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We analyze gravitational theories with quadratic curvature terms, including the case of conformally
invariant Weyl gravity, motivated by the intention to find a renormalizable theory of gravity in the
ultraviolet region, yet yielding general relativity at long distances. In the Hamiltonian formulation of Weyl
gravity, the number of local constraints is equal to the number of unstable directions in phase space, which
in principle could be sufficient for eliminating the unstable degrees of freedom in the full nonlinear theory.
All the other theories of quadratic type are unstable—a problem appearing as ghost modes in the linearized
theory. We find that the full projection of the Weyl tensor onto a three-dimensional hypersurface contains
an additional fully traceless component, given by a quadratic extrinsic curvature tensor. A certain
inconsistency in the literature is found and resolved: when the conformal invariance of Weyl gravity is
broken by a cosmological constant term, the theory becomes pathological, since a constraint required by
the Hamiltonian analysis imposes the determinant of the metric of spacetime to be zero. In order to resolve
this problem by restoring the conformal invariance, we introduce a new scalar field that couples to the
curvature of spacetime, reminiscent of the introduction of vector fields for ensuring the gauge invariance.
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I. INTRODUCTION

One of the most interesting theories of gravity is the Weyl
gravity [1], whose action is defined by the square of the Weyl
tensor, § = —1 ['d*x,/=gC,,,,C*"°. The intriguing prop-
erty of this theory is its invariance under the local conformal
transformation of the metric, g,, — Q*(x)g,,, making it
consequently insensitive to the angles. Furthermore, it is a
power-counting renormalizable theory of gravity thanks to
the presence of higher-order derivatives in the Lagrangian.
Hence, it can be considered as an ultraviolet completion of
gravity. For a review, see [2] and references therein. More
generally, perturbative renormalization of general relativity
requires us to add to the Einstein-Hilbert Lagrangian
invariant counterterms that are quadratic in curvature
[3-5]. Furthermore, Weyl gravity is also useful for the
supergravity construction [6,7] and it also emerges from
the twistor string theory [8].

Weyl gravity is a special case of higher-derivative theories
of gravity which have been extensively studied, especially in
the case of three dimensions. One such example is the new
massive gravity in three dimensions [9], whose Lagrangian
includes quadratic curvature terms that contain four-
derivative contributions. There also exists a recent example
of four-dimensional higher-derivative gravity, which is a
combination of the FEinstein gravity with cosmological
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constant, together with the contribution of the Weyl tensor
squared term. An appropriate fine-tuning of the cosmologi-
cal constant and the coefficient of the Weyl term produces the
so-called critical gravity, where the additional massive spin-
2 excitations around an anti—de Sitter background become
massless [10]. The relation of such critical gravity to
conformal gravity in four-dimensional spacetime has been
studied in [11]. Recently it has been proposed that one can
obtain solutions of four-dimensional Einstein gravity with
cosmological constant by introducing a simple Neumann
boundary condition into the conformally invariant Weyl
gravity [12]. In a somewhat similar fashion, it has been
argued that one can obtain ghost-free four-dimensional
massive gravity by introducing Dirichlet boundary condi-
tions into curvature-squared gravity on an asymptotically de
Sitter spacetime [13]. Weyl action is also an important object
in recent proposals, that relates the conformal symmetry
group, gravity and particle physics [14,15]. It is possible
that this idea is closely related to the earlier proposal by
Sakharov on the generation of both Einstein-Hilbert action
and higher-order curvature terms from the quantum fluctua-
tions of vacuum when space is curved [ 16]. For further works
on the generation of Einstein gravity as a quantum effect, see
[17-19].

The inclusion of higher-order curvature terms is gen-
erally motivated by string theory, since such terms are
known to appear in the low energy limit [20,21].

On the other hand, the price that we have to pay in
order to achieve a renormalizable theory of gravity is
the inclusion of extra gravitational degrees of freedom.

© 2014 American Physical Society
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They appear because of the higher-order time derivatives
present in the Lagrangian. Moreover, those extra degrees of
freedom often have negative kinetic terms, and are usually
referred to as ghosts when the linearized theory is quan-
tized. Typically, theories with ghosts are considered to be
inconsistent, since they are either violently unstable or
nonunitary, depending on whether the states associated
with the higher-derivative degrees of freedom are consid-
ered to possess negative energy or positive energy but
indefinite norm. However, there are attempts how to resolve
this problem as for example in [22]; see also [23,24].

It is important to stress that there is an alternative way to
construct a renormalizable theory of gravity, which is called
Hoftava-Lifshitz gravity [25,26]. It achieves renormaliz-
ability via reduction of the gauge symmetry. Since the
theory is invariant under foliation preserving diffeomor-
phisms, one can exclude higher-order time derivatives from
the action, avoiding the ghost problem. The lack of full
diffeomorphism invariance has significant consequences
for the structure of the theory. For reviews, see [27,28]. The
Hamiltonian formulation of Hotava-Lifshitz gravity has
been studied particularly in [29,30]. For a review, see [31].
Generalized Horava-Lifshitz gravitational theories were
proposed and analyzed in [32-35]. Proposals of covariant
alternatives to Horava-Lifshitz gravity were presented in
[36,37] and their Hamiltonian structure was studied
in [38,39].

Previous lines suggest that gravitational theories involv-
ing higher-order curvature terms are very interesting and
deserve to be studied from different points of view. An
important question is to understand their Hamiltonian
dynamics. The strong coupling limit of conformal gravity
was considered first in [40]. The Hamiltonian formulation
of the higher-derivative theories of gravity (up to quadratic
curvature terms) was performed in [41,42], and later also
considered in [43,44]. The Hamiltonian analysis of more
general f(Riemann) theories of gravity was considered
in [45].

The main goal of the present paper is to perform the
Hamiltonian analysis of the curvature-squared theories of
gravity in greatest details. The previous analyses have not
been complete in all respects, and due to the new interest in
higher-derivative gravity they deserve a new detailed
treatment. Specifically, we are interested in the structure
of constraints which crucially depends on the values of the
parameters that appear in the action, what will be intro-
duced in the next section. It turns out that each case requires
a separate treatment since the nature of various constraints
and the number of physical degrees of freedom depend on
the value of the parameters. The theory with most sym-
metries is the Weyl gravity. A surprising situation occurs
when Weyl gravity is supplemented with a nonzero
cosmological constant. It obviously breaks conformal
invariance, but diffeomorphism invariance is retained.
There is no evident reason why we could not include such
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a constant term into the action. However, the investigation
of the structure of constraints reveals that the theory
becomes inconsistent: the requirement of the preservation
of a secondary constraint leads to the condition that the
determinant of the metric of spacetime should be equal to
zero, which is satisfied when either the lapse N or the
determinant of the three-dimensional metric £ is zero,
V-9=N Vh =0. We analyze this situation further by
introducing a scalar field ¢ into the action in order to regain
the conformal invariance, following [46,47]. The scalar
field has to couple to the scalar curvature and its kinetic
term must have the wrong sign in order to obtain the Weyl
invariant action. In the Hamiltonian analysis, we obtain a
first-class constraint that is the generator of the Weyl
symmetry. This symmetry can be gauge fixed by imposing
the condition ¢» = const. When we insert this condition into
the action, we obtain the standard Einstein-Hilbert term
with the condition that the original kinetic term for ¢
corresponds to the ghostlike degree of freedom.

II. GRAVITATIONAL ACTION WITH
QUADRATIC CURVATURE TERMS

A. Action and its physical degrees of freedom

We consider the generally covariant theory of gravity in
four-dimensional spacetime whose action consists of the
Einstein-Hilbert part, the cosmological constant and the
quadratic curvature terms. The gravitational action reads

R
Se = / d*x\/=g {A +o- % Caps O + §R2 el
K

(2.1)

where k, @, f# and y are coupling constants. We consider all
four-dimensional integrals to be taken over the whole
spacetime M. The Weyl tensor is defined as

2
Cﬂl/[)(i = R;wp(i - m (gu[/JR(r]y - gy[pRﬂ]ﬂ>

2

—_—— R
+(d_1)(d_2>gy[pga]y >

(2.2)

where d is the dimension of spacetime. The Weyl tensor is
by definition the traceless part of the Riemann tensor. In the
last term of the action (2.1), G is the Gauss-Bonnet-Chern
curvature term,

G = Ryp5R,0p0€" €77 = R,,,,R*"° — AR, R + R*.

(2.3)

Hvpo

In four-dimensional spacetime, its integral [ d4x\/—_gG
becomes a topological invariant which is proportional to
the Euler characteristic of the spacetime manifold. Since we
consider smooth variations of spacetime, which do not
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change its topology, the Gauss-Bonnet-Chern part of the
action can be regarded as a constant. Hence we can drop it.
The Weyl tensor squared can be written as

1
ClupsCHP? = 2<RMDR" - §R2> +G. 2.4)
Thus the action (2.1) becomes
SR:/d“x\/_ A+ Rt (210 R2
2% 2 Ry 6 8
+ (7/ - %) G} . (2.5)

The actions (2.1) and (2.5) are of course identical.
However, when we discard the Gauss-Bonnet-Chern topo-
logical invariant term in both actions, y f d4x\/—_gG and
(y —a/4) [ d*x,/=gG, respectively, the resulting actions
differ by a multiple of the said invariant, namely by
—(a/4) [ d*x,/=gG . Even though this topological invari-
ant term has no impact on the physical dynamics of the
theory, it affects the Hamiltonian formulation of the theory
in a significant way. Namely, the structure of the constraints
of the theory is considerably simpler for the action (2.1)
than for the action (2.5), when both actions are considered
without the explicit invariant term | d4x\/—_gG. In other
words, the topological invariant part of the Weyl tensor
squared (2.4) action simplifies the Hamiltonian analysis
significantly.

The quadratic curvature terms are known to render the
theory renormalizable when the cosmological constant is
absent [48]. The theory is also known to possess the
property of asymptotic freedom [49]. For nonvanishing
couplings, the action (2.1) contains eight local degrees of
freedom [48,50]. On the Minkowski background, two
degrees of freedom are associated with the usual massless
spin-2 graviton, five modes are associated with a massive
spin-2 excitation, and one with a massive scalar. Moreover,
the massive spin-2 component carries negative energy,
which implies that the theory is unstable. Alternatively,
the negative energy states can be regarded as positive
energy states with indefinite norm, what leads to the
violation of unitarity.

Although pure curvature-squared gravity without the
Einstein-Hilbert part admits standard vacuum solutions,
asymptotically flat solutions do not couple to a positive
definite matter distribution [5,50], e.g., in the case of the
Schwarzshild solution. For that reason the Einstein-Hilbert
part of the action is necessary in the infrared region. As we
already noted above, the Einstein-Hilbert action can be
generated by quantum effects whenever the spacetime is
allowed to be curved [16-19].

Some of the extra degrees of freedom can be removed
by certain choices of the coupling constants. For A = 0,
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k' =p=y=0and a =1, the action (2.1) becomes the
conformally invariant action of Weyl gravity,

(2.6)

S Weyl —

~3 [ T

The additional local symmetry under conformal trans-
formations removes one degree of freedom, but it is not
sufficient for removing all the ghosts, namely the negative
energy spin-2 excitations. On the Minkowski background,
the six degrees of freedom are associated with ordinary
massless spin-2 and spin-1 excitations, and with a massless
spin-2 ghost [51].

On the cosmologically relevant anti—de Sitter back-
grounds, the extra gravitational degrees of freedom can
appear as a partially massless spin-2 field [12,52]. This is
because the conventional connection between gauge invari-
ance, masslessness and propagation on null cones holds
generically only in flat four-dimensional spacetime [53].
On (anti-)de Sitter backgrounds, higher spin fields (s > 1)
can become partially massless, carrying a number of
degrees of freedom that is between the extremes of flat
space, 2s 4+ 1 for massive and 2 for massless fields. This
requires that the mass is appropriately tuned with respect to
the cosmological constant [54].

On the other hand, setting @ = 0 in the action removes
the negative energy spin-2 component, leaving only the
extra scalar degree of freedom. The result would indeed
be the simplest case of f(R) gravity. But then renor-
malizability is lost. We consider the potentially renorma-
lizable theories exclusively in this paper. Hence we
assume o # 0.

B. Equations of motion

The variation of the gravitational action with respect to
the metric of spacetime ¢"* leads to the following equations
of motion,

1
_gyyA+; (R/,w

p 1
+5 R\ Ry — Zg,wR -V,V,R+9,V’V,R| =T,

1
_Eg;u/ > + a(zvpv C/Jm/o- + Cp;w(rR )

2
2.7)

where the energy-momentum tensor of matter is defined as

2 5Sma er
T, = 59#;‘ . (2.8)

Matter is assumed to be coupled minimally to the metric of
spacetime. The trace of the equations of motion is a linear
inhomogeneous second-order differential equation for the
scalar curvature,
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3p

1
~4A = R+=-V'V,R=T. (2.9)
K

with no contribution from the Weyl gravity part of the
action. The boundary terms which arise from the variation
of the action are discussed next.

C. Boundary surface terms

We require that the solutions of Einstein field equations
be extrema of the Einstein-Hilbert action when only the
variation of the metric (and not its derivatives) is fixed to
zero on the boundary of spacetime. In general relativity, we
cannot fix derivatives of the variation of the metric on the
boundary, because that would overconstrain the system.
Therefore, we have to discuss the surface terms that arise in
the variation of the action with respect to the metric of
spacetime.

