogradski stable. The transformed Gauss-Bonnet terms are also discussed for the simplest conformal and
disformal relations.
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I. INTRODUCTION

Current cosmological observations agree on the fact that
the Universe is undergoing a late phase of accelerated
expansion [1–5], analogous to the early-time, high-energy
inflationary mechanism that is believed to have set the
conditions necessary for big bang cosmology [6]. The
simplest explanation for such an acceleration in an other-
wise matter-dominated universe is provided by the inclu-
sion of a cosmological constant, which is however very
small compared to other energy scales present in the
standard model of particle physics and which are expected
to contribute to the Universe’s acceleration [7,8]. This
puzzle has triggered the revival and proposal of a number of
alternative theories, which attempt to explain the surprising
behavior of the Universe on Hubble scales [9,10].
Such theories are generally described by an action

functional

S½gμν;ψ ðiÞ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L½gμν;ψ ðiÞ�; (1)

in which the Lagrangian density L is a Lorentz scalar that
depends locally on the metric and matter fields (gμν, ψ ðiÞ)
and their derivatives. The classical dynamics followed by
such fields are given by the Euler-Lagrange equations,

∂L
∂ψ ðiÞ −∇μ

∂L
∂ð∇μψ

ðiÞÞ þ∇μ∇ν
∂L

∂ð∇ν∇μψ
ðiÞÞ ¼ 0; (2)

obtained by varying the action with respect to the funda-
mental fields. It has been further assumed that the action
contains up to their second derivatives.
Any alternative theory has to fulfill a number of require-

ments in order to be satisfactory. Avery strong limitation to
the space of possible theories is given by Ostrogradski’s
theorem [11,12]: for a nondegenerate theory whose
Lagrangian contains second or higher derivatives with
respect to time, their associated Hamiltonian is unbounded
from below, making the system unstable and lacking a well-
defined vacuum state. Degenerate theories are those for
which Ostrogradski’s construction does not apply, as is the
case for any theory described by second-order equations of
motion. Such is the case of general relativity (GR), whose
Lagrangian contains second derivatives of the metric, but
with the right degenerate structure to be described by
second-order equations of motion. In fact, it is the only four
dimensional, Lorentz-covariant local theory of a metric
tensor which fulfills this requirement [13].1

1Higher-order terms are also acceptable if they represent
perturbative corrections (e.g. to a low-energy effective theory)
and this perturbative nature is enforced in the solutions [14].
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When one considers scalar-tensor theories of gravitation,
Horndeski’s theorem [15] determines the most general four
dimensional, Lorentz-covariant, local scalar-tensor theory
for which the variation (2) produces second-order equa-
tions. It is described by a Lagrangian density of the form
LH ¼ L2 þ L3 þ L4 þ L5, with

L2 ¼ G2ðX;ϕÞ; (3)

L3 ¼ G3ðX;ϕÞ½Φ�; (4)

L4 ¼ G4ðX;ϕÞRþ G4;Xð½Φ�2 − ½Φ2�Þ; (5)

L5 ¼ G5ðX;ϕÞGμνϕ
;μν −

1

6
G5;Xð½Φ�3 − 3½Φ�½Φ2� þ 2½Φ3�Þ;

(6)

plus a matter Lagrangian (See [16,17] for modern reder-
ivations). The notation used in the above equations and
throughout the article is presented in Table I. The key to the
degeneracy of the above theory is that second derivatives of
the scalar field appear in antisymmetric combinations, so
that higher derivatives cancel in the Euler-Lagrange varia-
tion (2) if the free functions G3, G4, G5 depend on the field
derivatives through X. A very important advantage of the
Horndeski Lagrangian is that it contains many interesting
physical theories (see [18] for a summary) and allows for a
systematic study of their properties. Such a general
approach has been applied to cosmological dynamics
[19,20], compatibility with cosmological observations
[21–23], inflationary mechanisms [24] and screening

modifications of gravity [25,26] and the effective cosmo-
logical constant [27]. Besides general relativity
(G2 ¼ G3 ¼ G5 ¼ 0, G4 ¼ 1=16πG), the best known class
of theories contained in LH are Jordan-Brans-Dicke
theories [28], for which G3¼G5¼0, G4 ¼ fðϕÞ=16πG
and G2 ¼ X=ωðϕÞ − VðϕÞ.
An important aspect of Jordan-Brans-Dicke theories is

that the coupling between the scalar field and the curvature,
given by G4ðϕÞ, can be eliminated by a conformal trans-
formation in which the metric is rescaled by a function of
the field gμν → G−1

4 gμν. This allows one to obtain different
representations of the same theory, usually known as
“frames,” depending on which variables are considered
dynamical. The original formulation is known as the
“Jordan frame”: the field ϕ and the Ricci scalar couple
directly, but the matter Lagrangian only involves the metric,
with no direct interaction between ϕ and the matter degrees
of freedom. Alternatively, one may perform the aforemen-
tioned conformal transformation to the Einstein frame in
which the gravitational Lagrangian has the Einstein-Hilbert
form (G4 ¼ 1=16πG) but the matter sector is directly
affected by the scalar field, which mediates an additional
force. Both representations are equivalent at the classical
level (cf. [29–31] and references therein), and each of them
offers useful insight into their characteristics and behavior.
A natural question is whether generalizations of the

conformal relation can offer further insights into the general
class of scalar-tensor theories given by Eqs. (3)–(6). This
can be done in some special cases, the simplest of them
being the Dirac-Born-Infeld Galileons, which describe
induced gravity on four-dimensional branes embedded in
five-dimensional space [32]. For a quartic DBI Galileon

TABLE I. Notation used in the text. Quantities with a bar or a tilde are constructed using the barred or tilde metric.
All metrics have the signature ð−;þ;þ;þÞ signature, and the Riemann tensor is defined by 2∇½μ∇ν�vα ≡ Rα

βμνvβ.
Parenthesis/brackets between indices will denote symmetrization/antisymmetrization tðμνÞ ¼ 1

2
ðtμν þ tνμÞ,

t½μν� ¼ 1
2
ðtμν − tνμÞ. The symbol ⊃ð!Þ will be used to denote the higher time derivatives of an expression. The

word “frame” (or physical frame) refers to the set of variables on which the variation is performed (e.g. Einstein/
Jordan frame). Units in which c ¼ 1 will be used throughout.

Scalar Fields ϕ; π

X ¼ − 1
2
gμνϕ;μϕ;ν → Canonical kinetic term for the scalar

Φμν ¼ ϕ;μν, Φn
μν ¼ ϕ;μα1ϕ

;α1
;α2 � � �ϕ1;αn−1

;ν → Contraction of second derivatives of the scalar (n fields)

½Φn� ¼ gμνΦn
μν, e.g. ½Φ� ¼ ϕ;μ

;μ ≡□ϕ, ½Φ2� ¼ ϕ;αβϕ
;αβ � � � → Traces with the metric

hΦni ¼ ϕ;μΦn
μνϕ

;ν, e.g. hΦi ¼ ϕ;αϕ
;αβϕ;β, hΦ2i ¼ ϕ;αϕ

;αλϕ;λβϕ
;β � � � → Traces with the field derivatives

Tensor Fields gμν, ḡμν, ~gμν � � �
gμν → Dynamical metric, i.e. its dynamics determined by δS=δgμν ¼ 0.

ḡμν, ~gμν → Effective metric with scalar field dependence, (cf. Table II)

∇μ, Γα
μν → Torsion-free covariant derivative and connection compatible with gμν. Also uμ;ν ¼ ∇νuμ

∇̄μ, Γ̄α
μν, ~∇μ, ~Γα

μν → idem for ḡμν, ~gμν cf. Eq. (35). All barred/tilde quantities constructed out of ḡμν, ~gμν

Curvature Rα
βμν cf. (35)

½Rμν� ¼ Rμνgμν, hRμνi ¼ ϕ;νϕ;μRμν, ½R2
μν� ¼ RμνRμν, hR2

μνi ¼ ϕ;αRαμRμβϕ;β � � �
hRμνRαμβνi ¼ RμνRαμβνϕ;αϕ;μ, hhRμανβΦαλΦβσii ¼ ϕ;μϕ;νRμανβΦαλΦβσϕ;λϕ;σ
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with G4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2X=M4

p
, G5 ¼ 0, it is possible to elimi-

nate the nonminimal coupling to the Ricci scalar by means
of a special disformal transformation,

gμν → ~gμν ¼ CðϕÞgμν þDðϕÞϕ;μϕ;ν; (7)

with C ¼ 1, D ¼ −1=M4 [18]. More generally, Horndeski’s
theory has been shown to be formally invariant under special
disformal transformations, which amount to a redefinition of
the free functions G2 − G5 [33]. Therefore, it is natural to
consider (7) as an integral part of Horndeski’s theory.
When the matter sector is considered, the Einstein frame

representation of the DBI Galileons introduces a derivative
coupling between the scalar field and the matter degrees of
freedom. This has important phenomenological conse-
quences, as it modifies the relative causal structure between
gμν and ~gμν. Additionally, the derivative coupling allows for
the disformal screening mechanism [34], which can hide
the scalar-mediated additional force in high-density envi-
ronments. This effect might be related to the Vainshtein
screening mechanism [35], which hides the scalar force
within a certain radius of point sources due to the nonlinear
derivative self-interactions of the field caused by the
degenerate terms (4–6), as both theories are classically
equivalent [18]. The inclusion of derivative interaction also
allows for shift symmetry, i.e. invariance of the action
under the transformation ϕ → ϕþ c. Exact (or softly
broken) shift symmetry can be used to prevent large
contributions to the field mass term or interactions with
matter arising from quantum corrections. Shift symmetry
plays an important role in certain scalar-tensor theories,
such as Higgs-dilaton cosmology [36–38], and is a par-
ticular case of Galilean symmetry ϕ → ϕþ cþ bμxμ,
which provides further improvement on the quantum
properties of the theory [39] (for cosmological applications
of Galileons see [40,41]).
Disformal relations were originally introduced by

Bekenstein in a more general form in which C and D
are also allowed to depend on X [42],

~gμν ¼ CðX;ϕÞgμν þDðX;ϕÞϕ;μϕ;ν: (8)

