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We study a formulation of Dirac fermions in curved spacetime that respects general coordinate
invariance as well as invariance under local spin-base transformations. The natural variables for this
formulation are spacetime-dependent Dirac matrices subject to the Clifford-algebra constraint. In
particular, a coframe, i.e. vierbein field is not required. The corresponding affine spin connection consists
of a canonical part that is completely fixed in terms of the Dirac matrices and a free part that can be
interpreted as spin torsion. A general variation of the Dirac matrices naturally induces a spinorial Lie
derivative which coincides with the known Kosmann-Lie derivative in the absence of torsion. Using this
formulation for building a field theory of quantized gravity and matter fields, we show that it suffices to
quantize the metric and the matter fields. This observation is of particular relevance for field theory
approaches to quantum gravity, as it can serve for a purely metric-based quantization scheme for gravity
even in the presence of fermions.
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I. INTRODUCTION

Building a field theory of quantized gravity requires
one to specify the fundamental degrees of freedom to be
quantized. Unfortunately, the guidance from the correspond-
ing classical theory, general relativity, is not particularly
strong, as the variational principle applied to substantially
different degrees of freedom can lead to the same equations
of motion. Examples are given by (i) the conventional
Einstein-Hilbert action in terms of metric degrees of freedom
gμν, or (ii) in terms of a vierbein eμa, or (iii) the first-order
Hilbert Palatini action which in addition to the vierbein
also depends on the spin connection ωμ

a
b (Einstein-Cartan

theory). Many further variants along this line are known [1],
all of which (in the absence of torsion or other deformations)
have in common that they yield Einstein’s equation on the
classical level.
By contrast, if these various classically equivalent

theories are quantized (by some appropriate method), the
quantum versions should be expected to generically differ.
This can be seen from the fact that, e.g., the relation
between the metric and the vierbein,

gμν ¼ eμaeνbηab; (1)

implies that an appropriate measure for a functional integral
over metrics Dg is expected to differ from that over
vierbeins De by a nontrivial Jacobian. The resulting
differences have explicitly been worked out recently in
the asymptotic safety approach to quantum gravity [2,3],
but should be expected to occur in any other field theory
attempt at quantizing gravity as well. For instance, the
renormalization group (RG) flow of metric-based quantum
gravity [3] has been shown to differ from that of its

vierbein-based counterpart [4,5] at least quantitatively.
Qualitatively, new aspects arise from the Faddeev-Popov
ghosts associated with local Lorentz invariance in the
vierbein formulation [4]—a symmetry that is not present
in the metric-based formulation. In the same spirit, quantiz-
ing Einstein-Cartan theory or its chiral variants leads to yet
further sets of RG flows [6,7] even in the absence of any
torsion.
As only one of these different quantum theories can

be realized in Nature, criteria beyond pure mathematical
consistency are required to distinguish between the different
theories. As fermions occur in our universe, the use of a
vierbein-based formalism seems mandatory, consequently
giving preference to versions of quantum gravity where
the corresponding fields are considered as fundamental or
where at least vierbeins are formed prior to themetric in terms
of evenmore fundamental degrees of freedom, see e.g., [8,9].
In the present work, we critically reexamine the seeming

necessity of vierbein-based formulations in the presence
of fermions on curved space. For this, we consider a more
general formulation of fermions in gravity, where in
addition to general coordinate invariance the symmetry
under local spin-base transformations remains fully pre-
served [10,11]. With respect to our original motivation, it
turns out that a purely metric-based quantization scheme
appears much more natural, as the local spin-base fluctua-
tions can be shown to represent a trivial factor of the
measure. We emphasize that this observation does not
invalidate a quantization of gravity in terms of vierbeins or
other underlying degrees of freedom. Rather, the existence
of fermions in the Universe does not provide an argument
for ruling out metric-based quantization schemes of gravity.
A similar conclusion has been drawn for the case that
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the observed fermions finally turn out to be Kähler
fermions [5].
On our way to this central result, we will rederive and

generalize the spin-base invariant formalism for fermions in
curved space, following the work of Finster and Weldon
[10,11]. In particular, we derive all details of the formalism
as well as new results from very few underlying assump-
tions in a self-contained way. Among the new results, we
show how the concept of spin torsion arises in this
formalism and we discover a new simple relation between
the general variation of Dirac matrices and the Kosmann-
Lie derivative for spinors.
In order to contrast the spin-base invariant formalism

discussed below with the standard vierbein formulation, let
us briefly recall the elements of the standard construction
for describing fermions in curved spacetime [12–15]: Once
a suitable vierbein, satisfying Eq. (1) is introduced, the spin
connection ωμ

a
b required to define fermionic dynamics is

derived from the vierbein postulate as an algebraic equation

0 ¼ ∂μeνa − Γκ
μνeκa þ ωμ

a
beν

b; (2)

where Γκ
μν is the—not necessarily symmetric—affine

spacetime connection [14–16]. The Dirac matrices γðeÞμ
within this vierbein formalism are given by

γðeÞμ ¼ eμaγðfÞa; (3)

where the γðfÞa are fixed constant Dirac matrices satisfying
the Clifford algebra for Minkowski space

fγðfÞa; γðfÞbg ¼ 2ηabI; (4)

where I is the unit matrix. In this way, the γðeÞμ are
automatically compatible with the Clifford algebra

fγðeÞμ; γðeÞνg ¼ 2gμνI: (5)

The covariant derivative for spinors ψ then reads

∇ðeÞμψ ¼ ∂μψ þ 1

8
ωμ

ab½γðfÞa; γðfÞb�ψ : (6)

For explicit calculations the Dirac operator ∇ðeÞ ¼
γðeÞμ∇ðeÞμ is often needed. In practical calculations, it
can be more convenient to have the Dirac operator in a
more adjusted basis concerning the actual choice of the
Dirac matrices [17,18].
While this standard vierbein formalism is perfectly

sufficient for a description of fermions in curved spacetime,
several properties give rise to criticism at least from a
conceptual (or aesthetic) viewpoint: the relevant objects for
the physical system are the generally spacetime-dependent
Dirac matrices γμ which have to satisfy the Clifford algebra
fγμ; γνg ¼ 2gμνI. For a given metric, more solutions than
only those parametrizable by a vierbein exist for the Dirac

matrices [11]. This already indicates that the vierbein
construction should be regarded as a special choice. On
the other hand, it seems at odds with the principles of
general relativity that a special inertial coframe eμa has to
be introduced in order to describe the fermions.
In addition, this choice introduces another symmetry,

“physically” corresponding to the Lorentz symmetry of the
tangential space related to the roman indices a; b;… (e.g., a
local O(4) symmetry in a Euclidean formulation, which can
be generalized to a GLð4;RÞ symmetry [19]). From the
viewpoint of the Dirac matrices γμ, this symmetry seems
artificial. By contrast, the relevant nontrivial symmetry of
the Clifford algebra is the local spin-base symmetry
SLð4;CÞ which is not fully reflected by the standard
vierbein construction.
The spin-base invariant formalism [10,11] used and

further developed in the present work does not require a
coframe or vierbein construction. Still, in the absence of
torsion it is completely compatible with the vierbein for-
malism in the sense that a vierbein construction can always
be recovered as a special case. Important differences how-
ever arise in the presence of torsion, as discussed in Sec. III.
The spin-base invariant formalism supports degrees of
freedom within the affine spin connection, which can be
interpreted as a spin torsion. This is in direct analogy to the
affine spacetime connection which in general consists of a
canonical part in terms of the Levi-Civita connection and a
free part connected with spacetime torsion.
Following the principle of general covariance together

with spin-base invariance, a field strength corresponding to
a spin curvature can be constructed. The simplest action
linear in this field strength defines a classical dynamical
theory. The resulting equations of motion imply that the
spin torsion vanishes in the absence of any sources. The
metric-part of these equations of motion correspond to
general relativity as expected.
This paper is organized as follows: in Sec. II, we specify

all prerequisites and assumptions for constructing the spin-
base invariant formalism. Section III is devoted to the
analysis of the affine spin connection and the spin metric,
which defines the relation between spinors and Dirac
conjugated spinors. In Sec. IV a spinorial Lie derivative
is constructed within the present framework which turns
out to coincide with the Kosmann-Lie derivative known in
the literature. The inclusion of an additional gauge sym-
metry is worked out in Sec. V. The field strength for spinors
and the corresponding action linear in the field strength is
derived in Sec. VI. We generalize our results, formulated
for irreducible representations of the Dirac algebra, to
reducible cases in Sec. VII. The implications of the spin-
base invariant formalism for a possible quantized version of
gravity and quantized matter is discussed in Sec. VIII on
the level of a path integral approach. As a first hands-on
application of the spin-base invariant formalism, we deter-
mine the response of several elements of the formalism
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(Dirac matrices, spin connection, etc.) under a variation
of the metric in Sec. IX. These results form elementary
technical building blocks for generic quantum field theory
computations. Conclusions are drawn in Sec. X. The
uniqueness (up to a sign) of the spin metric is proven in
Appendix A. In Appendix B we list several useful identities
of the formalism for the simpler case of vanishing torsion,
serving as a toolbox for a straightforward application of
the formalism.