The variations of the metric are required to vanish on the
boundary of spacetime, g, = 0. In fact, it is sufficient to
fix only the variation of the induced metric y,, on the
boundary of spacetime, dy,, = 0, while leaving the varia-
tion normal to the boundary free. This is because a variation
of the action is invariant under diffeomorphism gauge
transformations and there always exists a gauge trans-
formation V&, with £, =0 on the boundary, which
transforms &g, into &y, .

Whenever the integrand of a surface term is proportional
to g, or &y, on the boundary of spacetime, the surface
term vanishes. Thus we only need to consider surface terms
that involve derivatives of the variation of the metric.

The variation of the Einstein-Hilbert action with respect
to the metric includes a nonvanishing surface term on the
boundary of spacetime, which can be written as

1
- ﬂ M d’x |}/|I‘ﬂ(vb5‘gﬂ - gDPVM[SgUP)

1
:——]{ d*x+/|y|6K,

K Jom

(2.10)

where OM is the boundary of spacetime M, natural
integration measure on OM is assumed, r# is the
outward-pointing unit normal to the boundary (with norm
e=r," ==xl1),7,, = g, — er,r, is the induced metric on
the boundary, and 6K is the variation of the trace of the
extrinsic curvature of the boundary of spacetime,
K =V,r". In order to obtain a variational principle
consistent with Einstein equations when only the variation
of the metric (and not its derivatives) is fixed to zero on the
boundary OM, we add the surface term 1§, d®x\/|y|K
into the Einstein-Hilbert action, so that the surface term in
the variation of the original action gets canceled,

1 1
SEH ——/d4x‘/—gR+—% &Ex/|y|K.  (2.11)
2K K Jom
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This completion to Einstein-Hilbert action was originally
found in [55] and later considered in [56]. It is regarded as
the complete standard action of general relativity.

As long as the geometry of spacetime is spatially
compact, the action (2.11) is well defined. But in spatially
noncompact spacetimes, the action diverges. Then one
must choose a reference background, including the metric
of spacetime g, and matter fields y, and then define the
physical action as the difference of the variable action
compared to the action of the fixed background [57],

Spnyslg: ] = Slg. v — Slgo. wo- (2.12)
This physical action is finite if we require that the field
variables and the reference fields induce the same field
configuration on the boundary of spacetime (particularly at
spatial infinity).

Does the variation of the curvature-squared part of the
action (2.1) yield extra surface terms? The variation of
the action indeed contains nonvanishing surface terms. The
first one is obtained from the R? part of the action in a
similar way as in the case of Einstein-Hilbert action,

5P VR (V0" - g, o)
oM

= —27{ d*x+/|y|RSK.
2 Jom

(2.13)

The Weyl gravity part of the action implies the second
surface term as

1 2
a]{ d*x 7|7, [Rl,pvl’ég’“’ ~5 (R,,p - ggpr) VH§g?
oM

1 1
LA 3RV,,59”’“] . (2.14)

In general, it appears to be impossible to write either of
these boundary contributions as a variation of a functional
on the boundary of spacetime. Some cases of very high
level of symmetry, e.g. maximally symmetric spacetime,
might be an exception. Although in general relativity we
cannot fix the covariant derivatives of the variation of the
metric on the boundary, we are now considering a higher-
derivative theory, where imposing boundary conditions on
the derivatives of the variation might be both permitted and
natural, because the metric carries extra degrees of freedom
due to the higher-order time derivatives. We shall postpone
the final discussion on surface terms until Sec. III D, where
the theory is given in a first-order form using Arnowitt-
Deser-Misner formulation generalized for higher-derivative
theory. Surface terms arising in Hamiltonian formalism are
discussed in Sec. IV.

The variation of the Gauss-Bonnet-Chern topological
invariant vanishes identically when the spacetime has no
boundary. When the spacetime has boundary, the variation
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contains a surface term that turns out to be a variation of a
functional on the boundary of spacetime. That boundary
term can then be added into the term f d4\/—_gG, thus
obtaining a true topological invariant whose variations
vanish identically. In the presence of boundaries, the
topological invariant can be written as

/ d*x\/—gG + 4 7{ &x\/|y| <RK - 2R, r"K
oM

+ 2R

K#oyro — KW KA 4 K KK — 2K
HUPO 3 uvErp 122 3

= =327y (M), (2.15)
where K, denotes the extrinsic curvature on the boundary
of spacetime. The Euler characteristic of spacetime M is
denoted by y(M). For a brief review of Gauss-Bonnet-
Chern theorem, see, e.g., [58].

II1. FIRST-ORDER ARNOWITT-DESER-MISNER
REPRESENTATION OF THE HIGHER-
DERIVATIVE GRAVITATIONAL ACTIONS

We consider the ADM decomposition of the gravita-
tional field [59]. In the first two subsections, however, we
shall work in a more general formalism that does not
assume any given basis. After that the more traditional
formalism in ADM coordinate system is applied. For
reviews and mathematical background, see [60].

A. Foliation of spacetime into spatial hypersurfaces

We consider a globally hyperbolic spacetime M that
admits a foliation into a family of nonintersecting Cauchy
surfaces X,, which cover the spacetime. Each Cauchy
surface X, is a spacelike hypersurface, such that every
causal curve intersects X, exactly once. These spatial
hypersurfaces are parametrized by a global time function t.

The metric tensor g, of spacetime induces a metric 4,
on the spatial hypersurface %,

h;w = G +ny,n,, (3.1
where n, is the future-directed unit normal to X%,. The
metric of spacetime has the signature (—, +, +, +). Since
n, is timelike, it has the norm n,n* = —1. Conversely, the
metric of spacetime can be expressed in terms of the
induced metric on X, and the unit normal to X%, as
9w = Ny — n,n,. The induced metric h,, is sometimes
referred to as the first fundamental form of the
hypersurfaces X,. With one spacetime index raised,
W, = g"h,, = "’ h,,, itis the projection operator onto X,

hy, = &) + n*n,. (3.2)
The subscript Lin front of a tensor is used to denote that it has
been projected onto %, thus orthogonal to the normal n#, e.g.,

PHYSICAL REVIEW D 89, 064043 (2014)
T, = W, he, TP, (3.3)

We denote the metric compatible covariant derivatives
on (M,g,) and (X, h,) by V and D, respectively.
The spatial covariant derivative D of a (k, [)-tensor field
T on %, is given in terms of the covariant derivative V on
spacetime as

DMTDII..Dkﬂr'-ﬂ/ — hﬁyhl/la] . hl/kakh/"lp] . hﬂl
X ngalw(lk/}lm/il’

Pi
(3.4)

where in the right-hand side one considers the extension of
T on spacetime.

The extrinsic curvature tensor of the spatial hypersurface
Z, is defined as the component of V ,n, that is fully tangent
to X,

K, =hm,\N,n,=V,n,+na,, (3.5)
where by a, we denote the acceleration of an observer with
velocity n,,,

a,=V,n,=n"V,n,. (3.6)
The symmetry of K, follows from the fact that the shape
operator u—>V,n is self-adjoint, K(u,v) =V, n-v =u-
V,n = K(v,u), for any vectors u and v tangent to X,.
Incidentally, the extrinsic curvature (3.5) can be written as

the Lie derivative of the induced metric 4, on X, along the
unit normal n to X,

1
- _
K zﬁnh

v

(3.7)

(2

The trace of the extrinsic curvature is denoted by
K = K, . The extrinsic curvature is sometimes referred
to as the second fundamental form of X,.

B. Decomposition of curvature tensors
with respect to spatial hypersurfaces

In order to write the gravitational actions (2.1) or (2.5) in
terms of the fundamental forms of the spatial hypersurfaces
%, and the unit normal n, to these hypersurfaces, we have to
decompose the curvature tensors into components tangent
and normal to the hypersurfaces. A detailed account of
these standard projection relations is presented, because
one of our projection relations for the Weyl tensor differs
from the ones found in the literature, namely in Ref. [41]
and those following it.

The decomposition of the Riemann tensor of spacetime
into components tangent and normal to the hypersurfaces
2, is given by the following projection relations:
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(i) Gauss relation
— 0 7 o
J_Rm//m = hlﬂhﬂvh/ﬂh GRaﬂrﬁ

=ORps + KpKyo — KoK (3.8)

vp3

(i) Codazzi relation

LR;wpn = hayhﬂthypn(sRa[)’yﬁ = 2D[/4Ku]/); (3.9)

(ii1) Ricci relation

(Riunm = haﬂnﬁh7yn5Raﬂy5

=K,K/~-L,K, + Dya, +a,a,.
(3.10)

The remaining projections of the Riemann tensor are either
zero or related to the given ones by the symmetries of the
Riemann tensor. In the Gauss relation (3.8), <3>R”WM is the
Riemann tensor of the three-dimensional hypersurface %,.
In the used notation, the tensor index n has a special
meaning, since it refers to the contraction with the unit
normal n#.

For the Ricci tensor R,, = R?,,,

the following projection relations

of spacetime we obtain

R, =®R, +K,K-2K, K, +L,K

L Hp n
-Dya, —aya,, (3.11)
R =D,K",—D,K, (3.12)
Ry, = K, , K" — W L,K,, + D, + a,a*,  (3.13)

which are obtained from the contractions of the Gauss,
Codazzi and Ricci relations (3.8)—(3.10). Note that for any
covariant tensor T which is tangent to %,, its Lie derivative
along n, L£,T, is also tangent to X,. This is because
L,h*, =n"a,, and hence L£,T is equal to its projection
onX, L,T=L,T= LT

The decomposition of the scalar curvature R of space-
time can be written as

R=h"R,, — Ry,
=GR + K> - 3K, K" + 2" L,K,, — 2D,a"
- 2a,ad"

=GR+ K, K" — K>+ 2V, (n"K — a"), (3.14)

where in the last equality we have written the Lie
derivative as
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[’nK;w = vnK;w + (K;/} - nﬂaﬂ)K/w + (Kup - nvap)[(yp
(3.15)
in order to write its trace as
mcC,K,, =V,K+2K, K"
=V, (n"K) - K* + 2K, K" . (3.16)
We also used the identity
D,d" + a,a" =V ,a", (3.17)

which can be proven easily by applying (3.4) to D,a" and
obtaining the component of V,a, which is fully orthogonal
to %, n*n"V,a, = —a,a". For such decompositions of
covariant derivatives of tensors into components tangent
and normal to Z,, see [39]. The last form in (3.14) is useful
for the Einstein-Hilbert part of the action, since the last term
in \/=gR is a covariant divergence that can be written as a
surface term. The second form in (3.14) is useful for the
curvature-squared part of the action, where the second-
order time derivative terms cannot be written as a
divergence.

The Ricci tensor squared is written as a sum of the
squares of its projections (3.11)—(3.13):

RuR" = Ry R* =2 Ry R+ (Ro)’. (3.18)

The combination of quadratic curvature invariants in the
Weyl action (2.6) is obtained as

v 1 vo 1 v o
R, R —§R2 = (h/‘/’h - ) R R,

2
=+ g Rnn (h”y R

1w + Rnn)_2 R

U
ik ﬂ"lR n:

(3.19)

Further, we decompose the Weyl tensor (2.2) of space-
time into components tangent and normal to the spatial
hypersurfaces X,. First we obtain the projections of Weyl
tensor where one or two arguments are projected along the
unit normal n while the rest are projected onto X;:

1Cupn = Ryvpn + Ruphuyy
= 2Dy Ky, + DoKhy, = Dy Khy,

= 2(h*, WP b7, — WOy hy W) DKy, (3.20)

and
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1 1
lC/”““" = LRH"V" + ELR/HJ - E h/ann - 8 hﬂv

1 1
== <h/,,h , — =l ) (OR,, + K, oK — L,K,,

R

2 3

+D,a,) + a,a,). (3.21)
Finally, we obtain the component of Weyl tensor which is
fully tangent to X, as

Cis = R

1
1 upe = 1M uwpe — hﬂLuRﬂ]v + hl/Loerr]ﬂ + ghﬂLOhG]DR

= IC;wpa =+ h/,tplcbnan - hﬂaJ_Cynpn

- hva_C/mcm =+ hyzu_c;mpn’ (322)

where we have defined a new tensor K,,,, as

K

uvpe — Ku/)KL/U - K;MKD/) - hup(KmrK - KI./TKTO')

+ hpm(Ky/)K - KDTKT/)) + hup(K;wK - KWKTH)
- hl/()’(K K - K,MTKT/))

Hp

1
+ 2 (hyphye = hm,hw,)(K2 - K, K™). (3.23)

This tensor is the traceless part of the quadratic extrinsic
curvature tensor K,,K,, — K,,,K .. Note that K, ,, inherits
the common symmetries of Riemann and Weyl tensors. In
(3.22), we used the fact that in any three-dimensional space,

the Weyl tensor vanishes necessarily due to its symmetries,

G c

uwpo — <3)RMW70 - 2hﬂ[ﬂ(3)Ra]v + 2hu[p(3)Ra]/4

+ hyphe, YR = 0. (3.24)

For this reason the traceless part of (3.22) consists only of
the traceless quadratic extrinsic curvature tensor (3.23).