Such relations have turned out to be very fruitful in the
construction of alternatives to general relativity, to a large
extent because they can distort the causal structure between
the two space-times since the line elements are now related
by d~s2 ¼ Cds2 þDðϕ;μdxμÞ2. Assuming C > 0, a four-
vector that is null with respect to gμν will be spacelike or
timelike with respect to ~gμν depending on whether D is
positive or negative locally. Applications of the disformal
relation (8) include inflation [43], varying speed of light
theories [44–46], gravitational alternatives to dark matter
(DM) [47–49], screening modifications of gravity
[18,34,50], violation of Lorentz invariance [51], massive
gravity [52,53], dark energy [54,55], DM candidates from

extra dimensions [56,57] or string theory [58,59] and exotic
DM interactions [60,61]. Disformal relations also appear in
generalized Palatini gravities [62], provide new symmetries
of Maxwell’s [63] and Horndeski’s [33] theories, allow for
the Lorentzian signature of the metric to emerge dynami-
cally [64,65] and might be used in the construction of
renormalizable theories of gravity [66]. Unlike conformal
relations, disformal couplings have non-trivial effects on
radiation and can affect photons, a possibility that has been
studied in the context of laboratory tests [67] and cosmo-
logical implications [68–70].
Could a disformal transformation be used to remove

the derivative couplings between the scalar field and the
curvature from the higher Horndeski’s terms L4, L5? The
fact that a disformal coupling to matter of the form (8) does
not introduce second-order terms in the dynamical equations
suggests that the equivalent Jordan frame representation
belongs to Horndeski’s theory. However, Bettoni and
Liberati have shown that this is not the case [33]: the action
of a general disformal transformation (8) on the gravitational
sector generates terms that can not be expressed in the form
(3–6) unless the transformation is of the special type (7).One
of the purposes of this work is to examine the apparent
contradiction between the second-order nature of the dis-
formally coupled theory, versus its apparently higher-order
nature in the Jordan frame.
In Sec. II we study generalizations of the disformal

relation. These can be classified by their tensor structure
into conformal (scalar), disformal (vector) and extended
disformal (traceless tensor), as well as by the number of
derivatives of the fields that take part in the transformation.
For relations involving a scalar and a metric tensor field,
Bekenstein’s relation (8) turns out to be a fairly natural
choice, for which only two free functions are allowed and
the equations of motion contain at most second derivatives
of the field. Terms constructed out of second field deriv-
atives might be also considered. However, they allow the
construction of infinitely many terms which would generi-
cally lead to higher-order terms in the equations.
The existence of a Jordan frame is examined in Sec. III

by studying under which conditions it is possible to find an
inverse mapping for the disformal relation. The existence of
such an inverse transformation is not trivial in the general
case, and can be determined by studying the determinant of
the Jacobian associated with (8), seen as a function of
gμν → ~gμν: an inverse map exists around any point for
which the Jacobian determinant is nonzero. The inverti-
bility is studied in detail for a general conformal and
disformal case using the eigenvalues and eigenvectors of
the Jacobian, which are in turn related to other aspects of
frame transformation, including the transformation proper-
ties of the path integral. Several examples of inverse
mappings with and without singular points are discussed.
Having obtained the conditions for an inverse trans-

formation to exist, we proceed to analyze the Jordan frame
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theory in Sec. IV, first in the case of a nontrivial conformal
transformation and then for the general case, focusing on a
gravitational sector which is of the Einstein-Hilbert form in
the original frame. The terms generated by the trans-
formation do not belong to Horndeski’s theory and their
variation leads to equations which contain up to fourth time
derivatives of the field and third time derivatives of the
metric. However, by contracting the metric equations with a
Jacobian eigentensor, a relation is derived which can be
used to remove the higher derivatives from the equations.
The hidden, second-order nature of disformally coupled
theories in the Jordan frame signals a loophole in
Horndenski’s theorem, as its derivation does not take into
account the possibility of using combinations of the
(initially higher-order) dynamical equations to construct
a second-order theory.
Section V contains a discussion of the main results, open

questions and possible applications of the methods devel-
oped. Appendix A contains equations that arise form the
general disformal relation (8) and were to long to be
included in the text. Appendix B presents certain equations
for special disformal transformations, including the trans-
formation rules for the Einstein-Hilbert and the Horndeski
Lagrangians, as well as the Gauss-Bonnet terms in the pure
special conformal and pure special disformal case.

II. DERIVATIVE COUPLINGS TO MATTER

Let us start by examining some of the properties of
the theories of gravity formulated in a frame in which the
matter sector contains disformal couplings between the
matter degrees of freedom, the gravitational metric and
the scalar field. An immediate question is what extensions
of the original disformal relation (8) can be proposed
and whether they are physically viable. We can classify
the transformations of the metric according to two
different criteria:

(i) By the tensor structure. In order to obtain a symmetric
tensor, it is possible to consider a conformal term
proportional to the original metric, a disformal term
constructedoutof avectordμ andanextendeddisformal
term consisting of a rank-two symmetric tensor EðμνÞ,

~gμν ¼ Cgμν þDdμdν þ EðμνÞ: (9)

Thefirst termpreserves thecausal structureassociated to
bothmetrics (i.e. null vectors are null with respect to the
two metrics), while the second and third terms do not.
Themain differencebetween the nonconformal terms is
thatdμdν introduces a privilegeddirection alongdμ.

2 To
eliminate the degeneracy associated with the extended
disformal term, we must project away the former terms
so that dμdνEðμνÞ ¼ gμνEðμνÞ ¼ 0.

(ii) By the derivative order, i.e. how many derivatives of
the variables are allowed in the transformation. Here
we will restrict to relations in which no derivatives of
the metric are introduced, except through covariant
derivatives.3 The highest derivatives allowed are
important for the character of the dynamical equa-
tions describing the theory, which might become
higher than second order if second derivatives are
included. Furthermore, higher derivatives also pro-
vide further tensor structures, as they allow arbitrary
contractions using the same objects.

Table II summarizes the result of this classification for
metrics constructed out of a scalar field.

TABLE II. Possible relations between metrics, cf. Eq. (9). The columns classify the possible tensor structures that can be considered in
the transformation (middle columns) as well as the possible dependences of the free functions (last column), i.e. all the Lorentz-scalars
that can be constructed out of the objects introduced. The last column indicates the possible dependences of the functions C;D; E. Here
Φ1

μν ¼ ϕ;μν and Φn
μν ¼ ϕ;μα1ϕ

;α1
;α2 � � �ϕ;αn−1

;ν for n > 1 (n indicates the number of twice differentiated fields). The table considers both
the general case and the case of scalar-tensor theories in which zero, one or two field derivatives are allowed. Allowing second field
derivatives in the disformal relation allows for an (in principle) arbitrary number of terms to be added, due to the possibility of
constructing contractions of ϕ;μν with free indices. The last row displays the possible terms arising from a vector field and its first
derivatives.

Conformal Disformal Dependence
Vector Tensor of C;D; E

General Cgμν Ddμdν EðμνÞ C; d2; ½En�; d · En · d

ϕ Cgμν − − ϕ

ϕ;μ Cgμν Dϕ;μϕ;ν − ϕ; X

ϕ;μν Cgμν Dϕ;μϕ;ν þ
P

n;mDm;nϕ
;αΦm

;αðμΦ
n
;νÞβϕ

;β Eϕ;μν þ
P

lElΦl
;μν ϕ; X; ½Φn�; hΦni

vμ;ν Cgμν Dvμvν þ
P

n;mDm;nvαvmα;ðμv
n
νÞ;βv

β Evðμ;νÞ þ
P

lElvlðμ;νÞ v2; ½vnμν�; d · vn;μν · d

2One may as well include several disformal terms dðiÞμ dðiÞν , or
even terms made out of spinors, dμ ¼ ψ̄γμψ ; ψ̄γμγ5ψ ; ψ̄∇μψ ;
ψ̄γ5∇μψ , EðμνÞ ¼ ψ̄γμγνψ (here ψ̄ ¼ ψ†γ0), as long as they are
consistent with the parity and tensor structure of the metric.

3An example of theories featuring two metrics whose relation
involves derivatives are C and D theories, which allow a
conformal dependence on R and a disformal dependence with
the tensor structure of Rμν [71].
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In the original work, Bekenstein disregarded theories
including higher than second derivatives of the scalar
because he expected that such theories would lead to
higher than second-order equations of motion and
unbounded Hamiltonians. In addition, Table II makes clear
that the introduction of objects with two indices allows for a
potentially infinite set of different contractions.4 Finally, if
(covariant) derivatives of nonscalar objects are considered,
the relation generically introduces derivatives of the metric
tensor through the Christoffel connection. For the sake of
simplicity according to the above considerations, we will
restrict our attention to metrics constructed only out of first
field derivatives, as in the original disformal relation (8).
Besides mapping gμν into another rank-two symmetric

tensor ~gμν, other physical requirements are necessary for the
disformal relation to be physically reasonable. In order to
have a well defined inverse metric ~gμν and provide an
invariant integration volume, ~gμν needs to have a non-
vanishing determinant,

~g ¼ C3ðC − 2DXÞg ≠ 0; (10)

(see Appendix C of Ref. [48] for a derivation of the above
expression). The authors of Ref. [72] suggest that the
functions C;D have to be chosen such that the previous
condition is satisfied for all possible values of X, i.e. C > 0
andC > 2DX.However, it has beenobserved that the second
condition is maintained dynamically in cosmological mod-
els, as the field slows downwheneverX approachesC=ð2DÞ.
This happens both in the case of disformal couplings to
matter [18,34] and scalar field self coupling [55] for
D ¼ DðϕÞ > 0, suggesting that it is not necessary to tailor
the functionsC;D.Moreover, theories formulated in terms of
~gμν should be required to have a well posed initial value
problem and give rise to second-order evolution equations.

