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Self-dual road to noncommutative gravity with twist: A new analysis
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The field equations of noncommutative gravity can be obtained by replacing all exterior products by
twist-deformed exterior products in the action functional of general relativity and are here studied by
requiring that the torsion 2-form should vanish and that the Lorentz-Lie-algebra-valued part of the full
connection 1-form should be self-dual. Two other conditions, expressing self-duality of a pair 2-forms
occurring in the full curvature 2-form, are also imposed. This leads to a systematic solution strategy, here
displayed for the first time, where all parts of the connection 1-form are first evaluated, and hence the full
curvature 2-form, and eventually all parts of the tetrad 1-form, when expanded on the basis of y matrices.
By assuming asymptotic expansions which hold up to first order in the noncommutativity matrix in the
neighborhood of the vanishing value for noncommutativity, we find a family of self-dual solutions of the
field equations. This is generated by solving first an inhomogeneous wave equation on 1-forms in a
classical curved spacetime (which is itself self-dual and solves the vacuum Einstein equations), subject to
the Lorenz gauge condition. In particular, when the classical undeformed geometry is Kasner spacetime,
the above scheme is fully computable out of solutions of the scalar wave equation in such a Kasner model.

DOI: 10.1103/PhysRevD.89.064039

I. INTRODUCTION

The tetrad formalism of Cartan [1] has proved useful in
both gravity (see, e.g., Sec. 10.1 of Ref. [2]) and super-
gravity [3], as well as in gravitational instanton theory [4]

PACS numbers: 04.50.Kd, 02.40.Gh

Of course, the “dual” description in terms of tetrad vectors
e*, is also possible. One then finds, from the contravariant
metric components

v v o,ab _— ,ub v
and in modern approaches to the Hamiltonian formulation g7 = elaety ™ = e, (14)
of general relativity [5,6]. Within this framework, one jointly with the tetrad vector fields [2]
assumes that a set of local Lorentz frames exists, whose
global existence is ensured if the classical spacetime )
manifold is parallelizable. The covariant components g,, e, =ey BV (1.5)
of the metric tensor can then be reexpressed through tetrad
covectors e, in the form the other useful formula
G = €“u€" Map = €€y, (1.1 P S (1.6)
oxt — Ox¥
so that, on defining the tetrad 1-forms On the other hand, several investigations of noncommuta-
tive gravity have exploited the tetrad and spin connection as
et = e, dx*, (1.2)  well, but by replacing the ordinary exterior products of
forms with deformed exterior products [7]. This would be
. . fair enough, with no need for extra mathematical machi-
the spacetime metric reads eventually s L
nery, if it were not for the fact that attempts of providing a
rigorous definition of noncommutative gravity equations
9= gudd' @ dx* = e ® "1, (1.3)  jointly with their solution had been unsuccessful, at least
within the framework of twist differential geometry (see
Wrezia@na.infn.it Appendix 'A) in the version consider.ed in Refs. [8,9]. One
"gesposit@na.infn.it of the basic aspects of tetrad formalism for noncommuta-
*patrizia.vitale@na.infn.it tive gravity is to expand the tetrad on the basis of y
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matrices, so that one deals actually with the space of tetrad
1-forms with components given by 4 x 4 matrices, i.e. (see
Appendix B)

Vik=(v,) dx, (1.7)

J

where

(Vﬂ)jk = Vaﬂ(Ya)jk + Vau(ycﬁ/S)jk' (18)
Hereafter, following Ref. [7], the noncommutativity we
consider is given by the Moyal-Weyl % product associated
with a constant antisymmetric matrix 6°° in the generic
coordinates x*, which obey the ‘“deformed” commuta-
tion law

Xk x® — xCxx’ =16°°. (1.9)
Moreover, following again Ref. [7], the additive structures
are not modified, while multiplicative structures get
deformed. Thus, the notion of tensors that we consider
remains the same as in the classical commutative setting,
while the tensor product and the exterior product (and
only these structures) are deformed. For a deeper look at
the mathematical foundations, we refer the reader to
Appendix A and to the work in Ref. [10].