Unlike the other projections of Weyl tensor, | C,,,, is not
fully traceless, since it satisfies

vo J—
R Cvpe = | Cunpn-

(3.25)

Evidently  C,,,, has no trace-trace part, because |C,,,, is

traceless. The Weyl tensor squared is then obtained as !

"Weyl tensor is expanded in terms of its projections as

Cuvps = 1Cupo = My Crvpo = My Cunpe = 1y | Crumo
- naJ_C/wpn +n/4nplcnun6 + nynUJ_Cm«/m + nunpj_c/mno
+ nvnalc;mpn'

When squared, each component of this expansion gives a
nonvanishing contribution only when contracted with itself.
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ClupsCHP? = ICWM/CWP" +8 1Coumn 1 C*

=4 Crppn (O, (3.26)
where as ever the indices of tensors tangent to X, are raised
(and lowered) by the induced metric (3.1) on the
hypersurface.

We should emphasize that our result (3.22) for the
component of Weyl tensor which is fully tangent to the
spatial hypersurface differs from the one given in [41],
which has been followed in the literature to date. In [41],
the component | C,,,, is obtained in a form similar to (3.22)
but without the first term C,,,,. We obtain that C,,,,
actually has a nonvanishing traceless part K, ,,, in addition
to the vanishing three-dimensional Weyl tensor (3.24). In
other words, the traceless quadratic extrinsic curvature
tensor defined in (3.23), which is present in our result
(3.22), is absent in [41].

C. ADM Variables

We introduce a timelike vector # that satisfies
#V,t = 1. This vector is decomposed into components
normal and tangent to the spatial hypersurfaces X, as
# = Nn* + N¥, where N = —n, " is the lapse function
and N* = h* ¥ is the shift vector on the spatial hypersur-
face X,. The ADM variables consist of the lapse function,
the shift vector and the induced metric (3.1) on X,. Together
they describe the geometry of spacetime.

Then we introduce a coordinate system on spacetime.
We regard the smooth function 7 as the time coordinate and
introduce an arbitrary coordinate system (x’,i = 1,2,3) on
the spatial hypersurfaces X,. The unit normal to %, can now
be written in terms of the ADM variables as

1 N
n, =—-NV,t =(-N,0,0,0), nt = (ﬁ’_ﬁ>

(3.27)

The invariant line element in spacetime is written as
ds* = =N?di* + h;;(dx" + N'dr)(dx/ + N’dr).  (3.28)

The lapse function must be positive everywhere, N > 0,
since Ndt measures the lapse of proper time between the
hypersurfaces %, and Z,, ;. In the given ADM coordinate
basis, the components of the metric of spacetime read
goo=—=N>+N;N',  goi=go=Nis gij=hij, (3.29)
where N; = h,»ij . The contravariant components of the
metric of spacetime are

1 . N . NN/

00 __ 0i __ 0 _ _
= 9T = e
(3.30)

064043-7



JOSEF KLUSON

where A" h ;. = 8. The indices of tensors that are tangent to
Z, can be lowered and raised using the induced metric /;;
on X, and its inverse h".

The extrinsic curvature tensor (3.5) is written as

1 1

Kl” ’Cnhlj:ﬁ

i (3.31)
where 0, denotes the partial derivative with respect to the
time . In the projection relations for the curvature tensors
obtained in Sec. III B, the second-order time derivatives of
the metric h;; are contained in the Lie derivative of the
extrinsic curvature,

1

ij:ﬁ ﬁ‘K

L£,K;; = (0K = LyKy), (332)

where L5, denotes the Lie derivative along the shift vector
N' on the spatial hypersurface.

The acceleration (3.6) is given by the spatial derivative of

the logarithm of the lapse function as
a,=D,InN. (3.33)

In the ADM coordinate basis, the time-components of
tensors tangent to %, are defined by the spatial components
of the tensor and the shift vector. For example,
n“A, = n,A* =0, implies Ay = A;N' and A® = 0.

Then we can present the projection relations for the
curvature tensors in terms of ADM variables. The projec-
tiozn relations (3.11)—(3.13) for the Ricci tensor are written
as

1
R;=L,K;j+ R, +K;K—-2K;K;* - y DiD;N.

(3.34)
R, = D;K/; - DK, (3.35)
- o1
Rnn = _hljﬁnKij—i_KinU +NDIDI'N’ (336)

where K = h/K;;. The scalar curvature of spacetime (3.14)
reads

N 2
R=2hVL,K;;+ PR+ K> -3K; K" - N D'DiN.
(3.37)

The projection relations (3.20)—(3.22) for the Weyl tensor
are the following,

%Since we specialize to the ADM coordinates, from now on all
tensors will be tangent to the hypersurface X,, except the unit
normal n. Hence we can omit the prefixed symbol _L from tensors
that have been projected to the hypersurface, e.g., R;; = |R;;.
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1 1
Cinjn = — 5 <5{.<5§. - §h,.jh’d)

1
X (‘CnKkl — <3)Rkl - Kle - ND](D[N> s (338)

Cijkn = 2D[1K]]k + DlKll'hj]k - D[lKhj]k’ (339)

[
Cijt = Kijkr + hixCinim = 1itCinkn — hjxCinin + 1j1Cingns
(3.40)

where the traceless quadratic extrinsic curvature tensor is
written as

Kiji = KixKji — KK ji — hix(K ;K — K, K™ ;)

+ hiy(Kjx K — K;,, K") + hjx (KK — K;,, K™))

1
= hj(KuK = KinK™) + 5 (hichji = hihji)

x (K2 = K, K™). (3.41)

The Weyl tensor squared (3.26) is obtained in the form

C

Hvpo

CHpe — 8Cinjn Cinjn - 4Cijkn Cijkm (3.42)

since KC;j; squared is zero due to the Cayley-Hamilton
theorem. We indeed obtain

Kijik* = =3P(K);; =0 (3.43)
and consequently
KiK' = —6P(K)' ;K/; = 0, (3.44)

where P(K)! ; is the characteristic polynomial,® (B4), for
the tensor K'; = hikK «; With the tensor itself as the argu-
ment, which is identically zero. This means that the
correction to the projection relation (3.40)—namely the
tensor (3.41)—has no impact on the Hamiltonian formu-
lation of the given gravitational theories (2.1). If the Weyl
tensor were coupled to a tensor (or tensors) other than itself,
the contribution of C;j;; would not vanish in general.

D. First-order ADM representation of the action

Let us consider the gravitational actions (2.1) and (2.5)
without the Gauss-Bonnet-Chern topological invariant term
proportional to [ d4x\/:§G, ie.wesety =0in (2.1), and
y —a/4 = 0in (2.5). We shall present the actions in terms
of the foliation of spacetime into spatial hypersurfaces X,
using the ADM variables and an associated coordinate
system.

’See Appendix B for the Cayley-Hamilton theorem and the
definition of the characteristic polynomial.
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Since the invariant terms in the action which are
quadratic in curvature contain second-order time deriva-
tives (3.32), we are dealing with a higher-derivative theory.
In the Lagrangian formalism this is not a problem at all,
because the Euler-Lagrange equations can in principle
contain any number of time derivatives, in the present
case up to fourth order. In the Hamiltonian formalism, the
equations of motion contain only a first-order time deriva-
tive, namely in the form df/dt={f,H}. In order to
achieve such a first-order description of the dynamics of the
higher-derivative action, we shall introduce additional
variables and constraints so that the action can be rewritten
into a form which contains only first-order time derivatives.
The additional variables describe the extra degrees of
freedom implied by the higher-order time derivatives. In
the present case, it is most convenient to regard the metric
h;; and the extrinsic curvature K;; as independent variables.
The fact that i;; and K;; are related is taken into account by
imposing their relation (3.31) as a constraint, using
Lagrange multipliers. Thus from now on we consider
the higher-derivative gravitational Lagrangian as a func-
tional of the independent variables N, N, h; ;and K;;. It
also depends on the first-order time derivative of K;;, and
we extend it with the constraint £,h;; — 2K;; = 0 multi-
plied by the Lagrange multiplier 4. That is we understand
the complete action (without matter) as a functional,

SIN,N', hyj, i, Ko, K, 2], (3.45)

where the dot denotes time derivative." Now the extra
degrees of freedom associated with the second-order time
derivative of the metric are carried by the variables K.

The first-order ADM representation of the action (2.1)
can now be written as

1 y
Sc = /dt/ d*xNVh [A + 5o (OR + K ;K — K?)
%, K

- 2()‘Cinjn Cinjn + acijkn Cijkn + §R2

(Lo~ 2K,-j)] T St (3.46)

where the expressions (3.37)—(3.39) are assumed and St
contains the surface terms. Alternatively, we could use the
action (2.5), whose first-order ADM representation is
expressed as

“There is some room for the choice of what is regarded as the
time derivative in Hamiltonian formulation of the theory. This is
discussed in Sec. IV.
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1 .
Sg = /dt/ d3xN\/E[A+2—((3)R+K,~jK” - K?)
% K

afl . 1;'
~5 <h kpit — ghfh"’>R,-ijl

(04 .. .
- ann(Q)R + K2 - Kinl]) + aRiann

+ ng + lij(l:nhij - 2Kl]):| + Ssurfa

(3.47)
and we assumed (3.34)—(3.37).

These two forms of the action (3.46) and (3.47)
differ, as mentioned previously, only by a multiple
of the Gauss-Bonnet-Chern topological invariant term,
—(a/4) [ d*x\/=gG, albeit this is no longer so evident
because it too has been decomposed with respect to the
spatial hypersurfaces as a partof the Weyl tensor squared term
(2.4). First of all the kinetic part of the Lagrangian density of
the action (3.46) is simpler than the one of (3.47). In
particular, the Weyl gravity part of the Lagrangian density
of (3.46) has no dependence on h"L,K;;, whereas the
Lagrangian density of (3.47) contains the linear term
ChiL,Ki;(PR + K? — K;yK*). This difference has conse-
quences for the structure of the constraints in the Hamiltonian
formulations of these two forms of the gravitational action.

1. Surface terms

In the case of general relativity, the surface terms are
obtained as

1 1
— ]4 P/ K + L f P/ Trlr (K — o).
K Jom K Jom
(3.48)

where y,, and r, are the induced metric and the outward-
pointing unit normal to the boundary OM of spacetime,
respectively. We should emphasize that in the first surface
term, K refers to the extrinsic curvature of the boundary
OM, while in the last term, K refers to the extrinsic
curvature of the spatial hypersurfaces X,. In our globally
hyperbolic spacetime, the boundary M consists of the
initial and final Cauchy surfaces, say X, and X, respec-
tively, and of the timelike hypersurface B that connects
those spatial hypersurfaces. The timelike part of the
boundary is the union B = | J,cg B, of the two-dimensional
boundaries B, of the Cauchy surfaces X, (at spatial infinity).
On the initial and final Cauchy surfaces ¥, and X, the
surface integrals cancel each other entirely. Thus only the
integral over B survives in the surface terms,

1
Sourf = —/ &Px\/—y(Kg + r,n'K —r,at). (3.49)
K.JB

Here the trace of the extrinsic curvature of B is denoted by
Kp = VM r*, so that it is not confused with K which is to the
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trace of the extrinsic curvature of the surfaces X, on its
intersection with the boundary . If the surfaces B and Z,
are assumed to be orthogonal, the normals to B and %, are
orthogonal as well, i.e., r,n* =0, and hence we further
obtain [57]

1 1
Surt ——/d3x\/—_yh”"vﬂr,, ——/a’t]{ d*x/oN?K,
K /B K ’
(3.50)

where o, is the induced metric on B, and PK is the
extrinsic curvature of B3, embedded in X,. In the case of
nonorthogonal boundaries, one actually has to include extra
two-dimensional surface terms regarding the intersection
angle n = r,n* of B and %, as [61]

1
Sourf = ;/ d*x\/=y(Kg +nK — r,a")
B

1

B
- / ' ®x\/osinh~ 7, (3.51)
K By

where we denote the difference of the integrals over the
two-dimensional final and initial surfaces B; and B,
as BBOI = fB] _IBO‘

As was noted in Sec. II C, if the spacetime is spatially
noncompact, we must choose a reference background and
define the physical action as the difference to the reference
action. This also applies to all surface terms in the action

Let us then consider the variational principle for the
higher-derivative gravitational action (3.45). Now the
action depends on both the induced metric 4;; and extrinsic
curvature K;; on the hypersurface %,, viewed as indepen-
dent variables. Therefore, we should consider variations of
the action for which both 4;; and K;; are held fixed on the
boundary of spacetime. Thus we require that the solutions
to the equations of motion (2.7) lead to extrema of the
action when the variations of all the variables are imposed
to be zero on the boundary 0 M. Now consider the surface
terms obtained in Sec. II C. The surface terms (2.10) and
(2.13) obtained from the Einstein-Hilbert and scalar cur-
vature squared parts of the action clearly vanish under the
variations with respect to the enlarged configuration space
of the action (3.45), because now the variation 6K of the
trace of extrinsic curvature vanishes on the boundary O M.
The surface term (2.14) which is implied by the variation of
the action of Weyl gravity is a more complicated matter. By
decomposing the integrand of this surface term into
components tangent and normal to the boundary surface,
it can be shown that the integrand is linear in the variations
of the ADM variables and the extrinsic curvature. (See [62]
for the details of the calculation.) Thus the surface term
(2.14) also is zero when the variations of the ADM
variables and the extrinsic curvature are imposed to vanish
on the boundary. Boundary terms in curvature-squared

