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The field equations of noncommutative gravity can be obtained by replacing all exterior products by
twist-deformed exterior products in the action functional of general relativity and are here studied by
requiring that the torsion 2-form should vanish and that the Lorentz-Lie-algebra-valued part of the full
connection 1-form should be self-dual. Two other conditions, expressing self-duality of a pair 2-forms
occurring in the full curvature 2-form, are also imposed. This leads to a systematic solution strategy, here
displayed for the first time, where all parts of the connection 1-form are first evaluated, and hence the full
curvature 2-form, and eventually all parts of the tetrad 1-form, when expanded on the basis of γ matrices.
By assuming asymptotic expansions which hold up to first order in the noncommutativity matrix in the
neighborhood of the vanishing value for noncommutativity, we find a family of self-dual solutions of the
field equations. This is generated by solving first an inhomogeneous wave equation on 1-forms in a
classical curved spacetime (which is itself self-dual and solves the vacuum Einstein equations), subject to
the Lorenz gauge condition. In particular, when the classical undeformed geometry is Kasner spacetime,
the above scheme is fully computable out of solutions of the scalar wave equation in such a Kasner model.
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I. INTRODUCTION

The tetrad formalism of Cartan [1] has proved useful in
both gravity (see, e.g., Sec. 10.1 of Ref. [2]) and super-
gravity [3], as well as in gravitational instanton theory [4]
and in modern approaches to the Hamiltonian formulation
of general relativity [5,6]. Within this framework, one
assumes that a set of local Lorentz frames exists, whose
global existence is ensured if the classical spacetime
manifold is parallelizable. The covariant components gμν
of the metric tensor can then be reexpressed through tetrad
covectors eaμ in the form

gμν ¼ eaμebνηab ¼ ebμebν; (1.1)

so that, on defining the tetrad 1-forms

ea ≡ eaμdxμ; (1.2)

the spacetime metric reads eventually

g ¼ gμνdxμ ⊗ dxν ¼ ea ⊗ ebηab: (1.3)

Of course, the “dual” description in terms of tetrad vectors
eμa is also possible. One then finds, from the contravariant
metric components

gμν ¼ eμaeνbηab ¼ eμbeνb; (1.4)

jointly with the tetrad vector fields [2]

ea ≡ eμa
∂
∂xμ ; (1.5)

the other useful formula

g ¼ gμν
∂
∂xμ ⊗

∂
∂xν ¼ ea ⊗ ebηab: (1.6)

On the other hand, several investigations of noncommuta-
tive gravity have exploited the tetrad and spin connection as
well, but by replacing the ordinary exterior products of
forms with deformed exterior products [7]. This would be
fair enough, with no need for extra mathematical machi-
nery, if it were not for the fact that attempts of providing a
rigorous definition of noncommutative gravity equations
jointly with their solution had been unsuccessful, at least
within the framework of twist differential geometry (see
Appendix A) in the version considered in Refs. [8,9]. One
of the basic aspects of tetrad formalism for noncommuta-
tive gravity is to expand the tetrad on the basis of γ
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matrices, so that one deals actually with the space of tetrad
1-forms with components given by 4 × 4 matrices, i.e. (see
Appendix B)

Vj
k ¼ ðVμÞjkdxμ; (1.7)

where

ðVμÞjk ¼ Va
μðγaÞjk þ ~Va

μðγaγ5Þjk: (1.8)

Hereafter, following Ref. [7], the noncommutativity we
consider is given by the Moyal-Weyl ⋆ product associated
with a constant antisymmetric matrix θρσ in the generic
coordinates xμ, which obey the “deformed” commuta-
tion law

xρ⋆xσ − xσ⋆xρ ≡ iθρσ: (1.9)

Moreover, following again Ref. [7], the additive structures
are not modified, while multiplicative structures get
deformed. Thus, the notion of tensors that we consider
remains the same as in the classical commutative setting,
while the tensor product and the exterior product (and
only these structures) are deformed. For a deeper look at
the mathematical foundations, we refer the reader to
Appendix A and to the work in Ref. [10].
Both Va

μ and ~Va
μ depend on the noncommutativity

matrix θρσ ¼ θ½ρσ� and are approximated by means of even
and odd [7] asymptotic expansions in the neighborhood of
θρσ ¼ 0 of the form

Va
μðθÞ ¼ Va

μð−θÞ ∼ eaμ þ Oðθ2Þ; (1.10)

~Va
μðθÞ ¼ − ~Va

μð−θÞ ∼ θρσPa
μ½ρσ� þ Oðθ3Þ: (1.11)

(Notice, however, that ~V has no commutative analogue; it is
generated by the requirement that the action functional
introduced in the next section be fully invariant under
⋆-gauge transformations. We refer to Appendix B for
details.)
This is indeed a crucial point of all our analysis. The full

theory, at the nonperturbative level, is nonlocal, but there is
not yet any experimental evidence of finite effects resulting
from finite values of θρσ. Thus, we limit ourselves to
studying the behavior of noncommutative gravity in the
neighborhood of θρσ ¼ 0. The existence of even and odd
parts of the tetrad is an exact property [7], but we focus on
their asymptotics (1.10) and (1.11).
The full connection 1-form is also a 4 × 4 matrix of

1-forms [7] expandable as (see Appendix B)

Ωj
k ¼ ðΩμÞjkdxμ ¼ ½ωab

μ ðΓabÞjk þ iωμδj
k þ ~ωμðγ5Þjk�dxμ;

(1.12)

with

Γab ¼
1

4
γab ¼

1

8
ðγaγb − γbγaÞ ¼

1

4
γ½aγb�: (1.13)

The components ωab
μ take values in the Lie algebra of the

Lorentz group and hence carry Lorentz-frame indices. One
deals therefore with a 1-form ωab ¼ ωab

μ dxμ, which yields
the usual spin connection in the commutative limit, while
ωμ and ~ωμ are components of purely noncommutative
1-forms ω ¼ ωμdxμ and ~ω ¼ ~ωμdxμ, introduced, as ~V, to
fulfill the ⋆-gauge invariance of the theory (see again
Appendix B).
The full curvature 2-form is defined by

R≡ dΩ −Ω∧⋆Ω (1.14)

and, by writing explicitly all matrix, coordinate, and
Lorentz-frame indices, reads as

Rj
k ¼ 1

2
ðRμνÞjkdxμ∧dxν; (1.15)

where [7]

ðRμνÞjk ¼ Rab
μνðΓabÞjk þ irμνδjk þ ~rμνðγ5Þjk: (1.16)

With this notation, Rab
μν are the components of the Lorentz-

Lie-algebra-valued 2-form [for more precise language, see
what we write after Eq. (B4) of Appendix B]

Rab ¼ 1

2
Rab
μνdxμ∧dxν;

while rμν and ~rμν are the components of the 2-forms

r ¼ 1

2
rμνdxμ∧dxν and ~r ¼ 1

2
~rμνdxμ∧dxν:

By virtue of (1.12) and (1.14)–(1.16), and exploiting the
definition of Hodge dual (both ωab and Rab can be treated
as 2-forms with respect to Lorentz-frame indices, as
discussed in Appendix C)

ð�Þωab ≡ 1

2
εabcdω

cd; (1.17)

ð�ÞRab ≡ 1

2
εabcdRcd; (1.18)

and the twist-deformed exterior product of 1-forms αμdxμ

and βνdxν,

α∧⋆β ¼ α½μ⋆βν�dxμ∧dxν; (1.19)

with
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αμ⋆βν ∼ αμβν þ
i
2
θρσð∂ραμÞð∂σβνÞ þ Oðθ2Þ as θρσ → 0;

(1.20)

α½μ⋆βν� ≡ 1

2
ðαμ⋆βν − αν⋆βμÞ; (1.21)

one finds eventually the components (cf. [7])

Rab
μν ¼ 2∂ ½μωab

ν� þ ðωb
c½μ⋆ω

ca
ν� − ωa

c½μ⋆ω
cb
ν� Þ

− 2iðωab
½μ ⋆ων� þ ω½μ⋆ωab

ν� Þ
− 2i½ð�Þωab

½μ ⋆ ~ων� þ ~ω½μ⋆ð�Þωab
ν� �; (1.22)

rμν ¼ 2∂ ½μων� − i
4
ωcd½μ⋆ωcd

ν� − 2iðω½μ⋆ων� − ~ω½μ⋆ ~ων�Þ;
(1.23)

~rμν ¼ 2∂ ½μ ~ων� þ
i
4
ð�Þωcd½μ⋆ωcd

ν� − 2iðω½μ⋆ ~ων� þ ~ω½μ⋆ων�Þ:
(1.24)

The use of Hodge duals is suggested by what one finds in
simpler circumstances. For example, in general relativity,
self-duality (respectively, anti–self-duality) of the spin-
connection 1-form, i.e.

ð�Þωab ¼ �iωab; (1.25)

is a sufficient condition for self-duality (respectively,
anti–self-duality) of the curvature 2-form:

ð�ÞRab ¼ �iRab: (1.26)

More precisely, Eq. (1.26) is important because, from the
condition of the vanishing torsion 2-form, i.e.

T ≡ de − ω∧e ¼ 0; (1.27)

one finds a solution of the vacuum Einstein equations, since
the latter read as

ð�ÞR∧e ¼ 0; (1.28)

while from dT ¼ 0 and from R ¼ dω − ω∧ω and asso-
ciativity of the exterior product one finds

R∧e ¼ 0; (1.29)

which coincides with Eq. (1.28) upon imposing self-duality
or anti–self-duality: ð�ÞR ¼ �iR according to Eq. (1.26).
The plan of our paper is hence as follows. In Sec. II, we

write the torsion-free field equations of noncommutative
gravity, without any coupling to other fields, and in Sec. III,
we consider their self-dual form. In Sec. IV, we study the
self-duality conditions on ωab, while Sec. V expresses

self-duality of the 2-forms r and ~r. The remaining self-dual
equations are reexpressed in Sec. VI. In Secs. VII–XI, we
study, to first order in noncommutativity, the resulting set of
equations for the 1-form ωab, jointly with the 1-forms
ω; ~ω and the components Va

μ and ~Va
μ of the tetrad 1-form.