A. Matter-scalar interaction

Theories in which the matter Lagrangian is formulated in
terms of a tilde metric (8, 9) introduce interactions between
the matter and scalar degrees of freedom. If Sm ¼R
d4x

ffiffiffiffiffiffi
−~g

p
~Lmð~g;ψ ðmÞÞ, the invariance of Sm under coor-

dinate transformations xμ → xμ þ ξμ implies that δSm ¼ 0
and hence

Z
d4x

ffiffiffiffiffiffi
−~g

p �
1ffiffiffiffiffiffi
−~g

p δð ffiffiffiffiffiffi
−~g

p
~LmÞ

δ~gμν
δξ ~gμν þ

δ ~Lm

δψ ðmÞ δξψ
ðmÞ
�

¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
1

2
~∇μ

~Tμν

�
ξν ¼ 0; (11)

where the coefficient of δ~gμν is proportional to the energy
momentum tensor defined with respect to the tilde metric,
the matter equations of motion δLm=δψ i ¼ 0 and the
metric transformation δξ ~gμν ¼ ~∇ðμξμÞ [73] have been used,
and ~∇μ is a torsion-free covariant derivative compatible
with ~gμν (cf. Eq. (35) and Appendix A1). Therefore, as a
direct application of Noether’s theorem, energy-momentum
is covariantly conserved as long as ~gμν is used consistently
in the equations

~∇μ
~Tμν ¼ 0: (12)

This derivation is valid as long as the theory is invariant
under coordinate transformations and the motion for ψ i are
fully determined from δ ~Lm alone. Note that no assumptions
about the form of the gravitational sector and/or the tilde
metric have been made in the derivation.
For disformal couplings to matter containing the field

and its first derivatives (8), the contribution of the matter
Lagrangian to the scalar field equation reads

1ffiffiffiffiffiffi
−~g

p δ
ffiffiffiffiffiffi
−~g

p
Lm

δϕ
¼− ~Tμν ~∇μðDϕ;νÞþ

1

2
~∇αð ~TμνϕαðC;Xgμν

þD;Xϕ;μϕ;νÞÞþðC;ϕgμνþD;ϕϕ;μϕ;νÞ ~Tμν;

(13)

where the energy momentum tensor in the first term has
“escaped” the derivative by virtue of tilde energy con-
servation (12). As a consequence of the chain rule ~Tμν

appears contracted with the partial derivatives of the tilde
metric, ~gμν;X and ~gμν;ϕ. The above equation implies that
special disformal relations (7) do not introduce derivatives
of ~Tμν in the field equations, as C;X, D;X ¼ 0. In this case,
equations (12) and (13) are equivalent to the equations
derived in Refs. [18,34] in terms of untilde quantities (using
the appropriate connection (A3) and contracting tilde
matter conservation (12) with ~gλν.). This simplification
may also be related to the fact that the Horndeski
Lagrangian (3–6) is formally invariant under special dis-
formal transformations (7) [33].
Note that all the terms contributed by (13) to the field

equations of motion are at most second order in field
derivatives, and therefore do not introduce Ostrogradski
instabilities. This does not generally hold if second field
derivatives are allowed, as in the relation (9) with the terms
described in Table II. The variation of the matter
Lagrangian w.r.t. the scalar field then reads

2ffiffiffiffiffiffi
−~g

p δ
ffiffiffiffiffiffi
−~g

p
~Lm

δϕ

¼ ~Tμν ∂ ~gμν
∂ϕ − ~∇α

�
~Tμν ∂ ~gμν

∂ϕ;α

�
þ ~∇β

~∇α

�
~Tμν ∂ ~gμν

∂ϕ;αβ

�

− ~∇λ

�
~Tμν ∂ ~gμν

∂ϕ;αβ
Kλ

αβ

�
; (14)

4Some of these terms or their combinations might give rise to
total derivatives, which do not contribute to the equations of
motion. Note also that a field redefinition φ ¼ φðY; πÞ with Y ¼
− 1

2
ð∂π2Þ adds a vector-like, second derivative term to the

standard disformal structure ϕ;μϕ;ν ¼ ðϕ;YÞ2π;απ;βπ;αμπ;βν−
2ðϕ;Yϕ;πÞπ;απ;αðμπ;νÞ þ ðϕ;πÞ2π;μπ;ν.
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where Kλ
αβ ≡ ~Γλ

αβ − Γλ
αβ is the difference between the

connections for the field dependent and dynamical metrics,
as given by Eq. (35) below. Even if it is possible to choose
the coefficients of the disformal relation shown in Table II
to achieve second-order equations of motion (including the
difference between the connections Kλ

αβ), second deriv-
atives of the field also introduce second derivatives of the
energy momentum tensor. Although such theories are not a
priory ruled out, they can lead to phenomenological
problems (see Ref. [74] for a discussion of such terms
in the gravitational equations).

III. FRAME TRANSFORMATIONS:
THE JACOBIAN

Let us now study under which conditions disformally
coupled theories can be re-expressed in the Jordan frame,
i.e. using the metric to which matter couples minimally as a
fundamental variable. Ultimately, finding the Jordan frame
frame requires inverting the relation between the two
metrics and transforming the gravitational and matter sector
accordingly. In the most thoroughly explored case of a
special disformal relations (7), such an inverse can be
obtained trivially

gμν ¼
1

C
~gμν −

D
C
ϕ;μϕ;ν; (15)

and is well defined as long as C ≠ 0.
In more general cases, it is possible to address the

existence of inverse map between the metrics by using the
inverse function theorem [75]. Given a continuous differ-
entiable function (that may depend on several variables),
the theorem ensures the existence of an inverse, continuous
differentiable function in a neighborhood of a point
whenever the Jacobian determinant of the transformation
is different from zero at that point. When applied to a
function ~gμνðgαβÞ, it implies that an inverse gμνð~gαβÞ exists
around any point for which���� ∂ ~gμν∂gαβ

���� ≠ 0; (16)

where we think of ∂ ~gμν=∂gαβ as a linear mapping of (0,2)
symmetric tensors into (0,2) symmetric tensors (antisym-
metric tensors are mapped to zero due to index symmetry).
Note that the condition (16) only ensures the existence of an
inverse map for the covariant metric. The existence of a
contravariant metric ~gμν satisfying ~gαλ ~gλβ ¼ δαβ requires that
~gμν has nonvanishing determinant, cf. (10). This issue may
be addressed by studying the contravariant Jacobian
∂ ~gμν=∂gαβ. Demanding the absence of zeros might provide
additional conditions for the frame transformation to exist,
but these will not be considered here. The theorem also
determines that the Jacobian determinants of both mappings
are the inverse of each other, j∂ ~gμν=∂gαβj ¼ j∂gμν=∂ ~gαβj−1.

The Jacobian determinant can be evaluated in terms of
the eigenvalues of the Jacobian j∂ ~gμν=∂gαβj ¼Qnλn,
where each eigenvalue satisfies�∂ ~gμν

∂gαβ − λiδ
α
μδ

β
ν

�
ξðiÞαβ ¼ 0; (17)

for its associated eigentensor ξðiÞαβ. It is easy to check that for
the special disformal transformation the only eigenvalue is
λC ¼ C, as expected from the explicit inverse metric (15).
The Jacobian and and its eigenvalues will be studied in the
nontrivial conformal case and for a general disformal
metric (8) in the following subsections. However, the
formalism presented above is general as long as the
transformations of the metric tensor depends on the metric
algebraically, and could be applied to more general
relations such as (9).5

Besides determining the existence of an inverse trans-
formation, the Jacobian occurs naturally at different points
in the analysis of theories which can be formulated in
different frames:

(i) Energy-Momentum Tensor in different frames. The
Jacobian ∂ ~gμν

∂gαβ determines the relationship of the
energy momentum tensor in different frames, which
are related by the associated transformation

Tμν ¼
ffiffiffi
~g
g

s
∂ ~gαβ
∂gμν

~Tαβ; (19)

where Tμν and ~Tαβ are defined as the variation of the
matter action with respect to the untilde and tilde
metric respectively, as in Eq. (13). The energy
momentum tensor obtained from the matter metric
has the usual interpretation in terms of the energy
fluxes seen by observers, while the one obtained
with respect to the dynamical metric sources gravi-
tational equations. The Jacobian can be used to
analyze the relation between them.

(ii) Dynamical equations in the Jordan frame. The
Jacobian also appears in the equations of motion
in the Jordan frame through the chain rule

δSG ¼ δSG
δ~gαβ

∂ ~gαβ
∂gμν δgμν þ � � � ; (20)

where the remaining terms in the variation have been
omitted. This will be studied in detail in Sec. IV,

5If derivatives of ḡμν are introduced in the relation, the Jacobian
may be generalized to

δ~gμν
δgαβ

¼ ∂ ~gμν
∂gαβ − ∂λ

∂ ~gμν
∂gαβ;λ ; (18)

but in this case it can not be used to determine the existence of an
inverse map, which would be given by a differential equation.

MIGUEL ZUMALACÁRREGUI AND JUAN GARCÍA-BELLIDO PHYSICAL REVIEW D 89, 064046 (2014)

064046-6



where the Jacobian will be used to re-write the
theory in terms of second-order equations of motion.

(iii) Quantum mechanical formulation. The variational
principle (2) obeyed by classical systems can be
understood as a consequence of quantum mechanics
in terms of the path integral

ZðJÞ ¼
Z

D Qi exp

�
−
i
h

�
S½ Qi� þ

Z
d4xJi Qi

��
;

(21)

where Ji is an external source and the integration is
performed over all possible configurations of the
dynamical variables, collectively denoted Qi. In this
interpretation, the imaginary exponent weights the
probability associated to any given process. For
configurations away from the classical solution the
integrand oscillates rapidly and the amplitudes inter-
fere destructively. As the classical solution minimizes
the exponent, it will provide the only nonzero prob-
ability in the limit h → 0.
If one considers an initial theory with a given set of

fundamental variables and wishes to change the
physical frame, e.g. from ~gμν;ϕ to gμν;ϕ, then the
integration element in field space transforms as

D Qi ¼ Dϕ D~gμν → Dϕ Dgαβ

���� ∂ ~gμν∂gαβ
����: (22)

By using the relation detM ¼ expðtrðlogðMÞÞÞ it is
possible to argue that the classical action picks up
extra terms from the Jacobian. This is analogous to the
occurrence of quantum anomalies, which typically
lead to total derivatives and do not contribute to the
classical equations of motion (e.g. [76]). This is in
agreement with the classical, but not necessarily
quantum, equivalence between frames (see also
Refs. [29,77]).
The transformation properties of the path integral are

hence essentially linked to the problem of equivalence
between physical frames. However, the quantum
mechanical formulation of derivatively coupled
scalar-tensor theories lies beyond the scope of this
work, and in what follows wewill consider all fields as
classical and all frames as physically equivalent. The
consequences of nontrivial metric transformations for
quantum mechanics will be addressed elsewhere.