PHYSICAL REVIEW D 89, 064043 (2014)

gravity have also been studied in [63] with the same result:
boundary terms are no longer required when quadratic
curvature invariants are added into the Einstein-Hilbert
action. Recently, the same conclusion was reached in [64].
Therefore the only surface term at this point is the one that
originates from the covariant total derivative in the decom-
position of the scalar curvature (3.14) in the Einstein-
Hilbert action, namely,

1
?{ dx\/|y|r,(n"K — a¥). (3.52)
K Jom

Note that this surface term could be easily avoided by using
the second expression for the decomposition of the scalar
curvature of spacetime (3.14) and keeping the time deriva-
tive of K;;. We, however, prefer to use the last expression of
(3.14), and hence obtain the surface term (3.52) whenever
the Einstein-Hilbert action is present. The fact that no
boundary terms are required in curvature-squared gravity
does not mean that it is forbidden to include boundary
terms into the gravitational action. Indeed, we can include
any boundary term whose variation is linear in the
variations of the ADM variables and the extrinsic curvature.
Such boundary terms do not compromise the action
principle due to the chosen boundary conditions on the
variations. Whenever the Einstein-Hilbert action is present,
we shall take advantage of this freedom by including the
same boundary term that is required in general relativity,
Y dx\/]y|K, so that combined with (3.52), the total
surface term takes the same form as in general relativity
(3.48): more specifically (3.50), when the hypersurfaces are
orthogonal or (3.51), if the hypersurfaces are nonorthog-
onal. This choice is motivated by the fact that the surface
term plays the role of total energy in the Hamiltonian
formulation, and we prefer to obtain a similar total energy
as in general relativity. (See [57] for the case of general
relativity.) In pure curvature-squared gravity, when the
Einstein-Hilbert action is absent, we shall not include any
surface terms, Sg,+ = O.

IV. HAMILTONIAN ANALYSIS

The Hamiltonian formulation and canonical quantization
of gravitational theories whose Lagrangians are quadratic
in curvature were originally studied in [40—42]. These
Hamiltonian formulations differ significantly. Kaku [40]
formulated conformally invariant Weyl gravity in the
strong-coupling approximation, both in Hamiltonian and
Lagrangian forms, analogous to higher-derivative Yang-
Mills theory. The differences of [41] and [42] are particu-
larly interesting. Boulware [41] based his analysis on the
action (2.1) without the topological invariant term
i d4x\/—_gG, while Buchbinder and Lyahovich [42]
considered an action of the form (2.5) without the topo-
logical invariant term. In Sec. III, we obtained first-order
forms of both of these actions in terms of ADM variables.

064043-10



HAMILTONIAN ANALYSIS OF CURVATURE-SQUARED ...

They are given in (3.46) and (3.47), respectively. We shall
choose the action (3.46) as the basis of our Hamiltonian
formulation of curvature-squared gravity, because of its
simpler kinetic part compared to the action (3.47). The
Hamiltonian analysis based on the action (3.47) would
indeed result into more complicated constraints, even if one
uses a canonical transformation for its simplification [42].
Those complications in the structure of constraints will be
remarked upon in the following analysis.

There are a few plausible choices for what is regarded as
the time derivative in the Hamiltonian formulation of the
given higher-derivative gravitational theory. The obvious
and most common choice is to consider the partial
derivative with respect to time as the concept of time
differentiation for Hamiltonian formulation of gravity,
following the original ADM formalism [59]. However,
in principle, we could choose the derivative along any
(nondynamical) timelike vector as a generalized time
derivative for Hamiltonian formulation. Since the given
gravitational Lagrangian of (3.46) or (3.47) is independent
of the time derivatives of N and N’, and we know from
previous analyses that they behave as arbitrary Lagrange
multipliers, the unit normal n* to the spacelike hypersur-
face is not a dynamical quantity. Furthermore, time
derivatives in the actions appear only in the form of
L,h;; and L,K;;, thus making the Lie derivative £, along
the unit normal n* a tempting alternative for the concept of
time differentiation for the Hamiltonian formulation.” This
kind of approach was adopted in [41], and later followed in
[43,44]. On the other hand, the nondynamical nature of N
and N' is a result of the Hamiltonian analysis, rather than its
premise, because it is not evident from the beginning that N
and N’ do not appear in any of the constraints of the theory
in Hamiltonian formulation. We shall treat N and N’ as
genuine variables in the Hamiltonian analysis, uncovering
that they can be considered as Lagrange multipliers. We
consider partial derivative with respect to time (J,) as the
concept of time differentiation in the following
Hamiltonian formulation of the theory.

The Lagrangian density in the action (3.46) is a function
iy Oy, K

Lo(N, N By, 0,hi, K, 9K 5, 20). .1)

ijs
The canonical momenta conjugated to N and N' are
primary constraints

pn =0, pi=~0, (4.2)
respectively, since the action is independent of the time
derivatives of N and N'. The weak equality (=) is

>Another alternative for the concept of time differentiation
would be the Lie derivative £,,, where the vector m* = Nn* =
(I,-N i ) is the component of the time vector ## which is normal to
the hypersurfaces X,. Then we would have L,h;; = N‘lﬁmh,—j
and EnKij = NﬁlﬁmKij.

PHYSICAL REVIEW D 89, 064043 (2014)

understood in the sense introduced by Dirac [65]: a weak
equality can be imposed only after all Poisson brackets
have been evaluated, while a usual strong equality could be
imposed anywhere. The tensor density defined by the
Lagrange multiplier 1Y is identified as the canonical
momentum conjugated to /;;,

i = 2L

(0, hy) 4.3)

The canonical momentum conjugated to K;; is defined as

AL

— i j /j ij
oK)~ ﬁ(zac wa+5h JR). (4.4)

Note that once we have identified v/A4" as the canonical
momentum p*/ conjugate to /;; in (4.3), it is unnecessary to
include the Lagrange multiplier AY and its conjugated
momentum p?j as extra canonical variables. If we include
them, we obtain the extra primary constraints p“ —
VhA7 ~0 and pszO. We can set these second-class
constraints to zero strongly and eliminate the variables
A7 and pf; by substituting VhAi = pii and pij = 0. The
Dirac bracket defined by these second-class constraints is
equivalent to the Poisson bracket for all the remaining
variables (see Appendix C for details). In general, this
applies to any higher-derivative theory, where the relevant
primary constraints are linear in the Lagrange multipliers.

The number and nature of constraints and physical
degrees of freedom depends on the values of the coupling
constants. Therefore we shall treat the different cases
separately. We are particularly interested in the cases with
a # 0, which possess the potential to be renormalizable,
that is consistent at high energies. The cases with @ = 0
include only general relativity and a special case of f(R)
gravity, f(R) = R + bR?, with or without the cosmological
constant term, which are well known and understood. First
we shall consider the most interesting case, namely the
conformally invariant Weyl gravity. Weyl gravity will serve
as the reference theory to which all the other cases are
compared.

A. Weyl gravity: A =0,k ' ==y=0,a#0

First we consider the case of conformally invariant Weyl
gravity (2.6). The action is given in (3.46) with A = 0 and
the couplings k1= p =0, a # 0, and without any surface
terms S, = 0. We could also set the coupling @ = 1, but
we choose not to, because keeping it will help in comparing
to the other cases. The topological invariant term in (2.1)
has been discarded, y = 0.

The momentum (4.4) consists only of the projection
(3.38) of the Weyl tensor. It can be written as
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3 _ 1
Pl = —avV/hGiH <£nKkl — IRy — KK — ﬁDkD1N>’
4.5)

where we have defined a traceless generalized DeWitt
metric as

_ .. [ . 1 ..
gzjkl: (hlkh/l+hllh/k)_§hljhk1. (46)

N[ =

Since the Weyl tensor is traceless, in other words the
DeWitt metric_has the metric as its null eigenvector,
g,-jg’fkl =0 = G¥g,, the trace of the momentum (4.5)
is zero. Thus we have to define one more primary
constraint,6

P=0. 4.7)
We adopt the notation where the trace of a quantity is

denoted without indices and the traceless part is denoted by
the bar accent. For example, we denote

. _ o1
P = h;jPY, P =PV — gh”P. (4.8)
The DeWitt metric (4.6) has the traceless inverse
- 1 1
Giju = 7 (hixhj + hihj) — 3 hijhi, 4.9)
which satisfies
3 mnkl __ s(kgl) 1
GijmnG™™ = 5,6 —gh,jhk’. (4.10)

The definition of the momentum (4.5) can then be used to
obtain

- PP
77’](9,Kij:— \/_ +NPJ( R +K K)
(04

+ PUD,D;N+PYL;K;;

+3 N pwiz, k. @.11)

lj’

where P; ;= G jkﬂ?"l. The Lagrangian density of the action
is written in terms of the canonical variables as

°If we based our Hamiltonian formulation on the action (3.47),
instead of (3.46), this constraint would have the form

P —avh(®R + K* - K;;K) %0,

where the extra terms compared to (4.7) depend on both £;;
and K;;. These extra terms would complicate the analy51s
51gn1flcantly
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P, Py
L :—N<2a \/_+2p’]KU av'h Cl]k,,C’/")

+ p'0,h;; — 2pijD<l-Nj). 4.12)
By definition, the total Hamiltonian is
H= /2 d*x(p"0,h;; +PYO,K;; — L
+uypy +u'p; + upP)
= /E dx(NHy + N'H; + Aypy + A p; + ApP)
+ ’Hsurf, (4.13)

where all the u and A are arbitrary Lagrange multipliers
accounting for the first two constraints in (4.2), as well as
the constraint (4.7). In the Hamiltonian, we have defined
the following quantities. The Hamiltonian constraint is
given as

Hy = 2pinij -

PP
R + PUK; K
2a\/ﬁ
+ D;D;P — avhCyjy,, C,, (4.14)
where P;; = hyh;PX. We have written the Hamiltonian
constraint in terms of all the components of the momentum
P, absorbing terms depending on the trace component P
into the Lagrange multiplier term ApP. The momentum
constraint has the form

H; = —=2h;;Dyp’* + P*D,K ;; — 2D ;(P*Ky), (4.15)
or, in terms of partial derivatives,
H; = _2hij8kpjk - (zajhik - aihjk)pjk
- 2Kij8k77jk — (26‘jKl-k — Gink)P/k. (4.16)

The surface term in the Hamiltonian (4.13) is expressed as

Hsurf = f dzxsi(DjNPij - NDJP” + 2N]p”
B,

where s; is the unit normal to the spatial boundary B,

embedded in X,. The surface terms appear for two reasons.

The first two appear due to the integration by parts of the
term

/ d*xPD;D;N = / d3xND;D ;P
3, 3

+ 7{ d’xs;(D;NPY — ND;PV).
B,
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The last two surface terms come from the integration by
parts of the momentum constraint. Indeed, we define a
smeared momentum constraint as the functional

PX] = / dxXH,, (4.18)
P

where X is an arbitrary test vector on X,. The momentum
constraint (4.18) can be written as

D[X] :/ dx(pLihi; + PILLK ;)
%,
- 7{ Px25,(X;p0 + XIPKL),  (4.19)
B,

where L3 h;; = 2D ;X j), which shows the origin of the last
two surface terms. Thus the momentum constraint evi-
dently generates infinitesimal (time-dependent) spatial
diffeomorphism for the dynamical variables (h;;, pY,
K;j, P7) on the hypersurface X,. We can extend the
momentum constraint to a generator of (time-dependent)
spatial diffeomorphism for all variables by absorbing
certain terms into the Lagrange multipliers of the primary
constraints (4.2). It can be defined up to boundary terms as

z

+ piLyNY). (4.20)

In either case, the momentum constraint satisfies the Lie
algebra

{@[X]. @[Y]} = ®[[X. Y]], 4.21)

due to the corresponding property of the Lie derivative,

-

(4.22)

LiLy = Lyly =Ly

The variables N, N', h; ; and K;; behave as regular scalar or
tensor fields under the spatial diffeomorphisms, while their
canonically conjugated momenta behave as scalar or tensor
densities of unit weight. Thus we can see that all the
constraints behave as scalar or tensor densities of unit
weight under the spatial diffeomorphisms.

We also define a smeared version of the Hamiltonian
constraint as

Hold] = / Pt 4.23)
%

where £ is an arbitrary test function on X,. It satisfies the
following algebra with the momentum constraint
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{®[X], Ho[&]} = HolX (&),

since H,, is a scalar density of unit weight and consequently
it satisfies

(4.24)

{Ho, ®[X]} = L3Ho = X0 Ho + 9 X Hy.  (4.25)

Note that in the Hamiltonian, we could alternatively
replace P/ with its traceless components P/, or vice versa,
because any term depending on a positive power of the
primary constraint P can be absorbed into the Lagrange
multiplier term ApP. Thus we could equally well define H,
in (4.14) with every P" replaced by P"/. We shall, however,
write the Hamiltonian in terms of all the components of the
momentum P%, since it simplifies slightly the calculation
of the Poisson brackets between the constraints. The same
applies to the momentum constraint and the surface terms.
Note that we have written the first two surface terms in
(4.13) with the full momentum P%, corresponding to the
term D;D PV in (4.14). The momentum constraint (4.15)
too is written with all the momenta so that it generates
diffeomorphisms also for the trace component P. Hence the
last surface term in the Hamiltonian involves all the
components of P as well.