II. BASIC REQUIREMENTS FOR
SPIN-BASE INVARIANCE

We aim at a generally covariant and spin-base invariant
description of fermions without recourse to a vierbein
construction. For this, only a few basic assumptions have
to be made. We stress that these requirements are com-
pletely compatible with the vierbein formalism for torsion-
free spacetimes.
First we fix the relation between the metric of a (pseudo-)

Riemannian spacetime and the Dirac matrices γμ by
demanding the Clifford algebra to hold locally,

fγμ; γνg ¼ 2gμνI; γμ ∈ Cdγ×dγ : (7)

Here, dγ denotes the dimension of the Dirac matrices in
the irreducible representation of the Clifford algebra,
i.e., dγ ¼ 2⌊d=2⌋.
The Clifford algebra supports an SLðdγ;CÞ symmetry. 1

We require this invariance under spin-base transformations
with S ∈ SLðdγ;CÞ to hold locally for general action func-
tionals involvingtheDiracmatricesandDiracfermionsψ and
their conjugate ψ̄ obeying the transformation rules,

ðiÞ γμ → SγμS−1;
ðiiÞ ψ → Sψ ;

ðiiiÞ ψ̄ → ψ̄S−1: (8)

Dirac conjugation of a spinor ψ involves Hermitian
conjugation and a spin metric h,

ψ̄ ¼ ψ†h; (9)

which is assumed to carry no scale,

j det hj ¼ 1: (10)

Local spin-base invariance requires us to introduce a
covariant derivative ∇μ with the following standard
properties,

ðiÞ linearity: ∇μðψ1 þ ψ2Þ ¼ ∇μψ1 þ∇μψ2;

ðiiÞ product rule: ∇μ ðψψ̄Þ ¼ ð∇μψÞψ̄ þ ψð∇μψ̄Þ;
ðiiiÞ covariance: ∇μ ψ̄ ¼ ∇μψ ; ∇μψ

† ¼ ð∇μψÞ†:
(11)

Up to this point, local spin-base invariance is reminiscent of
gauge invariance, however, with a noncompact gauge group.
Now we make contact with general covariance by addition-
ally demanding that ∇μ has to coincide with the ordinary
spacetime covariant derivativeDμ, if it acts on an object that
is a scalar under spin-base transformations. A particularly
important example is given by

∇μðψ̄γνψÞ ¼ Dμðψ̄γνψÞ ¼ ∂μðψ̄γνψÞ þ Γν
μκðψ̄γκψÞ; (12)

where Γν
μκ denotes the metric compatible affine spacetime

connection

Γν
μκ ¼

�
ν

μκ

�
þ Kν

μκ: (13)

Here
n ν
μκ

o
is the Levi-Civita connection

�
ν

μκ

�
¼ 1

2
gνλð∂μgλκ þ ∂κgλμ − ∂λgμκÞ; (14)

and Kν
μκ is the contorsion tensor. The contorsion Kν

μκ and
the torsion Cν

μκ are related via

Cν
μκ ¼ 2Kν½μκ� ≡ Kν

μκ − Kν
κμ; (15)

Kν
μκ ¼

1

2
ðCν

μκ þ Cκ
ν
μ − Cμκ

νÞ≡−Kκμ
ν; (16)

where indices in square brackets […] are completely
antisymmetrized.
The property (iii) of Eq. (11) can be interpreted as the

spinorial analog to metric compatibility of general relativity
with ψ̄ corresponding to a covariant spin vector and ψ to a
contravariant spin vector under spin-base transformations.
From this viewpoint, the Hermitian conjugate spinor ψ†

should be considered as (the Hermitian conjugate of) a
contravariant spin vector in contrast to the covariant ψ̄ . For
instance, ψ† transforms with S†, whereas ψ̄ transforms with
S−1. Therefore, we need the additional definition ∇μψ

† ¼
ð∇μψÞ† in (iii) of Eq. (11) which reduces to an identity for
the ordinary partial derivative in flat space.2

1In fact the Clifford algebra is invariant under a GLðdγ;CÞ
symmetry which locally factorizes into SLðdγ;CÞ × Uð1Þ × Rþ.
Here we first concentrate on the SLðdγ ;CÞ component, as the
Uð1Þ × Rþ part does act trivially on the Dirac matrices. The
inclusion of additional symmetry groups such as the U(1) factor is
discussed in Sec. V.

2In fact this definition is not mandatory. If we dropped
∇μψ

† ¼ ð∇μψÞ†, there would be no unique definition of the
spin covariant derivative for ψ† and h. These derivatives are,
however, not necessary for calculational or conceptual concerns.
With hindsight, only the second equality in Eq. (27) given below,
∂μh − hΓμ − Γ†

μh ¼ 0, is needed which can be inferred from the
property ∇μψ̄ ¼ ∇μψ alone.
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Finally, we require the action of a dynamical theory to be
real, especially

ðiÞ ðψ̄ψÞ� ¼ ψ̄ψ ;

ðiiÞ
Z
x
ðψ̄∇ψÞ� ¼

Z
x
ψ̄∇ψ ; (17)

where
R
x is a shorthand for

R
ddx

ffiffiffiffiffiffi−gp
with g ¼ det gμν.

Equations (17) also fix some of our conventions, i.e.,
in other conventions the reality conditions could look
differently.
Based on these elementary requirements, the next section

is devoted to the analysis of the spin connection that fully
implements invariance under spin-base transformation.
Apart from obvious conceptual advantages, this invariance
might be of use in practical computations to choose a
convenient set of Dirac matrices for a simplified construc-
tion of classical solutions [17,18]. For vanishing torsion,
this spin connection can be made to agree with the standard
spin connection constructed from the vierbeins eμa if the
Dirac matrices are spin-base transformed to those of the
vierbein formalism.

III. PROPERTIES OF THE AFFINE
SPIN CONNECTION

For the following analysis, we work in d ¼ 4 spacetime
dimensions, where dγ ¼ 4 holds for the dimension of
the irreducible representation of the Clifford algebra.
Generalizations to d ¼ 2 and d ¼ 3 can also be worked
out straightforwardly [20]. Whenever suitable, we give the
formulas for general dγ to emphasize the generality of parts
of the construction.
A cornerstone of the present construction is the Weldon

theorem [11]. It states that an infinitesimal variation of
the Dirac matrices which preserves the Clifford algebra
can be decomposed into an infinitesimal variation of
the inverse metric δgμν and an infinitesimal SLð4;CÞγ
transformation δSγ:

δγμ ¼ 1

2
ðδgμνÞγν þ ½δSγ; γμ�: (18)

Here the notation distinguishes between SLð4;CÞ spin-base
transformations S that simultaneously act on fermions as
discussed above and constitute an invariance of the theory,
and an (infinitesimal) SLð4;CÞγ transformation δSγ that
may only act on the Dirac matrices. 3 This theorem can

straightforwardly be proved by using that every matrix in
C4×4 can uniquely be locally spanned by the explicit basis
of the Clifford algebra I, γ�, γα, γ�γα and ½γα; γβ�. Here,

γ� ¼ −
i
4!

~εμ1…μ4γ
μ1…γμ4 ; ~εμ1…μ4 ¼

ffiffiffiffiffiffi−gp
εμ1…μ4 (19)

is the generalized (generally spacetime-dependent) analog
of γ5 ¼ −iγðfÞ0γðfÞ1γðfÞ2γðfÞ3 in flat space. We have used the
Levi-Civita symbol εμ1…μ4 with ε0123 ¼ 1 to define the
Levi-Civita tensor ~εμ1…μ4. Essential properties of γ� are

ðiÞ fγμ; γ�g ¼ 0;

ðiiÞ tr γ� ¼ 0: (20)

Now, let us assume that a spacetime is specified in terms of
a set of Dirac matrices γμ, also defining the metric through
the Clifford algebra Eq. (7), and in terms of contorsion
Kν

μκ. Already from the Dirac matrices, we can determine a
useful auxiliary Dirac-valued matrix Γ̂μ as a spacetime
vector valued function of the γμ. It is defined by

DðLCÞμγ
ν ¼ ∂μγ

ν þ
�

ν

μκ

�
γκ ¼ − ½Γ̂μ; γν�; tr Γ̂μ ¼ 0; (21)

where DðLCÞμ is the spacetime covariant derivative includ-
ing the Levi-Civita connection, but disregarding any
torsion. Equations (21) can be resolved explicitly in terms
of the local Clifford basis:

ðiÞ Γ̂μ ¼ pμγ� þ vμαγα þ aμαγ�γα þ tμαβ½γα; γβ�;

ðiiÞ pμ ¼
1

32
trðγ�γα∂μγ

αÞ;

ðiiiÞ vμα ¼
1

48
trð½γα; γβ�∂μγ

βÞ;

ðivÞ aμα ¼
1

8
trðγ�∂μγ

αÞ;

ðvÞ tμαβ ¼ − 1

32
trðγα∂μγ

βÞ − 1

8

�
β

μα

�
≡−tμβα ; (22)

where all tensorial coefficients are functions of the Dirac
matrices.
Next, we turn to the construction of the covariant

derivative. From (ii) of Eq. (11) and ∇μðψ̄ψÞ ¼ ∂μðψ̄ψÞ
analogous to Eq. (12), we observe that the covariant
derivative can be written as

∇μψ ¼ ∂μψ þ Γμψ ; (23)

∇μψ̄ ¼ ∂μψ̄ − ψ̄Γμ: (24)

Here we have introduced the affine spin connection Γμ to be
analyzed, which transforms as a vector under general

3In a slight abuse of language, we may call δSγ a “spin-base
fluctuation.” Since it applies only to the Dirac matrices, it
represents a physically relevant fluctuation of the spin basis
for the Dirac matrices relative to that of the fermions. This is
different from an infinitesimal version of the spin-base trans-
formation S ∈ SLð4;CÞ which are an invariance of the theory by
definition.
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coordinate transformations and inhomogeneously under
spin-base transformations,

Γμ → SΓμS−1 − ð∂μSÞS−1: (25)

From Eq. (21), it is immediate that Γ̂μ has the same
transformation properties as Γμ both under general coor-
dinate as well as spin-base transformations. Because Γμ is
the connection for the spin-base transformations, it is
composed from the generators of the symmetry group
SLðdγ;CÞ, the traceless matrices. Therefore we can set the
trace of Γμ to zero, tr Γμ ¼ 0. In Sec. V below, we discuss
generalizations including a trace part.
From the property of general covariance (12) together

with the definition of Dirac conjugation in Eq. (9), we
conclude that

∇μγ
ν ¼ Dμγ

ν þ ½Γμ; γν�≡
�
Γμ − Γ̂μ − 1

8
Kρμλ½γρ; γλ�; γν

�
;

(26)

∇μh ¼ ∂μh − hΓμ − Γ†
μh ¼ 0; (27)

where we have made use of the auxiliary matrix Γ̂μ defined
in Eq. (21).
The challenging task is to find the maximum number of

constraints on Γμ from the Dirac matrices and therefore
from the metric and the actual choice of the spin base in
order to identify its physical content. For this, we first
consider the spin metric and notice with Eq. (9) that it
transforms under spin-base transformations as

h → S†−1hS−1: (28)

Equation (i) of (17),

ψ†hψ ¼ ψ̄ψ ¼ ðψ̄ψÞ� ¼ ψTh�ψ� ¼ ψ†ð−h†Þψ ; (29)

implies that the spin metric is anti-Hermitian

h† ¼ − h: (30)

Let us now define the Dirac conjugate of a matrix M as

M̄ ¼ h−1M†h (31)

which implies

ðψ̄MψÞ� ¼ ψ̄ M̄ ψ : (32)