A. Derivative conformal relation

For a conformal relation depending on the field deriv-
atives, ~gμν ¼ CðX;ϕÞgμν, the Jacobian reads

∂ ~gμν
∂gαβ ¼ Cδαμδ

β
ν þ 1

2
C;Xgμνϕ;αϕβ: (23)

As the dependence on ϕ does not alter the form of the
equations, it will be omitted from them in the following.
The equation for the eigenvalues (17) then follows

ðC − λÞξμν þ
1

2
C;Xgμνhξαβi ¼ 0; (24)

with hξαβi≡ ϕ;αξαβϕ
;β. The set of eigenvalues and eigen-

tensors can be readily found from the above relation:

λC ¼ C; ξCμν ¼ vð1Þðμ v
ð2Þ
νÞ ; with vðnÞμ ϕ;μ ¼ 0; (25)

λK ¼ C − C;XX; ξKμν ¼ C;Xgμν: (26)

The conformal eigenvalue (25) was already found in the
discussion of the special disformal relations (7) and their
inverse (15). It is degenerate with multiplicity 9, as there are
32 directions orthogonal to ϕ;ν. The new, characteristic
feature of conformal derivative couplings comes from the
kinetic eigenvalue (26), which is associated with the
nontrivial dependence on X. It is nondegenerate with
multiplicity 1, and becomes equal to λC whenever CX or
X are zero (the normalization has been chosen for con-
sistency with the general case studied in the next section).
Note that there is no eigentensor proportional to ϕ;μϕν, as
this is no privileged direction for ~gμν.
The kinetic eigenvalue (26) has an associated eigenten-

sor proportional to gμν. This has important implications for
the relation between the energy-momentum tensors defined
with respect to the tilde and untilde metric, as given by
Eq. (19), and in particular for their traces, which fulfill

gμνTμν ∝ ðC − C;XXÞ~gμν ~Tμν: (27)

This type of relation might be used to analyze energy
conditions in derivatively coupled scalar-tensor theories,
analogously to similar studies in other alternative theories
of gravity (e.g. [78]).
The inverse transformation ~gμνðgμνÞ is not well defined

around points for which either C or C − C;XX are equal to
zero. Wherever the inverse exist, it will be of the conformal
form in order for both metrics to represent the same space-
time, with unaltered null geodesics. We can hence use
gμν ¼ Að ~XÞ~gμν, gμν ¼ Að ~XÞ−1 ~gμν as an ansatz for the
inverse metric. Direct substitution in ~gμν ¼ CðXÞgμν, X ¼
− 1

2
gαβϕ;αϕ;β yields the following condition on the form of

Að ~XÞ,

Cð ~X=Að ~XÞÞAð ~XÞ ¼ 1; (28)

with X ¼ ~X=Að ~XÞ, or alternatively Að ~XÞ ¼ 1=CðXÞ (by
contracting ϕ;μϕ;ν with both metrics one obtains the
equalities ~X ¼ X=CðXÞ and X ¼ ~X=Að ~XÞ). Note that
Að ~XÞ can be a multivalued function, as shown in Fig. 1.
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In order to see this formalism at work, let us consider an
exponential derivative conformal factor C ¼ expðX=M4Þ.
This choice ensures that C ≠ 0 for any finite X, but the
additional eigenvalue λK ¼ Cð1 − X=M4Þ spoils the exist-
ence of an inverse around points where X ¼ M4. The
relation for the inverse conformal factor, Eq. (28), reduces
to ~X=M4 ¼ −Að ~XÞ logðAð ~XÞÞ. It is possible to obtain Að ~XÞ
implicitly, as shown in the left panel of Fig. 1, where it is
clear that Að ~XÞ becomes bi-valuate for ~X=M4 ∈ ½0; e−1Þ.
The point ~X=M4 ¼ e−1 is an upper bound on the field
gradient, which corresponds to the singular point X ¼ M4

at which λK ¼ 0.
As an example of a better behaved relation, one may

consider a Gaussian function C ¼ expð− 1
2
X2=M8Þ. Unlike

in the previous case, this choice of the conformal factor
ensures that neither of the eigenvalues (25, 26) vanish, as
C > 0 and C − C;XX ¼ Cð1þ X2=M8Þ > 0. The inverse
relation (28) satisfies ~X2=M4 ¼ A2ð ~XÞ logðA2ð ~XÞÞ, and
therefore for any solution Að ~XÞ, another solution −Að ~XÞ
exists. However, the two branches do not meet, as shown in
the right panel of Fig. 1. These examples show how the
Jacobian analysis can provide a valuable tool to analyze
scalar-tensor theories with general derivative couplings to
matter.

B. General disformal relation

The arguments can be straightforwardly generalized to
the disformal relation (8). The Jacobian reads

∂ ~gμν
∂gαβ¼Cδαμδ

β
νþ1

2
C;Xgμνϕ;αϕβþ1

2
D;Xϕ;μϕ;νϕ

;αϕ;β; (29)

where we have again omitted the possible dependence on
ϕ, which does not modify the equations. The equation for
the eigenvalues (17) reads

ðC − λÞξμν þ
1

2
ðC;Xgμν þD;Xϕ;μϕ;νÞhξαβi ¼ 0; (30)

and yields the following set of eigentensors:

λC ¼ C; ξCμν ¼ vð1Þðμ v
ð2Þ
νÞ ; with vðnÞμ ϕ;μ ¼ 0; (31)

λK ¼ C − C;XX þ 2D;XX2; ξKμν ¼ C;Xgμν þD;Xϕ;μϕ;ν:

(32)

The conformal eigenvalue and its associated eigentensor
(31) have the same expression as it was found in the
previous section for a pure conformal coupling (25), while
the kinetic eigenvalue and eigentensor (32) are modified if
D;X ≠ 0. Just as in the conformal case, λC is degenerate
with multiplicity 9 and λK is nondegenerate unless X or
C;X;D;X are zero. Note that ξKμν coincides with the partial
derivative of ~gμν with respect to X.
Any values of X for which λC; λK become zero indicate

the lack of existence of an inverse transformation. The term
introduced by the disformal part of the transformation is
proportional to X2 rather than linear in X. Part of the
difficulty in finding a suitable (purely) conformal function
in the previous section was that X can have either sign
depending on whether ϕμ is timelike (+) or spacelike (-).
Adding a disformal factor with D;X > C;X=X − C=X2 may
prevent the singular points from occurring. In particular, a
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FIG. 1 (color online). Inverse transformation gμν ¼ Að ~XÞ~gμν for ~gμν ¼ eX=M
4

gμν (left) and ~gμν ¼ e−X
2=ð2M8Þgμν (right). The inverse

conformal factor Að ~XÞ is obtained implicitly through Eq. (28), and can be multivalued for certain ranges of ~X, giving rise to two
branches characterized by the kinetic eigenvalue λK , given by Eq. (26). The branches with positive (solid blue) and the negative (dotted
blue) values of λK meet or end at singular points, in which either one of the Jacobian eigenvalues (25, 26) vanishes. This is seen explicitly
in the case of the exponential function (left), which becomes bi-valued for ~X=M4 > 0. Both branches meet at ~X=M4 ¼ e−1

(corresponding to X=M4 ¼ 1) for which the kinetic eigenvalue becomes zero. The singular point Að ~XÞ ¼ 0 corresponds to CðXÞ → ∞.
The gray shaded region, ~X=M4 ≥ e−1, is forbidden. In the Gaussian case (right) both eigenvalues are always positive. Therefore there are
no singular points and the two branches are not connected.
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purely disformal transformation (C ¼ 1) has viable eigen-
values provided that D;X is positive. However, disformal
relations with λK ≠ 0 might still be problematic if the
determinant of the metric (10) vanishes, in which case the
contravariant metric ~gμν (and therefore gμν) is not well
defined.
An inverse map for the lowercase metric, gμνð~gαβÞ might

be found around any nondegenerate point. It should be of
the disformal type to ensure that the causal distortion
induced by the transformation is proportional to ϕ;μ.
Therefore the ansatz for the inverse is gμν ¼
Að ~XÞ~gμν þ Bð ~XÞϕ;μϕ;ν, gμν¼ 1

Að ~XÞð~gμν−
Bð ~XÞ

Að ~XÞ−2Bð ~XÞ ~Xϕ
;μϕ;νÞ

and ~X ¼ − 1
2
~gαβϕ;αϕ;β. Substituting the original metric in

this expression yields the conditions

Að ~XÞ¼ 1

CðXÞ ; Bð ~XÞ¼−
DðXÞ
CðXÞ ;

~X¼ X
C−2DX

: (33)

This relation for the field’s kinetic terms obtained with
respect to the two metrics becomes singular when the
relation between the determinants (10) does. Figure 2
shows the inverse of a transformation exhibiting this type
of singularity, which is related to its multivalued character.
It is still possible that these singularities are dynamically
avoided, and the inverse map remains within a certain
branch. This has been found for special disformal relations,
as it was discussed after Eq. (10).

IV. THE JORDAN FRAME: SECOND-ORDER
THEORIES BEYOND THE HORNDESKI

LAGRANGIAN

In previous sections it was shown that (i) a scalar field
coupled tomatter through a disformalmetric (8) is described

by second-order equations (13) and (ii) an inversemap to the
Jordan frame exists, except around points for which (31) or
(32) vanish. These results seem in contradiction with the
finding of non-Horndeski terms introduced by general
disformal transformations of the gravitational sector, unless
these are of the special disformal type (7) [33].
The purpose of this section is to examine this apparent

contradiction by explicitly computing the Jordan frame
action and equations. For the sake of concreteness, the
analysis will be restricted to theories in which the original
frame, for which the equations of section II hold, is actually
the Einstein frame. The action is then given by

SJ½gμν;ϕ;ψm� ¼
Z

d4x

� ffiffiffiffiffiffi
−ḡ

p R̄½ḡμν�
16πG

þ ffiffiffiffiffiffi
−g

p
LM½gμν;ψm�

þ ffiffiffiffiffiffi
−g

p
Lϕ½gμν;ϕ�

�
; (34)

where gμν, ϕ and the matter fields ψm are the dynamical
variables which determine the field equations, and the
gravitational metric ḡμν½gμν;ϕ� is given by the inverse
mapping of the metric to which matter couples [e.g.
Eq. (8)], as discussed in the previous section. It will be
assumed that the scalar field Lagrangian is described by
terms of the form (3), (4), on which a disformal trans-
formation only changes the form of the free functions
(cf. (B11, B12) for a simpler case).
The transformed gravitational action can be written in

terms of the difference between the covariant derivatives
associated with ḡμν and gμν,

Kα
μν ≡ Γ̄α

μν − Γα
μν ¼ ḡαλ

�
∇ðμḡνÞλ −

1

2
∇λḡμν

�
; (35)

which transforms as a tensor [73]. The barred Riemann
tensor can then be defined from the commutator of covariant
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FIG. 2 (color online). Inverse map for ~gμν ¼ expðX=M4Þgμν þ 1
2
X3=M16ϕ;μϕ;ν given by Eq. (33) with the inverse conformal function

Að ~XÞ on the left panel and the inverse disformal function Bð ~XÞ on the right. Both functions admit four branches with positive (solid) and
negative (dotted) values of CðXÞ − 2DðXÞX, due to the fact that ~XðXÞ has multiple poles. The inverse conformal factor of ~gμν ¼
expðX=M4Þgμν (left panel of Fig. 1 is shown for comparison (blue dash-dotted). A branch with CðXÞ − 2DðXÞX > 0 exists for large
values of X, but is difficult to plot because the inverse conformal factor tends to zero rapidly.
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derivatives acting on a vector 2∇̄½μ∇̄ν�vα ≡ R̄α
βμνvβ, which

allows one to write

R̄α
βμν ¼ Rα

βμν þ 2∇½μ Kα
ν�β þ 2 Kα

γ½μ Kγ
ν�β; (36)

as well as its contractions, such as the Ricci scalar,

R̄≡ ḡμνR̄α
μαν; (37)

where the barred metric has to be used self-consistently,
e.g. R̄αβμν ≡ ḡαλR̄λ

βμν, R̄αβμν ≡ ḡβλḡμσ ḡνκR̄α
λσκ. It is possible

to express the unbarred covariant derivative in the second
term of Eq. (36) as a barred covariant derivative using
the relation ð∇̄α −∇αÞ Kλ

μν ¼ Kλ
ασ Kσ

μν − 2 Kσ
αðμ Kλ

νÞσ.
As ∇̄αḡμν ¼ 0, an equivalent expression for the Jordan frame
action (34) can be obtained,

SJ½gμν;ϕ;ψm� ¼
Z

d4x

� ffiffiffiffiffiffi
−ḡ

p
16πG

ðḡμνðRα
μαν − 2Kα

γ½αKγ
μ�νÞ

þ ∇̄αξ
αÞ þ ffiffiffiffiffiffi

−g
p

LM þ ffiffiffiffiffiffi
−g

p
Lϕ

�
; (38)

where the dependences on the right-hand side have been
dropped and ξα ≡ Kα

μνḡμν − ḡαμ Kν
μν enters through a total

derivative and thus does not contribute to the equations of
motion. This expression has the advantage of not introduc-
ing derivatives of the connection, and therefore keeps only
second derivatives of the metric and the scalar field in the
Lagrangian. Let us consider the case of a derivative
conformal relation before tackling the general case.