1. Consistency of constraints in time
and secondary constraints

Every constraint has to be preserved under time evolu-
tion. This means the algebra of constraints has to be closed
under the Poisson bracket.

The consistency of the primary constraints py and p; in
time is ensured by imposing H,, and H; as local constraints,

Hoy ~ 0, H; ~0, (4.26)
respectively. This is why they were above referred to as the
Hamiltonian constraint and the momentum constraint,
respectively. The momentum constraint means that the
theory is invariant under diffeomorphisms on the spatial
hypersurface, i.e., generally covariant. The Hamiltonian
constraint contains the dynamics of the theory. These
constraints (at every point of X;) are independent restric-
tions on the canonical variables [66]. Because the time
evolution of the lapse N and shift N’ variables is given by
the arbitrary Lagrange multipliers Ay and A’, the lapse and
shift variables themselves behave indeed as arbitrary multi-
pliers in the Hamiltonian.

The consistency condition for the primary constraint P
implies a secondary constraint. We express this new
constraint as’

"If we based our Hamiltonian formulation on the action (3.47),
this constraint would contain an extra term of the form
avVh(D'D/K;; — D'D;K) (up to a numerical factor). This extra
term would further complicate the analysis significantly.
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Q=2p+PiK;; ~0. 4.27)

Note that we have included the trace component P = 0
in the constraint Q, similarly as we did in the Hamiltonian
and momentum constraints, and for the same reason. Thanks
to the secondary constraint (4.27), P is preserved in time,

{P(x), H} = {P(x), Hy[N]} = =N(Q + PK)(x) ~ 0.
4.28)

The Poisson bracket between P and O closes,
{P(x), Q) } = P(y)d(x — y).

Then we have to ensure that the secondary constraint Q is
preserved in time. We again have

{Qx), H} = {Q(x), Ho[N]},

(4.29)

and thus the consistency condition for Q requires that the
Poisson bracket between Q and Hy[N| must be a constraint
(or zero). No further constraints are required, since we obtain

{Q(x), Ho[N]} = NHy(x) + ND'D;P(x) + 3D;ND'P(x)
+2D'D;NP(x) ~ 0. (4.30)

See (D.10) in Appendix D for the derivation of this result,
including all the Poisson brackets between the Hamiltonian
constraint and the canonical variables.

Since P and Q are first-class constraints, they generate
symmetry transformations. We again introduce smeared
versions of the constraints

Ple] = / &PxeP,  Qle] = / dPxeQ,  (4.31)
Z z

which are the generators. The constraint Q generates a scale
transformation for the following dynamical variables:

{hij(x). Qlel} = 2¢ehy;(x),

{p"(x). Qle]} = —2ep" ().

{Kij(x), Qle]} = eK;;(x),

{Pii(x), Qle]} = —€P(x) (4.32)
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Thus it is the generator of the conformal transformations.
We could easily extend Q to a generator of scale trans-
formations for all variables, just as we did above for
the momentum constraint, by including the generators
for the variables N, N’ and their conjugated momenta as
pyN + p;Ni. Note that the conformal transformation
leaves the scalars p and P/K; ; invariant, which implies
Q itself is invariant, { Q(x), Q[e|} = 0. P is simply scaled
under this transformation, {P(x), Qle]} = eP(x). On the
other hand, P generates a rather peculiar transformation:

{hij(x), Plel} =0,
{p"(x), Plel} = —eP(x),
{K;j(x).Ple]} = ehyj(x).  {PY(x).Ple]} =0. (4.33)

It evidently transforms Q to P, {Q(x), Ple]} = —€P(x).
The Hamiltonian constraint H,, is preserved under time

evolution, since its Poisson bracket with itself is a sum of

the momentum and P constraints (see Appendix D 1):

{Holé]. Holn]} = ®[eDy — nDé)
+2P[(EDin - ”Dié)hij(DkKjk
- D;K)]. (4.34)

This ensures that the time evolution of the system is
consistent with the structure of spacetime.

Since Q is a first-class constraint, we should include it
into the total Hamiltonian with an arbitrary Lagrange
multiplier:

H = / dx(NHy + N'H; + Aypy + A p;
%,

+ ApP + 10Q) + Hyys- (4.35)

2. Physical degrees of freedom and gauge fixing

The number of physical degrees of freedom in any
constrained system can be counted according to Dirac’s
formula:

1
Number of physical degrees of freedom = > (Number of canonical variables — 2 x Number of first-class constraints

— Number of second-class constraints).

In the Hamiltonian formulation of Weyl gravity, there are 32
canonical variables, namely N, N‘, h; i K i japd their
canonically conjugated momenta py, p;, p”, PY. There
exist ten first-class constraints, namely py, p;, Ho, H;, P,

(4.36)

Q and no second-class constraints. Thus the conformally
invariant Weyl gravity has six physical degrees of freedom.

There exist many possible sets of gauge fixing con-
ditions. The simplest way to fix the gauge freedom
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associated with the primary constraints py = 0 and p; = 0,
is to impose the lapse and shift variables to constant values
everywhere. There do exist useful field-dependent choices
for the conditions on N and N’, but we do not consider
them here. Hence we impose the conditions

op=N-1=0, ;=N =0. (4.37)
The gauge freedom associated with the Hamiltonian and
momentum constraints H, = 0 and H; = 0 can be fixed by
introducing four conditions among the components of the
metric h;;. The gauge freedom associated with the con-
straints P =0 and Q = 0 can be fixed by imposing the
traces of the metric and the extrinsic curvature to match
those of the flat space. Thus we can choose the gauge
conditions as

(4.38)

xu(hi;) =0, u=1,..4,

K =0, xs = 5ifh,~j -3=0. (4.39)
The four gauge conditions y, = 0, u =1, ..., 4, have to be
such that they fix four components of the metric /;;. These
conditions are often referred to as coordinate conditions.
This is because the conditions (4.37) and (4.38) essentially
fix the coordinate system on spacetime and define how the
spacetime is foliated.

An alternative choice of gauge fixing conditions, which
is specific to Weyl gravity, is to replace the five conditions
Xu(hij) =0, p=1,....5, with conditions on the traceless
component of the extrinsic curvature K;;, i.e., we replace
(4.38) and (4.39) with

ijs

The conditions y,(K;;) = 0 have to be such that they fix
each of the five independent components of K;;. This type
of gauge is possible since the first-class constraints depend
on all the components of the variables K;;, P, as well as
on all the components of the variables £;;, p'/. This enables
a highly rich set of choices in the gauge fixing. When a
gauge of the type (4.40) is chosen, we may regard that the
12 constraints define the variables K;, P" in terms of the

independent variables £;;, pY. For details on gauge fixing

conditions, see [55,69] and the last reference in [60].

B. Weyl gravity with A # 0

In this subsection, we consider what happens to the
Hamiltonian structure of Weyl gravity when the cosmo-
logical constant A is added into the Lagrangian. The
cosmological constant term is added into the potential part
of the Hamiltonian constraint as

PHYSICAL REVIEW D 89, 064043 (2014)

ij

. PP
Ho =2p"K;; — .

2av/h
- \/ITlA - a\/ﬁCijk,,Cijk,,.

+ PUCIR,; + PUK;;K + D;D; PV
(4.41)

All the primary constraints, the momentum constraint and
the secondary constraint Q remain the same as in the
conformally invariant Weyl gravity.

The consistency condition that ensures the secondary
constraint Q to be preserved in time, now includes a
cosmological constant term in addition to the terms
involving the constraints H, and P:

{Q(x). H} ~ {Q(x). Hy[N]} ~ 4ANVh(x).  (4.42)
Thus, whenever A # 0, we have to introduce another
secondary constraint:

N =NVh=~0. (4.43)

In order to ensure the preservation of this constraint,

{N(x).H} = NKN (x) + AzwWh = AyVh,  (4.44)
we set the Lagrange multiplier of the primary constraint p
to zero,

Ay =0. (4.45)
Thus we have a pair of second-class constraints A and p.
The lapse does not evolve, O,N = 0, i.e., it is frozen to its
initial configuration. The Dirac bracket (4.71) is equivalent
to the Poisson bracket for any quantities that are indepen-
dent of N and py. P and Q are still first-class constraints:

N, PO} =0, {N(x),Q0)} =3N(x)5(x - y).
(4.46)

The number of physical degrees of freedom is six, similar to
the pure Weyl gravity. Unfortunately, the constraint (4.43)
is physically unacceptable. The constraint (4.43) imposes
the determinant of the metric of spacetime to be zero,
NvVh = v/—9=0. This destroys the geometry of
spacetime.

For completeness, let us analyze the other possible
secondary constraints in place of (4.43). If we impose
the constraint N =~ 0, then N and p, become a pair of
second-class constraints. However, the time dimension
collapses when N = (0. Recall that N must be positive
since Ndt measures the lapse of proper time between the
hypersurfaces at times ¢ and ¢ + dt.

Suppose we instead satisfy the condition (4.43) by
imposing the constraint

Q) = Vh 0. (4.47)
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This constraint has a weakly vanishing Poisson bracket
with the Hamiltonian constraint Hy[N] (D1),

{ Q) (x). Hy[N]} = NVhK(x) = NKQ»)(x) % 0.

(4.48)
The Poisson brackets with P and Q are
{Qu(x),P(y)} =0,
{Qun)(x), Q(y)} = 2hy;(y)
{(Vh(x). pY(y)} =3Q0)(x)5(x —y).  (4.49)

Thus the Poisson bracket between the secondary constraint
Q(2) and the Hamiltonian is proportional to Q(z), and hence
no further constraints are required. All the constraints
appear to be first class, which is very strange, since we
would expect to see some second-class constraint due to the
violation of the conformal invariance. The extra first-class
constraint Q,) implies the removal of one physical degree
of freedom. Certainly the introduction of A into Weyl
gravity should not remove any physical degrees of free-
dom! Compare this to Sec. 3.6 of [42], where four second-
class constraints were found instead, denoted as C¥) ~ 0,
k=1, ...,4. Itis however unclear why the constraint C ) is
required in [42], since C™) is proportional to the constraint
C®) multiplied by K, and thus C*) is redundant. With this
redundant fourth second-class constraint C®), the same
number of physical degrees of freedom as in Weyl gravity
were obtained in [42], that is six physical degrees of
freedom. Our conclusion is the opposite: there exists one
more first-class constraint compared to the Weyl gravity
case, Q(y), and thus the number of physical degrees of
freedom is five.

The constraint (4.47) would generate a trivial (null)
transformation. The transformations of most of the varia-
bles are zero strongly, while the only nontrivial trans-
formation is that of the momentum p¥/,

; A
{PY(x). Qu)lel} = —e(x) 5 Vhhii (x)
1 ..
= —5heQp (1) ~0.  (4.50)

and even that vanishes weakly.
The constraint (4.47) would enable us to write the
Hamiltonian as

H= / dx(NHo + N"H; + Aypy + A'p; + ApP
%
+1QQ +/1(Q2)Q(2)) +Hsurfv (451)

where the Hamiltonian constraint can now be written as

PHYSICAL REVIEW D 89, 064043 (2014)

ij

. PP
Ho =2p"K;; - .

20(\/?1

+ D;D;P".

+ PUCIR,; + PUK,; ;K
(4.52)

As long as A # 0, the terms that are proportional to /A
can be absorbed into the Lagrange multiplier term lg Qp)-
The term —Z”PI, however, appears to be divergent,
since h~1/2 576o. Tt is not surprising that the constraint
(4.47) leads to such inconsistencies, since the metric
of the spatial hypersurfaces X, must be positive defi-
nite, i = det(h;;) > 0.

Thus every one of the possible secondary constraints
(4.43), N~ 0 or (4.47) implies a physically inconsistent
Hamiltonian structure.

C. Including A into Weyl gravity with a scalar field

In order to resolve the previous problem with A # 0,
following [46,47] we introduce a scalar field ¢ which is
coupled to the metric of spacetime in a way that makes the
theory invariant under conformal transformations, when the
field ¢ transforms in an appropriate way. This is in a sense
reminiscent of the introduction of gauge fields in order to
ensure the invariance under local phase transformations.
Since the theory is required to possess both the conformal
and diffeomorphism invariances, the action for the scalar
field must have the form [46,47]

Sy = / d*x\/=g B 7" 0,$0,¢ + éR(/}z + Ag*|.
(4.53)

We require that the scalar field transforms under conformal
transformations as ¢p — Q~!¢, while the metric transforms
in the usual way, g, — Q? 9w~ The scalar curvature R
transforms as

R— Q2 (R — g (4.54)

V”V,,Q)
o /)
The value of A can be chosen freely, since it is not fixed by
conformal invariance. Hence the action (4.53) is found to
be conformally invariant. Consequently, the whole action
of the theory, Sweyin = Sweyl + Sy, is conformally invari-
ant as well.