Using the standard relation

∂μ
ffiffiffiffiffiffi−gp ¼ ffiffiffiffiffiffi−gp

Γκ
μκ ≡ ffiffiffiffiffiffi−gp �

κ

μκ

�
; (33)

we can straightforwardly derive from Eq. (ii) of (17)
together with Eqs. (21) and (27) that

Z
x
ψ̄∇ψ ¼

Z
x
ðψ̄∇ψÞ� ¼

Z
x
ψ̄ð−γ̄μ∇μ þ ½Γ̄μ − ¯̂Γμ; γ̄μ�Þψ :

(34)

As this has to hold for arbitrary fermion fields, we deduce

γ̄μ ¼ −γμ (35)

and

0 ¼ ½ΔΓμ; γμ�; ΔΓμ ¼ Γμ − Γ̂μ: (36)

Since Γ̂μ is fully determined in terms of the Dirac matrices,
Eq. (36) represents a first constraint on the components
of the spin connection Γμ. This constraint can, of course,
trivially be satisfied by identifying Γμ ¼! Γ̂μ and setting the
difference to zero ΔΓμ¼! 0. From the present viewpoint,
this is a perfectly legitimate choice, yielding one particular
explicit realization of the spin connection being fully
determined by the Dirac matrices. This choice has been
advocated in [11], where it has also been shown that this
spin-base invariant formalism contains the standard vier-
bein formalism as a subset: for Dirac matrices following the
vierbein construction Eq. (3), the coefficients pμ, vμα, aμα

all vanish, and the tμαβ are given by

tμαβ ¼
1

8
ωμ

abeαaeβb:

However, there is a priori no reason to single out this
definition of the spin connection in terms of Γ̂μ. Therefore,
we investigate below the properties and possible further
degrees of freedom contained in a possibly nonzero ΔΓμ.
Before we do so, let us extract an important consequence

of Eq. (36): the covariant derivative of the Dirac matrices
given in Eq. (26) reads after evaluating the Dirac matrix
commutators,

∇μγ
ν ¼ ½ΔΓμ; γν� þ Kν

μκγ
κ: (37)

Using the constraint (36), this implies

∇μγ
μ ¼ Kμ

μκγ
κ: (38)

In the presence of torsion with Kκ
κμ ≠ 0, this result is

incompatible with the vierbein postulate (2). In the present
notation, the latter is equivalent to the vanishing covariant
derivative of the Dirac matrices

∇ðeÞμγðeÞ
ν ¼ 0; (39)

where the γðeÞν follow the vierbein construction Eq. (3).
This discrepancy between our more general formalism and
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the conventional vierbein formalism is in line with the fact
that the inclusion of torsion requires us to go beyond the
conventional vierbein formalism such as, e.g., Einstein-
Cartan theory. From the viewpoint of our spin-base
invariant formalism, torsion can be accommodated in a
straightforward manner on the basis of our requirements
of Sec. II. 4

In the remainder of this section, we concentrate on the
analysis of the properties of the ΔΓμ part of the spin
connection. For this, it is useful to explicitly construct the
spin metric h, as is done in Appendix A. For a given set of
Dirac matrices, the spin metric turns out to be uniquely
fixed up to a sign and can be parametrized by

h ¼� iei
φ
2eM̂; (40)

where φ and M̂ are (up to a sign) implicitly defined by

γ†μ ¼ −eM̂γμe−M̂; trM̂ ¼ 0; eM̂
† ¼ eiφeM̂:

(41)

The angle φ can only take discrete constant values,

φ ∈
�
n
2π

dγ
∶n ∈ f0;…; dγ − 1g

�
; ∂μφ ¼ 0: (42)

These properties together with Eq. (27) imply another
constraint for the spin connection (see Appendix A for
details):

Γμ þ Γ̄μ ¼ Γ̂μ þ ¯̂Γμ ¼ h−1∂μh: (43)

Even if we admit for a nonzero trace of the spin connection
(cf. Sec. V), this constraint together with the properties of
the spin metric imply that the trace part has to be purely
imaginary

Re tr Γμ ¼ 0: (44)

If we span ΔΓμ also by the standard Clifford basis

ΔΓμ ¼ Δpμγ� þ Δvμαγα þ Δaμαγ�γα þ Δtμαβ½γα; γβ�
(45)

and use the constraints (36) and (43), we conclude that

ðiÞ Δpμ ¼ 0;

ðiiÞ Δv½αβ� ¼ 0; Δvμα ∈ R;

ðiiiÞ Δaαα ¼ 0; Δaμα ∈ R;

ðivÞ ΔtμðαβÞ ¼ 0; Δtββα ¼ 0; Δtμαβ ∈ R; (46)

where we use (…) to denote complete symmetrization of
indices. In summary, this leaves us with 45 real parameters
forΔΓμ. It is important to note that the coefficient tensors in
Eq. (46) do not change under spin-base transformations,
since

ΔΓμ → SΔΓμS−1; (47)

transforms homogeneously in contrast to Γμ and Γ̂μ, cf.
Eq. (25). Hence, spin-base transformations cannot be
employed to transform any of these parameters to zero.
We interpret ΔΓμ as a spin torsion. Similarly to general

relativity where the torsion becomes visible in the anti-
symmetric part of Γλ

μν, also ΔΓμ is contained in the
antisymmetric part of the affine connection Γμ, cf. Eq. (43)

1

2
ðΓμ − Γ̄μÞ ¼

1

2
ðΓ̂μ − ¯̂ΓμÞ þ ΔΓμ; (48)

where antisymmetrization is defined in terms of Dirac
conjugation.Also the transformationbehavior is reminiscent
to that of torsion, since it transforms homogeneously under
spin-base transformations and coordinate transformations.
In order to illustrate the physical meaning of ΔΓμ, let us

consider the contribution of this spin torsion to the Dirac
operator. Using the identities (valid for d ¼ dγ ¼ 4),

γ�½γα; γβ� ¼
i
2
~εαβμν½γμ; γν� (49)

fγμ; ½γα; γβ�g ¼ − 4i~εμαβνγ�γν; (50)

and taking the constraints (46) into account, we find

ψ̄γμΔΓμψ ¼ Mψ̄ψ −Aμψ̄ iγ�γμψ −Fμνψ̄
i
4
½γμ; γν�ψ ;

(51)

Here we have introduced the intuitive abbreviations

M ¼ Δvαα (52)

Aν ¼ 2Δtμαβ ~εμαβν (53)

Fμν ¼ Δa½αβ� ~εαβμν; (54)

for a scalar field (spacetime dependent mass) M, an axial
vector fieldAν, and an antisymmetric tensor fieldFμν all of

4It is worthwhile to note that Eqs. (37) and (38) actually do not
intertwine torsion and the Dirac matrices. Since torsion is
naturally contained in the full covariant derivative on the left-
hand side, cf. Eqs. (12) and (13), the torsion terms naturally drop
out of Eqs. (37) and (38). By contrast, torsion is trivially
constrained to vanish in Eq. (39), if the covariant derivative on
the left-hand side is assumed to also contain the antisymmetric
part of the spacetime affine connection. Hence, it seems that the
vierbein formalism could also accommodate torsion, if the
vierbein postulate is generalized analogously to Eq. (37).
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which have mass dimension one. We conclude that such
fields can be accommodated in the spin torsion. They can
obviously remain nonzero even in the limit of flat
Minkowski space. It is interesting to observe that no
pseudoscalar and no vector field, which would complete
the possible bilinear fermion structures, occur in Eq. (51).
As discussed in Sec. V, a vector field can straightforwardly
be accommodated in the trace part of the spin connection.
Out of the 45 parameters of the spin torsion, the fields

M, Aν, and Fμν summarize 11 parameters. The remaining
34 can contribute to higher order operators, e.g., involving
more covariant derivatives.
This comparatively large number of parameters of the

spin torsion can, of course, be further constrained by
additional symmetry requirements. For instance, in order
to construct a chiral symmetry, we demand for a covariantly
constant γ� which facilitates the construction of covariantly
constant chiral projectors,

0 ¼ ∇γ� ¼ γμ½ΔΓμ; γ�� ¼ 2Δvμμγ� − Δaμν½γμ; γν�; (55)

which implies additional constraints for the spin torsion

Δvμμ ¼ 0; Δa½μν� ¼ 0; (56)

leaving 38 free real parameters. In fact, this chiral-
symmetry constraint requires only the scalar field M
and the antisymmetric tensor field Fμν to vanish. The
axial vector fieldAν (4 parameters) as well as the remaining
34 parameters possibly contributing to higher order oper-
ators are left untouched.
To summarize the present section, we now have a

covariant derivative of Dirac fermions at our disposal
which encodes a parallel transport of a Dirac spinor in
curved spacetimes that respects general coordinate invari-
ance as well as local spin-base invariance. More explicitly,
given a spinor ψ which transforms as a scalar under
coordinate transformations and a vector under spin-base
transformations, its covariant derivative can be written as

∇μψ ¼ ∂μψ þ Γ̂μψ þ ΔΓμψ ; (57)

where Γ̂μ is fully determined in terms of spacetime
dependent Dirac matrices also carrying metric information
and ΔΓμ denotes the spin torsion. This is in complete
analogy to the covariant derivative of a spacetime vector
which can be written in terms of the Levi-Civita connection
(determined in terms of the metric) and the spacetime
torsion. We would like to emphasize that the spin torsion
and the spacetime torsion are mutually independent. They
have to be fixed by corresponding external conditions or a
corresponding dynamical theory.