A. Derivative conformal relation

The simplest case that can be considered is the gravi-
tational Lagrangian of a pure conformal relation

ḡμν ¼ Ω2ðX;ϕÞgμν; (39)

(the conformal factor is squared in order to simplify
the equations and facilitate the comparison with the
literature). The action in the Jordan Frame is given by
SC½gμν;ϕ;ψm� ¼

R
d4xLC, with

LC ¼
ffiffiffiffiffiffi−gp

16πG
ðΩ2Rþ 6Ω;αΩ;αÞ þ ffiffiffiffiffiffi

−g
p ðLϕ þ LmÞ; (40)

after integration by parts as in Eq. (38). As it was noted in
Ref. [33], the second term contains 6ðΩ;XÞ2hΦi, which can
not be written in the appropriate Horndeski form (5). As a
consequence, its variation with respect to the field contains
up to fourth field derivatives: δLC

δϕ ⊃ð!Þ ∇μ∇ν
∂LC∂ϕ;μν

⊃ð!Þ

ðΩ;XÞ2ϕ;σϕ
;σμ

;μνϕ
;ν, where ⊃ð!Þ denotes that only the higher

derivatives are shown in the right-hand side.
Let us examine the full equations of motion in detail.

Variation of the Jordan frame Lagrangian (40) yields

Ω2Gμν þ 2Ωðgμν□Ω −Ω;μνÞ þ ð6□Ω −ΩRÞΩ;Xϕ;μϕ;ν

− gμνΩ;αΩ;α þ 4Ω;μΩ;ν ¼ 8πGðTϕ
μν þ Tm

μνÞ; (41)

∇μðΩ;Xϕ
;μðΩR − 6□ΩÞÞ þ Ω;ϕðΩR − 6□ΩÞ þ 1

2

δLϕ

δϕ
¼ 0;

(42)

where it has been used that δΩ ¼ Ω;ϕδϕ−
Ω;Xðϕ;α∇αδϕþ 1

2
ϕ;αϕ;βδgαβÞ, δ

ffiffiffiffiffiffi−gp ¼ − 1
2

ffiffiffiffiffiffi−gp
gμνδgμν

and δR ¼ Rμνδgμν þ gμν□δgμν −∇μ∇νδgμν. Although the
field equation (42) does indeed contain the expected fourth
order term, a relation between □Ω and R can be obtained
by taking the trace of the gravitational equation (41):

ð6□Ω −ΩRÞðΩ − 2Ω;XXÞ ¼ 8πGT; (43)

with T ¼ gμνðTϕ
μν þ Tm

μνÞ. This relation motivates the def-
inition of the kinetic mixing factor for a conformal trans-
formation,

TK ≡ 8πGΩ;XT
Ω − 2Ω;XX

: (44)

Using this definition, Eq. (43) can be substituted back into
the original equations, yielding a rather simple result,

Ω2Gμν þ 2Ωðgμν□Ω −Ω;μνÞ þ TKϕ;μϕ;ν − gμνΩ;αΩ;α

þ 4Ω;μΩ;ν ¼ 8πGT tot
μν ; (45)

∇μðϕ;μ TKÞ þ
Ω;ϕ

Ω;X
TK −

1

2

δLϕ

δϕ
¼ 0: (46)

The equations do not contain higher than second
derivatives of the dynamical variables when written in this
form. The field equation (46) is manifestly second order,
since the term in parentheses contains at most first
derivatives of ϕ (as long as ∇μðTϕ þ TmÞ and δLϕ

δϕ are
themselves second order). Third-order time derivatives in
the gravitational equations might arise from the second
term in (45). To show that this is not the case, we can
examine its temporal, mixed and spatial components,

gμν□Ω −Ω;μν ¼
 
gkαΩ;kα −Ω;0i

−Ω;0i gij□Ω −Ω;ij

!
; (47)

where sums over α ¼ 0–3, k ¼ 1–3 are implicit. As
Ω;μν ⊃ð!Þ Ω;Xϕ

;αϕ;αμν, the only third time derivatives of
the field would occur in the spatial part of the tensor
through □Ω, which is second order by virtue of Eq. (43).
The cancellation of the high time derivatives in the ð0; μÞ
components is to be expected, as they represent constraint
equations for Ḡμν [73].
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B. General disformal relation

Let us now study the disformal case in which the Jordan
frame action is given by Eq. (38) with

ḡμν ¼ AðX;ϕÞgμν þ BðX;ϕÞϕ;μϕ;ν; (48)

the inverse map of (8), as discussed in Sec. III. For
transformations beyond the derivative conformal and spe-
cial disformal cases, the action expressed in terms of the
dynamical variables gμν;ϕ acquires many terms and the
equations become very difficult to handle in practice.
However, it is still possible to address the second-order
nature of the evolution in relatively simple terms if both
barred and unbarred quantities are allowed in the equa-
tions.6 The Jordan frame form of the resulting theory will
be shown in Appendix A 2.
The variation of the gravitational sector (34) can be

expressed in terms of barred quantities, in which it has the
usual general relativistic form,

δð ffiffiffiffiffiffi
−ḡ

p
R̄Þ¼−

ffiffiffiffiffiffi
−ḡ

p ðḠμνδḡμνþðḡμν□̄− ∇̄μ∇̄νÞδḡμνÞ: (49)

The second term is a total derivative and hence does not
contribute to the equations of motion.7 We can now write
the equations in terms of the dynamical variables. The
variation of the barred metric reads

δḡμν ¼
∂ḡαβ
∂gμν δgαβ − ðA;Xgμν þ B;Xϕ;μϕ;νÞϕ;αðδϕÞ;α

þ 2Bϕ;ðμðδϕÞ;νÞ þ ðA;ϕgμν þ B;ϕϕ;νϕ;μÞδϕ: (50)

Note that the metric part of the variation is just given by the
Jacobian (29) and the first term in parentheses is propor-
tional to the kinetic eigentensor ξKμν, given by Eq. (32). The
last terms are the ones arising from a special disformal
relation. The connection between the variation and the
Jacobian has strong consequences for the structure of the
equations.
The equations for gravity and the scalar field can then be

written using (49), (50) in terms of the Jacobian (29) and
the kinetic eigentensor ξKμν (32),

Ḡαβ
∂ḡαβ
∂gμν ¼ 8πG

ffiffiffi
g
ḡ

r
ðTμν

m þ Tμν
ϕ Þ; (51)

∇̄αðḠμνξKμνϕ
;αÞ − Ḡμν∇̄μðBϕ;νÞ þ ḠμνðA;ϕgμν þ B;ϕϕ;νϕ;μÞ

−
ffiffiffi
g
ḡ

r
δLϕ

δϕ
¼ 0; (52)

where in the field equation the barred Bianchi identity
∇̄μḠμν ¼ 0 has been used on the second term. The
analogue of Eq. (43) which allows us to solve for the
higher derivatives can be obtained by contracting (51) with
the kinetic eigentensor,

ḠμνξKμν ¼ 8πG
ffiffiffi
g
ḡ

r
Tμν
totξ

K
μν

λK
≡ TK; (53)

where the kinetic eigenvalue λK comes from the action of
the Jacobian on its eigentensor ξKμν. This equation provides
the generalization of the kinetic mixing factor obtained
for the purely conformal case (44), which played a central
role in the reduction of the equations to a second-order
expression in the previous section. Divided by G, it
provides a dimensionless measure of the kinetic mixing
between the scalar field and matter due to the X dependence
of the barred metric: it vanishes identically both in vacuum
or for theories with A;X; B;X ¼ 0. In addition, it diverges at
points in which either the kinetic eigenvalue or the barred
metric become singular. Note that it is still possible to have
kinetic mixing and TK ¼ 0 if the metric is of the special
disformal type (7).
Equation (53) allows one to write the field equation (52)

in a manifestly second-order form,

∇̄αð TKϕ
;αÞ − Ḡμν∇̄μðBϕ;νÞ þ ḠμνðA;ϕgμν þ B;ϕϕ;νϕ;μÞ

−
ffiffiffi
g
ḡ

r
δLϕ

δϕ
¼ 0; (54)

since TK only contains first derivatives of the field. It
remains to show that the third time derivatives present in
Ḡμν can be solved away using (53). The higher-order
structure of the barred Ricci tensor is given by the
2∇½λKλ

β�α terms from (36), which can be expanded,

R̄αβ ⊃ð!Þ 1
2
ḡλσðḡσβ;αλ þ ḡσα;βλ − ḡαβ;λσ − ḡλσ;αβÞ

⊃ð!Þ 1
2
ḡλσðξKσβX;αλ þ ξKσαX;βλ − ξKαβX;λσ − ξKλσX;αβÞ: (55)

The second relation follows from introducing ḡβσ;αλ ⊃ð!Þ
2Bϕ;ðσϕ;βÞαλ þ ξKσβX;αλ in the first term in Eq. (55), where
the contribution proportional to B cancels due to antisym-
metry in β; λ.8 The higher derivative structure of the barred
Einstein tensor is given by

6This is similar to the analysis of Ref. [79] for inflationary
scenarios.

7The structure of the variation (49) strongly suggests that the
appropriate boundary term necessary to ensure that ∇αδgμν ¼ 0
on the boundary [80,81], would be reproduced from the original
one when transforming to the Jordan frame. See Ref. [82] for the
study of this term in fðRÞ and Gauss-Bonnet gravity.