Our results and the open problems are described in
Sec. XII, while Appendixes A–C describe in detail the
foundations of the concepts we have been using and the
operations we have been performing.

II. TORSION-FREE FIELD EQUATIONS

The basic assumption of quantum theory [11] is that
every isolated dynamical system can be described by a
characteristic action functional S. Our paper does not deal
with quantum theory but prepares the ground for it by
studying the Euler-Lagrange equations for a given choice
of action functional. By relying upon Ref. [7], the starting
point is an action for gravity where all exterior products
are replaced by twist-deformed exterior products (see
Appendix A for a definition), i.e.

S ¼
Z

TrðiR∧⋆V∧⋆Vγ5Þ: (2.1)

This action is invariant under ordinary diffeomorphisms as
well as ⋆ diffeomorphisms (we refer to Sec. III of
Appendix A for details), and it is also invariant under
⋆-gauge transformations, as described in Appendix B. It
leads to the field equations

Tr

�
γcγ5ðV∧⋆RþR∧⋆VÞ

�
¼ 0; (2.2)

Tr

�
γcðV∧⋆RþR∧⋆VÞ

�
¼ 0: (2.3)

Bearing in mind what we said in the introduction, we now
consider the torsion 2-form in the noncommutative setting
[7], i.e.

T ≡ dV −Ω∧⋆V − V∧⋆Ω; (2.4)

and investigate the consequence of requiring it to vanish.
This is not mandatory but certainly legitimate. Indeed, from
T ¼ 0 one finds

dV ¼ Ω∧⋆V þ V∧⋆Ω; (2.5)

while from dT ¼ 0 one obtains
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0 ¼ −dðΩ∧⋆VÞ − dðV∧⋆ΩÞ
¼ −ðdΩÞ∧⋆V þ Ω∧⋆dV − dV∧⋆Ωþ V∧⋆dΩ

¼ −ðRþ Ω∧⋆ΩÞ∧⋆V þ Ω∧⋆ðΩ∧⋆V þ V∧⋆ΩÞ
− ðΩ∧⋆V þ V∧⋆ΩÞ∧⋆Ωþ V∧⋆ðRþ Ω∧⋆ΩÞ

¼ −R∧⋆V þ V∧⋆R; (2.6)

because also the twist-deformed exterior product is asso-
ciative [7]. Thus, we find the simple but nontrivial property

R∧⋆V ¼ V∧⋆R;

and the torsion-free versions of the field equations (2.2) and
(2.3) become

Tr½γcγ5V∧⋆R� ¼ 0; (2.7)

Tr½γcV∧⋆R� ¼ 0: (2.8)

An equivalent result would be obtained by defining the
torsion 2-form according to

T ≡ dV −Ω∧⋆V;

because Eq. (2.6) would then reduce to R∧⋆V ¼ 0, which
again turns Eqs. (2.2) and (2.3) into the torsion-free form
(2.7) and (2.8).
From the expansion (1.8), we note that

γ5V ¼ − ~Vaγa − Vaγaγ5; (2.9)

and hence it is a priori clear that the two sets of equations
are obtained one from the other by interchanging Va

μ with
~Va
μ, as was pointed out at a later stage in Ref. [8]. Now, from

the decompositions (1.8) and (1.16), the traces in Eqs. (2.7)
and (2.8) are found to be (see Appendix B)

0 ¼ Tr½γcγ5iV∧⋆R�
¼ −εabcdVd∧⋆Rab − 4iηcdVd∧⋆ ~r

− iðηbcηad − ηacηbdÞ ~Vd∧⋆Rab

þ 4ηcd ~V
d∧⋆r; (2.10)

0 ¼ Tr½γciV∧⋆R�
¼ εabcd ~V

d∧⋆Rab þ 4iηcd ~V
d∧⋆ ~r

þ iðηbcηad − ηacηbdÞVd∧⋆Rab

− 4ηcdVd∧⋆r: (2.11)

Now we exploit the definition (1.18) of the Hodge dual,
jointly with the identity

ðηadηbc − ηacηbdÞRab ¼ Rdc − Rcd ¼ 2Rdc;

to write Eqs. (2.7) and (2.8) in the form

Vd∧⋆
ð�ÞRcd þ ~Vd∧⋆ð−iRcdÞ þ 2ðiVc∧⋆ ~r − ~Vc∧⋆rÞ ¼ 0;

(2.12)

~Vd∧⋆
ð�ÞRcd þ Vd∧⋆ð−iRcdÞ þ 2ði ~Vc∧⋆ ~r − Vc∧⋆rÞ ¼ 0:

(2.13)

Recall now that any 2-form F can be decomposed into its
self-dual (Fþ) and anti–self-dual part (F−) according to
F ¼ Fþ þ F−, where (the imaginary unit occurs because
of the Lorentzian signature)

Fþ ≡ 1

2
ðF − ið�ÞFÞ;

F− ≡ 1

2
ðF þ ið�ÞFÞ:

We apply this decomposition to the Lorentz-Lie-algebra-
valued 2-form Rcd in Eqs. (2.12) and (2.13) and also to the
2-forms r and ~r therein. We further multiply both equations
by −i and hence get

Vd∧⋆ðR−
cd − Rþ

cdÞ þ ~Vd∧⋆ðR−
cd þ Rþ

cdÞ
− 2Vc∧⋆ð~r− þ ~rþÞ − 2i ~Vc∧⋆ðr− þ rþÞ ¼ 0; (2.14)

~Vd∧⋆ðR−
cd − Rþ

cdÞ þ Vd∧⋆ðR−
cd þ Rþ

cdÞ
− 2 ~Vc∧⋆ð~r− þ ~rþÞ − 2iVc∧⋆ðr− þ rþÞ ¼ 0: (2.15)

III. SELF-DUAL TORSION-FREE EQUATIONS

In the self-dual case, one sets to 0 all anti–self-dual parts
of the curvature, i.e.

R−
cd ¼ 0; r− ¼ 0; ~r− ¼ 0; (3.1)

where the Hodge dual of r and ~r, provided one works to
linear order in θ as we are doing, can be reexpressed
through the undeformed Levi-Civita symbol with coordi-
nate indices for curved spacetime, i.e. (see the detailed
discussion in Appendix C)

ð�Þrμν ∼
1

2
εμν

ρσrρσ þ Oðθ2Þ;

ð�Þ ~rμν ∼
1

2
εμν

ρσ ~rρσ þ Oðθ2Þ; as θ → 0: (3.2)

We now insert (3.1) into (2.14) and (2.15) and add up the
two resulting equations to find the set of “self-dual
equations”

ð ~Vd − VdÞ∧⋆R
þ
cd − 2Vc∧⋆ ~rþ − 2i ~Vc∧⋆rþ ¼ 0; (3.3)

ð ~Vc þ VcÞ∧⋆ð~rþ þ irþÞ ¼ 0: (3.4)
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In the anti–self-dual case, one sets instead to 0 the self-
dual parts of the curvature, i.e.

Rþ
cd ¼ 0; rþ ¼ 0; ~rþ ¼ 0: (3.5)

By inserting (3.5) into (2.14) and (2.15) and subtracting
the two resulting equations, we find the “anti–self-dual
equations”

ð ~Vd þ VdÞ∧⋆R−
cd − 2Vc∧⋆ ~r− − 2i ~Vc∧⋆r− ¼ 0; (3.6)

ðVc − ~VcÞ∧⋆ð~r− − ir−Þ ¼ 0: (3.7)

IV. SELF-DUALITY OF ωab

The conditions R−
cd ¼ 0 or Rþ

cd ¼ 0 considered in Sec. III
may still lead to complicated equations, as is clear from
(1.22). However, Eq. (1.22) tells us something more
helpful: if the 1-form ωab is self-dual or anti–self-dual,
according to (1.25), this is a sufficient condition for self-
duality or anti–self-duality of Rab itself. Indeed one finds,
by virtue of (1.25),

ð�Þ½dωab − iðωab∧⋆ωþ ω∧⋆ω
abÞ�

¼ �i½dωab − iðωab∧⋆ωþ ω∧⋆ω
abÞ�; (4.1)

ð�Þ½−iðð�Þωab∧⋆ ~ωþ ~ω∧⋆
ð�ÞωabÞ�

¼ −½−iðωab∧⋆ ~ωþ ~ω∧⋆ω
abÞ�

¼ �i½−iðð�Þωab∧⋆ ~ωþ ~ω∧⋆
ð�ÞωabÞ�: (4.2)

Moreover, by virtue of the identity [8]

εabcdεdefg ¼ δadðδbeδcf − δceδ
b
fÞ þ δbdðδceδaf − δaeδ

c
fÞ

þ δcdðδaeδbf − δbeδ
a
fÞ; (4.3)

one finds

ð�Þðωa
c∧⋆ω

cbÞ ¼ 1

2
εabefω

e
c½μ⋆ω

cf
ν� dx

μ∧dxν

¼ ∓ i
4
εabefε

e
cpqω

pq
½μ ⋆ω

cf
ν� dx

μ∧dxν

¼ ∓ i
2
ðωcb

½μ ⋆ω
a
cν� þ ωac

½μ ⋆ω
b
cν�Þdxμ∧dxν

¼ �iωa
c½μ⋆ω

cb
ν� dx

μ∧dxν; (4.4)

and an analogous procedure holds for the Hodge dual of
ωb
c∧⋆ω

ca. Hence one finds

ð�ÞRab ¼
ð�Þ�

dωab − 1

2
ωa
c∧⋆ω

cb þ 1

2
ωb
c∧⋆ω

ca

− iðωab∧⋆ωþ ω∧⋆ω
abÞ

− iðð�Þωab∧⋆ ~ωþ ~ω∧⋆
ð�ÞωabÞ

�

¼ �iRab; (4.5)

provided that

εabcdω
cd
μ ¼ 2iωab

μ : (4.6)