IV. LIE DERIVATIVE

The standard Lie derivative Lv with respect to a vector
field vμ (considered as infinitesimal in the following) is
defined by

Lv1v2
μ ¼ v1ν∂νv2μ − v2ν∂νv1μ; (58)

where v2μ is also some vector field. This geometrical
structure can be used to implement the statement that
Einstein’s theory of general relativity is torsionfree.
Demanding that the Lie derivative also equals the cova-
riantized right-hand side,

Lv1v2
μ¼! v1νDνv2μ − v2νDνv1μ; (59)

the torsion has to vanish.
This relation implies that Γλ

μν has to be symmetric in
μ↔ν and therefore is equal to the Levi-Civita connection.
If we wish to apply the same concept to the spin-base
covariant derivative in order to exclude spin torsion, we
first need a Lie derivative for spinors. In fact this has been a
challenge of its own which has been extensively discussed
in the literature [21–23].
In the following, we present an independent definition

of a generalized Lie derivative for spinors ~L which is
motivated by the Weldon theorem Eq. (18). Since the
metric is encoded in the Dirac matrices in the present spin-
base invariant formalism, it is natural to define the
generalized Lie derivative in terms of its action on the
Dirac matrices. From the Weldon theorem Eq. (18), we
know that general Clifford-algebra compatible variations of
the Dirac matrices can be decomposed into a metric
variation δgμν and an infinitesimal spin-base transformation
δSγ . As the Lie derivative can be related to infinitesimal
diffeomorphisms, the variation of the metric occurring in
the Weldon theorem Eq. (18) is given by the ordinary Lie
derivative

δgμν ¼ Lvgμν ¼ −gμρ∂ρvν − gνρ∂ρvμ þ vρ∂ρgμν: (60)

However, in order to compare spinors under a variation
of the metric without contributions from local spin-base
variations, we keep the spin bases fixed. Hence, we define
the generalized Lie derivative in terms of a variation of the
Dirac matrices with δSγ ¼ 0

~Lvγ
μ ¼ 1

2
ðLvgμνÞγν: (61)

This way the Lie derivative gives us the variation of the
spinors under diffeomorphisms with fixed spin bases, cor-
responding to a comparability of the in general different spin
bases under differentmetrics. Of course we also demand the
generalized Lie derivative ~L to fulfill a product rule and to
coincidewith the ordinary Lie derivativeL if the considered
object is a scalar under spin-base transformations,
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~Lvψ̄ψ ¼ Lvψ̄ψ : (62)

That justifies the general form of ~L:

~Lvψ ¼ Lvψ þ Zvψ ;

~Lvψ̄ ¼ Lvψ̄ − ψ̄Zv;

~Lvγ
μ ¼ Lvγ

μ þ ½Zv; γμ� (63)

for some Clifford-algebra valued matrix Zv. We demand
additionally for Zv to be traceless,

trZv ¼ 0: (64)

This condition is natural, as any nonzero trace part ∼I
would not modify the Dirac matrices and hence leave
also the geometry unaffected. Even if Zv was not
traceless, the trace part would act similar to that of
the covariant derivative discussed in the next section and
hence carry no independent information. The traceless
part of Zv can be calculated from Eq. (61), by a
comparison with the ordinary Lie derivative of the
Dirac matrices which can be derived straightforwardly,

Lvγ
μ ¼ 1

2
ðLvgμνÞγν −

�
vρΓ̂ρ þ

1

8
ð∂ ½ρvλ�Þ½γρ; γλ�; γμ

�
: (65)

Hence, we can read off

Zv ¼ vρΓ̂ρ þ
1

16
ð∂ρvλ − ∂λvρÞ½γρ; γλ�: (66)

This line of argument leads us to a generalized Lie
derivative for Dirac spinors

~Lvψ ¼ vρ∂ρψ þ vρΓ̂ρψ þ 1

8
ð∂ ½ρvλ�Þ½γρ; γλ�ψ : (67)

Now, the geometric argument for eliminating the spin
torsion analogous to that of general relativity formulated
by Eq. (59) can be completed: the analog requirement in
spinor space is to demand our generalized Lie derivative
to agree with a spinor-covariantized form:

~Lvψ ¼ vρ∇ρψ þ 1

8
ð∂ ½ρvλ�Þ½γρ; γλ�ψ : (68)

Then we can immediately conclude that

vρΔΓρ ¼ 0; (69)

for all (infinitesimal) vectors vρ. Therefore, relating the
geometrical construction represented by the Lie derivative
to the covariant derivative in spinor space implies that the
spin torsion has to vanish.

In Eq. (68), we have only covariantized the spinorial
part. Alternatively, we could also require the generalized
Lie derivative to agree with its fully covariantized form
leading to

~Lvψ ¼ vρ∇ρψ þ 1

8
ðD½ρvλ�Þ½γρ; γλ�ψ : (70)

This requirement relates torsion and spin torsion,

ΔΓμ ¼
1

8
Cμρλ½γρ; γλ�; Cσ

σμ ¼ 0: (71)

Read together with Eqs. (v) of (22) and (45), this resembles
the form of the spin connection Γμ ¼ Γ̂μ þ ΔΓμ, known
from the vierbein formalism (with torsion replaced by
contorsion), but with the additional constraint that the
spacetime torsion needs to be traceless.
However, it is important to emphasize that this relation

between spin torsion and torsion is only nontrivial, as long
as we do not impose the condition (59) for Lie derivatives
of vectors. In fact, treating spinors and vectors differently
appears unnatural. Hence, imposing the covariantized form
also for spacetime vectors, we have

~Lvðψ̄γμψÞ ¼ Lvðψ̄γμψÞ ¼ vρDρðψ̄γμψÞ − ðψ̄γρψÞDρvμ

(72)

which in combination with Eq. (70) immediately implies
that both kinds of torsion have to vanish

ðiÞ Cρ
μν ¼ 0;

ðiiÞ ΔΓμ ¼ 0: (73)

The fully covariantized form for our generalized Lie
derivative in Eq. (70) is identical (up to torsion) to the
Kosmann-Lie derivative discussed in the literature [21–23].

V. GAUGE FIELDS

In the preceding sections, we have set a possible trace
part of the spin connection Γμ to zero, as such a trace part
proportional to the identity in Dirac space ∼I does not
transform the Dirac matrices nontrivially, cf. (i) of Eq. (8).
If we allow for this generalization, the symmetry group
can be extended to G ⊗ SLðdγ;CÞ, where G denotes the
symmetry group of the trace part. The Clifford algebra is, of
course, also invariant under this larger group, since the
Dirac matrices and thus the geometry do not transform
under g ∈ G.
To construct a connection ΓðG⊗SLÞμ for this larger group,

we consider symmetry transformations g ⊗ S ∈ G ⊗
SLðdγ;CÞ and find analogously to Eq. (25)

ΓðG⊗SLÞμ → g ⊗ SΓðG⊗SLÞμðg ⊗ SÞ−1

− ð∂μðg ⊗ SÞÞðg ⊗ SÞ−1 (74)
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as the transformation property of the spin connection. Here
we can use the product rule for the derivative and expand
the inhomogeneous part,

ð∂μðg ⊗ SÞÞðg ⊗ SÞ−1 ¼ ðð∂μgÞg−1Þ ⊗ I

þ IðGÞ ⊗ ðð∂μSÞS−1Þ; (75)

where IðGÞ is the unit element of G. Because of this behavior,
it is sufficient to consider connections with the property

ΓðG⊗SLÞμ ¼ ΓðGÞμ ⊗ Iþ IðGÞ ⊗ Γμ; (76)

where ΓðGÞμ is the connection for the group G and Γμ is
the traceless connection for the SLðdγ;CÞ part, i.e. the Γμ

from the previous sections. Obviously, the Dirac trace
part of ΓðG⊗SLÞμ accommodates the connection for the
group G.
Similarly, a straightforward generalization of the spin

metric suggests the form

hðG⊗SLÞ ¼ IðGÞ ⊗ h; (77)

with the corresponding transformation law

hðG⊗SLÞ → ðg† ⊗ S†Þ−1hðG⊗SLÞðg ⊗ SÞ−1 (78)

under a g ⊗ S transformation. Requiring the transforma-
tion (78) to preserve Eq. (77), the elements of G need to be
unitary

g−1 ¼ g†: (79)

If we now additionally demand for metric compatibility,
Eq. (27), we get

IðGÞ⊗ ðh−1ð∂μhÞÞ¼ΓðG⊗SLÞμþ IðGÞ⊗h−1Γ†
ðG⊗SLÞμIðGÞ⊗h;

(80)

from which we deduce with regard to Eq. (76) that the
connection of G needs to be anti-Hermitian

Γ†
ðGÞμ ¼ −ΓðGÞμ: (81)

Here we also used Eq. (43). This justifies the introduction
of the gauge field Aμ

ΓðGÞμ ¼ iAμ (82)

which is associated with the G symmetry. This field can
in general be non-Abelian but is always Hermitian as is
conventional in ordinary gauge field theory.
To summarize, the inclusion of a trace part in the spin

connection Γμ can be viewed as an extension of the
symmetry group from SLðdγ;CÞ to G ⊗ SLðdγ;CÞ, with

G being a unitary group. The spin connection can then be
decomposed as

ΓðG⊗SLÞμ ¼ iAμ ⊗ Iþ IðGÞ ⊗ ðΓ̂μ þ ΔΓμÞ; (83)

or in short

Γμ ¼ iAμ þ Γ̂μ þ ΔΓμ; (84)

as it is understood and used in the following. Within the
physical context of fermions in curved space, the SLðdγ;CÞ
part of the connection is always present in covariant
derivatives of spinor fields, since it carries the information
about how fermions evolve dynamically in a given curved
space. By contrast, the gauge part of the connection may
or may not be present depending on whether a fermion is
charged under the group G. Technically, the distinction
among differently charged fermions may be parametrized
by a charge matrix as a factor inside Aμ.