8The reason why special disformal transformations do not
introduce non-Horndeski terms in the action [33] (while X-
dependent disformal maps do) is that higher field derivatives in
the barred Ricci tensor are proportional to ξKμν. In the special
disformal case the equations of motion only contain up to second
field derivatives without the need to use an implicit relation such
as Eq. (53), as they depend on R̄μν. Theories for which ξKμν ¼ 0
must therefore belong to the set of theories described by
Horndeski’s theorem.
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Ḡαβ ⊃ð!Þ Ḡαβ
ð!Þ ≡

1

2
f2ξ̄δðαḡβÞγ − ξ̄ḡαγ ḡβδ − ξ̄αβḡγδ

− ḡαβðξ̄γδ − ξ̄ḡγδÞgX;γδ; (56)

where ξ̄αβ ¼ ḡαμḡβνξKμν and ξ̄ ¼ ḡμνξKμν. Third time deriva-
tives in the above expression occur only through
X;00 ¼ ϕ;σϕ;σ00. The value of X;00 can be solved in terms
of lower derivatives using the constraint equation (53)
together with (56) (problems associated to points at which
the coefficient of X;00 approaches zero might occur,
analogous to the Jacobian eigenvalues becoming zero).
Although the third time derivatives of the field can be
generically removed from the equations in theories with
ξKμν ≠ 0, Eq. (56) still contains third field derivatives
involving spatial directions. This feature might be relevant
for the initial value problem in this type of non-Horndeski
theories, although such derivatives are absent in the
Einstein frame equations, cf. Sec. II. The initial value
formulation in disformally coupled theories deserves a
detailed study, which will be presented elsewhere.

C. A loophole in Horndeski’s theorem:
Hidden constraints

The computations in the last subsections show how the
higher time derivatives of the scalar field can be eliminated
from the Jordan frame equations through the use of implicit
constraint relations, rendering the system second order. A
direct implication is the incompleteness of Horndeski’s
theorem in the identification of Ostrogradski stable scalar-
tensor theories, since it only identifies the maximal set of
theories with a second-order Euler-Lagrange equation (2),
regardless of implicit constraint relations that allow to solve
for the higher derivatives. The possibility of rewriting
apparently higher-order theories in a second-order form
is not explored in the different proofs of Horndeski’s
theorem [15–17]. Alternatively, the loophole can be
regarded as the possibility of allowing the scalar field to
directly modify the matter metric, e.g. allowing a general
disformal coupling to matter (8).
The use of implicit (constraint) relations to remove the

higher time derivatives of the dynamical variables is related
to a recent result found in [83],which allows one to “exorcise
Ostrogradski’s ghost in higher-order derivatives with con-
straints.” It states that theories with constraints which reduce
the dimensionality of the phase space of the system do not
have a linear instability in the Hamiltonian, even if the
original Lagrangian includes second or higher derivatives
with respect to time. This result is obtained in the context of
one dimensional, higher-order theories with constraints in
the form of Lagrangian multipliers. The extension to four
dimensional field theories with implicit constraints seems
plausible, as the constraints determine the value of the field’s
third and fourth derivatives, effectively reducing the dimen-
sion of the phase space by two. This strongly suggests that

Ostrogradski’s theorem does not apply to the Jordan frame
representation of disformally coupled theories, in agreement
with the second-order description in the Einstein frame
shown in Sec. II A.
Another well-known example of a naively unstable field

theory is given by fðRÞ gravity, to which Ostrogradski’s
theorem would in principle apply [12]. The Euler-Lagrange
equations for such theories yield up to quartic derivatives of
the metric through the terms ∇μ∇νf;R − gμν□f;R. As
higher derivatives of the metric always occur in terms of
first or second derivatives of f;R, the loophole to
Ostrogradski’s theorem comes from the identification of
f;R as a new propagating scalar degree of freedom, which is
not associated to an unbounded Hamiltonian. Then,
although fðRÞ gravity does not formally belong to
Horndeski’s theory, it can be shown to be equivalent to
a scalar-tensor theory specified by G4;X ¼ G3 ¼ G5 ¼ 0,
G2 ≠ 0 by means of a Legendre transformation [84,85].
Another example of an implicit constraint occurs in

“veiled” general relativity, in which both the matter and the
gravitational sector are conformally transformed by gμν →
AðϕÞgμν (see [30]). In the transformed frame, the equation
for the conformal factor AðϕÞ reduces to the trace of
the metric equations. This shows that the dynamics of the
scalar field are redundant, as expected from the fact that the
scalar field was introduced artificially (and not present in
the original frame). The case of “veiled” GR is analogous
(although simpler) to the Jordan frame version of disfor-
mally coupled theories: taking the trace of the metric
equations is equivalent to the contraction with the kinetic
eigentensor discussed in Secs. IVA and IV B. In disfor-
mally coupled theories only the higher-order dynamics are
artificial, and can consequently be eliminated by a similar
procedure.
A hint about the incompleteness of Horndeski’s theory

has been obtained in the framework of effective field theory
for (linear) cosmological perturbations, in the form of an
operator combination which leads to second-order equa-
tions but can not be obtained from any of the terms in LH
(3)–(6) [86]. Certain generalized Galileon and massive
gravity theories in the decoupling limit also contain a
scalar field with a higher derivative Lagrangian, which
nonetheless does not introduce additional or ghostly
degrees of freedom [87]. This is shown by writing down
the Hamiltonian and finding the primary constraints,
leading to a theory with higher spatial derivatives in
the action. This is analogous to what is found in the
theories here studied after applying the implicit con-
straints, cf. (47).
The second-order nature of the equations has been

established under the assumption of an Einstein-Hilbert
form for the metric in the original frame. A natural question
is whether this assumption is relevant to the procedure, i.e.
if the reduction to second order can be applied to the
transformed version of more general Lagrangians. This
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seems plausible in the case of Horndeski’s theory, as the
gravitational equations do not contain derivatives of the
curvature tensor. Therefore, the variation with respect to
the dynamical metric is proportional to the Jacobian, as in
Eq. (49). The contraction with the kinetic eigentensor will
then be proportional to the kinetic eigenvalue, providing an
analogue of Eq. (53) to substitute the higher derivatives in
the field equation with second-order terms from the metric
equations.

V. DISCUSSION

In this paper we have examined scalar-tensor theories
with derivative couplings to matter, which enter the
Lagrangian through an effective metric that depends on
the scalar field. Apart from providing a generalization of
Jordan-Brans-Dicke theories, they also offer interesting
phenomenological possibilities, such as allowing for com-
plete or softly broken shift symmetry and mixing deriva-
tives of the scalar and matter degrees of freedom in the
dynamical equations. At a more fundamental level, rede-
finitions of the physical variables can establish equivalen-
ces between classical theories, which can be used to
simplify the analysis and provide additional understanding
of underlying structures.
The possible relations between the matter and the

gravitational metrics can be classified by their tensor
structure into three types: conformal (a scalar times the
gravitational metric), disformal (the tensor product of a
vector) and extended disformal (a rank-two tensor whose
contraction with the former terms is zero). A complemen-
tary classification is provided by the order of the scalar field
derivatives introduced in the matter metric. Allowing the
relation to depend on second (covariant) derivatives of the
scalar introduces a number of difficulties: an (a priori)
infinite number of tensor structures can be included, due to
the possibility of contracting the field with itself.
Covariance requires the introduction of derivatives of the
metric through the connection coefficients, which invalid-
ates the algebraic treatment performed here. Finally, such a
metric coupling will generically lead to higher derivatives
in the equations of motion. This set of arguments single out
the disformal relation originally introduced by Bekenstein
(8) as the most reasonable choice.
Further physical insight on these theories can be gained

by expressing the action in the Jordan frame, i.e. using the
metric to which matter couples minimally as a dynamical
variable. The mapping to the Jordan frame amounts to
inverting the disformal relation, whose existence can be
determined studying the Jacobian of the transformation.
The inverse map fails to exist around points at which its
determinant vanishes, i.e. when one eigenvalue of the
Jacobian is equal to zero. This happens when the conformal
factor vanishes, but in the case of general disformal
transformations can also occur under different circum-
stances due to the additional dependence of the free

functions on the metric, characterized by the kinetic
eigenvalue (32). The simplicity of the Jacobian analysis
makes it a natural starting point in the study of concrete
models, as was shown for several examples.
The Jacobian of the mapping between frames also

appears in the study of different aspects of the theory. It
determines the relation between the energy-momentum
tensor that represents the matter energy density and
momentum fluxes seen by observers (obtained by variation
with respect to the matter metric) and the source of the
gravitational equations (obtained by variation with respect
to the gravitational metric). The Jacobian and its kinetic
eigentensor also appears in the Jordan frame equations for
the metric and the scalar field. Finally, we expect the
Jacobian to play a role at the quantum mechanical level by
producing extra surface terms due to the transformation
rules of the path integral, in a manner analogous to the
occurrence of quantum anomalies [76]. The analysis of this
feature might shed some light on the problem of the
classical equivalence and quantum inequivalence of physi-
cal frames, and is left for a future publication.
Disformally coupled theories expressed in the Jordan

frame produce terms that do not pertain to the Horndeski
Lagrangian, and hence their Euler-Lagrange variation intro-
duces higher derivatives in the equations of motion (unlike
in the original frame). However, it is possible to obtain a
relation for the higher derivatives by contracting the metric
equations with the kinetic eigentensor of the Jacobian. This
implicit constraint can be then used to rewrite the dynamics
in terms of second-order equations, without higher deriv-
atives with respect to time and hence free of Ostrogradski
instabilities. The case of a derivative-dependent conformal
transformation is particularly simple to analyze, as the
higher derivatives can be eliminated by taking the trace
of the metric equations. The study of the general case makes
clear why special disformal transformations avoid all these
difficulties and incarnate a formal invariance of Horndeski’s
theory [33]: if the free functions only depend on ϕ, the
Jordan frame equations (52) remain second order as a
consequence of the Bianchi identities for the field dependent
metric, while in the Einstein frame the equations (13)
simplify due to stress-energy conservation with respect to
the field-dependent metric. This is analogous to the much
simpler structure of L4;L5 in Horndeski’s theory (5, 6),
when G4; G5 are functions of ϕ only.
The analysis of the equations uncovers a loophole in