Both V¢, and Ve , depend on the noncommutativity
matrix ”° = 0 and are approximated by means of even
and odd [7] asymptotic expansions in the neighborhood of
0°° = 0 of the form

Va,(0) = V4,(=0) ~ e, + 0(6?), (1.10)

Ve (0) = =V, (=0) ~ 0 P, +0(6%).  (L.11)
(Notice, however, that V has no commutative analogue; it is
generated by the requirement that the action functional
introduced in the next section be fully invariant under
x-gauge transformations. We refer to Appendix B for
details.)

This is indeed a crucial point of all our analysis. The full
theory, at the nonperturbative level, is nonlocal, but there is
not yet any experimental evidence of finite effects resulting
from finite values of 6°?. Thus, we limit ourselves to
studying the behavior of noncommutative gravity in the
neighborhood of 6 = 0. The existence of even and odd
parts of the tetrad is an exact property [7], but we focus on
their asymptotics (1.10) and (1.11).

The full connection 1-form is also a 4 x4 matrix of
1-forms [7] expandable as (see Appendix B)

ij _ (Qﬂ)jkdx” — [a)ﬁ”(l“ab)jk + ia)ﬂéjk + Cb,,(]’S)jk]dxM’
(1.12)

with
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1
2V =g (Yalo = 1o¥a) = 3 Via¥n)-

F:
ab =y 8

(1.13)

The components a),‘j” take values in the Lie algebra of the
Lorentz group and hence carry Lorentz-frame indices. One
deals therefore with a 1-form w*? = wg?dx*, which yields
the usual spin connection in the commutative limit, while
w, and @, are components of purely noncommutative
1-forms @ = w,d¥* and @ = w,dx*, introduced, as V, to
fulfill the %-gauge invariance of the theory (see again
Appendix B).
The full curvature 2-form is defined by
R=dQ— QA Q (1.14)
and, by writing explicitly all matrix, coordinate, and
Lorentz-frame indices, reads as

R =2 (Ry)fdr Ade, (1.15)

N =

where [7]

(R/w)jk = RZS(Fab)jk + ir/u/5jk + ;;41/(75)]'[{' (1-16)
With this notation, R;l’f are the components of the Lorentz-
Lie-algebra-valued 2-form [for more precise language, see
what we write after Eq. (B4) of Appendix B]

1
R = ERgfddex”,
while r,, and 7, are the components of the 2-forms

1
r :zr dx*Adx* and

1
v r= 5 7’ﬂvdx"/\dx".
By virtue of (1.12) and (1.14)—(1.16), and exploiting the
definition of Hodge dual (both »** and R® can be treated
as 2-forms with respect to Lorentz-frame indices, as
discussed in Appendix C)

(1.17)

() Rab = eadeRCd7 (1.18)

N[ =

and the twist-deformed exterior product of 1-forms a,dx*
and f,dx",
anp = apxf,dx* Adx, (1.19)

with
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ax B, ~ b, + 507 (0,0,) (0,8,) + O(%) as 677 0,

(1.20)
1
axp, Ei(aﬂ*ﬁb —a,%p,), (1.21)
one finds eventually the components (cf. [7])
Ry = 20,08 + (0, x0f — ol *off)
- 2i(a)ﬁlb*a)y] + a)[ﬂ*a)z]b)
- 2i[(*)wﬁf*5)y] + d;[,,*(%g]b}, (1.22)

Ty = 28[}4601,] — ia)cd[ﬂ*wlf]d — 2i(a)b,*a)l,} — &)W*&)U])’
(1.23)

7’”1, = 28[”67),/] —|—i(*)a)cd[ﬂ*a)§]d — 2i(a)[”*5)l,] + &)D,*a)l,])
(1.24)

The use of Hodge duals is suggested by what one finds in
simpler circumstances. For example, in general relativity,
self-duality (respectively, anti—self-duality) of the spin-
connection 1-form, i.e.

B = Fiw®, (1.25)
is a sufficient condition for self-duality (respectively,
anti—self-duality) of the curvature 2-form:

()Rab = +iRab, (1.26)
More precisely, Eq. (1.26) is important because, from the
condition of the vanishing torsion 2-form, i.e.

T=de—whre =0, (1.27)
one finds a solution of the vacuum Einstein equations, since
the latter read as

“)RAe =0, (1.28)

while from d7" =0 and from R = dw — wA®w and asso-

ciativity of the exterior product one finds

Rnre =0, (1.29)

which coincides with Eq. (1.28) upon imposing self-duality
or anti-self-duality: )R = 4iR according to Eq. (1.26).