VI. SPIN CURVATURE

From our knowledge about the spinor covariant deriva-
tive and the associated spin connection, it is immediate to
construct a curvature or field strength which we denote by
spin curvature for short. Again, we motivate the definition
for this spin curvature by analogy to the standard definition
of the curvature tensor in general relativity (including
torsion) [16],

Rμν
λ
ρT

ρ ¼ ½Dμ; Dν�Tλ þ Cσ
μνDσTλ; ∀ Tρ tensor: (85)

This suggests the definition of the spin curvature Φμν,

Φμνψ ¼ ½∇μ;∇ν�ψ þ Cσ
μν∇σψ : (86)

More explicitly, it is given by

Φμν ¼ ∂μΓν − ∂νΓμ þ ½Γμ;Γν� (87)

¼ iF μν þ Φ̂μν þ 2∂ ½μΔΓν� þ 2½Γ̂½μ;ΔΓν��
þ ½ΔΓμ;ΔΓν�; (88)

where F μν is the field strength tensor of the gauge field

F μν ¼ ∂μAν − ∂νAμ þ ½Aμ;Aν�: (89)

The quantity Φ̂μν is the spin curvature induced by Γ̂μ

Φ̂μν ¼ ∂μΓ̂ν − ∂νΓ̂μ þ ½Γ̂μ; Γ̂ν�; (90)

which can be related to the curvature tensor RðLCÞμν
λ
ρ

defined in terms of the Levi-Civita connection DðLCÞμ by

the following observation:
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RðLCÞμν
λ
ρ
γρ ¼ ½DðLCÞμ; DðLCÞν�γλ ¼ −½Φ̂μν; γλ�: (91)

This demonstrates the correspondence between the spin-
torsion/torsionfree curvature expressions:

Φ̂μν ¼
1

8
RðLCÞμνλρ½γλ; γρ�; (92)

where

RðLCÞμν
λ
ρ
¼ ∂μ

�
λ

νρ

�
− ∂ν

�
λ

μρ

�
þ
�

λ

μσ

��
σ

νρ

�

−
�

λ

νσ

��
σ

μρ

�
: (93)

These results together with the explicit representation (88)
make it clear that the spin curvature does not carry
information about the whole spacetime structure, since
no spacetime-torsion dependent terms occur. Only spin
torsion appears in Eq. (88) which is in line with the fact that
also a covariant derivative acting on a Dirac spinor does not
depend on spacetime torsion but only on spin torsion,
cf. Eq. (57). A direct coupling between spinor degrees of
freedom and spacetime torsion therefore requires ad-hoc
higher-order coupling terms or higher-spin fields such as
Rarita-Schwinger spinors, see below.
As a simple application of the spin curvature, let us

construct the simplest classical field theory that can be
formed out of the spin curvature. Since Φμν is Clifford-
algebra valued, there exists already a spin base and
diffeomorphism invariant quantity to linear order in the
spin curvature. The simplest classical action thus is

SΦ ¼ 1

16πG

Z
x
LΦ; LΦ ¼ 2

dAdγ
trðγμΦμνγ

νÞ; (94)

where G is a coupling constant, and dA is the dimension of
the representation of the gauge group dA ¼ tr IðGÞ. We set
dA ¼ 1 in the absence of any gauge group. The content of
this field theory can be worked out more explicitly, using
the identities

DðLCÞμΔΓν ¼ðDðLCÞμΔvν
αÞγα þ ðDðLCÞμΔaν

αÞγ�γα
þ ðDðLCÞμΔtν

αβÞ½γα; γβ� − ½Γ̂μ;ΔΓμ�; (95)

0 ¼ trð½γα; γβ�Þ ¼ trðγμ½γα; γβ�Þ ¼ trðγ�γμ½γα; γβ�Þ; (96)

trð½γμ; γν�½γα; γβ�Þ ¼ 4dγðgμβgνα − gμαgνβÞ: (97)

The Lagrangian reads in terms of the Levi-Civita curvature
and the spin torsion coefficients

LΦ ¼ RðLCÞ þ 4ðΔvμμÞ2 − 4ΔvμνΔvνμ

þ 4ΔaμνΔaνμ þ 64ΔtμνκΔtκνμ; (98)

where RðLCÞ ¼ RðLCÞμν
μν. This action is rather similar to the

(torsion-amended) Einstein-Hilbert action

SR ¼ 1

16πG

Z
x
R;

R ¼ Rμν
μν;

R ¼ RðLCÞ þ 2DðLCÞμK
μ
ν
ν − Kρ

ν
νKρμ

μ þ KρμνKρνμ; (99)

which differs from Eq. (98) only in the torsion terms.
Obviously, LΦ cannot depend on spacetime torsion as Φ is
blind to spacetime torsion as well.
This simple observation offers a speculative though

interesting perspective: if classical GR was based on
Eq. (94) (and possibly supplemented by higher order
monomials of Φμν) instead of Eq. (99), the absence of
spacetime torsion in classical GR would be a natural self-
evident consequence.
Instead, SΦ confronts us with the presence of spin torsion

terms in Eq. (98). In this simplest field theory, however, the
spin torsion terms occur only algebraically, implying that
the torsion fields remain nondynamical and satisfy par-
ticularly simple equations of motion.
Varying the action with respect to the fields Δvμν, Δaμν

and Δtμαβ, taking into account the constraints (46), we find

δΔvμν ¼ 1

2
ðδμρδνλ þ δνρδ

μ
λÞδΔvρλ; (100)

δΔaμν ¼
�
δμρδνλ − 1

4
gμνgρλ

�
δΔaρλ; (101)

δΔtμαβ ¼
�
δμρδ

½α
λ δ

β�
σ − 1

3
gρλgμ½αδ

β�
σ þ 1

3
gρσgμ½αδ

β�
λ

�
δΔtρλσ:

(102)

Hence, the variations of the action yield

δSΦ
δΔvμν

¼ 1

2πG
ððΔvκκÞgμν − ΔvμνÞ; (103)

δSΦ
δΔaμν

¼ 1

2πG
Δaμν; (104)

δSΦ
δΔtμαβ

¼ 8

πG
Δt½μα�β: (105)

Imposing an action principle δSΦ ¼ 0 this requires the spin
torsion to vanish in the absence of sources or boundary
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conditions for this simplest classical theory. The resulting
theory is identical to classical general relativity.
We conclude this section with two additional remarks:

First, a different definition of spin curvature would be
suggested in the presence of Rarita-Schwinger spinors ψλ,
being a first-rank tensor in spacetime as well as in Dirac
space. In analogy to Eq. (85), we would define

Φμν
λ
ρψρ ¼ ½∇μ;∇ν�ψλ þ Cσ

μν∇σψ
λ: (106)

This spin curvature can be decomposed into

Φμνλρ ¼ RμνλρIþ Φμνgλρ: (107)

Here, the spacetime curvature tensor Rμνλρ appears as the
antisymmetric part of Φμνλρ in λ↔ρ and the previous spin
curvature Φμνgλρ arises as the symmetric term. Forming
suitable first order invariants of this spin curvature, we end
up with actions of Einstein-Hilbert type including both
spacetime and spin curvature. In the spirit of the speculative
interpretation given above, the absence of spacetime torsion
in our universe would fit well to a nonexistence of
fundamental Rarita-Schwinger fields.
For our second remark, we disregard any torsion such

that Φμν → iF μν þ Φ̂μν. In this case, the second-order
invariant of the spin curvature which is reminiscent to
the kinetic term of a gauge theory reduces to

1

dAdγ
trΦμνΦμν → − 1

dA
trF μνF μν − 1

8
RμνρλRμνρλ: (108)

Naively, this seems to suggest that a gauge-gravity field
theory links the coupling to the gauge fields to that of
higher-order curvature terms. However, this connection
can, of course, simply be broken explicitly by additional
F μνF μν terms in the action which are not part of a
ΦμνΦμν term.

VII. REDUCIBLE REPRESENTATIONS

So far, our considerations have been based on the
irreducible representation of the Clifford algebra charac-
terized by dγ ¼ 4 in four spacetime dimensions. A gener-
alization of our formalism to reducible representations is
not completely trivial, since the construction of the spin
connection makes explicit use of a particular complete
basis of the Clifford algebra. The basis used above may not
generalize straightforwardly to any reducible representa-
tion. Therefore, we confine ourselves to those reducible
representations where the basis used so far is still sufficient.
Our construction leads to reducible representations with

dγ ¼ 4n, for n ∈ N. For this, we assume that the new Dirac
matrices can be written as a tensor product of a possibly
spacetime dependent matrix A ∈ Cn×n of dimension n and
the Dirac matrices γμ ∈ C4×4 of the irreducible representa-
tion used above,

γðdγÞ
μ ¼ A ⊗ γμ; (109)

obviously implying that dγ ¼ 4n. Of course, the set of
γðdγÞ

μ shall also satisfy the Clifford algebra

fγðdγÞμ; γðdγÞνg ¼ 2gμνIðdγÞ ¼ 2gμνIðnÞ ⊗ I (110)

which tells us that A is idempotent.

A2 ¼ IðnÞ (111)

has to hold at any spacetime point. Analogous to our
previous construction, we need a covariant derivative∇ðdγÞμ
and a spin metric hðdγÞ. We require the covariant derivative
to factorize accordingly,

∇ðdγÞμA ⊗ γν ¼ð∇ðnÞμAÞ ⊗ γν þ A ⊗ ð∇μγ
νÞ; (112)

where ∇ðnÞμ acts on the “A-part” and ∇μ is identical to the
covariant derivative in irreducible representation.
Analogously to Eq. (26), we also demand for

∇ðdγÞμA ⊗ γν ¼ DμA ⊗ γν þ ½ΓðdγÞμ; A ⊗ γν�; (113)

which tells us that the affine connection has to read

ΓðdγÞμ ¼ ΓðnÞμ ⊗ Iþ IðnÞ ⊗ Γμ: (114)

Because the irreducible component already carries all
relevant structures for general covariance, the A-part in
its simplest form should be covariantly constant,

0 ¼ ∇ðnÞμA ¼ ∂μAþ ½ΓðnÞμ; A�: (115)

We can rewrite this into a condition for the connection ΓðnÞμ
which has to satisfy

ΓðnÞμ ¼ AΓðnÞμA
−1 − ð∂μAÞA−1: (116)

For a given choice of A on a given spacetime, Eq. (116)
may or may not have a solution in terms of a set of ΓðnÞμ. If
a solution exists, it completes the definition of the spin
connection for this reducible representation. For the simpler
case of constant matrices A, a solution is always given
by ΓðdγÞμ ¼ 0.
The natural way to embed the spin-base transformations

is given by the form

SðdγÞ ¼ IðnÞ ⊗ S; S ∈ SLð4;CÞ: (117)

The corresponding transformation law for the spin con-
nection then reads
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ΓðdγÞμ → SðdγÞΓðdγÞμSðdγÞ
−1 − ð∂μSðdγÞÞSðdγÞ

−1

¼ ΓðdγÞμ ⊗ Iþ IðnÞ ⊗ ðSΓμS−1 − ð∂μSÞS−1Þ:
(118)

It is worthwhile to emphasize that the choice of the
embedding (117) is not unique. Reducible representations
of the Clifford algebra have a much larger symmetry of
SLðdγ ¼ 4n;CÞ, such that there are typically many more
options of embedding SLð4;CÞ into SLðdγ ¼ 4n;CÞ. The
present choice is motivated by the similarity to the
embedding of local Lorentz transformations that we would
encounter in the corresponding vierbein formalism.
Vierbeins transform under these Lorentz transformations as

eμa → eμbΛb
a; (119)

corresponding on the level of Dirac matrices to

γðeÞμ → SLorγðeÞμSLor
−1: (120)