In the action (4.53), notice that A is dimensionless, while
the cosmological constant A has the dimension M*, mass to
the fourth power. The conformal invariance is broken
spontaneously [67,68], when the scalar field ¢ has a
nonzero vacuum expectation value. Naively, that would
produce an effective cosmological constant as A = A¢*,
where ¢ is the vacuum expectation value of ¢. However, it
has been shown that the cosmological constant can be made
to vanish at every order in perturbation theory [46,47], even
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though ¢ # 0 is required for the existence of a perturbation
expansion.

For the Hamiltonian formulation we rewrite the action
(4.53) in the 3 + 1 form,

1 1 y
~3 KOV = 0, (VR0

1 . -
T (KiK' = K* + OR)¢? + Ad*] + Squr,
(4.55)
where V,¢ = (0,9 — N'9;¢p) and Sy, contains the

boundary terms that appear due to integrations by parts.
Then the momentum conjugate to ¢» has the form

py=—VhV,¢ - % VK. (4.56)

The contribution of the scalar field to the Hamiltonian is

H, = L dx(pyd,p — Ly)

- / Px(NHY + NH?) + H? ., 4.57)
P
where
Ho— -1 +1\/EK¢ ’ —1\/Ehifa-¢a-¢
0 — 2\/E plf’ 3 2 L J

1 y
+ ¢ Oi(VRY0,47)

- % V(K ;K7 — K>+ CR)$* — AVh ¢,
(4.58)

H? = pydi, (4.59)
and Hfurf contains the boundary terms. Since we wish to
obtain a boundary contribution only on the spatial boun-
dary B,, we complement the action (4.53) with a boundary
term ¢ §,,,d*x+/|y|K¢?*. The variations of this boundary
term are proportional to the variations of the variables and
hence vanish due to the boundary conditions. The boundary
term in the Hamiltonian is obtained as

H;’;rf = —é f dPxN\/o(DKP? + s:h0,¢%).  (4.60)
B,

The first term is similar to the boundary term of general
relativity, but weighted by the scalar field factor gqbz. The
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second term involves the gradient of the scalar factor ¢?

along the unit normal to the spatial boundary.
Preservation of the primary constraint P = 0 leads to the

following form of the secondary constraint Q = 0:

Q=2p + PiK; - pyb. (4.61)

The constraint Q is found to be the first-class constraint
associated with the conformal symmetry. Indeed, we obtain

{Q(). HE ()} = Hy(x)5(x — ). (4.62)

Now we can fix the constraint Q ~ 0 by introducing the
gauge fixing condition. Instead of the gauge condition y5 in
(4.39), we may impose

Xp = P(x) =y =0, (4.63)

¢y = const.

Then Q and X become the second-class constraints that
vanish strongly and can be explicitly solved as

1 y
Py = —(2p + PUK,)). (4.64)
0

Note that the Dirac brackets between remaining phase
space variables are the same as the Poisson brackets, since
they have vanishing Poisson brackets with y,,.

The number of physical degrees of freedom is seven—
one more than in the pure Weyl gravity. When the
conformal gauge is fixed as in (4.63), the extra scalar
degree of freedom is transferred to the metric variables.
Alternatively, we can fix the gauge as in (4.39), keeping the
scalar variables ¢, p,.

We emphasize that the kinetic term of ¢ in the action
(4.53) has the opposite sign compared to a regular scalar
field. As a result, in the Hamiltonian (4.58), the kinetic term
of ¢ is nonpositive.

D. General relativity plus Weyl gravity:
k'#0,a#0,=7y=0

Here we consider the sum of Einstein-Hilbert and Weyl
actions. This model is most relevant at long distances,
where the Einstein-Hilbert action linear in curvature is
expected to dominate the behaviour of the theory, while
contribution of the Weyl action is suppressed by the higher-
order derivatives. The cosmological constant can be either
included or excluded, since its presence has no impact on
the fundamental Hamiltonian structure of the theory when
the Einstein-Hilbert action is included.
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The Hamiltonian constraint is given as

PPl
20{\/5
—fA—ﬁ( YR+ K;;K' — K?)

Ho = 2p7K;; - + PUCR,; + PUK K + D;D;P

- a\fciﬂmcu u (4.65)

The surface term —- fB d?x/oNPK is now included in

the total Hamiltonian (4.35) due to the presence of the
Einstein-Hilbert action [see (3.50)]. In case the spacelike
and timelike hypersurfaces X, and B intersect nonorthog-
onally, we would include a surface term according to
(3.51). Assuming the hypersurfaces are orthogonal, the
surface term in the Hamiltonian is written as

Hsurf = —_% dZX\/_N
+ f d*xs;(D;NP" — ND;P"
B,

+ 2N, p" + 2NVP*K ;). (4.66)

The secondary constraint @ now takes a different form

. 2
Q=2p+PUK;+-VhK~0 (4.67)
7K
because of the presence of the Einstein-Hilbert part of the

action. The Poisson bracket between P and O no longer
closes,

(P, 00)) = (P= 2 VA ) 0ot -y). 469

Clearly the conformal symmetry of Weyl gravity has been
broken. As a result, the consistency conditions that ensure
the constraints P and Q to be preserved in time, determine
the Lagrange multipliers of these constraints as

2k

Ap=—N|—

%(< )R — K; K’/+K2)] (4.69)

and

Ao =0. 4.70)
Thus P and Q are now second-class constraints.

Recall that in the Hamiltonian formalism, second-class
constraints become strong equalities if we replace the
canonical Poisson bracket with the Dirac bracket. Given
a set of second-class constraints ¢,, a = 1,2, ..., A, the
Dirac bracket is defined as
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o = L1, £}
-/ / P23 (A1) 4a(2))

a,b=1

x M (2, 2){¢(2), f2(0)}

{f1(x), f2

4.71)

where M~!(x,y) is the inverse of the matrix M(x,y) with
the components

={¢.(x),¢,(»)}, a,b=1,2,...,A. (4.72)

M ab (X >y )
The constraints P and Q can be set to zero strongly, when
we replace the Poisson bracket with the Dirac bracket.
The Dirac bracket between the canonical variables is
defined as

{hij(x), by ()} = 0,

K kil
{0 P00} = (1'9) + 5 ) ot - ).
(o). (o)} = =522 () = ),

{h;(x). P4 (y)}p =0,
{pij(x |:K szkal _ pu'Pkl

3

Lk(pint - hffP"’)} (0)8(x = y),

ijj, _ Lpij
(0 Ky =[S k| 0
X 5(x —y),
x Pl kil
(P PO = £ (o),
{K,-.,-(x), Kkl(y)}]) = gw (x)8(x —y),

x 8(x —y),

{PU(x). P"(y)}p = 0. 4.73)

The total Hamiltonian is now written as
H:/ d3x(NH0 +N5H[+/1NpN+/1ipi)+Hsurf. 4.74)
%,

In the Hamiltonian formulation of the combination of
Weyl and Einstein-Hilbert actions, there are 32 canonical
variables (N, N', h;;, K;;) and their canonically conjugated
momenta (py, p;, pY, PY). There exist eight first-class
constraints (py, pis Ho, H;) and two second-class

l]’

064043-18



HAMILTONIAN ANALYSIS OF CURVATURE-SQUARED ...

constraints (P, Q). Thus the number of physical degrees of
freedom is seven. Gauge fixing can be accomplished
similarly as in Weyl gravity, but without the gauge
conditions (4.39) which are associated with conformal
invariance. For example, we can choose the gauge con-
ditions as in (4.37) and (4.38).

We can now gain insight on the generality of the critical
gravity proposal [10]. In the full nonlinear theory, the value
of A has no impact on the structure of the constraints and
the Hamiltonian. Since there exist eight first-class con-
straints (py, p;, Ho, H;) and two second-class constraints
(P, Q), regardless of the presence or value of A, the number
of local physical degrees of freedom is seven. This suggests
that the possibility for the massive spin-2 excitations to
become massless [10] is only an artefact of the linearized
theory on the anti—de Sitter spacetime. This is likely related
to the possibility of partial masslessness of higher spin
fields on (anti-)de Sitter backgrounds [53,54]. In the
linearized theory on Minkowski background, two modes
are associated with the massless spin-2 graviton and five
modes with a massive spin-2 field.

We have discovered a somewhat similar contrast between
the linearized formulation of the so-called renormalizable
covariant gravity on Minkowski spacetime and the
Hamiltonian formulation of the full nonlinear theory in [39].

E. Curvature-squared gravity without
conformal invariance

Here we consider the gravitational action (2.1), when the
curvature-squared part of the action lacks conformal
invariance. That is, we assume a # 0 and f # 0 in the
action (3.46). Cosmological constant and Einstein-Hilbert
action can be either included or excluded, since the
conformal invariance is already broken by the scalar
curvature squared term.
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The momentum (4.4) canonically conjugate to K;; can be
written as
Pl = —aVhGH L, Ky

1

+ av/hGiH ( Ry + KyK — NDkD,N>

2
Iy f h”< R -3K,K" + K? - NDkaN),
(4.75)
where we have defined a generalized DeWitt metric as

’ P 3.
G = (h”‘hf’+h”hf")——a: Priina, (4.76)
a

N[ =

Since a # 0 and S # 0, unlike the traceless DeWitt metric
(4.6), this generalized DeWitt metric (4.76) has full rank,
and hence its inverse can be obtained as

a+3ﬁh e

%

We can now solve the definition of the momentum (4.75) in
terms of the velocities 0,K;; and obtain

(hihjy + hyhy) — 4.77)

N[ =

Giju =

. 79’! (i PH
PiK;; = gff"’ + NPU(OR,; + K;;K)
a
+ PUD,D;N — P( R - K;jK' + K?)
+ PILL K. (4.78)

The Lagrangian density of the action is written in terms of
the canonical variables as

PGP Vh i . j
gc__N< M 1 2piK;—VhA - K( IR+ KK —K?) - a\/ﬁcijk,,c’/k,,)+pwa,h,.j—2p’/D(,.Nj). (4.79)

Za\/ﬁ

The total Hamiltonian is obtained as

H = / dPx(NHo + N"H; + Aypy + 4 pi) + Hour, (4.80)
P
with the following quantities. The Hamiltonian constraint is defined as
N PG, PH .
Hy = 2piK;; — PGP + PUCIR,; + PUK; ;K + D;D; P —B(< IR — K;;KV + K?) = VhA
2avh 2
_Vh
e ~— (R + KKV — K?) — avV'hC,j, C,,. (4.81)
The surface term is defined as
Hyyp = —— 7{ d*x\/oNPK + f{ d?xs;(D;NPJ — ND ;P + 2N, p'/ + 2N/P*K ), (4.82)
K JB, B, ' '

where the surface term of general relativity, i.e., the first term, is included whenever the Einstein-Hilbert action is included.
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The algebra of constraints has the same form as in general
relativity. The Poisson bracket between Hamiltonian con-
straints is given as a sum of momentum constraints with a
h'-dependent multiplier,

{(Holel. Hola)) = [ @x(eDn - nDnM,

= ®[EDn — nDE]. (4.83)

In the Hamiltonian formulation of curvature-squared
gravity without conformal symmetry, and possibly with
the cosmological constant and the Einstein-Hilbert action
included, there are 32 canonical variables, namely N, N',
hij, K;; and their canonically conjugated momenta py, p;,
pY, PY. There exist eight first-class constraints, namely p,
pi» Hy, H;, and no second-class constraints. Thus the
number of physical degrees of freedom is eight.

Gauge fixing can be accomplished in the same way as in
the previous case in Sec. IV D. For example, we can choose
the gauge conditions (4.37) and (4.38). Alternatively, we
could impose the four gauge conditions (4.38) on the
variables K;; (or Pi). But in these conformally noninvar-
iant theories, only part of the variables K;; can be con-
strained, unlike in Weyl gravity (4.40).

J

F. Physical Hamiltonian and total gravitational energy

For a system which is invariant under time reparame-
terization, the Hamiltonian is typically a first-class con-
straint. The same is true for generally covariant field
theories with diffeomorphism invariance. In a generally
covariant system, time evolution is just the unfolding of a
gauge transformation. The bulk part of the gravitational
Hamiltonian is a sum of first-class constraints, like in
(4.13) or in any other Hamiltonian considered in this
paper. However, the surface contribution H,s on the
boundary of spatial hypersurface does not vanish on the
constraint surface. This indeed provides us the concept of
total energy.