The plan of our paper is hence as follows. In Sec. II, we

write the torsion-free field equations of noncommutative

gravity, without any coupling to other fields, and in Sec. 111,

we consider their self-dual form. In Sec. IV, we study the
self-duality conditions on ®“®, while Sec. V expresses
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self-duality of the 2-forms r and 7. The remaining self-dual
equations are reexpressed in Sec. VI. In Secs. VII-XI, we
study, to first order in noncommutativity, the resulting set of
equations for the 1-form w®, jointly with the 1-forms
w, @ and the components VZ and V,‘j of the tetrad 1-form.
Our results and the open problems are described in
Sec. XII, while Appendixes A—C describe in detail the
foundations of the concepts we have been using and the
operations we have been performing.

I1. TORSION-FREE FIELD EQUATIONS

The basic assumption of quantum theory [11] is that
every isolated dynamical system can be described by a
characteristic action functional S. Our paper does not deal
with quantum theory but prepares the ground for it by
studying the Euler-Lagrange equations for a given choice
of action functional. By relying upon Ref. [7], the starting
point is an action for gravity where all exterior products
are replaced by twist-deformed exterior products (see
Appendix A for a definition), i.e.

S = / Tr(iRALVALVYs). @2.1)

This action is invariant under ordinary diffeomorphisms as
well as x diffeomorphisms (we refer to Sec. III of
Appendix A for details), and it is also invariant under
*-gauge transformations, as described in Appendix B. It
leads to the field equations

Tr {yCyS(V/\*R +RALV)| =0, 2.2)

Tr [yC(V/\*R + R/\*V)] =0. (2.3)

Bearing in mind what we said in the introduction, we now
consider the torsion 2-form in the noncommutative setting
[7], i.e.

T=dV —-QA,V—-VAQ, 2.4)

and investigate the consequence of requiring it to vanish.
This is not mandatory but certainly legitimate. Indeed, from
T = 0 one finds

dV =QA, V+VAQ, (2.5)

while from d7 = 0 one obtains
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0= —d(QA,V) —d(VA,Q)
= —(dQ)AV 4+ QA dV —dVA,LQ + VA,LdQ
= —(R + QAQALYV + QAL (QALV + VALQ)
— (QALV + VALQIA QL+ VAL(R + QALQ)

— _RALV+ VAR, 2.6)

because also the twist-deformed exterior product is asso-
ciative [7]. Thus, we find the simple but nontrivial property

RALV =VALR,
and the torsion-free versions of the field equations (2.2) and

(2.3) become

Trly.ysVALR] =0, 2.7

Trly VAL R] = 0. 2.8)

An equivalent result would be obtained by defining the
torsion 2-form according to

T=dV —-QA,V,

because Eq. (2.6) would then reduce to RA,V = 0, which
again turns Eqgs. (2.2) and (2.3) into the torsion-free form
(2.7) and (2.8).

From the expansion (1.8), we note that

ysV ==V, — Vs, 2.9)

and hence it is a priori clear that the two sets of equations
are obtained one from the other by interchanging Vi; with
V,, as was pointed out at a later stage in Ref. [8]. Now, from
the decompositions (1.8) and (1.16), the traces in Egs. (2.7)
and (2.8) are found to be (see Appendix B)

0 = Trly75iVALR]
= —Suhcdvd/\*Rub — 4inchdA*?

- i(nbcnad - ’/Iaci/lbd)f/d/\*Rab

+ 4. VAT, (2.10)
0 = Tr[y iVALR]
= E'abcdf/d/\*Rab + 4i7’]cd‘~/d/\*;'
+ i(nbcr]ad - ”acnbd)vd/\*Rab
— 4y, VI, r. @.11)

Now we exploit the definition (1.18) of the Hodge dual,
jointly with the identity

(nadrlbc - nacnbd)Rah =Ry — R,y =2Ry,

to write Eqgs. (2.7) and (2.8) in the form
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VAN, IRy + VAN (—iR.y) + 20V A F =V Aur) =0,
(2.12)