The matrix SLor is given by

SLor ¼ exp

�
ηacω

c
b

8
½γðfÞa; γðfÞb�

�
; (121)

where the matrix ðωa
bÞ is defined by

Λa
b ¼ ðeωÞab: (122)

Promoting the (fixed) Dirac matrices to the reducible
representation given above, the corresponding Lorentz
transformation reads

SLorðdγÞ ¼ exp

�
ηacω

c
b

8
½A⊗ γðfÞa;A⊗ γðfÞb�

�
≡ In⊗SLor;

(123)

which is structurally identical to our choice for the
embedding of Eq. (117).
Finally, we also need the spin metric for the reducible

representation, which has to satisfy

γðdγÞ
†
μ
¼ −hðdγÞγðdγÞμhðdγÞ−1: (124)

It is obvious that this condition is satisfied by

hðdγÞ ¼ A ⊗ h; A† ¼ A; (125)

demanding that A is Hermitian in order to have hðdγÞ anti-
Hermitian. Of course also the absolute value of the
determinant is equal to one as required, since

jdet hðdγÞj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet A⊗hj2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet IðnÞ⊗h2j

q
¼1: (126)

This completes the construction of a generalization to
particularly simple reducible representations of the Dirac
algebra.
Again, the embedding (125) may not be unique. The

present choice is intuitive, because in conventional choices
for the flat spacetime Dirac matrices, the spin metric is
simply given by γðfÞ0. In the corresponding reducible
representation, the “new” γðdγÞ0 would read

γðdγÞ0 ¼ A ⊗ γðfÞ0; (127)

matching precisely with our extended spin metric.
Let us emphasize again that the straightforwardly

induced symmetries of the present construction may not
exhaust the full invariance of the reducible Clifford algebra.
For instance, one can immediately verify that our con-
struction is invariant under local SUðnÞ ⊗ SLð4;CÞ trans-
formations, which is in general only a subgroup of the
SLðdγ;CÞ invariance of the Clifford algebra in reducible
representation.

VIII. PATH INTEGRAL

As an application of the spin-base invariant formalism,
let us discuss possible implications for quantizing gravity
within a path integral framework. Of course, the question as
to whether such a path integral exists is far from being
settled. For the purpose of the following discussion, we
simply assume that there is such a path integral possibly
regularized in a symmetry-preserving way and possibly
amended with a suitable gauge fixing procedure. For
simplicity, we consider the case of vanishing spin torsion,
spacetime torsion and gauge fields

ΔΓμ ¼ 0; Cκ
μν ¼ 0; Aμ ¼ 0; (128)

even though the following considerations will not interfere
with any of these quantities. Also, we work manifestly in
d ¼ 4 where dγ ¼ 4.
So far, we took the viewpoint that the spacetime-

dependent Dirac matrices γμ are the basic objects encoding
the essential properties of the spacetime. In fact, given a set
of Dirac matrices, we can compute the metric,

gμν ¼
1

4
trðγμγνÞ: (129)

Also the spin metric necessary for including fermionic
Dirac degrees of freedom is fixed (up to a sign) by the
condition

h† ¼ −h; γ̄μ ¼ −γμ; j det hj ¼ 1; (130)

see Appendix A and Eqs. (40)–(42). The Dirac matrices
also determine the spin connection (up to spin torsion),
cf. Eq. (22), and all these ingredients suffice to define a
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classical theory of gravity including dynamical fermions.
One is hence tempted to base a quantized theory also on the
Dirac matrices as the fundamental degree of freedom. This
would be analogous to quantizing gravity in terms of a
vierbein. Whereas this is certainly a valid and promising
option, we show in the following that this Dirac matrix/
vierbein quantization is actually not necessary.
Demanding that quantization preserves the local Clifford

algebra constraint also off shell

fγμ; γνg ¼ 2gμνI; γμ ∈ C4×4; (131)

(for a correspondingly off-shell metric), the Weldon
theorem (18) already tells us that a fluctuation of the
Dirac matrices can always be decomposed into a metric
fluctuation and an SLð4;CÞγ fluctuation,

δγμ ¼ 1

2
ðδgμνÞγν þ ½δSγ; γμ�: (132)

Hence,wedonot attempt to construct an integrationmeasure
for Dirac matrices “Dγ,” satisfying the Dirac algebra con-
straint. Instead, it appears more natural to integrate over
metrics and SLð4;CÞγ fluctuations. In the following, we
show that the SLð4;CÞγ fluctuations factor out of the path
integral because of spin-base invariance, such that a purely
metric-based quantization scheme appears sufficient also in
the presence of dynamical fermions.
The crucial starting point of our line of argument is the

fact that all possible sets of Dirac matrices compatible with
a given metric are connected with each other via SLð4;CÞγ
transformations [24]. This means that we can cover the
space of Dirac matrices by (i) choosing an arbitrary
mapping ~γμ of the metric into the space of Dirac matrices
satisfying the Clifford algebra

gμν → ~γμ ¼ ~γμðgÞ; (133)

and (ii) performing SLð4;CÞγ transformations eM of this
mapping

γμðgÞ ¼ γμð~γðgÞ;MðgÞÞ ¼ eMðgÞ ~γμðgÞe−MðgÞ (134)

where M is an arbitrary tracefree matrix which can be
spanned by the generators of SLð4;CÞγ transformations.
This matrix M may even depend on the metric if we
demand γμðgÞ to be a particular Dirac matrix compatible
with the Clifford algebra independently of the choice of the
representative Dirac matrix ~γμ.
Equation (134) emphasizes the fact that every possible

set of Dirac matrices yielding a given metric gμν can be
constructed by this mapping.
The variation of the resulting Dirac matrices under an

infinitesimal variation in terms of the metric δgμν can be
represented analogously to the Weldon theorem:

δγμ ¼
1

2
ðδgμνÞγν þ ½Gρλδgρλ; γμ�; (135)

where the tensor Gρλ is tracefree and depends on the actual
choice of ~γμðgÞ and MðgÞ. Gρλ can be calculated from

½½Gρλ; γμ�; γμ� ¼
�∂γμðgÞ
∂gρλ ; γμ

�
: (136)

The infinitesimal SLð4;CÞγ fluctuation δSγ acting on the
Dirac matrices, as it occurs in the Weldon theorem, is
obviously given by

δSγ ¼ Gρλδgρλ: (137)

Now, the microscopic actions subject to quantization are
considered to be functionals of the fermions and the Dirac
matrices, S½ψ ; ψ̄ ; γ�. From our construction given above, the
Dirac matrices arise from a representative Dirac matrix
~γμðgÞ which is related to the metric by an arbitrary but fixed
bijection, gμν↔~γμ. The Dirac matrix γμ occurring in the
action is then obtained via the SLð4;CÞγ transformation
governed by M, cf. Eq. (134). Therefore, it is useful to
think of the action as a functional of the metric and of M,
S½ψ ; ψ̄ ; g;M�. In particular, the freedom to choose M [or
the corresponding SLð4;CÞγ group element] guarantees
that the space of all possible Dirac matrices compatible
with a given metric can be covered—for any choice of the
representative ~γμðgÞ.
In addition to diffeomorphism invariance, we demand

that the actions under consideration are invariant under
spin-base transformations

S½ψ ; ψ̄ ; g;M�→ S½Sψ ; ψ̄S−1; g; lnðSeMÞ�≡ S½ψ ; ψ̄ ; g;M�:
(138)

Especially we may always choose

S ¼ e−M; (139)

such that

S½ψ ; ψ̄ ; g;M� ¼ S½ψ 0; ψ̄ 0; g; 0�; ψ 0 ¼ e−Mψ ; ψ̄ 0 ¼ ψ̄eM:

(140)

The essential ingredient for a path integral quantization is
the choice of the measure. As argued above, the present
construction suggests, to integrate over metrics g and
successively over M to cover the space of all Dirac
matrices.
More specifically, let us study the expectation value of an

operator Ôðψ ; ψ̄ ; g;MÞ which is a scalar under spin-base
transformations. For illustrative purposes, let us first
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consider only the functional integrations over the fermion
and metric degrees of freedom:

O½M� ¼ hÔðψ ; ψ̄ ; g;MÞi (141)

¼
Z

DgDψDψ̄ Ôðψ ; ψ̄ ; g;MÞeiS½ψ ;ψ̄ ;g;M�; (142)

with suitable measuresDgDψDψ̄ . The following argument
only requires that the measure transforms in a standard
manner under a change of variables

Dψ ¼ Dψ 0
�
det

δψ 0

δψ

�−1
: (143)

As a consequence, DψDψ̄ is invariant under spin-base
transformations, since the Jacobians fromDψ and fromDψ̄
are inverse to each other

DψDψ̄ ¼ DðSψÞDðψ̄S−1Þ: (144)

Because Ô is a scalar in Dirac space, it also needs to be
invariant under spin-base transformations

Ôðψ ; ψ̄ ; g;MÞ → ÔðSψ ; ψ̄S−1; g; lnðSeMÞÞ
≡ Ôðψ ; ψ̄ ; g;MÞ: (145)

Now it is easy to see that O½M� is actually independent of
the choice of MðgÞ

O½M� ¼
Z

DgDψDψ̄ Ôðψ ; ψ̄ ; g;MÞeiS½ψ ;ψ̄ ;g;M�

¼
Z

DgDψ 0Dψ̄ 0Ôðψ 0; ψ̄ 0; g; 0ÞeiS½ψ 0;ψ̄ 0;g;0�

¼ O½0�: (146)

Therefore, every set of Dirac matrices compatible with a
given metric contributes identically to such an expectation
value. Hence, we may choose any convenient spin basis
to simplify explicit computations. From another viewpoint,
an additional functional integration over SLð4;CÞγ with
a suitable measure DM would have factored out of the
path integral and thus can be included trivially in its
normalization.
This concludes our argument that a quantization of

interacting theories of fermions and gravity may be solely
based on a quantization of the metric together with the
fermions. The spin-base invariant formulation given here
suggests that this quantization scheme is natural. A
quantization in terms of vierbeins/Dirac matrices—though
perhaps legitimate—is not mandatory.
In hindsight, our results rely crucially on the constraint

that the fluctuations of the Dirac matrices satisfy the
Clifford algebra Eq. (131) also off shell. If this assumption

is relaxed, e.g., if the anticommutator of two Dirac matrices
in the path integral is no longer bound to be proportional to
the identity, a purely metric-based quantization scheme
may no longer be possible.