V. SELF-DUALITY OF THE 2-FORMS r AND ~r

Self-duality of the 2-forms r and ~r means setting to 0
their anti–self-dual parts, which implies that

rμν ¼ −iεμνρσrρσ; (5.1)

~rμν ¼ −iεμνρσ ~rρσ: (5.2)

By virtue of (1.23)–(1.25), this leads to the equations

2∂ ½μων� þ 2iεμνρσ∂ ½ρωσ� − i
4
ωcd½μ⋆ωcd

ν� þ
1

4
εμν

ρσωcd½ρ⋆ωcd
σ�

− 2iðω½μ⋆ων� − ~ω½μ⋆ ~ων�Þ þ 2εμν
ρσðω½ρ⋆ωσ� − ~ω½ρ⋆ ~ωσ�Þ

¼ 0; (5.3)

2∂ ½μ ~ων� þ 2iεμνρσ∂ ½ρ ~ωσ� − 1

4
ωcd½μ⋆ωcd

ν� −
i
4
εμν

ρσωcd½ρ⋆ωcd
σ�

− 2iðω½μ⋆ ~ων� þ ~ω½μ⋆ων�Þ þ 2εμν
ρσðω½ρ⋆ ~ωσ� þ ~ω½ρ⋆ωσ�Þ

¼ 0: (5.4)

VI. REMAINING SELF-DUAL EQUATIONS

If Eqs. (4.6), (5.3), and (5.4) are fulfilled, we can omit the
þ superscript for the curvatures Rcd; r; ~r in (3.3) and (3.4).
Moreover, the form of (3.3) and (3.4) suggests defining

Ua
μ ≡ ~Va

μ þ Va
μ; (6.1)

Wa
μ ≡ ~Va

μ − Va
μ; (6.2)

after which one can use the explicit form of the twist-
deformed exterior product of a 1-form α ¼ αλdxλ with a 2-
form γ ¼ 1

2
γμνdxμ∧dxν, i.e.

α∧⋆γ ¼
1

6
ðαλ⋆γμν þ αμ⋆γνλ þ αν⋆γλμÞdxλ∧dxμ∧dxν.

(6.3)

Hence one finds that Eq. (3.4) reads as
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½Ucλ⋆ð~rμν þ irμνÞ þ Ucμ⋆ð~rνλ þ irνλÞ
þ Ucν⋆ð~rλμ þ irλμÞ�dxλ∧dxμ∧dxν
¼ 0: (6.4)

Remarkably, this is also part of Eq. (3.3) in the unknowns
Ua

λ and Wa
λ , which therefore reduces to an equation in the

unknown Wa
λ , i.e.

½ðWd
λ⋆Rcdμν þWd

μ⋆Rcdνλ þWd
ν⋆RcdλμÞ

þ ðWcλ⋆ð~rμν − irμνÞ þWcμ⋆ð~rνλ − irνλÞ
þWcν⋆ð~rλμ − irλμÞÞ�dxλ∧dxμ∧dxν
¼ 0: (6.5)

VII. SELF-DUAL EQUATIONS TO
FIRST ORDER IN θμν

At this stage we can study the full set of self-dual
equations (4.6), (5.3), (5.4), (6.4), and (6.5) to first order in
θρσ as θρσ approaches 0, since, as we said already after
(1.11), there is no observational evidence so far of a regime
where noncommutativity produces (even just) finite effects,
which would justify, in turn, the consideration of higher
orders in θρσ. Hence we assume the existence, in the
neighborhood of θρσ ¼ 0, of the asymptotic expansion

ωab
μ ∼ ð0Þωab

μ þ θρσCab
μ½ρσ� þ Oðθ2Þ; (7.1)

where ð0Þωab
μ is the classical spin connection from the

classical tetrad [2],

ð0Þωab
μ ¼ 1

2
eaνðebν;μ − ebμ;νÞ − 1

2
ebνðeaν;μ − eaμ;νÞ

þ 1

2
eaνebσðecν;σ − ecσ;νÞecμ; (7.2)

jointly with (cf. [7])

ωμðθÞ ¼ −ωμð−θÞ ∼ θρσAμ½ρσ� þ Oðθ3Þ as θρσ → 0;

(7.3)

~ωμðθÞ ¼ − ~ωμð−θÞ ∼ θρσBμ½ρσ� þ Oðθ3Þ as θρσ → 0;

(7.4)

while the asymptotic expansion of Va
μ and ~Va

μ is described
by (1.10) and (1.11).
The resulting solution strategy is therefore as follows.

First, solve Eq. (4.6) to first order in θρσ, by insertion of
(7.1). Then solve Eqs. (5.3) and (5.4) for ωμ and ~ων to first
order in θρσ , bearing in mind their limiting form in such a
case, i.e.

2∂ ½μων� þ2iεμνρσ∂ ½ρωσ�

þ i

�
−1

4
ωcd½μ⋆ωcd

ν� −
i
4
εμν

ρσωcd½ρ⋆ωcd
σ�

�
þOðθ2Þ

¼0; (7.5)

2∂ ½μ ~ων� þ 2iεμνρσ∂ ½ρ ~ωσ�

þ
�
− 1

4
ωcd½μ⋆ωcd

ν� −
i
4
εμν

ρσωcd½ρ⋆ωcd
σ�

�
þ Oðθ2Þ

¼ 0: (7.6)

At that stage, Rab
μν can be evaluated from (1.22) to first order

in θρσ , as well as ~rμν � irμν from (1.23) and (1.24), i.e.

~rμν þ irμν ∼ 2½∂ ½μ ~ων� þ i∂ ½μων�� þ Oðθ2Þ as θρσ → 0;

(7.7)

~rμν − irμν ∼ 2½∂ ½μ ~ων� − i∂ ½μων�� − 1

2
ωcd½μ⋆ωcd

ν�

þ Oðθ2Þ as θρσ → 0: (7.8)

Thus, one can solve Eq. (6.4) for Ua
μ and then Eq. (6.5) for

Wa
μ and eventually obtain Va

μ and ~Va
μ from (6.1) and

(6.2), i.e.

Va
μ ¼

1

2
ðUa

μ −Wa
μÞ; ~Va

μ ¼
1

2
ðUa

μ þWa
μÞ:

VIII. SOLUTION OF EQ. (4.6) TO FIRST ORDER

The insertion of the asymptotic expansion (7.1) into the
self-duality condition (4.6) for the 1-form ωab yields the
equation

½εabcdð0Þωcd
μ − 2ið0Þωab

μ � ¼ θρσ½2iCab
μ½ρσ� − εabcdCcd

μ½ρσ��:
(8.1)

This condition should be identically satisfied, and we
notice that the left-hand side is independent of θρσ, while
the right-hand side does depend on it. Thus, we should set
them to 0 separately, and a sufficient condition is fulfill-
ment of the following self-duality conditions (with respect
to Lorentz-frame indices):

εabcd
ð0Þωcd

μ ¼ 2ið0Þωab
μ ; (8.2)

εabcdCcd
μ½ρσ� ¼ 2iCab

μ½ρσ�: (8.3)

Interestingly, Eq. (8.2) implies that the curvature 2-form
ð0ÞRab of the classical background is itself self-dual.
Moreover, Eq. (8.2) also implies that, for a given choice
of solution of the self-duality condition for the classical
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spin connection, there exists a two-parameter family of
solutions of Eq. (8.3) reading as

Cab
μ½ρσ� ¼ ψ1

ð0Þωab
μ Fρσ þ ψ2Wμ

ð0ÞRab
ρσ ; (8.4)

where ψ1 and ψ2 are parameters, Fρσ ¼ −Fσρ ¼ F½ρσ� are
the components of a generic 2-formF ¼ 1

2
Fλμdxλ∧dxμ, and

Wμ are the components of a 1-form Wμdxμ.