Horndeski’s theorem: certain theories, whose variation
contains higher derivatives of the fields, might be rendered
second order by the existence of hidden constraints in the
dynamical equations. Such theories provide further ways to
overcome the difficulties generically caused by higher
derivative Lagrangians, including the existence of
Ostrogradski’s instability. This situation shares essential
analogies with fðRÞ gravity (which can be reduced to a
second-order form by identifying f;R as a scalar degree of
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freedom) and general relativity expressed in a different
conformal frame (which introduces redundant equations).
The reduction of the fields phase space due to constraints
has been explicitly shown to eliminate Ostrogradki’s ghosts
in one dimensional systems [83], strongly suggesting that
this will also be the case for the scalar-tensor theories under
consideration. The sanity of disformally coupled theories is
further supported by the second-order nature of the equa-
tions in the Einstein frame.
The most immediate question is whether disformally

coupled theories represent the most general set of second-
order theories beyond the Horndeski Lagrangian.9

Classical equivalence between frames implies that any
theory that is second order in a given frame will remain
second order under field redefinitions. An extension of
Horndeski’s theorem might be then found in the context of
extended disformal transformations that depend on second
field derivatives, if the free functions displayed in Table II
can be suitably tuned to produce second-order equations
(although such finely tuned coefficients would be unnatu-
ral in a quantum mechanical description if they are not
protected by a symmetry). The methods presented here
can also be applied to study frame transformations in other
alternative theories of gravity, including vector-coupled
theories such as TeVeS [48], conformal vector screening
[93] and other generalizations, e.g. [94]. It is also possible
that further scalar-tensor theories with hidden constraints
can be obtained by modifications in the gravitational
sector which cannot be absorbed by a redefinition of
the metric. A first step in this direction is the study of the
transformed Gauss-Bonnet term, which is presented in
Appendix B 3, where it is shown that such terms belong to
LH for special conformal transformations, but not for
special disformal transformations. These and other
possibilities (e.g. nonpolynomial dependence on second
field derivatives) might provide an even larger class of
sensible scalar-tensor theories beyond the Horndeski
Lagrangian.
Theories with implicit constraints therefore constitute a

new class of scalar-tensor theories, essentially different
from those for which the Euler-Lagrange variation is
directly second order, such as Horndeski’s theory. The
fact that the gravitational equations involve third derivatives
of the field (although not third time derivatives) from the
barred Einstein tensor might be relevant for the initial value
formulation of such theories, even though such a difficulty
seems to be absent in the Einstein frame. Lorentz invariance
plays a crucial role, for it forces the field derivatives and the
metric to occur together and eventually provide the right
implicit constraints. More importantly, the dynamical

character of space-time is essential for the existence of
implicit constraints, which are lost if a flat background is
imposed. This is in stark contrast with Horndeski theories,
for which the Minkowski limit is described by second-order
equations. In a broader scope, degenerate field theories
might provide new theoretical challenges and phenomeno-
logical applications in gravitation and cosmology, as time
and time again the search for loopholes in no-go theorems
has proved to be a very constructive way to expand the
horizons in fundamental physics.
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APPENDIX A: GENERAL DISFORMAL
RELATIONS

In this section we will present some relations for
disformal relations of the type proposed by Bekenstein,

ḡμν ¼AgμνþBϕ;μϕ;ν; ḡμν ¼ 1

A
ðgμν− γ2Bϕ;μϕ;νÞ; (A1)

with γ2 ¼ ðA − 2BXÞ−1, X ¼ 1
2
ϕ;μϕ

;μ.

1. Connection

The connection for a field-dependent metric can be
computed directly from the usual definition,

9Other ways to generalize Horndeski’s theory without intro-
ducing ghosts include multiscalar field theories [88–90], nonlocal
gravity theories [91] and nonlinear extensions of Horndeski
functions [92]
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Γ̄α
μν ¼ Γα

μν þ δαðμlogA;νÞ −
1

2
logA;αgμν −

Bγ2

A
ϕ;α

	
A;ðμϕ;νÞ −

1

2
ϕ;λA;λgμν



þ Bγ2ϕ;αϕ;μν þ γ2ϕ;αB;ðμϕ;νÞ

−
1

2A
ϕ;μϕ;νðB;α − Bγ2ϕ;αϕ;λB;λÞ; (A2)

where A;B are general scalar functions. The difference between connections can be also written as (35). For A; B depending
on ϕ; X, the above expression can be expanded

Kα
μν ¼ þðlogAÞ;ϕ

�
ϕ;ðμδανÞ − Bγ2ϕ;αϕ;μϕ;ν −

1

2
Aγ2ϕ;αgμν

�

þ ðlogAÞ;X
�
−ϕ;σϕ;σðμδανÞ þ Bγ2ϕ;αϕ;σϕ;σðμϕ;νÞ þ

1

2
½ϕ;σϕ

;σα − Bγ2ϕ;αhΦi�gμν
�

þ Bγ2ϕ;αϕ;μν þ
1

2
B;ϕγ

2ϕ;αϕ;μϕ;ν − B;Xγ
2ϕ;αϕ;σϕ;σðμϕ;νÞ þ

B;X

2A
ϕ;μϕ;ν½ϕ;σϕ

;σα − Bγ2ϕ;αhΦi�: (A3)

2. Non-Horndeski terms

Starting with the Jordan frame in the form (38) and plugging the X-dependent terms from the barred connection (A3), the

higher-order part of the action is given by SJ½gμν;ϕ� ¼
R
d4x

ffiffiffiffi−gp
16πGLdisf with

Ldisf ¼
ffiffiffiffi
A

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A − 2BX

p
R −

ffiffiffiffi
A

p
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A − 2BX
p hRμνi þ

ffiffiffiffi
A

p
B2ðhΦ2i − hΦi½Φ�Þ
ðA − 2BXÞ3=2 −

A;XBðhΦ2i − hΦi½Φ�ÞðA − 5BXÞffiffiffiffi
A

p ðA − 2BXÞ3=2

þ B;X

� ffiffiffiffi
A

p
BðhΦ2i − hΦi½Φ�ÞX
ðA − 2BXÞ3=2 −

A;XðA − 3BXÞðhΦi2 þ 2hΦ2iXÞffiffiffiffi
A

p ðA − 2BXÞ3=2
�

þ A;X
2ð3A2hΦ2i þ 8B2XðhΦi2 þ 2hΦ2iXÞ − 3ABðhΦi2 þ 4hΦ2iXÞÞ

2A3=2ðA − 2BXÞ3=2 þ L3;L2 terms ∝ A;ϕ; B;ϕ: (A4)

It is important to remember that the above expression only contains non-Horndeski terms. Terms involving one instance
of A;ϕ; B;ϕ can at most depend on hΦi, ½Φ�, and therefore contribute to L3 (4). Terms involving two instances of A;ϕ; B;ϕ

do not contain second derivatives, and therefore belong to L2 (3). These terms have been indicated schematically in the
last line.

APPENDIX B: FRAME TRANSFORMATION FOR SPECIAL DISFORMAL MAPPINGS

Let us now explore the transformation rules for gravitational theories under special disformal relations (7). Let us first
consider the transformations of the Einstein-Hilbert and the Horndeski Lagrangians for the purely disformal case. Then the
Gauss-Bonnet term will be presented in both the purely conformal and purely disformal cases.

1. Einstein-Hilbert Lagrangian

Let us consider a normalized, pure disformal relation,

ḡμν ¼ gμν þ π;μπ;ν; ḡμν ¼ gμν − γ20π
;μπ;ν; (B1)

with γ20 ¼ 1
1−2Xπ

, Xπ ¼ − 1
2
π;μπ

;μ, where the free function has been absorbed by a field redefinition π ¼ R BðϕÞdϕ. This
simple form suffices to relate DBI Galileons to disformally coupled theories [18]. The field dependence will be restored in
the final result.
The connection (A3) and curvature tensor (36) for the above relation are

Kα
μν ¼ ḡαλðπ;λπ;μνÞ ¼ γ20π

;απ;μν: (B2)

R̄α
βμν ¼ ḡαλðRλβμν þ γ20π;λ½μπ;ν�βÞ: (B3)
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Note that the form (B1) has been assumed in the last
expression to factor out the inverse barred metric (the
first index can be then straightforwardly lowered,
R̄αβμν ¼ Rαβμν þ γ20π;α½μπ;ν�β). The Ricci tensor and scalar
are given by

R̄μν≡ R̄λ
μλν ¼Rμν− γ20Rαμβνπ

;απ;βþ γ20f½Π�π;μν−π;ναπ
;α
;μg

− γ40fhΠiπ;μν−π;απ;αμπ
;βπ;βμg; (B4)

R̄≡ ḡμνR̄α
μαν ¼ R − 2γ20hRμνi þ γ20ð½Π�2 − ½Π2�Þ

− 2γ40ð½Π�hΠi − hΠ2iÞ: (B5)

The transformed Einstein-Hilbert Lagrangian density
can be obtained from Eq. (38),ffiffiffiffiffiffi
−ḡ

p
R̄¼ ffiffiffiffiffiffi

−g
p �

1

γ0
R− γ0hRμνi− γ30ð½Π�hΠi− hΠ2iÞ

�
(B6)

¼ ffiffiffiffiffiffi
−g

p �
1

γ0
R − γ0ð½Π�2 − ½Π2�Þ þ∇αξ

α

�
; (B7)

in terms of a total derivative that does not contribute to the
bulk equations of motion.10 The above Lagrangian has the
right Horndeski form (5) with G4 ¼ γ−10 ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2Xπ

p
,

G4;Xπ
¼ −γ0 and Xπ ¼ − 1

2
π;μπ

;μ, therefore producing sec-
ond-order equations of motion.
It is possible to restore the field dependence in the

disformal relation through a field redefinition π ¼R ffiffiffiffiffiffiffiffiffiffi
BðϕÞp

dϕ in the Lagrangian density (B7). Then

π;μ ¼
ffiffiffiffi
B

p
ϕ;μ, π;μν ¼

ffiffiffiffi
B

p
ϕ;μν þ 1

2

B;ϕffiffiffi
B

p ϕ;μϕ;ν and the trans-

formed Einstein-Hilbert term becomes

ffiffiffiffiffiffi
−ḡ

p
R̄ ¼ 1

γb
R − Bγbð½Φ�2 − ½Φ2�Þ þ B;ϕγbð2X½Φ� þ hΦiÞ;

(B9)

with γb ≡ ð1 − 2BXÞ−1=2, X ¼ − 1
2
ϕ;μϕ

;μ. As these expres-
sions contain no square roots of B, they are valid for
negative values and recover the special case B ¼ −1. Note
that allowing B to depend on ϕ adds lower order Horndeski
terms, which are proportional to B;ϕ. These can be
simplified by the addition of a total derivative11

ffiffiffiffiffiffi
−ḡ

p
R̄ ¼ 1

γb
R − Bγbð½Φ�2 − ½Φ2�Þ þ B;ϕ

γbB
ðγ2d − 2Þ½Φ�

þ 2X

�
B;ϕ

γbB

�
;ϕ
; (B10)

which corresponds to G4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2BX

p
, G3 ¼ B;ϕ

γbB
ðγ2d − 2Þ

and G2 ¼ 2XðB;ϕ

γbB
Þ
;ϕ

in the original Horndenski form

(3)–(5).