IX. METRIC VARIATIONS IN THE SPIN-BASE
INVARIANT FORMALISM

In this section, we discuss the response of several objects
under variations of the metric, yielding a set of properties
that may become relevant in concrete quantum gravity
computations within the present formalism. The formalism
has already been used successfully for theories with
quantized fermions in curved spacetime [18,25].
For both perturbative as well as nonperturbative calcu-

lations, propagators are central objects. As they arise from
two-point correlators, we study the response of several
quantities up to second order in metric fluctuations in the
following. Since field theory calculations generically need a
spacetime “to stand on,” we introduce a fiducial background
metric ḡ with respect to which variations are performed.
Let us first consider the variation of the Dirac matrices to

second order in the fluctuations around this background,

γμðḡþ δgÞ ¼ γ̄μ þ
∂γμðgÞ
∂gρλ

����
g¼ḡ

δgρλ

þ 1

2

∂2γμðgÞ
∂gαβ∂gρλ

����
g¼ḡ

δgαβδgρλ þOðδg3Þ; (147)

where γ̄μ ¼ γμðḡÞ. 5 From Eq. (135) we get

∂γμðgÞ
∂gρλ ¼ 1

2
δρλμνγνðgÞ þ ½GρλðgÞ; γμðgÞ�; (148)

with the symmetrized product of two deltas,
δρλμν ¼ 1

2
ðδρμ δλν þ δρν δλμÞ. We know that the first part on

the right-hand side is obligatory and therefore cannot be
eliminated by spin-base transformations. But the second
term is only a variation of the spin base and can thus be
transformed to zero, at least for the background field
metric. Therefore we may demand

GρλðḡÞ ¼ 0; (149)

which corresponds to implicitly choosing part of the
spin base.
Assuming that γμðgÞ is a sufficiently smooth function of

the metric, partial derivatives with respect to different
metric components commute. This constrains the first

5Within the present section, the bar only refers to the back-
ground-field quantities and not the Dirac conjugation; γ̄μ here
should thus not be confused with h−1γ†μh.
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derivative of GρλðgÞ which we callGαβρλ ¼ ∂GρλðgÞ
∂gαβ

���
g¼ḡ

. It is

useful to introduce the auxiliary tensor

ωρλαβ
μν ¼

1

4
δρλμκḡκσδ

αβ
σν ¼ ωαβρλ

νμ; (150)

which shows up in

∂2γμðgÞ
∂gαβ∂gρλ

����
g¼ḡ

¼−ωρλαβ
μνγ̄

νþ½Gαβρλ;γ̄μ�

¼−ωαβρλðμνÞγ̄νþ
�
Gαβρλ−1

8
ωαβρλ½κσ�½γ̄κ;γ̄σ�;γ̄μ

�
:

(151)

Again the first part is obligatory since it is symmetric in
ðαβÞ↔ðρλÞ and arises from the first term of Eq. (148).
Therefore the simplest choice is

Gαβρλ ¼ 1

8
ωαβρλ½κσ�½γ̄κ; γ̄σ�; (152)

leading to the simple variation to second order in δg,

γμðḡþ δgÞ≃ γ̄μ þ
1

2
δρλμνγ̄νδgρλ − 1

2
ωαβρλðμνÞγ̄νδgαβδgρλ:

(153)

It is easy to check that the expansion Eq. (153) fulfills the
Clifford algebra to order Oðδg2Þ. Of course, if different
conditions onGρλ or Gαβρλ are imposed, the variation of the
Dirac matrices will have a different form.
With this result (or corresponding results for other con-

ditions on Gρλ or Gαβρλ), variations of field monomials
formulated in terms of the Dirac matrices with respect to
the metric can be calculated straightforwardly. Immediate
applications are the computation of the Hessian of a bare
action, corresponding to the inverse bare graviton propagator,
or aHessianofaneffective action,yielding the full propagator.
If further dynamical fermion fields are included, we

also need the variations of the spin metric, etc., at least in
principle. In practice, they turn out to be irrelevant at the
two-point level, as demonstrated now: For example, the
variation of the spin metric has to satisfy Eq. (35),

ðγ̄μ þ δγμÞ† ¼ − ðh̄þ δhÞðγ̄μ þ δγμÞðh̄þ δhÞ−1; (154)

where h̄ is the spinmetric corresponding to γ̄μ. Thevariations
δh and δγμ parametrize the deviations of hðḡþ δgÞ and
γμðḡþ δgÞ from the background-field quantities. For our
choice Eq. (153), we have δγ†μ ¼ −h̄ðδγμÞh̄−1 neglecting
terms with Oðδg3Þ. This equation leads to

0≃ ½ðγ̄μ þ δγμÞðI − h̄−1δhÞ; h̄−1δh�: (155)

Herewe have used, that δh is at least of order δg such that we
only need to keep track of all terms up to order δgwithin the
other terms, yielding

0≃ ½γ̄μ þ δγμ; h̄−1δh�

≃
�
ḡμρ þ

1

2
δgμρ

�
½γ̄ρ; h̄−1δh� (156)

by multiplying Eq. (155) from the right with Iþ h̄−1δh.
Multiplying by ḡνμ − 1

2
ḡναðδgαβÞḡβμ, we find

δh ¼ εh̄þOðδg3Þ; ε ∈ R; (157)

for anarbitrary infinitesimalε,whichneeds tobe realbecause
δh needs to be anti-Hermitian. But hðḡþ δgÞ still needs
to have a determinant with absolute value equal to one,
cf. Eq. (10), resulting in a constraint for ε

1 ¼ jdetðh̄þ δhÞj ¼ jdetðh̄ðIþ h̄−1δhÞÞj≃ ð1þ εÞ4:
(158)

This equation only has two real solutions ε1 ¼ −2 and
ε2 ¼ 0. Of course, ε1 is not infinitesimal but corresponds to
the discrete transformation h̄ → −h̄. This solution reflects
the ambiguity in the choice of the sign of the spin metric and
therefore is irrelevant. The relevant second solution shows
that the spin metric is constant to second order in the metric
variation

hðḡþ δgÞ ¼ h̄þOðδg3Þ: (159)

Analogously, it can be derived from fγ�; γμg ¼ 0 and γ2� ¼ I
that also γ� is constant to second order

γ�ðḡþ δgÞ ¼ γ�ðḡÞ þOðδg3Þ: (160)

Finally, let us study the variation of the spin connection Γμ.
For the spin torsion ΔΓμ this is particularly simple, as it
depends on the metric only through the base elements
γμ; γ�γμ; ½γμ; γν� the variations of which are straightforward.
The variation of the connection Γ̂μ can also be straightfor-
wardly worked out using DðLCÞμγν ¼ −½Γ̂μ; γν� and
tr Γ̂μ ¼ 0. We find

Γ̂μðḡþ δgÞ ¼ Γ̂μðḡÞ þ δΓ̂μ þOðδg3Þ (161)

δΓ̂μ¼
1

8
½γ̄κ; γ̄σ�

�
δαβμ½κδ

ν
σ�

þδgρλ

�
ωαβρλ½κσ�δνμ −2ωαβρλ

μ½κδ
ν
σ�−

1

2
δαβμ½κδ

ρλ
σ�χ ḡ

χν
��

× D̄ðLCÞνδgαβ: (162)

In a certain sense, our conditions on Gρλ or Gαβρλ

represent a minimal choice as they minimize the number
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of terms present in the variation of the Dirac matrices to the
corresponding order. Calculations should therefore sim-
plify in comparison to other choices. Due to the direct
relation of Gρλ to spin base transformations, it is obvious
that physical observables are independent of the choice of
conditions.
It is interesting to note that the variation of the Dirac

matrices Eq. (147) using the conditions Eq. (149) and (152)
corresponds exactly to the result obtained within the
vierbein formalism if the Lorentz symmetric gauge is used
[26,27]. This gauge has already proved to be a useful
choice within the vierbein formalism, and has for instance
been used in a functional RG calculation of fermions in
quantized gravity in [28]. Hence, our choice can be viewed
as the direct generalization of the Lorentz symmetric gauge
into the spin-base invariant formulation.
Let us finally comment on the differences between our

metric-based quantization scheme and vierbein- (or Dirac
matrix-)based schemes both of which are a priori legitimate
strategies for quantization. An obvious difference occurs in
the corresponding Hessians: given a bare or effective action
S½g�, the second functional derivative with respect to the
metric is different from that with respect to the vierbein, see
[4,7] for explicit representations on the Einstein-Hilbert
level. A second difference is more subtle: quantizing the
vierbein requires further gauge fixing of the additional
Lorentz symmetry. This gauge fixing goes along with
additional Faddeev-Popov ghosts. Though they can be
ignored in perturbation theory in the Lorentz symmetric
gauge [26] as they are nonpropagating, they have been
shown to contribute nonperturbatively in [4,7]. In our spin-
base invariant formalism, there is no such artificial Lorentz
symmetry and no corresponding ghosts. Instead we have a
local spin-base invariance. As we have shown in the
preceding section, the integral over spin bases factorizes
in the functional integral in our metric-based quantization
scheme such that observables can be computed in any
desired spin base. Hence, we can just single out one spin
base for the computation, e.g., by demanding Eqs. (149)
and (152) to hold. Further ghosts could only appear if one
wants to explicitly carry out the integral over spin bases
with (symbolic) measure DM with a suitable spin-base
gauge fixing. This is, however, simply not necessary in the
present formalism. From another viewpoint, the choice of
the spin basis as in Eqs. (149) and (152) plays the role of an
external background field in our formalism rather than a
“gauge”-fixed quantum field. Of course, other choices are
equally legitimate as we have proved that spin-base
invariant observables do not depend on this choice.