IX. COMPONENTS OF THE CURVATURE FORM

We can begin by studying Eq. (7.6), here reexpressed
explicitly in the form

∂μ ~ων−∂ν ~ωμþ2iεμνρσ∂ρ ~ωσ

−1

8
ðωcdμ⋆ωcd

ν −ωcdν⋆ωcd
μ þ2iεμνρσωcdρ⋆ωcd

σ Þ
þOðθ2Þ¼0: (9.1)

At this stage, we exploit the asymptotic expansion (1.20) of
the twist-deformed product of components of 1-forms and
the asymptotic expansion (7.1) of the 1-form ωab. Hence
we find the first-order expansion

ωcdμ⋆ωcd
ν ∼ ð0Þωcdμ

ð0Þωcd
ν þ ð0Þωcdμθ

αβCcd
ν½αβ�

þ ð0Þωcd
ν θαβCcdμ½αβ� þ

i
2
θρσðð0Þωcdμ;ρÞðð0Þωcd

ν;σÞ þ Oðθ2Þ:
(9.2)

Interestingly, this first-order asymptotic expansion leads to
exact cancellation of the four terms involving Cab

μ½ρσ� in the
course of evaluating, in Eq. (9.1), the difference between
the first two terms within the round bracket which is
multiplied by − 1

8
. Thus, by virtue of the asymptotic

expansion (7.4), Eq. (9.1) becomes the following partial
differential equation in the unknown Bμ½ρσ�:

θαβ½Bν½αβ�;μ−Bμ½αβ�;νþ2iεμνρσBσ½αβ�;ρ�

¼ i
8
θαβðð0Þωcdμ;αÞðð0Þωcd

ν;βÞ

þ i
4
εμν

ρσ

�
ð0Þωcdρ

ð0Þωcd
σ þ i

2
θαβðð0Þωcdρ;αÞðð0Þωcd

σ;βÞ
�
: (9.3)

Bearing in mind that the Levi-Civita tensor is fully
antisymmetric, and also the identity, [see Eq. (10.20)]

ð0Þωcd½ρð0Þωcd
σ� ¼ 0;

the term independent of θαβ in Eq. (9.3) is found to vanish,
so that this equation reduces to

θαβ½Bν½αβ�;μ − Bμ½αβ�;ν þ 2iεμνρσBσ½αβ�;ρ� ¼
i
8
θαβ½ðð0Þωcdμ;αÞðð0Þωcd

ν;βÞ þ iεμνρσðð0Þωcdρ;αÞðð0Þωcd
σ;βÞ�≡Uμν: (9.4)

Now we define, from the right-hand side of (7.3) and (7.4),

Aμ ≡ θρσAμ½ρσ�; Bμ ≡ θρσBμ½ρσ�; (9.5)

and we exploit the constancy of θαβ to define the skew-
symmetric “field strengths”

Gμν ≡ ∂μAν − ∂νAμ; Hμν ≡ ∂μBν − ∂νBμ: (9.6)

Hence we find, from (7.7) and (7.8), the asymptotic
expansions in the self-dual case:

~rμν þ irμν ∼Hμν þ iGμν þ Oðθ2Þ as θαβ → 0; (9.7)

~rμν− irμν∼Hμν− iGμν− i
4
θαβðð0Þωcdμ;αÞðð0Þωcd

ν;βÞþOðθ2Þ
as θαβ→0: (9.8)

In these formulas, Gμν and Hμν are found by solving
equations like (9.4), as is shown in Sec. X.
Last, but not least, we have to evaluate the

curvature components Rab
μν from Eq. (1.22) to first

order in θαβ. By virtue of the self-duality assumption
(4.6) and of the asymptotic expansions used so far,
we find

Rab
μν ∼ 2½∂ ½μð0Þωab

ν� þ θαβ∂ ½μCab
ν�½αβ�� þ ð0Þωb

c½μð0Þωca
ν� − ð0Þωa

c½μð0Þωcb
ν�

þ i
2
θαβ½ð∂α

ð0Þωb
c½μÞð∂β

ð0Þωca
ν� Þ − ð∂α

ð0Þωa
c½μÞð∂β

ð0Þωcb
ν� Þ� þ 2θαβ½ð0Þωcb

½μ C
ajcjν�½αβ�

þ ð0Þωca
½ν C

bjcjμ�½αβ�� þ 2½ð0Þωab
½μ ðB − iAÞν� þ ðB − iAÞ½μð0Þωab

ν� � þ Oðθ2Þ as θαβ → 0; (9.9)
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where Eq. (8.4) can be used to express Cab
μ½αβ�. In the next

section, we are going to solve Eq. (9.4) and the associated
equation for Aμ. This makes it possible to compute all
asymptotic expansions of the curvature forms, and the first-
order part of the tetrad can be found eventually from the
equation derived in Sec. XI.

X. WAVE EQUATIONS FOR Aμ AND Bμ

Our self-dual solution scheme is fully computable
provided that one is able to obtain the general solution
of first-order partial differential equations like (9.4). For
this purpose, we begin by remarking that Eq. (9.4) can be
written in the form

Hμν þ 2ið�ÞHμν ¼ Uμν; (10.1)

while, from Eq. (7.5), one finds

Gμν þ 2ið�ÞGμν ¼ −iUμν: (10.2)

Note now that the Hodge dual of Eq. (10.1) yields

ð�ÞHμν − 2iHμν ¼ ð�ÞUμν; (10.3)

and hence Eqs. (10.1) and (10.3) lead to

Hμν ¼
1

3
½2ið�ÞUμν −Uμν�: (10.4)

Moreover, since the right-hand side of Eq. (10.2) is −i
times the right-hand side of Eq. (10.1), we find also

Gμν ¼ − i
3
½2ið�ÞUμν −Uμν�: (10.5)

Note now that, from the point of view of partial differ-
ential equations, Eq. (10.4) can be written explicitly as

∂μBν − ∂νBμ ¼ ∇μBν − ∇νBμ ¼
1

3
½2ið�ÞUμν −Uμν�;

(10.6)

where ∇μ is a torsion-free metric compatible covariant
derivative of the classical background endowed with
classical tetrad covectors eaμ. We need the transition from
∂μ to ∇μ, because the latter makes it possible to act with an
appropriate derivative operator on both sides of the tensor
equation (10.6), i.e.

∇μ∇μBν − ∇μ∇νBμ ¼ −Qν; (10.7)

having defined

Qν ≡− 1

3
∇μ½2ið�ÞUμν −Uμν�: (10.8)

Eventually, this reads as

ð−δμν□þ Rμ
νÞBμ þ∇νðdivBÞ ¼ Qν; (10.9)

where−δμν□þ Rμ
ν is the wave operator in curved spacetime

acting on (co)vectors. It maps elements of TpðMÞ into
elements of TpðMÞ, and elements of T�

pðMÞ into elements
of T�

pðMÞ; in the language of differential forms, it reads as
dδþ δd, δ being the codifferential. Upon imposing the
Lorenz gauge condition

divB ¼ ∇μBμ ¼ 0; (10.10)

Eq. (10.9) becomes the familiar inhomogeneous wave
equation in curved spacetime, for which existence theorems
for the solution are available, since the pioneering work of
Leray [12] on the existence of Green functions of hyper-
bolic operators in curved spacetime [13].
Interestingly, we have therefore found that solutions of

the equation

ð−δμν□þ Rμ
νÞBμ ¼ Qν; (10.11)

with Bμ satisfying the Lorenz gauge, generate solutions of a
family of self-dual noncommutative gravity field equations,
in the way made precise by Sec. IX and the following
section. In particular, on considering classical backgrounds
which solve the vacuum Einstein equations in four dimen-
sions, the Ricci term in Eq. (10.11) vanishes, and our wave
operator takes the simple form

Pμ
ν ≡−δμν□; (10.12)

and Bμ reads as

Bμ ¼ bμ þ ~Bμ; (10.13)

where bμ is the general solution of the homogeneous
equation

□bμ ¼ 0; (10.14)

while ~Bμ is a particular solution of the inhomogeneous
equation (10.11) with a vanishing Ricci term. In terms of
the Green function Gλν0 ≡Gλνðx; x0Þ of the operator Pλ

μ,
which solves by definition the equation [14]

Pλ
μGν0

λ ¼ δνμ
δðx; x0Þffiffiffiffiffiffi−gp ; (10.15)

one finds

~Bμ ¼
Z

Gν0
μQνðx0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi−gðx0Þp
d4x0: (10.16)

To obtain an explicit example, we may consider the
classical self-dual spin connection of a Kasner spacetime

DI GREZIA, ESPOSITO, AND VITALE PHYSICAL REVIEW D 89, 064039 (2014)

064039-8



[15], which belongs to the class of Bianchi models. In such
a case, the metric reads as

g ¼ −dt ⊗ dtþ t2p1dx ⊗ dxþ t2p2dy ⊗ dy

þ t2p3dz ⊗ dz; (10.17)

where the pi are constants satisfying the conditions

X3
i¼1

pi ¼ 1; (10.18)

X3
i¼1

p2
i ¼ 1; (10.19)

called the Kasner plane and Kasner 2-sphere condition,
respectively. Each t ¼ const hypersurface of this cosmo-
logical model, which solves the vacuum Einstein equations,
is a flat three-dimensional space, and the worldlines of
constant x; y; z are timelike geodesics along which galaxies
or other matter, viewed as test particles, can be imagined to
move [16]. This model represents an expanding universe,
since the volume element is constantly increasing, but the
expansion is anisotropic. The distances parallel to the x axis
expand at a rate proportional to tp1 , while those along the y
axis can expand at a rate proportional to tp2 . Moreover,
along one of the axes, distances contract rather than
expand. Thus, if blackbody radiation were emitted at
one time t in a Kasner universe and never subsequently
scattered, later observers would see blueshifts near one pair
of antipodes on the sky and redshifts in most other
directions [16]. Despite these features not vindicated by
observations, the model remains of interest, both in the
analysis of classical cosmological singularities [17] and for
our purposes, since we have no a priori reasons for
selecting a particular self-dual solution of the vacuum
Einstein equations, but we rather try to build their non-
commutative counterpart with the help of geometric and
analytic techniques.
In a Kasner spacetime, the spin connection satisfies the

self-duality condition (8.2), and its nonvanishing compo-
nents are given by [we use the general formula (7.2), and
our coordinate indices μ range from 0 through 3]

ð0Þωab
i ¼ −ðδa0δbi − δb0δai Þpitpi−1; ∀ i ¼ 1; 2; 3:

(10.20)

Thus, the tensor Uμν given by the right-hand side
of Eq. (9.4) is found to vanish [because the term in square
brackets on the right-hand side of (9.4) vanishes if
α ≠ β and μ ≠ ν], which implies in turn that the field
strengths Hμν and Gμν vanish, by virtue of the general
formulas (10.4) and (10.5). Hence both Aμ and Bμ can be
expressed as the gradient of one and the same scalar
function ϕ, i.e.

Aμ ¼ Bμ ¼ ∇μϕ; (10.21)

and the Lorenz gauge condition upon them leads to the
scalar wave equation for ϕ, i.e.