First, in order to obtain the physical Hamiltonian, we
need to subtract the reference background. Consider a
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spatial boundary B, at least asymptotically. Hence the
volume element on the boundary is identical for them.
Since the background is a solution to the field equations,
the constraints associated with the solution vanish. Thus the
Hamiltonian for the background consists solely of the
boundary terms Hy, = Hy, . The physical Hamiltonian is
the difference:

H

= H - H,,. (4.84)

phys
Furthermore, for a stationary background solution, the
canonical momenta p; and Py vanish, since the time
derivatives of the variables d,h,, ;; and 9,K, ;; are zero. The
spatial slices of the stationary background can be labeled so
that its lapse matches the lapse of the variable configura-
tion, N, = N. Then the Hamiltonian of the background is
obtained as follows:
(i) for pure Weyl or curvature-squared gravity,

H, =0, (4.85)

(ii) for Weyl gravity with A included via a scalar field,

1 y
Hb:_é fi d*xN\/o(D Ky + 5,0 0;4%),  (4.86)

(iii) for general relativity with (or without) curvature-
squared terms,

1
H, = —— f N+v/6DK,. (4.87)
K B,

We can now define the total energy associated with the
time translation along # = Nn* 4+ N* for any given sol-
ution of the equations of motion as the value of the physical
Hamiltonian on the constraint surface. Since the constraint
part of the Hamiltonian is zero for any solution, the total
energy is given by the difference of the surface terms:

E = Hyy — Hy,. 4.
given background solution and an arbitrary (variable) surf b (4.88)
configuration. The variable configuration and the reference =~ We obtain
background should induce the same configuration on the (i) for pure Weyl or curvature-squared gravity,
|
E= b d?xs;(D;NPY — ND;P" + 2N ,;p' + 2N/P*K ;,), (4.89)
(ii) for Weyl gravity with A included via a scalar field,
1 y .
E =g § @aNValOKG = O+ (00,0 = 10, )
+ 72 d?xs;(D;NP" — ND;P" + 2N, p"/ + 2N/P*K ;, ), (4.90)
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(iii) for general relativity with curvature-squared terms,

E=—- f d*xN/o(DK — DK,) + f d?xs;(D;NP"¥ — ND;P" 4 2N ;p" + 2N/P*K ;).
K Js, B,

These generic expressions for the total energy can be used
to obtain the total energy with respect to different kinds of
backgrounds, as in general relativity [57]. The two most
relevant cases being the asymptotically flat spacetimes [59]
and the asymptotically anti—de Sitter spacetimes [70]. The
energy formulae could also be generalized for nonorthog-
onally intersecting boundaries X, and B, as in [61].

The energy of pure curvature-squared gravity (4.89) is
equivalent to the previous results in the literature. When the
Einstein-Hilbert action is included, our expression for the
total energy (4.91) includes the familiar contribution of
general relativity. A physical interpretation is that the
Einstein-Hilbert term is expected to dominate at great
distances. In the case of Sec. IV C, the energy (4.90)
contains the contribution of the scalar field ¢ thanks to its
coupling to the scalar curvature of spacetime.

Recall that the total energy is always positive in general
relativity [71,72], except for flat Minkowski spacetime,
which has zero energy. Similarly, when the coupling
constants of the curvature-squared terms satisfy af <0,
the total energy of curvature-squared gravity (4.89) has
been shown to be zero for all exact solutions representing
isolated systems [73] (see also [74]). This can be seen as the
result of energy confinement. The inclusion of the Einstein-
Hilbert term does not change this feature. In fact the
Einstein-Hilbert contribution in (4.91) is the dominate
one, since the curvature falls off quicker in the asymptotic
region when the Einstein-Hilbert term is included. In the
case of (4.90), the asymptotic boundary condition for the
scalar field can be chosen so that the total energy resembles
the case of (4.91): in an asymptotically flat spacetime, ¢p =
C + O(r7®) where C is a constant and b > 1, so that the
gradient term of ¢ is suppressed and C?/3 takes the role of
the gravitational constant k™.

G. Alternative Hamiltonian formulations

We emphasize that the first-order ADM forms of the
actions and the discussion of the boundary surface terms
presented in Sec. III, as well as the following Hamiltonian
analysis presented in Sec. IV, are specific to the chosen
independent variables of the action (3.45). For any higher-
derivative theory, there exists many possible choices for the
independent variables. Since the higher-order derivatives
imply the existence of extra degrees of freedom, one
introduces extra independent variables which carry the
extra degrees of freedom of the theory. The choice of
independent variables defines the form of the first-order
action, which in turn defines the Hamiltonian structure of
the theory. The different Hamiltonian formulations of a
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(4.91)

|

given higher-derivative theory should be related by canoni-
cal transformations [42]. Hence they should be physically
equivalent (at least classically). For an example of an
alternative Hamiltonian formulation of higher-derivative
gravity, see [45].

Furthermore, the choice of boundary conditions is not
unique. For instance, if the curvature tensor of spacetime
would be considered as an independent variable, it would
be natural to impose boundary conditions on the curvature
tensor. Since such variables and their boundary conditions
involve second-order derivatives, the formulation would
clearly differ from the present formulation, where the
extrinsic curvature (3.31) is chosen to be an independent
variable of the first-order action.

V. CONCLUSIONS

We have presented a Hamiltonian analysis of Weyl
gravity and of other fully diffeomorphism-invariant curva-
ture-squared gravitational models. We concentrated on the
potentially renormalizable theories, whose linearized
actions are known to include notorious ghost fields with
negative energy. All the surface terms on the boundary of
spacetime were accounted for in each theory, as well as the
freedom to include surface terms that vanish due to the
expanded configuration space of higher-derivative gravity,
which includes both the fundamental forms of the hyper-
surfaces. The expression for the total energy was obtain in
each case with respect to a generic stationary background.

Compared to the seminal work in [41], a correction to the
component of Weyl tensor that is fully tangent to the spatial
hypersurface was discovered in (3.40). A fully traceless
component appears, namely the properly symmetrized,
traceless, quadratic extrinsic curvature tensor K, ;;; defined
in (3.41). The square of K;j;; vanishes due to the Cayley-
Hamilton theorem. Hence the correction makes a difference
in theories where the Weyl tensor is coupled to something
else than itself. But it does not appear in the action of
curvature-square gravity (2.1). Therefore the Hamiltonian
structures presented in Secs. IVA, IVD, and IVE are
similar to those found in the literature (see [41-45]). The
only relevant difference is the presence of the surface
Hamiltonian of general relativity—the first term in (4.66)—
when the Einstein-Hilbert action is included (x~! # 0). In
that case, the expression for total energy (4.91) is com-
plemented by the energy term of general relativity—the
first term in (4.91)—which is the dominant contribution in
asymptotically flat spacetimes.

We found in Sec. IV B that including a nonvanishing
cosmological constant into Weyl gravity implies a severe
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problem. Since the determinant of the metric of spacetime
is forced to zero by a secondary constraint (4.43), the
Hamiltonian structure becomes physically inconsistent.
Thus Weyl gravity with A # 0 is not a well-defined theory.

In Sec. IV C, we analyzed the possibility to include a
scalar field which is coupled to the scalar curvature of
spacetime in way that preserves conformal invariance
[46,47]. Conformal invariance is broken spontaneously if
the scalar field has a nonzero vacuum expectation value,
producing an effective Einstein-Hilbert term and possibly a
cosmological constant. The kinetic term of the scalar field is
nonpositive, what may jeopardize the stability of the system.

In all the cases that include the Weyl action, i.e., when
a # 0 in the action (2.1), the Ostrogradskian form of the
Hamiltonian is clearly visible in the first term 2p” K ;; of the
Hamiltonian constraint, which is linear in the momentum
p'/. This implies the appearance of the Ostrogradskian
instability. In the absence of conformal invariance, there
exist five or six unstable degrees of freedom depending on
whether f = 0 or f# # 0, respectively, which are associated
with the five or six independent time derivatives of the
components of the extrinsic curvature on the spatial hyper-
surface. Since there exists only four first-class constraints—
associated with the diffeomorphism invariance—the con-
straints cannot restrain the higher-derivative degrees of
freedom. Only in the case of conformally invariant Weyl
gravity, there exist as many constraints as there are unstable
directions in phase space. This follows from the fact that the
Weyl action contains the five independent traceless compo-
nents of the time derivative of the extrinsic curvature, and it
possesses five first-class constraints which are associated
with the diffeomorphism and conformal invariance. Hence in
principle, only the conformally invariant Weyl gravity has
enough local constraints to be able to restrain the unstable
degrees of freedom. In all the other potentially renormaliz-
able cases, the number of independent second-order deriv-
atives in the Lagrangian exceeds the number of local
invariances. Thus Weyl gravity is the only potentially
renormalizable theory of the type (2.1) that might avoid
the problem with instability, which manifests itself as ghosts
and lacks unitarity in the linearized theory.8

However, perturbative analyses suggest that even Weyl
gravity cannot escape the ghost problem. On the flat back-
ground, linearized Weyl gravity includes a massless spin-2
ghost [51]. The inclusion of Einstein-Hilbert action implies
the appearance of a massive spin-2 ghost, as well as a massive
scalar ghost if f# 0 in (2.1). The dilemma of generally
covariant higher-derivative gravity is that the spin-2 ghost is
required for renormalizability [48]. In the full nonlinear
theory, further study of the problem is still required.

®Recently [2], it has been argued that conformal gravity is
unitary, but its Hamiltonian is non-Hermitian. However, in order
to achieve this, the gravitational field g,, would have to be anti-
Hermitian; i.e., the metric would be purely imaginary.
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The recent claim of obtaining a critical case of curvature-
squared gravity [10], where the spin-2 ghost becomes
massless, was concluded in our Sec. IV D to be a specific
feature of the linearized theory on the anti—de Sitter
background. In the full nonlinear theory, however, it was
shown in Sec. IV D that the number and nature of local
physical degrees of freedom are independent of the value of
the cosmological constant, when both the Einstein-Hilbert
and Weyl actions are included.
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APPENDIX A: NOTATION

The metric tensor g,, of spacetime has the signa-
ture (—, +, 4, +).

Symmetrization and antisymmetrization of tensor indi-
ces is denoted by parentheses and brackets, respectively.
Normalization is chosen so that the (anti)symmetrization
has no effect on an already (anti)symmetric tensor. For
example, we denote

1
A(;w) = 5 (A/w + AW)’

1
AppBl) = ) (AyB,” —Ay,B,Y). (AD
We may also use the following notation,
A, + (uev)=A4,+A,,
Hv ) Hv i (AZ)

A, —(uov)=A, —A

Hv vps

if it is more convenient than the one with parentheses and
brackets. This can be the case when A,, in (A2) is a long
expression containing several terms. No normalization is
included in this notation. This notation may also be used to
denote (anti)symmetrization with respect to the exchange
of functions.

APPENDIX B: THE CAYLEY-HAMILTON
THEOREM

The Cayley-Hamilton theorem states that any square
matrix A over a commutative ring is the root of its own
characteristic polynomial, P(A) =0. The characteristic
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polynomial is defined as P(1) = det(A] — A), where [ is the
unit matrix.

The Cayley-Hamilton theorem has a tensor form due to
the well known relationship between matrices and linear
transformations and rank 2 tensors on a vector space.
Considering a tensor A¥, on a d-dimensional vector space,
such as the tangent space of a d-dimensional smooth
manifold, the Cayley-Hamilton theorem can be written as

P(A)ﬂy =—(d+ 1)6”[DA/’1/,]A/’2/,2 .. .A/’dpd]
= (Ad)’ly + (Ad_l)ﬂy ++ Cd—lA”zz
+ cdci”y = O, (Bl)
where the coefficients ¢, are given as
=(=1)"Amy AP oAb n=1,2,...,d, (B2)
and we denote the tensor A¥, to the mth power as
(Am)/ly :AMPIAPIPZ . .A/)m—zpm_lA/’m—lw m= 2’3’ . _,d‘
(B3)

We shall apply the Cayley-Hamilton theorem to a tensor
field on the three-dimensional Riemannian manifold X,. A
tensor A’; on a three-dimensional vector space satisfies

. . . 1
P(A); = ATAN AL — AT A A — S AT (AN AT - A7)

o
- FJ (2A"1A’mAmk —3A%ALA + A3) =0, (B4
where A = A’; denotes the trace.

APPENDIX C: REMOVING THE
AUXILIARY VARIABLES

We show that the Hamiltonian formalism where the
Lagrange multiplier 4 and its conjugated momentum p;l]-
are included as canonical variables is equivalent to the
formalism presented in Sec. IV. If the canonical variables

. 1 . . .
AY anq pj; are included, we obtain the extra primary
constraints
G - P
I = pli = VhAi %0, pl 0. (C1)
Each of these constraints has a nonvanishing Poisson
bracket with one other constraint,

{0 (x), py ()} = —66) Vhs(x - y).

Thus ITV and p?j are second-class constraints. Second-class
constraints become strong equalities when we replace
the canonical Poisson bracket with the Dirac bracket
(4.71). The matrix (4.72) for the second-class constraints

(C2)
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¢ = (117, p};) is given by the Poisson brackets (C2) in the
cross-diagonal form M(x,y) = <(1) _O] )\/ﬁé(x -y),
where 0 and 1 denote the nine-dimensional zero and unit
matrices, respectively. The inverse matrix has the form
0 1
-1 _ 1 — i

M (x,y) = (_1 0) \/}.15(x ), and the Dirac bracket
is defined as

(A1) 01
— (F1 () foly }/f%%h@HWH@MAhM}

_}_/):/dszﬁ{fl(x),p;*j(z)}{l'[ij(Z),fz(y)}- (©3)

Then we set the constraints (C1) to zero strongly and
eliminate the variables 2/ and pf; by substituting

pY .
, L=,
Vi P

The Dirac bracket (C3) modifies the Poisson bracket if one
of the arguments depends on A" and the other argument
depends on h;;, p p' or p;lj. Otherwise the Dirac bracket is
equivalent to the Poisson bracket. Since we have solved the
constraints everywhere as (C4), none of the arguments can
depend on AY or pf;. Thus the Dirac bracket (C3) is
equivalent to the Poisson bracket

{£1(0), 20} = {f1(x), 200}, (C5)

for any arguments f1 and f> that depend on the remaining
variables N, N', h;; j, ; and their canonically conjugated
momenta py, p;, P, 79’/. Therefore, introducing the Dirac
bracket and imposing the second-class constraints strongly
is equivalent to substituting (C4) and removing the aux-
iliary variables 4/ and p7; from the system.