X. CONCLUSION AND OUTLOOK

In this paper we gave a first-principles approach to a
local spin-base invariant approach to fermions in 4-
dimensional curved spacetimes. While such a formalism
already has been discussed and successfully used at several

instances in the literature, our presentation carefully dis-
tinguishes between assumptions and consequences, paving
the way for generalizations and possibly quantization.
One such generalization is the inclusion of torsion which

we have worked out for the first time in this article. In
addition to spacetime torsion, which can be included rather
straightforwardly in the formalism, the spin connection
admits further degrees of freedom which we interpret as
spin torsion. Some of these degrees of freedom can be
associated with a scalar, an axial vector, and an antisym-
metric tensor field. For instance, the latter has a coupling to
Dirac spinors in the form of a Pauli term. If the spin torsion
contains such a contribution, its torquelike physical influ-
ence on the orientation of spin along a geodesic is obvious.
Phenomenologically, such terms are similar to those dis-
cussed in standard model extensions due to Lorentz- or
CPT-violation [29] and are typically tightly constrained,
see, e.g., [30].
Further generalizations include the construction of spin

curvature which can be used to define classical field
theories of gravity (and fermions) in terms of the Dirac
matrices (and Dirac spinors) as elementary degrees of
freedom. We showed that the simplest possible field theory
contains Einstein’s theory of general relativity and predicts
zero spacetime torsion and zero spin-torsion in absence of
explicit sources or boundary conditions.
For vanishing spacetime and spin torsion, the spin-base

invariant formalism can be mapped onto the conventional
vierbein formalism which can be viewed as a “spin-base
gauge-fixed” version of the invariant formalism.
As another generalization, the formalism suggests the

definition of a generalized Lie derivative, which turns out
to agree with the generalized Lie derivative proposed by
Kosmann. In our formalism, this spinorial Lie derivative
appears inamannerwhichcanbegivenageometricalmeaning
much in the same way as the Lie derivative for spacetime
vectors can be associated with a geometrical interpretation.
As a main result, we used the formalism to show that a

possible path integral quantization of gravity and fermionic
matter fields can be solely based on an integration over
metric and matter fluctuations. Despite the fact that the
Dirac matrices appear to be the more fundamental degrees
of freedom, their fluctuations can be parametrized by
metric as well as spin-base fluctuations. We observe that
the latter does not contribute to spin-base invariant observ-
ables and hence the spin-base fluctuations can be factored
out of the quantum theory. In view of the increasing
complexity of quantization schemes based on vierbeins
and/or spin connections, the legitimation of a metric-based
scheme (though still an open and frighteningly hard
challenge) is good news.
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APPENDIX A: SPIN METRIC

For a given set of Dirac matrices encoding the spacetime
metric via the Clifford-algebra constraint, also the spin
metric h is fixed (up to a sign) by the requirements

ðiÞ γ†μ ¼ −hγμh−1;
ðiiÞ j det hj ¼ 1;

ðiiiÞ h† ¼ −h: (A1)

Let us first assume that there is at least one spin metric h1,
which satisfies all three conditions. Then we know, if there
is another spin metric h2, they must be related via

½h−12 h1; γμ� ¼ 0; (A2)

because both spin metrics have to fulfill

h2γμh−12 ¼ −γ†μ ¼ h1γμh−11 : (A3)

Therefore, using Schur’s Lemma [24],

h2 ¼ zh1; z ∈ C (A4)

has to hold. With (ii), it follows that

z ¼ ei arg z: (A5)

But if both spin metrics satisfy the condition (iii), then

e−i arg zh1 ¼ −e−i arg zh†1 ¼ −h†2 ¼ h2 ¼ ei arg zh1 (A6)

has to hold. Therefore both spin metrics have to be identical
up to a sign,

h2 ¼ �h1: (A7)

This demonstrates the uniqueness (up to a sign) of the spin
metric. Now we only need to prove the existence of one
such spin metric h. For this, we first introduce the Matrix M̂
satisfying

γ†μ ¼ −eM̂γμe−M̂; tr M̂ ¼ 0: (A8)

This equation implies

γ†μ ¼ eM̂γ�γμðeM̂γ�Þ−1: (A9)

The matrices γ†μ also satisfy the Clifford algebra. Since any
two different sets of such matrices satisfying the Clifford
algebra are connected by a similarity transformation [24],

i.e. a spin-base transformation, eM̂γ� must exist as it
parametrizes this similarity transformation. Therefore also
M̂ must exist but may not be unique. The trace of M̂ can
always be set to zero, because the trace part commutes with
all matrices and therefore drops out of Eq. (A8). The
Hermitian conjugate of Eq. (A8) is

γμ ¼ −e−M̂†
γ†μeM̂

†
: (A10)

Therefore, also

eM̂γμe−M̂ ¼ −γ†μ ¼ eM̂
†
γμe−M̂

†
(A11)

has to hold. Schur’s Lemma again implies there exists a φ
such that

eM̂
† ¼ eiφeM̂; φ ∈ R: (A12)

This equation fixes eiφ once we have chosen a specific M̂.

Now we also know, that det eM̂ ¼ 1 and therefore the same
has to hold for det eM̂

† ¼ 1. From this, we conclude that φ
is limited to

φ ∈
�
n
2π

dγ
∶ n ∈ f0;…; dγ − 1g

�
: (A13)

The desired spin metric h is then given by

h ¼ iei
φ
2eM̂: (A14)

It is straightforward to show, that this metric satisfies
(i)–(iii).
We continue with implementing the spin metric compat-

ibility as expressed in Eq. (27). This tells us that

Γμ þ Γ̄μ ¼ h−1∂μh (A15)

has to hold. Taking into account that [cf. Eq. (21)]

−DðLCÞμhγ
νh−1 ¼ DðLCÞμγ

ν† ¼ ðDðLCÞμγ
νÞ† ¼ −½Γ̂μ; γν�†;

(A16)

we arrive at

½h−1ð∂μhÞ − Γ̂μ − ¯̂Γμ; γν� ¼ 0: (A17)

Because tr Γ̂μ ¼ 0, this implies

Γ̂μ þ ¯̂Γμ ¼ h−1∂μh − 1

dγ
trðh−1∂μhÞI: (A18)

FERMIONS IN GRAVITY WITH LOCAL SPIN-BASE … PHYSICAL REVIEW D 89, 064040 (2014)

064040-17



Now we use

trðe−M̂∂μeM̂Þ ¼ tr

�
e−M̂

X∞
n¼1

Xn−1
k¼0

M̂kð∂μM̂ÞM̂n−k−1

n!

�

¼ trð∂μM̂Þ ¼ 0 (A19)

to conclude

1

dγ
trðh−1∂μhÞ ¼

i
2
∂μφ: (A20)

This leaves us with

Γμ þ Γ̄μ ¼ h−1∂μh ¼ Γ̂μ þ ¯̂Γμ þ
i
2
∂μφI; (A21)

which implies that

i
2
∂μφ ¼ 1

dγ
trðΓμ þ Γ̄μÞ ¼

2

dγ
Re trΓμ: (A22)

Since the left-hand side is purely imaginary and the right-
hand side is purely real both have to vanish. Because φ can
only take discrete values, it must be a constant if we require
it to be a sufficiently smooth function. This finally implies
that

Re tr Γμ ¼ 0 (A23)

and

Γμ þ Γ̄μ ¼ Γ̂μ þ ¯̂Γμ ¼ h−1∂μh (A24)

have to hold. These two identities are used in Sec. III to
constrain spin torsion.

APPENDIX B: TOOLBOX FOR THE SPIN-BASE
INVARIANT FORMALISM

In this appendix, we summarize a set of commonly used
formulas for the spin-base invariant formalism, which may
serve as a toolbox for practical computations. For simplic-
ity, we set spacetime torsion and spin torsion ΔΓμ to zero.
Given a set of spacetime dependent Dirac matrices, the

metric is encoded in the Clifford-algebra constraint and can
straightforwardly be computed:

fγμ; γνg ¼ 2gμνI; gμν ¼
1

dγ
trðγμγνÞ: (B1)

The inclusion of fermion degrees of freedom requires a spin
metric h for the definition of scalar products of spinors and
conjugate spinors

ψ̄ ¼ ψ†h: (B2)

Though h can in principle be constructed explicitly,
cf. Appendix A, only the algebraic relations that define
h are typically needed in practical calculations,

γμ† ¼ −hγμh−1; j det hj ¼ 1; h† ¼ −h: (B3)

For covariant differentiation of spinors

∇μψ ¼ ∂μψ þ Γμψ ; (B4)

the affine spin connection is needed, where in the absence
of spin torsion (ΔΓμ ¼ 0) Γμ ¼ Γ̂μ is implicitly given by

Dμγ
ν ¼ −½Γμ; γν�; tr Γμ ¼ 0; (B5)

and explicitly by

ðiÞ Γμ ¼ pμγ� þ vμαγα þ aμαγ�γα þ tμαβ½γα; γβ�;

ðiiÞ pμ ¼
1

32
trðγ�γα∂μγ

αÞ;

ðiiiÞ vμα ¼
1

48
trð½γα; γβ�∂μγ

βÞ;

ðivÞ aμα ¼
1

8
trðγ�∂μγ

αÞ;

ðvÞ tμαβ ¼ − 1

32
trðγα∂μγ

βÞ − 1

8

�
β

μα

�
≡−tμβα: (B6)

The covariant derivative satisfies the spin metric compat-
ibility condition,

∇μh ¼ ∂μh − hΓμ − Γ†
μh ¼ 0. (B7)

The generalized Lie derivative ~L is given by

~Lv ¼ Lvψ þ Zvψ ; (B8)

where Lv is the ordinary Lie derivative acting on ψ as on a
spacetime scalar, and the matrix Zv is implicitly given by

~Lvγ
μ¼Lvγ

μþ½Zv;γμ�¼
1

2
ðLvgμνÞγν; trZv¼0 (B9)

and explicitly by

Zv ¼ vρΓρ þ
1

16
ð∂ρvλ − ∂λvρÞ½γρ; γλ�: (B10)

For calculations in a quantized framework, the variations of
the spinorial quantities with respect to metric fluctuations
δgμν about a background metric ḡ are needed. Choosing a
suitable spin base, these variations acquire a minimal form
(corresponding to the Lorentz symmetric gauge in the
vierbein formalism). Up to second order, the minimal
variations are given by
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gμν ¼ ḡμν þ δgμν (B11)

γμ ¼ γ̄μ þ
1

2
δgμνγ̄ν − 1

8
δgμρḡρλδgλνγ̄ν þOðδg3Þ (B12)

h ¼ h̄þOðδg3Þ (B13)

γ� ¼ γ̄� þOðδg3Þ (B14)

Γμ ¼ Γ̄μ þ
1

8
½γ̄κ; γ̄σ�D̄σδgκμ þ

1

8
½γ̄κ; γ̄σ�δgσρḡρλ

×

�
1

4
δνμδ

αβ
κλ þ δαμδ

ν
½κδ

β
λ�

�
D̄νδgαβ þOðδg3Þ; (B15)

where barred quantities refer to the background.
The derivations of the identities of this toolbox as well as

generalizations to nonzero torsion can be found in the
main text.
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