□ϕ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi−gp

gμν∂νÞϕ ¼ 0: (10.22)

In the Kasner coordinates of Eq. (10.17), this reads as

�
− ∂2

∂t2 −
1

t
∂
∂tþ t2p1

∂2

∂x2 þ t2p2
∂2

∂y2 þ t2p3
∂2

∂z2
�
ϕ ¼ 0:

(10.23)

The work in Ref. [18] suggests looking for solutions in
the form

ϕðt;x;y;zÞ¼
Z

∞

−∞
dk1

Z
∞

−∞
dk2

Z
∞

−∞
dk3Aðk;tÞeiðk1xþk2yþk3zÞ;

(10.24)

where k is a concise notation for the triple ðk1; k2; k3Þ and
Aðk; tÞ solves, from (10.23), the partial differential equation

�
− ∂2

∂t2 −
1

t
∂
∂tþUðk; tÞ

�
Aðk; tÞ ¼ 0; (10.25)

having defined

Uðk; tÞ≡X3
i¼1

t2pik2i : (10.26)

One can turn Eq. (10.25) into a simpler equation, where the
coefficient of the first derivative vanishes, by setting

Aðk; tÞ ¼ tαWðk; tÞ: (10.27)

This yields the equation

�
− α2

t2
− ð2αþ 1Þ

t

_W
W

− Ẅ
W

þ Uðk; tÞ
�
Aðk; tÞ ¼ 0; (10.28)

where our goal is achieved by setting α ¼ − 1
2
. Hence we

find that W should solve the equation

� ∂2

∂t2 þ
1

4t2
−Uðk; tÞ

�
Wðk; tÞ ¼ 0: (10.29)

To get an understanding of some features of the possible
solutions, we may consider the particular case p1 ¼ 1,
p2 ¼ p3 ¼ 0, which is consistent with the Kasner
conditions (10.18) and (10.19). Hence we arrive at the
equation
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� ∂2

∂t2 þ
1

4t2
− t2k21 − k22 − k23

�
Wðk; tÞ ¼ 0: (10.30)

At this stage it is clear that we cannot find solutions by
means of finitely many positive or negative powers of t. We
rather have to considerW as a function admitting a Laurent
expansion as t ∈�0;∞½, i.e.

Wðk; tÞ ¼
X∞
n¼−∞

WnðkÞtn: (10.31)

By virtue of (10.31), Eq. (10.30) takes the form

X∞
m¼−∞

fmðkÞtm ¼ 0; (10.32)

where

fmðkÞ≡
�
mþ3

2

�
2

Wmþ2ðkÞ−ðk22þk23ÞWmðkÞ−k21Wm−2ðkÞ:

(10.33)

Thus, having to set fmðkÞ ¼ 0 for all m, we obtain a
countable infinity of three-term recurrence relations for the
evaluation of Wðk; tÞ and hence of Aðk; tÞ ¼ 1ffiffi

t
p Wðk; tÞ,

which yields in turn ϕðt; x; y; zÞ from (10.24). We also
notice that the particular solutions of Eq. (10.23) with slow
spatial variation are “harmful” in that they have a loga-
rithmic dependence on time and hence blow up in the
neighborhood of t ¼ 0.
The wave equation in Kasner had been studied in

Ref. [19] for a quantum scalar field with mass and a
conformal coupling term to gravity, with application to the
regularized and renormalized energy-momentum tensor.
Moreover, the classical wave equation in a Kasner space-
time had been studied in Ref. [20] for the electromagnetic

potential, where the author obtained plane-wave solutions
such that the temporal component of the electromagnetic
potential vanishes, jointly with two of the spatial compo-
nents. The work in Ref. [21] had instead evaluated directly
the electric and magnetic field in Bianchi models, including
a Kasner universe.

XI. EQUATIONS FOR THE TETRAD AND THEIR
SOLUTION

First, by relabeling dummy indices and exploiting the
skew symmetry of Rcdμν; rμν; ~rμν and of the exterior product
dxλ∧dxμ, we find that the three terms on the first line of
Eq. (6.5) are equal, and the same holds for the three terms
on the second and third line of Eq. (6.5). Thus, upon
defining

Zcaμν ≡ Rcaμν þ ηcað~rμν − irμνÞ; (11.1)

we find that Eq. (6.5) can be expressed in the form

Wa
λ⋆Zcaμνdxλ∧dxμ∧dxν ¼ 0; (11.2)

where, in light of (1.10), (1.11), and (6.2), Wa
λ has the

asymptotic expansion

Wa
λ ∼ −eaλ þ θαβPa

λ½αβ� þ Oðθ2Þ as θαβ → 0; (11.3)

while, in light of (9.8), (9.9), and (11.1), we write

Zcaμν ∼ ð0ÞRcaμν þ θαβZcaμν½αβ� þ Oðθ2Þ as θαβ → 0;

(11.4)

where ð0ÞRcaμν is the θ-independent part of the asymptotics
(9.9), while θαβZcaμν½αβ� is the sum of the parts linear in θ in
the asymptotic expansions (9.8) and (9.9), i.e.

θαβZcaμν½αβ� ≡ θαβ
�
2∂ ½μCjcajν�½αβ� þ

i
2
½ð∂α

ð0Þωad½μÞð∂β
ð0Þωd

jcjν�Þ − ð∂α
ð0Þωcd½μÞð∂β

ð0Þωd
jajν�Þ�

þ 2½ð0Þωd
a½μCjcdjν�½αβ� þ ð0Þωd

c½νCjadjμ�½αβ��
�
þ 2½ð0Þωca½μðB − iAÞν� þ ðB − iAÞ½μð0Þωjcajν��

þ ηca

�
Hμν − iGμν − i

4
θαβðð0Þωpqμ;αÞðð0Þωpq

ν;βÞ
�
: (11.5)

Thus, the term Wa
λ⋆Zcaμν in Eq. (11.2) is found to have, in the neighborhood of θαβ ¼ 0, the asymptotic expansion

Wa
λ⋆Zcaμν ∼ −eaλ ð0ÞRcaμν þ θαβ

�
−eaλZcaμν½αβ� þ Pa

λ½αβ�
ð0ÞRcaμν − i

2
eaλ;αðð0ÞRcaμν;βÞ

�
þ Oðθ2Þ; (11.6)

where the term independent of θαβ on the right-hand side of (11.6) gives a vanishing contribution to Eq. (11.2), if the
classical background is taken to solve the vacuum Einstein equations as we have done in Sec. X. Thus, Eq. (11.2) yields the
following “solution” for Pa

λ½αβ�, which expresses the odd part of the tetrad in the asymptotic expansion (1.11):

DI GREZIA, ESPOSITO, AND VITALE PHYSICAL REVIEW D 89, 064039 (2014)

064039-10



Pa
λ½αβ�

ð0ÞRcaμν ¼ eaλZcaμν½αβ� þ
i
2
eaλ;½α

ð0ÞRjcaμνj;β�: (11.7)

This equation should be studied jointly with Eq. (6.4),
where the three terms are equal, so that it reads

Ucλ⋆ð~rμν þ irμνÞdxλ∧dxμ∧dxν ¼ 0: (11.8)

By working to first order in θαβ, and introducing the
2-forms G and H corresponding to the field strengths Gμν

and Hμν, i.e.

G≡ 1

2
Gμνdxμ∧dxν; H ≡ 1

2
Hμνdxμ∧dxν; (11.9)

Eq. (6.4) leads to the nontrivial restriction

ec∧ðH þ iGÞ ¼ 0: (11.10)

As far as we can see, this means that we should choose the
solutions of the wave equations for Aμ and Bμ in such a
way that the resulting 2-forms G and H fulfill Eq. (11.10).
After having checked this, the task remains of solv-
ing Eq. (11.7).
In the case of a classical background of the Kasner type,

as considered in the end of Sec. X, both G and H vanish,
and hence Eq. (11.10) is identically satisfied, whereas
Eq. (11.7) takes a simplified form, obtained by setting
Gμν ¼ Hμν ¼ 0 and Aμ ¼ Bμ in the formula (11.5).
Moreover, in a Kasner background, (11.5) is further
simplified by the vanishing of contributions built from
partial derivatives of the classical spin connection, while
(1.22) and (10.20) lead to the following formulas for
nonvanishing components of the classical curvature
2-form:

ð0ÞRab
0i ¼ −ðδa0δbi − δb0δai Þpiðpi − 1Þtpi−2;

∀ i ¼ 1; 2; 3;
(11.11)

ð0ÞRab
ij ¼ ðδai δbj − δajδ

b
i Þpipjtpiþpj−2; ∀ i; j ¼ 1; 2; 3:

(11.12)

These formulas, bearing also in mind that the tetrad
covectors for the metric (10.17) read as (with no summation
over i on the right-hand side)

eaλ ¼ δa0δλ0 þ δai t
piδλi; (11.13)

imply that the skew symmetrization of partial derivatives on
the right-hand side of Eq. (11.7) vanishes, because the
product of such partial derivatives therein is always propor-
tional to the symmetric term δα0δβ0. Thus, Eq. (11.7)
reduces to

Pa
λ½αβ�

ð0ÞRcaμν ¼ eaλZcaμν½αβ�; (11.14)

where, on the left-hand side, we read off components of the
classical curvature 2-form from (11.11) and (11.12), while
on the right-hand side we use (11.13) for the classical tetrad
and read off from (11.5) the nonvanishing terms in
Zcaμν½αβ�, i.e.