2. Horndeski Lagrangian

The transformation rules for the Horndeski Lagrangian
(3)–(6) under special disformal maps are presented in
Ref. [33]. In this section we derive the transformation
rules for a normalized, pure disformal relation (B1) in detail
for L2;L3 and L4. The lowest-order term is trivial to
compute,

L2 ¼ G2ðXπ; πÞ →
1

γ
G2ðγ2Xπ; πÞ≡ 1

γ
Ḡ2; (B11)

where the γ−1 factor arises from the barred volume element
and a bar over a function means that the factor γ2 has been
reabsorbed into the definition of the function
Ḡi ≡Giðγ2Xπ; πÞ. Implicit dependence on Xπ; π of the
Horndeski functions will be assumed in the following. The
next term is also simple to transform, noting that
π;μν → ∇̄μ∇̄νπ ¼ γ2π;μν,

L3 ¼ G3½Π� → γḠ3ð½Π� − Bγ2hΠiÞ: (B12)

See the footnote before Eq. (B10) on how to write cubic
terms in Horndeski’s form.
The quartic term is more complicated, but its Jordan

frame counterpart can be easily restored to a canonical
Horndeski by noting that ½Π�2−½Π2�→γ4f½Π�2−½Π2�−
2γ2ð½Π�hΠi−hΠ2iÞg, G4;Xπ

→Ḡ4;X̄π
¼Ḡ4;Xπ

ð∂X̄π=∂XπÞ−1¼
γ−4Ḡ4;Xπ

and following the same considerations used to
transform (B6) into (B7),

L4 ¼ G4Rþ G4;Xπ
ð½Π�2 − ½Π2�Þ → Ḡ4

γ
Rþ

�
Ḡ4

γ

�
;Xπ

ð½Π�2

− ½Π2�Þ þ 2γḠ4;πðhΠi þ 2Xπ½Π�Þ: (B13)

It can be seen that on top of a redefinition G4 →
G4

γ , if
G4;π ≠ 0 a part of the Lagrangian is projected onto the
lower order contribution L3 (last term).

3. Gauss-Bonnet term

Besides the Ricci scalar present in the Einsten-Hilbert
action, Lovelock’s theorem allows for higher curvature
terms whose variation gives second-order equations of
motion [13]. The following is the Gauss-Bonnet (GB)
term, which does not contribute to the equations of motion

10This can be shownbypartial integration of the last term in (B6),

−γ30ð½Π�hΠi − hΠ2iÞ ¼ ð∇αγ0Þðπα□π − π;αβπ;βÞ
¼ −γ0ð½Π�2 − ½Π2�Þ þ γ0hRμνi þ ∇αξ

α;

(B8)

with ξα ¼ γ0ðπα□π − π;αβπ;βÞ. The first equality uses the fact that∇μγ0 ¼ −γ30π;απ;αμ, and the second follows after integration by
parts and noting that π;β∇½α∇β�π;α ¼ 2Rαβπ

;απ;β.
11It is possible to remove the fhΦi term in Eq. (B9) by adding

∇αðgϕ;αÞ ¼ g½Φ� − g;XhΦi − 2Xg;ϕ with g ¼ R fdX þ sðϕÞ.
Choosing g ¼ − B;ϕ

γB allows us to obtain Eq. (B10).
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in four dimensions. In this section we will compute the
transformed GB term,

Ḡ ¼ R̄2 − 4R̄μνR̄μν þ R̄μναβR̄μναβ: (B14)

for a special conformal and a normalized special disformal
mapping. Note that these results are essentially different
from the projection of the bulk GB term into a codimension
one submanifold, which is the usual approach in brane-
world gravity [97].

a. Pure conformal relation

Under a conformal transformation of the metric,

ḡμν ¼ Ω2ðϕÞgμν; (B15)

one finds the following transformation of the quadratic
contractions,

R̄2 ¼ Ω−4½R2 − 12RΩ−1ð□ΩÞ þ 36Ω−2ð□ΩÞ2�; (B16)

R̄μνR̄μν ¼ Ω−4½RμνRμν − 2Ω−1ð2RμνΩ;μν þ R□ΩÞ þΩ−2ð8RμνΩ;μΩ;ν − 2Rð∂ΩÞ2 þ 4Ω;μνΩ;μν þ 8ð□ΩÞ2Þ
−Ω−3ð4Ω;μνΩ;μΩ;ν − ð□ΩÞð∂ΩÞ2Þ þ 12Ω−4ð∂ΩÞ2�; (B17)

R̄μνρσR̄μνρσ ¼ Ω−4½RμνρσRμνρσ − 8Ω−1RμνΩ;μν þ 4Ω−2ðð□ΩÞ2 þ 2Ω;μνΩ;μν − Rð∂ΩÞ2 þ 4RμνΩ;μΩ;νÞ
þ 8Ω−3ðð□ΩÞð∂ΩÞ2 − 4Ω;μνΩ;μΩ;νÞ þ 24Ω−4ð∂ΩÞ2�; (B18)

and the transformed Gauss-Bonnet term reads

Ḡ ¼ Ω−4½Gþ 4Ω−1ð2RμνΩ;μν − R□ΩÞ þ 2Ω−2ð4ðð□ΩÞ2 −Ω;μνΩ;μνÞ − 8RμνΩ;μΩ;ν þ 2Rð∂ΩÞ2Þ
þ 8Ω−3ð4Ω;μνΩ;μΩ;ν − ð□ΩÞð∂ΩÞ2Þ − 24Ω−4ð∂ΩÞ2�: (B19)

The GB action becomes, after integrating by parts [e.g. terms ∇μðΩ−7Ω;μΩ;νΩ;νÞ or ∇μðΩ−1RμνΩ;νÞ],Z
d4x

ffiffiffī
g

p
Ḡ ¼

Z
d4x

ffiffiffi
g

p ðGþ ΔLHÞ; (B20)

where the additional terms ΔLH can be expressed in Horndeski form (3)–(6) with

ΔG2ðϕ; XÞ ¼ −176 Ω−4XΩ; ΔG3ðϕ; XÞ ¼ −48 Ω−3XΩ; ΔG4ðϕ; XÞ ¼ 8 Ω−2XΩ; ΔG5ðϕ; XÞ ¼ −8 Ω−1; (B21)

andΩ ¼ ΩðϕÞ, XΩ ¼ − 1
2
ð∂ΩÞ2. Therefore, one concludes that adding the Gauss-Bonnet term to the Horndeski action does

not change the structure of the theory under a purely conformal transformation; it merely changes the functions
GiðΩðϕÞ; XÞ.

b. Normalized pure disformal relation

We will now compute the transformation rules for the Gauss-Bonnet term under a map given by a normalized, pure
disformal relation (B1). The R̄2 term follows from (B5), while the other terms read

R̄μνR̄μν ¼ ½R2
μν� − 2γ2ðhR2

μνi − hRμνRαμβνiÞ þ γ4ðhhRαμβνRγμδνii þ hRμνi2Þ þ 2γ2f½Π�½RμνΠ� − ½ΠRμνΠ�
þ γ2ðhhRμανβΠβγΠβ

γ ii þ hΠRμνΠi þ 2hRΠ2i − hRαμβνΠαβi½Π� − 2hRμνΠi½Π� − hΠi½RμνΠ�Þ þ γ4ðhhΠμαRλασβΠβνii
− hRαμβνΠαβihΠi þ hRμνiðhΠ2i − hΠi½Π�ÞÞg þ γ4f½Π4� − 2½Π�½Π3� þ ½Π�2½Π2� þ 2γ2ð½Π3�hΠi − ½Π�2hΠ2i
− ½Π�½Π2�hΠi þ 3½Π�hΠ3i − 2hΠ4iÞ þ γ4ðhΠi2ð½Π�2 þ ½Π�2Þ − 2hΠihΠ3i − 2½Π�hΠihΠ2i þ 2hΠ2i2Þg; (B22)

R̄αβμνR̄αβμν ¼ ½½R2
αβμν�� − 4γ2hRμαβγRναβγi þ 4γ4hhRαμβνRαλβσii

þ 4γ2ð½½ΠαγRαβγδΠβδ�� þ 4γ2hΠαβRμαβγΠγνi þ 2γ4fhΠihRαμβνΠαβi − hhΠαλRμανβΠβσiigÞ
þ γ4f2ð½Π2�2 − ½Π4�Þ − 8γ2ðhΠ2i½Π2� − hΠ4iÞ þ 4γ4ðhΠ2i2 − 2hΠ3ihΠi þ hΠi2½Π2�Þg: (B23)

The total result is
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Ḡ ¼ R2 − 4½R2
αβ� þ ½½RαβγδRαβγδ�� − 4γ2fhRαβγμRαβγνi − 2hRαμRανi − 2hRαμβνRαβi þ RhRμνig

þ γ2f2R½Π�2 − 2R½Π2� þ 8½ΠRαβΠ� þ 4½½ΠαγRαβγδΠβδ�� − 8½Π�½RαβΠ�g
− 4γ4f2hhRμανβΠαγΠβ

γ ii − 4hΠαβRμαβγΠγνi þ 4hRαβ · Π2i − RhΠ2i þ 2hΠRαβΠi
− 2½Π�hRαμβνΠαβi − 4½Π�hRμαΠi þ R½Π�hΠi þ hRμνið½Π�2 − ½Π2�Þ − 2hΠi½RαβΠ�g
þ γ4f½Π�4 − 6½Π�2½Π2� þ 3½Π2�2 þ 8½Π�½Π3� − 6½Π4�g
þ 4γ6f6hΠ4i − 6hΠ3i½Π� þ 3hΠ2i½Π�2 − hΠi½Π�3 − 3hΠ2i½Π2� þ 3hΠi½Π�½Π2� − 2hΠi½Π3�g: (B24)

Here the terms arising from R · R, R · Π and Π · Π
correspond to the lines 1, 2–4, 5–6. The first three terms are
just the Gauss-Bonnet term of the unbarred metric.
A theory whose Lagrangian density includes aR
d4x

ffiffiffiffiffiffi
−ḡ

p
¯G term of the above form does not belong to

the Horndeski Lagrangian. This follows from the presence
of terms terms with up to four contractions of the second
derivatives of the scalar field π in the transformed

Gauss-Bonnet term (B24). However, we conjecture that
the equations of motion for such a theory will be second
order through the existence of implicit constraints (cf. Sec. IV),
as the variation with respect to the metric would involve the
Jacobian determinant and the higher-order terms introduced by
the disformal transformation would not be present in the
original frame. The effects of the Gauss-Bonnet term in
disformally coupled theories will be analyzed elsewhere.
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