We can now see that it is unnecessary to include the
Lagrange multiplier AV and its conjugated momentum as
extra canonical variables. We can directly identify v/ as
the canonical momentum p“ conjugate to h; ; and hence
avoid the inclusion of extra canonical variables. This is a
general feature of the Hamiltonian formulation of higher-
derivative theories (see e.g. [42]).

A= (C4)

APPENDIX D: CALCULATION OF POISSON
BRACKETS FOR THE HAMILTONIAN
CONSTRAINT H,

Because of the simple p” dependence of the
Hamiltonian constraint H,, namely the term 2p"K;; j» We
have the following Poisson brackets between the metric and

Hol8]:
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{hij(x>7HO[ﬂ} = 2§(X)Kij(x),
{1 (x), Hol€]} = —2&(x)K (x),
{Vh(x), Ho[&]} = &(x)VhK (),
K

{ﬁ,?—[o[é]} = —ﬁ(x)\/—ﬁ(x)'

The rest of the Poisson brackets differ depending on which
of the couplings are switched on. In particular, including
the R? term into the Lagrangian (2.1), i.e.,  # 0, alters the
kinetic part of the Hamiltonian significantly.

D1

1. Weyl gravity: a #0, f# =y =0 in (2.1)

First we consider the cases where the curvature-squared
part of the action (2.1) is the Weyl action (a # 0,
p =y =0). The Einstein-Hilbert action and the cosmo-
logical constant can be included or excluded, since they do
not alter the kinetic part of the Hamiltonian constraint. The
Hamiltonian constraint is given in (4.65). When the
cosmological constant and/or the Einstein-Hilbert action
are not present in the action, one simply sets A = 0 and/or
x~! = 0 in the following results.

a. Poisson brackets between the canonical variables
and the Hamiltonian constraint

The Poisson bracket between K;; and the Hamiltonian
constraint H,[£] reads as

(0) avh

PHYSICAL REVIEW D 89, 064043 (2014)

(K0 Hole) = 609 (- et Oy + K ) 0

(D2)

We shall denote the symmetrized second-order covariant
derivative as D;; = D;D;) and later the symmetrized
higher-order = covariant  derivatives  similarly  as
Dijk = D(lDle), etc. N

The Poisson bracket between the momentum 7"/ and the
Hamiltonian constraint H,[£] is obtained as

{Holé). PY(x)} = £(x) [21?"’ +PUK + hPHE,,

_VTE (K — h"/'K)}
+ d4aVhD(ECHID) ) (x). (D3)

The Poisson bracket between the momentum p* and the
Hamiltonian constraint H,[¢] is very complicated. It can be
obtained after a quite laborious calculation as

{Hold], pU(x)} = Efh (x) + E\Di&(x) + Ef)'Dyé(x),
(D4)

where we have defined the three coefficient tensor densities
EZ‘I;'“’ (I=0,1,2)as

. N N 1 3 1 i
El =——— (P;Pfk - Zh’JPk,P“) + D DUPIk — 3 hii D P* — EDkD,JDU — PHK KT — > VhhiA

Vh

K

+o [<3>le + 2K/, K/* —2KK — 5hl-/(<3>R + K ;K — K2)}

+avh [ZC’kan’“n + Cp'y C, = Ehljcklmncklmn = 2Dk, = 2D K 1M, - 2K YD O,

—2K,ID,C¥), — 2K, ,D*C"i), —2(2D,K"; — DkK)Ck(ij),,] ,

()

and

)

Eijk — D(iij)k + 2hk(iDl7jj)l _ hilekal _ %Dkfpij _ 2a\/h’(Kl(icj)lkn + K](i|ckl\j)n + Kklcl(ij)n)

EURE — pitkpl)j 4 pilkphi _ %hijpkl — hKpii 4 5

(DS)
(D6)
if (R = hiORD7), (D7)

In Weyl gravity, the Poisson bracket between Q and H,[é] requires the trace of the Poisson bracket between p'/

and H,[&]. It can be obtained from (D4) as
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y PP I 3 3 Vh y
ij . —— Y _D.D. P+ _Dip. K., - YR KK 2
{Ho[&], p¥ (x) } hyj(x) E(x) [4a\/ﬁ+2D1D1P +2D D;P+P K,JK—|—2\/EA+ ™ (WR - K;;K7 + K?)
+avh <2DiC”anjk 3 Cijkncljkn>:| (x) — D;ié(x) (g DP + 20:\/5C”",,Kjk) (x)
1 .. . hh'J
+ D;é(x) <§P’f — hiP + \/; > (x). (D8)

The Poisson bracket between Q and H,[£] will be obtained in the next subsection, D 1 b.

b. Poisson brackets between the Hamiltonian constraints and with the other constraints

Poisson brackets between the Hamiltonian constraint and the other constraints are then determined by using the previous
results for the canonical variables . The Poisson bracket between the constraints P and H,[£] is a sum of the constraints P
and O,

{P(x). Hole]} = P7(x){hij(x).  Holé]} = hy(x){Ho[¢]. PV (x)} = =&(x)(Q + PK) (x). (D9)
where Q is defined by (4.67). The Poisson bracket between the constraints Q and H,|[¢] is a sum of constraints only in the

case of pure Weyl gravity. If the cosmological constant and/or Einstein-Hilbert term are included into
the action, the Poisson bracket between Q and H,[£] is not a sum of constraints. We then obtain the Poisson bracket as

{Q(x). Holél} = 2p" (x){hyj(x). Hole]} — 2{Ho[€]. p" (x) } i (x) + P (x){Ky(x). Ho[é]} — {Ho[E]. PV (x) } Ki(x)
+ % ((Vh(x). Ho[E[}K (x) + VK 15(x){h" (x), Ho [&]} + VR (x){K;(x). Ho[€]})

= EHy + ED'D;P + 3D,ED'P + 2D'D;EP — 5%79 + EVR 4N + z (DR - K;;KV + K?)|, (D10)

where we have omitted the arguments (x) for brevity. The  that are not constraints are a result of the fact that adding the
first five terms are the known constraints, but rest of the cosmological constant or the Einstein-Hilbert action into
terms are not constraints. As shown, for pure Weyl gravity =~ Weyl gravity, breaks the conformal symmetry.

with A =0 and «~! = 0 the result (4.30) consists of the Finally, we determine the Poisson bracket of the
first four terms which are all constraints. The extra terms Hamiltonian constraint with itself,

{Hol&l. Holn]} = /E Px[{Ho[e], p"(x)Hhij(x), Holn]} + {Hol&]. PV (x)HKij(x), Holn]} = (£<>n)]
= /E &x[F{y D ién + Fiy Dyjén + 4avhDy(§C 00, Djun = (§n)), (D11)
where we denote
Fiy) = 2DIP*K 4+ 4D PKY, — 2D PUK — 3D'PHK ;i — AC 4, P + da/hC¥,CIR (D12)
and
F = —2pii 4 4PUkKW), — 2PiUK — 3piiPHK,,. (D13)

@
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It is noteworthy that this Poisson bracket is insensitive to
the presence of Einstein-Hilbert or cosmological constant
parts of the action. This means that the result for the
Poisson bracket between Hamiltonian constraints does not
contain the Hamiltonian constraint itself, but rather consists
of other constraints. In obtaining (D12), we used the fact
that the terms involving a product of three K;; turn out to be
equal to the covariant divergence of the characteristic
polynomial (B4) of K;;:

Gi :_Fi

(1) (

The second- and third-order derivatives of the test
functions cancel. This is because F ”2 is symmetric
and Cjj, inherits the cyclic property of the Weyl
tensor:

Cijtn + Crijn T Cjtin =0 = Ciijiya = 0. (DI7)
The Ricci identity was used in obtaining the coefficient
of the first-order derivatives of the test functions in
(D15), and the Riemann tensor was written in terms
of the Ricci tensor since the three-dimensional Weyl
tensor is zero, (3.24).

Finally, we may write the Poisson bracket between
Hamiltonian constraints as a sum of the momentum and
‘P constraints,

{Mole]. Holnl} = ®[eDy —nD¢]
+ 2P[(EDin — nD;&)h (D*K 4 — D;K)],
(D18)
where the gradient vector D is defined as (Dé&) =

hiD¢.
|

gi jklpkl

(K (). Holdl} = &) [—a—ﬂ

+D;Fh) +4aVhCiE,OR;, = hI[H; + 2P(D*K ;. — D;K)].

+ R, + K;;K -
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Cijanlelk + Kijcjkl"Kkl - Cijanij - —DJP<K)U - O
(D14)

Integrating by parts enables us to write the Poisson
bracket between Hamiltonian constraints as

{Holé). Holnl} = / Fx(EDy - DiEn)G. (DIS)

where we denote

(D16)

I

Substituting the test functions £ = §(x —y) and n = N
gives the Poisson bracket between H(x) and Hy[N] as a
sum of the constraints H; and P,

{H()(X),H()[N}} = (2DIN +NDl)

x [H; + ZP(DjKij — D;K)|(x).

(D19)
2. Curvature-squared gravity: a #0, f #0, 7y =0

We consider the case when both the Weyl tensor squared
and scalar curvature squared terms are included in the
Lagrangian (2.1). The Einstein-Hilbert action and the
cosmological constant may be included or excluded, since
they do not alter the kinetic part of the Hamiltonian
constraint. The Hamiltonian constraint is given in (4.81).
When the cosmological constant and/or the Einstein-
Hilbert action are not present in the action, one simply
sets A = 0 and/or k~! = 0 in the following results.

a. Poisson brackets between the canonical variables and
the Hamiltonian constraint

The Poisson bracket between K;; and the Hamiltonian
constraint Hy[&] reads as

(D20)

1 i,
5]’111((3)R - Kl'jKl] + KZ):| (.x) + D,]é’(x)

The Poisson bracket between the momentum P and the Hamiltonian constraint H,[&] is obtained as

Vh

{H[E, P (x)} = E(x) {2p’j +PUK +hIPKK, +P(K7 —hiK) —T(Kif - hi-fK)} (x) +4aVhD (ECD,) (x).  (D21)

The Poisson bracket between the momentum p”/ and the Hamiltonian constraint H,[&] is obtained via a similar

calculation as in the case with f = 0. We obtain it as

{Holg], p(x)} = Eff)&(x) + E(Dié(x) + E) Dué(x),

(D22)

where we have defined the three coefficient tensor densities EE‘,')“"”’ (I=0,1,2)as
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I’ 1 +3 1 1 N .
E({)) _ a[ (7)1 Ppik _ a 5 ﬂPUP lJPklgkl npmn> + DkD(lP])k _ Ehl]Dlekal _ EDka'Pl] _ EDUP
o N N
+ 2h’1D"D P —PHK KT — —73'1( )R — Ky KM + K?) 4 - 79 — PKi,K/* + PKVK — 5\/ﬁhlJA
\/E 3) pij j ik ij ij((3 ij 2
+o GIRV 4+ 2K K/k — 2K K — Eh’/(< )R+ K;;K' — K?)
K

+avh [+2C’,d,,Cf"’,, + Cy'y CHY, — 3 Wi C e CF™, — 2D K, CD* — 2D K, CH) - 2K D, CD,

—2K,UID M), — 2K, ,DFC), —2C*i) , (2D,K!, — DiK)), (D23)

EEJII; = DUPIk 4 opklip Pl — piip PH — Ekau — DUPRIk L piipkp — Za\/E(K,(’C/)”‘,, + Ktk + K",C’(”)")

(D24)
and
ijkl i(kpl)j jkpl)i 1 ijpkl klpij 1 ijp,kl i(kpl)j ‘/ﬁ ijp,kl i(kpl)j
E(z) = h'\*PiI 4 B\ —EhP — P +§P(h h* — h'\*h )+2—K(h R — R KphTY), (D25)
b. Poisson bracket between the Hamiltonian constraints
We determine the Poisson bracket between Hamiltonian constraints:
{Holg], Holn)} = / dx[Fi\ Dién + F Dyén + 4av/hD;(£C'09, ) D jyn — (£-n)], (D26)
%,

where we denote

Fiy) = 2D'P*K ji + 4D;P/*K'; = 2D;PUK — 3D'P*K ji — 4C' 4, P** — 2D/PK’; + 2D'PK + 4avV'hC*, )R, (D27)

and

F

() = —2p" + 4PUKK —2PUK — 3WPH Ky + 2P(hVK — KY). (D28)

We again integrate by parts to obtain (D15), but now with G' = h'/’H - Thus the result is given solely by the momentum
constraint:

{Hol&). Holn} = /Z Bx(EDm — nD,E)hIH; = ®[Dn — nDE). (D29)

This result has the same form as in the Hamiltonian structure of general relativity. Finally, we obtain

{Ho(x), Ho[N]} = 2D'N'H; + ND'H,. (D30)
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