Zcaμν½αβ� ¼ 2∂ ½μCjcajν�½αβ�

þ 2½ð0Þωd
a½μCjcdjν�½αβ� þ ð0Þωd

c½νCjadjμ�½αβ��
þ 2ð1 − iÞ½ð0Þωca½μBν�½αβ� þ B½μj½αβ�jð0Þωjcajν��:

(11.15)

In this expression of Zcaμν½αβ� in the Kasner case, we can set,
bearing in mind the definition (9.5),

Bμ½αβ� ¼
εαβBμ

θρσερσ
; (11.16)

where Bμ is obtained from the gradient of the function
(10.24), while the tensor Cab

μ½ρσ� admits the general decom-

position displayed in (8.4). We cannot make our solution
more explicit than this. For each choice of F andW in (8.4),
we have a form of Zcaμν½αβ�, and hence Eqs. (11.11)–(11.16)
yield algebraic equations for the components Pa

λ½αβ�, i.e. the
odd part of the tetrad in the asymptotic expansion (1.11).
Our solution task is hence fully accomplished to first order
in θρσ .
Note also that, when θρσ has such an orientation to the

three preferred Kasner axes for which only θyt and θzx are
nonvanishing and equal to Θ1 and Θ2, respectively (the
theorem on the reduction to canonical form [22] of θρσ

ensures this is always possible), its effect reduces to
obtaining the following formula for our Bμ½αβ�:

Bμ½αβ� ¼
εαβBμ

2ðΘ1 þ Θ2Þ
: (11.17)

XII. RESULTS AND OPEN PROBLEMS

In this paper, we have tried to develop a powerful
“calculus” to find solutions of the field equations of
noncommutative gravity, motivated by the unsuccessful
attempt of applying the Seiberg-Witten map [8,9] to this
task when the action functional is built from twist-
deformed exterior products. As far as we know, our analysis
is original, and its results can be summarized as follows.

(i) On assuming that the spacetime manifold is paral-
lelizable, so that tetrads can be introduced, the
torsion-free equations resulting from the action
(2.1) take the index-free form (2.7) and (2.8) or,
with Lorentz-frame indices made manifest, the form
(2.12) and (2.13).

(ii) In the self-dual (respectively, anti–self-dual) case,
such equations reduce to (3.3) and (3.4) [respec-
tively, (3.6) and (3.7)]. Self-duality (respectively,
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anti–self-duality) of the 1-form ωab [see (4.6)] is a
sufficient condition for self-duality (respectively,
anti–self-duality) of the Lorentz-Lie-algebra-valued
part of the full curvature 2-form. The remaining
parts of the curvature 2-form are self-dual if
Eqs. (5.3) and (5.4) are satisfied. The full set of
self-dual equations consists of (4.6), (5.3), (5.4),
(6.4), and (6.5).

(iii) The self-dual equations can be solved by assuming
that the tetrad and connection admit an asymptotic
expansion (not of Poincaré type; see Appendix D
and examples in Ref. [23]) to first order in non-
commutativity in the neighborhood of θρσ. This
assumption does not exploit the full potentialities
of the twist-deformed exterior product but might be
appropriate after all, since no experimental evidence
is available as yet of finite (let alone “large”) effects
resulting from noncommutativity.

(iv) Furthermore, all our field equations can be explicitly
solved provided that one is able to integrate the first-
order partial differential equation (9.4), which turns
out to be equivalent to a inhomogeneous wave
equation on 1-form fields, subject to a Lorenz gauge
condition.

(v) To first order in noncommutativity, the tetrad should
fulfill Eq. (11.7), provided the consistency condition
(11.10) is satisfied.

(vi) The whole scheme has been tested when the
classical background is Kasner spacetime, which
is a Bianchi model solving the vacuum Einstein
equations with a self-dual spin connection. In such a
case, the solution of the scalar wave equation (10.23)
is the desired “generator” of a solution for the tetrad
form and connection form, to first order in non-
commutativity.

We find it encouraging that the self-dual option can be
pursued to the extent shown in our paper, without any use
of the Seiberg-Witten map or yet other techniques applied
in the previous literature [24–37], and the nontrivial
cancellations of terms encountered at some stages provide
further evidence in favor of a new level of internal
consistency of gravity being in sight for the first time.
Nevertheless, the mathematical potentialities of noncom-
mutative gravity remain largely unexplored, especially the
field equations and their solutions at finite values of θαβ.
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APPENDIX A: TWIST DIFFERENTIAL
GEOMETRY

1. Twist

In this section, we review the concept of twist, together
with some of the noncommutative geometry associated
with it. The presentation is based on Refs. [7,38,39].
Let Ξ be the linear space of smooth vector fields on a

smooth manifold M, and UΞ its universal enveloping
algebra [if G is a connected Lie group whose Lie algebra
G is spanned by the vector fields fLαg, the universal
enveloping algebra UðGÞ is defined to be the algebra
generated by the Lα’s and the identity, with relations given
by the Lie brackets [40]]. Given the commutative algebra of
functions onM, denoted by FunðMÞ≡ A, many associative
noncommutative products may be obtained from the usual
pointwise product μðf ⊗ gÞ ¼ fg via the action of a twist
operator F ∈ UΞ ⊗ UΞ:

f⋆g ¼ μfF−1ðf ⊗ gÞg: (A1)

We denote the deformed algebra of functions by A⋆. The
associativity of the product is a consequence of the defining
properties of the twist (an element of UΞ ⊗ UΞ is said to
be a twist if it is invertible, is properly normalized, and
satisfies a cocycle condition). On using the standard
notation

F ¼ F α ⊗ F α; F−1 ¼ F̄ α ⊗ F̄ α; (A2)

with F α;F α; F̄ α; F̄ α elements of UΞ, the star product
acquires the form

f⋆g ¼ F̄ αðfÞF̄ αðgÞ; (A3)

where the elements of UΞ act on functions as Lie
derivatives. They are sums of products of vector fields:
the Lie derivative with respect to products of vector fields is
thus extended by means of

Lvw… ¼ LvLw…: (A4)

The class of ⋆ products which can be obtained by a twist
is quite rich. Among them, a wide class is given by the so-
called Abelian twists:

F ¼ e− i
2
θabXa⊗Xb ; (A5)

with Xa mutually commuting vector fields and θab a
constant antisymmetric matrix. The Moyal twist is a
particularly simple instance of such a family with
Xa ¼ ∂a, the infinitesimal generators of translations,
globally defined on Rd.
We also introduce the universal R matrix

R≔F 21F−1; (A6)
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where by definition F 21≔F α ⊗ F α. Hereafter we use the
notation

R ¼ Rα ⊗ Rα; R−1 ¼ R̄α ⊗ R̄α: (A7)

The R matrix measures the noncommutativity of the ⋆
product. Indeed, it is easy to see that

h⋆g ¼ R̄αðgÞ⋆R̄αðhÞ: (A8)

The permutation group in noncommutative space is natu-
rally represented by R. Formula (A8) says that the ⋆
product is R commutative in the sense that, if we permute
(exchange) two functions by using the R-matrix action,
then the result does not change.

2. Vector and tensor fields

We now use the twist to deform the spacetime commu-
tative geometry into a noncommutative one. The guiding
principle is the one used to deform the product of functions
into the ⋆ product of functions. Every time we have a
bilinear map

μ∶ X × Y → Z; (A9)

where X; Y; Z are vector spaces, with an action ofF−1 on X
and Y, we can combine this map with the action of the
twist. In this way we obtain a deformed version μ⋆ of the
initial bilinear map μ:

μ⋆≔μ∘F−1;
μ⋆∶ X × Y → Z

ðx; yÞ↦μ⋆ðx; yÞ ¼ μðF̄ αðxÞ; F̄ αðyÞÞ: (A10)

The ⋆ product on the space of functions is recovered by
setting X ¼ Y ¼ A ¼ FunðMÞ. We now study the case of
vector fields, 1-forms, and tensor fields.
Vector fields Ξ⋆.—We deform the A-module structure of

vector fields, that is, the product μ∶ A ⊗ Ξ → Ξ between
the space of functions on the spacetimeM and vector fields.
According to the general prescription Eq. (A10), the
product μ∶ A ⊗ Ξ → Ξ is deformed into the product

h⋆v ¼ F̄ αðhÞF̄ αðvÞ: (A11)

The action of F̄ α ∈ UΞ on vector fields is given by
repeated use of the Lie derivative as in (A4). This definition
is compatible with the ⋆ product in A. We denote the space
of vector fields with this ⋆ multiplication by Ξ⋆. As vector
spaces Ξ ¼ Ξ⋆, but Ξ is an A module while Ξ⋆ is an A⋆
module.
1-forms Ω⋆.—Analogously, we deform the product

μ∶ A ⊗ Ω → Ω between the space A of functions on
spacetime M and 1-forms. As for vector fields, we have

h⋆ρ ¼ F̄ αðhÞF̄ αðρÞ: (A12)

The action of F̄ α on forms is given by iterating the Lie
derivative action of vector fields on forms, as a trivial
generalization of Eq. (A4). Forms can be multiplied by
functions from the left or from the right (they are an A
bimodule). If we deform the multiplication from the right,
we obtain the new product

ρ⋆h ¼ F̄ αðρÞF̄ αðhÞ; (A13)

and we move h to the left with the help of the R matrix,

ρ⋆h ¼ R̄αðhÞ⋆R̄αðρÞ: (A14)

We have therefore defined the A⋆ bimodule of 1-forms.
Tensor fields T ⋆.—Tensor fields form an algebra with

the tensor product ⊗ (over the algebra of functions). We
define T ⋆ to be the noncommutative algebra of tensor
fields. As vector spaces T ¼ T ⋆. The noncommutative and
associative tensor product is obtained by applying (A10):

τ ⊗⋆ τ0≔F̄ αðτÞ ⊗ F̄ αðτ0Þ: (A15)

Here again the action of the twist on tensors is via the Lie
derivative. Use of the Leibniz rule gives the action of the
Lie derivative on a generic tensor.
There is a natural action of the permutation group on

undeformed arbitrary tensor fields:

τ ⊗ τ0→
σ
τ0 ⊗ τ: (A16)

In the deformed case, it is the R matrix that provides a
representation of the permutation group on ⋆-tensor fields:

τ ⊗⋆ τ0→
σ
R
R̄αðτ0Þ ⊗⋆ R̄αðτÞ: (A17)

It is easy to check that, consistently with σR being a
representation of the permutation group, we have
ðσRÞ2 ¼ id.
Exterior forms Ω∘

⋆ ¼ ⊕pΩ
p
⋆.—Exterior forms form an

algebra with product ∧∶Ω° ×Ω° → Ω°. According to the
general prescription (A10), we⋆ deform the wedge product

θ∧⋆θ
0 ¼ F̄ αðθÞ∧F̄ αðθ0Þ: (A18)

As a particular instance of the tensor product above, the
exterior product is associative and F̄ α; F̄ α act as Lie
derivatives. Therefore, the exterior derivative d, commuting
with the Lie derivative, is undeformed and satisfies the
standard graded Leibniz rule

dðθ∧⋆θ
0Þ ¼ dθ∧⋆θ

0 þ ð−1ÞdegðθÞθ∧⋆dθ0: (A19)

For Abelian twists constructed with globally defined
vector fields, the ordinary integral of forms verifies the
graded cyclicity property, that is, up to boundary terms,

SELF-DUAL ROAD TO NONCOMMUTATIVE GRAVITY WITH … PHYSICAL REVIEW D 89, 064039 (2014)

064039-13



Z
θ∧⋆θ

0 ¼
Z

θ∧θ0 ¼ ð−1ÞdegðθÞ degðθ0Þ
Z

θ0∧θ

¼ ð−1ÞdegðθÞ degðθ0Þ
Z

θ0∧⋆θ; (A20)

with θ∧θ0 a form of maximal rank on the spacetime
manifold. It is possible to show that the graded cyclicity
holds for more general twists.
As for complex conjugation, we have, for Abelian twists

defined in terms of real fields Xa,

ðθ∧⋆θ
0Þ� ¼ ð−1ÞdegðθÞ degðθ0Þθ0�∧⋆θ

�; (A21)

which holds in particular for functions.

3. Infinitesimal ⋆ diffeomorphisms

We have mentioned in Sec. II that the gravity action
Eq. (2.1) is invariant under standard diffeomorphisms,
which are generated by vector fields, that act on forms
through the Lie derivative. Indeed we have

Lv

Z
4 − form ¼

Z
dðiv4 − formÞ; (A22)

which yields a boundary term. Interestingly, the ⋆ action in
(2.1) is also invariant with respect to ⋆ diffeomorphisms.
Let us describe the ⋆-Lie algebra structure of their
infinitesimal generators.
Following the general prescription (A10), we may

combine the usual Lie derivative on functions Luh ¼
uðhÞ with the twist F :

L⋆
u ðhÞ≔F̄ αðuÞðF̄ αðhÞÞ: (A23)

We obtain in this way the ⋆-Lie derivative on the algebra of
functions A⋆. The differential operator L⋆

u satisfies the
deformed Leibniz rule

L⋆
u ðh⋆gÞ ¼ L⋆

u ðhÞ⋆gþ R̄αðhÞ⋆L⋆
R̄αðuÞðgÞ: (A24)

This deformed Leibniz rule is intuitive: in the second
addend we have exchanged the order of u and h, and this is
achieved by the action of the R matrix, which provides a
representation of the permutation group. In the commuta-
tive case, the commutator of two vector fields is again a
vector field; we have the Lie algebra of vector fields. In this
⋆-deformed case, we have a similar situation. It is possible
to verify that

L⋆
uL⋆

v − L⋆
R̄αðvÞL

⋆
R̄αðuÞ ¼ L⋆

½u;v�⋆ ; (A25)

where we have defined the new vector field

½u; v�⋆≔½F̄ αðuÞ; F̄ αðvÞ�; (A26)

again as in (A10), the deformed bracket is obtained from
the undeformed one via composition with the twist:

½; �⋆ ¼ ½; �∘F−1: (A27)

Therefore, in the presence of twisted noncommutativity, we
associate to the usual Lie algebra of vector fields, Ξ, Ξ⋆, the
algebra of vector fields equipped with the ⋆ bracket (A26)
or equivalently (A27). The map ½; �⋆∶ Ξ⋆ × Ξ⋆ → Ξ⋆ is a
bilinear map and verifies the ⋆ antisymmetry and the
⋆-Jacoby identity

½u; v�⋆ ¼ −½R̄αðvÞ; R̄αðuÞ�⋆; (A28)

½u; ½v; z�⋆�⋆ ¼ ½½u; v�⋆; z�⋆ þ ½R̄αðvÞ; ½R̄αðuÞ; z�⋆�⋆:
(A29)

We have constructed the deformed Lie algebra of vector
fields Ξ⋆. As vector spaces Ξ ¼ Ξ⋆, but Ξ⋆ is a ⋆-Lie
algebra. We stress that a ⋆-Lie algebra is not a generic
name for a deformation of a Lie algebra. Rather, it is a
quantum Lie algebra of a quantum (symmetry) group [41].
Equation (A24) makes vector fields into ⋆ derivations of

A⋆. Moreover, it is compatible with the⋆multiplication on
the left by elements of A⋆, making Ξ⋆ into a left A⋆
module.
⋆-vector fields are the infinitesimal generators of ⋆

diffeomorphisms. It is not difficult to verify that the action
(2.1) is invariant. We have indeed

L⋆
v

Z
4 − form ¼

Z
L⋆
v ð4 − formÞ

¼
Z

LF̄ αðvÞF̄ αð4 − formÞ: (A30)

On using Eq. (A4) to compute LF̄ αðvÞ and observing that
F̄ α itself acts on forms as a Lie derivative, we end up with
the integral of the external derivative of a top form, as in
Eq. (A22), which yields again a boundary term.

APPENDIX B: ⋆-GAUGE TRANSFORMATIONS
AND TRACES IN THE FIELD EQUATIONS

The form of the expansions (1.8), (1.12), and (1.16) can
be understood by making the following considerations [7].
If two infinitesimal gauge transformations τ and τ0 are
given, reading as

τ ¼ I þ δε; τ0 ¼ I þ δε0; (B1)

where ε ¼ εATA and TA are the generators of the algebra of
the group under consideration, the deformed commutator of
τ and τ0 can be expressed in the form
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½τ; τ0�⋆ ¼ ½δε; δε0�⋆ ¼ 1

2
fδεA; δε0Bg⋆½TA; TB�

þ 1

2
½δεA; δε0B�⋆fTA; TBg: (B2)

Thus, since the deformed commutator of infinitesimal
gauge parameters does not vanish, for a generic Lie algebra
it is necessary to perform an extension so as to include also
the anticommutators of generators, hence considering all
their possible products.
In the specific case of the spinor representation of the

Lorentz group, the expansion of the noncommutative gauge
parameter ε contains also contributions proportional to the
identity matrix I and to γ5, i.e.

ε ¼ ϵabΓab þ iϵ̂I þ ~ϵγ5; (B3)

where the new parameters ϵ̂ and ~ϵ, absent in the commutative
setting, can be chosen to be real as the remaining ones, which
is equivalent to imposing the Hermiticity condition

−γ0εγ0 ¼ ε†: (B4)

Thus, to achieve closure of noncommutative gauge trans-
formations, the original Lorentz group SOð3; 1Þ of com-
mutative theory has been extended to the group
SOð3; 1Þ ×Uð1Þ ×Rþ, where the matrices iI and γ5 are
the generators of the compact component Uð1Þ and non-
compact component Rþ, respectively. More precisely, the
original gauge group SLð2; CÞ has been therefore extended
to the ⋆-gauge group GLð2; CÞ.
Since, under infinitesimal ⋆-gauge transformations, the

full connection form Ω (called spin connection) undergoes
the variation

δεΩ ¼ δε − ½Ω; ε�⋆; (B5)

it takes values, jointly with the curvature 2-form, in the
GLð2; CÞ Lie algebra given by even products of γ matrices,
according to the expansions (1.12) and (1.16), respectively.
The reality conditions for the 1-forms ω, ~ω, and the 2-forms
r, ~r, can be summarized through the Hermiticity conditions

−γ0Ωγ0 ¼ Ω†; −γ0Rγ0 ¼ R†: (B6)

Moreover, the infinitesimal ⋆-gauge transformations for
tetrads read as

δεV ¼ −½V; ε�⋆; (B7)

and they “close” in the linear space generated by odd γ
matrices, i.e. both γa and γaγ5, the latter resulting from the
anticommutator fγab; γcg. Hence one arrives at the expan-
sion (1.8).

On using Eqs. (B5) and (B7), it can be easily verified that
the variation of the action (2.1) with respect to ⋆-gauge
transformations vanishes [7]; that is, the model is ⋆-gauge
invariant, with gauge group GLð2; CÞ.
We also find it helpful for the general reader to evaluate the

six traces which contribute to the field equation (2.10), i.e. [7]

τ1 ≡ Tr

�
i
4
γcγ5ðVdγd∧⋆RabγabÞ

�

¼ − i
4
Trðγabγcγdγ5ÞVd∧⋆Rab ¼ −εabcdVd∧⋆Rab;

(B8)

τ2 ≡ Trf−γcγ5Vdγd∧⋆rg ¼ Trðγcγdγ5ÞVd∧⋆r ¼ 0;

(B9)

τ3 ≡ Trfiγcγ5Vdγd∧⋆ ~rγ5g ¼ −iTrðγcγdÞVd∧⋆ ~r

¼ −4iVc∧⋆ ~r; (B10)

τ4 ≡ Tr

�
i
4
γcγ5 ~V

dγdγ5∧⋆Rabγab

�

¼ − i
4
TrðγcγdγabÞ ~Vd∧⋆Rab

¼ −iðηbcηad − ηacηbdÞ ~Vd∧⋆Rab; (B11)

τ5 ≡ Trf−γcγ5 ~Vdγdγ5∧⋆rg ¼ TrðγcγdÞ ~Vd∧⋆r ¼ 4 ~Vc∧⋆r;

(B12)

τ6 ≡ fiγcγ5 ~Vdγdγ5∧⋆ ~rγ5g ¼ 0: (B13)

APPENDIX C: THE HODGE DUAL

Our definitions of Hodge duals (1.17) and (1.18) are
inspired by earlier work in the literature. For example, the
work in Ref. [4] used precisely the definition (1.17) to
derive self-dual solutions of Euclidean gravity, i.e. the
asymptotically locally Euclidean Eguchi-Hanson instanton.
What is nontrivial in these definitions is that ωab is a 1-form
ωab
μ dxμ but, being Lie algebra valued and skew symmetric:

ωab ¼ −ωba, makes it possible to define a Hodge dual
(1.17) with respect to Lorentz-frame indices. The same
holds for Rab, which is a 2-form written after Eq. (1.16).
Our Levi-Civita symbol with frame indices, εabcd, is
precisely the one used in Ref. [7], i.e. the standard
undeformed Levi-Civita symbol with frame indices, obtain-
able from flat-space γ matrices according to

εabcd ¼
i
4
Trðγabγcγdγ5Þ: (C1)

By contrast, the 2-forms r and ~r introduced in Sec. I are
Lorentz scalars or, in other words, 0-forms from the point
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of view of frame indices, and hence for them we have to
generalize the definition of the Hodge dual in curved
spacetime. Indeed, in Riemannian geometry, the Hodge
dual of a 2-form α (β being another 2-form) admits the
intrinsic definition

ð�Þα∧β ¼ ðα; βÞV4; (C2)

where ðα; βÞ is the interior product of α with β and V4 is the
volume 4-form. With index notation, one then writes [42]

ðð�ÞαÞμν ¼
1

2
εμν

ρσαρσ; (C3)

where εμνρσ ≡ ffiffiffiffiffiffiffiffiffi
detg

p
ϵμνρσ, where ϵμνρσ is equal to 1

(respectively, −1) for even (respectively, odd) permutation
of the indices and equal to 0 otherwise. The “curved” Levi-
Civita symbol εμνρσ is a covariant tensor density of weight
−1, whereas εμνρσ is a contravariant tensor density of
weight þ1. Last, but not least, the Levi-Civita symbol with
a pair of covariant and a pair of contravariant indices is a
tensor of type (2,2), skew symmetric in both pairs of
indices.
Both definitions recalled so far make it quite clear that, to

define the Hodge dual, one needs a metric. In Lorentzian
geometry, the metric has signature 2 in dimension 4, and
hence the Hodge dual becomes a complex structure, its
square being equal to minus the identity.
Within the framework of twist differential geometry

applied to gravity, we know that the tensor product gets
deformed according to our prescription (A15). Thus, we
deform the tensor productea ⊗ eb inEq. (1.3), after pointing
out that the expansion (1.8) can be written in the form

Vμ ¼ Ea
μγa; (C4)

where

Ea
μ ≡ Va

μI − ~Va
μγ5; (C5)

or, with matrix indices made explicit,

ðEa
μÞjl ≡ Va

μδj
l − ~Va

μðγ5Þjl: (C6)

Thus, what corresponds to the tetrad 1-forms ea of Eq. (1.2)
is the matrix of 1-forms Ea ¼ Ea

μdxμ, and the previous
considerations suggest considering the following definition
of metric (the factor 1

4
is introduced to compensate

for TrI ¼ 4):

g≡ 1

4
TrðEa ⊗⋆ EbÞηab ¼ gμνðθÞdxμ ⊗ dxν; (C7)

where

gμνðθÞ ¼
1

4
TrðEa

μ⋆Eb
νÞηab ¼ ðVa

μ⋆Vb
ν þ ~Va

μ⋆ ~Vb
νÞηab;
(C8)

which reduces to (1.1) as θ → 0. Furthermore, we note that,
similarly to the way in which the undeformed tetrad eaμ
turns the Levi-Civita symbol (C1) into its curved spacetime
counterpart according to

ϵμνρσ ¼ εabcdeaμebνecρedσ; (C9)

we can now define, with the help of Ea
μ,

Eμνρσ ≡ Tr½εabcdðEa
μ⋆Eb

ν⋆Ec
ρ⋆Ed

σÞ�
¼ εabcdðEa

μÞjl⋆ðEb
νÞlm⋆ðEc

ρÞmp⋆ðEd
σÞpj: (C10)

To raise and lower indices of Eμνρσ, some equally legitimate
(but different) prescriptions are available, i.e.

Eμν
ρσ ≡ ðgρα⋆gσβ⋆EμναβÞ or

ðgρα⋆Eμναβ⋆gβσÞ or ðEμναβ⋆gαρ⋆gβσÞ; (C11)

as well as other prescriptions differing for the relative order
of indices of metric components. Some freedom is also
available in the definition of contravariant metric gμν, i.e.

gμν⋆gνλ ¼ δμ
λ or gμν⋆gνλ ¼ δμλ: (C12)

Last, to define the Hodge dual of a 2-form when curved
spacetime is deformed according to the prescriptions of
twist differential geometry, we consider (cf. Ref. [42])

Eμν
ρσ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detgðθÞ
p

⋆Eμν
ρσ; (C13)

where we define, inspired by matrix calculus,

detgðθÞ≡ Ei1…i4⋆g1i1⋆ � � �⋆g4i4 ; (C14)

with the understanding that Ei1…i4 is defined according to
(C10) and the metric components are defined according
to (C8). We propose therefore the following definition of
the Hodge dual of a 2-form α ¼ 1

2
αμνdxμ∧dxν:

ðð�ÞαÞμν ≡ 1

2
Eμν

ρσ⋆αρσ ∼
1

2
εμν

ρσαρσ þ ðOðθÞαÞμν; (C15)

where εμν
ρσ includes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detgðθ ¼ 0Þp

.
The transformation properties of our geometric objects

are defined when one considers their behavior under
infinitesimal ⋆ diffeomorphisms studied in Sec. III of
Appendix A. This involves studying the ⋆-Lie derivative
of deformed products according to our Eq. (A24). In our
application to gravity, we shall therefore write Eq. (A24) in
the form
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Tr½L⋆
u ðEa

μ⋆Eb
νÞ� ¼ Tr½ðL⋆

u Ea
μÞ⋆Eb

ν

þ R̄αðEa
μÞ⋆L⋆

R̄αðuÞE
b
ν�: (C16)

The passage to some sort of “exponentiation” to obtain the
full set of finite ⋆ diffeomorphisms is a challenging open
problem, as far as we know.
Interestingly, our definition expressed by (C15) leads to

our asymptotic expansions (3.2), which tell us that, to first
order in θ, since both rμν and ~rμν are odd functions of θ, one
can keep using the Levi-Civita symbol with coordinate
indices of the undeformed curved spacetime. In general, for
the purpose of studying linear effects of θ, the various
conceivable definitions of the Hodge dual of a 2- form lead
always to the asymptotic expansions (3.2).

APPENDIX D: ASYMPTOTIC EXPANSIONS

Following Ref. [23], we find it appropriate to stress that
the notion of asymptotic expansion has nothing to do with
the notion of series, despite the confusing use of the term
“asymptotic series” in the literature. A series has infinitely
many terms, whereas, by definition (see below), an
asymptotic expansion has only finitely many terms.
Talking about convergence (or lack of) of an asymptotic
expansion is therefore meaningless. The confusion arises
because, in several cases, the Taylor expansion in the
neighborhood of a real point x0 of the function under
consideration can be extended arbitrarily far away from x0,
and one can then try to understand whether the Taylor series
converges and what is the relation between its sum and the
function one started from. This problem, however, has no
relation whatsoever with the study of the behavior of the
given function in the neighborhood of x0.
The existence of asymptotic expansions with a large

number of terms is a very special phenomenon. For
example, the function

x → x2 þ x sin x

has an asymptotic expansion with one term only, i.e.
x2 þ oðx2Þ, in the neighborhood of þ∞. Another example

is provided by the number πðxÞ of prime numbers smaller
than or equal to x, for which

πðxÞ ∼
Z

x

2

dt
log t

:

In general, one starts by considering the set E of
functions of the form [23]

g∶ x → gðxÞ≡ xαðlog xÞβePðxÞ; (D1)

where α; β are real nonvanishing constants, and

PðxÞ≡Xk
j¼1

cjxγj ; (D2)

where the cj are real constants of arbitrary sign, while

γ1 > γ2 > � � � > γk > 0: (D3)

By definition, given a function f, its asymptotic expan-
sion with k terms with respect to the set E is meant to be the
sum [23]

Σk ≡
Xk
j¼1

bjgj; (D4)

where the bj are nonvanishing constants and the gj are
functions belonging to the set E such that

gjþ1 ¼ oðgjÞ; ∀ j∶ 1 ≤ j ≤ k − 1: (D5)

One then writes

f ¼
Xk
j¼1

bjgj þ oðgkÞ: (D6)

The difference f − Σk is called the remainder of the
asymptotic expansion [23]. In our paper, we write this last
formula with the equality symbol replaced by the ∼ symbol,
which is more commonly used in the physics-oriented
literature, although less consistent with our source [23].
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