VINL,BIR g+ VAN (—iRoy) + 2(iV A F = V A1) = 0.
(2.13)

Recall now that any 2-form F can be decomposed into its
self-dual (F") and anti-self-dual part (F~) according to
F = F™ + F~, where (the imaginary unit occurs because
of the Lorentzian signature)

Ft=_(F—i%F),

—_ DN | =

F~=_(F+i%F).

o

We apply this decomposition to the Lorentz-Lie-algebra-
valued 2-form R, in Egs. (2.12) and (2.13) and also to the
2-forms r and 7 therein. We further multiply both equations
by —i and hence get

VIAL (R — RSy + Vd/\*(R;d +RY)

— 2V AL ) =20V A (rm + 1) =0, (2.14)
VAR —RE) + VAR, +RE)
— 2V AL (F ) =20V A (rm +rt) =0, (2.15)

II1. SELF-DUAL TORSION-FREE EQUATIONS

In the self-dual case, one sets to 0 all anti—self-dual parts
of the curvature, i.e.

R, =0, r =0, =0, (3.1
where the Hodge dual of r and 7, provided one works to
linear order in € as we are doing, can be reexpressed
through the undeformed Levi-Civita symbol with coordi-

nate indices for curved spacetime, i.e. (see the detailed
discussion in Appendix C)

()

1
w "~ Eé‘uvlmrpo' + 0(62)7

as 0 — 0. (3.2)

~ L.
(*)ryy ~ E’Sﬂup Tpo + 0(02)’
We now insert (3.1) into (2.14) and (2.15) and add up the
two resulting equations to find the set of “self-dual
equations”

(VI = VOALRS, =2V A FH =2V AT =0, (3.3)

(Ve + VOAL(F +irt) =0. (3.4)
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In the anti—self-dual case, one sets instead to O the self-
dual parts of the curvature, i.e.
R, =0, rt =0, F=0. (3.5)
By inserting (3.5) into (2.14) and (2.15) and subtracting
the two resulting equations, we find the ‘“anti—self-dual
equations”

(VI VOALR, =2V A~ =2V A =0, (3.6)

(V. = V)AL (F —ir) = 0. 3.7)

IV. SELF-DUALITY OF o®

The conditions R, = 0 or R/, = 0 considered in Sec. I1I
may still lead to complicated equations, as is clear from
(1.22). However, Eq. (1.22) tells us something more
helpful: if the 1-form @ is self-dual or anti—self-dual,
according to (1.25), this is a sufficient condition for self-
duality or anti—self-duality of R*’ itself. Indeed one finds,
by virtue of (1.25),

G [dw® — (@™ Ay + oA )]

= Fi[do® — (0 Ay + oA @0™)],  (4.1)
(%) [_i((*)wab/\*&) 4 d)/\*(*)wab)]
= —[-i(0® A @ + DA 0™)]
= +i[-i(Wo® Ao + on,Po®)).  (4.2)
Moreover, by virtue of the identity [8]
e yory = 84(5085 — 5:87) + 886 — 6455)
+ 85(8485 — 8069), (4.3)
one finds
N (win, o) = 18‘”’ w? %o dx* Adx?
c/ Mk ) ef clu V]
=F is”befsﬁpqwﬁlq*wifdx"/\dx”
i .
=¥F;3 (wﬁf’ *wg, + w‘b‘j*a)fy])dx” Adx”
= iia)?[ﬂ*wlf]bdx"/\dx”, (4.4)

and an analogous procedure holds for the Hodge dual of
o’ A, 0. Hence one finds

PHYSICAL REVIEW D 89, 064039 (2014)

*

(%) 1 1
() Rab — do® — Ew?/\*wa + wa/\*wm

— (0 Ay + oA 0™)

—i(Wa® A @ + onH o)
= +iR%, 4.5)
provided that

e (4.6)

cd _ n;,ab
ca@y = 21wy’

V. SELF-DUALITY OF THE 2-FORMS r AND r

Self-duality of the 2-forms r and 7 means setting to O
their anti—self-dual parts, which implies that

T = =16,/ 71 g, 5.1
Py = —1€,,0°7 5. (5.2)

By virtue of (1.23)—(1.25), this leads to the equations

. i 1
20w, + 2ie,, 70,0, — chd[”*a)ﬁ]d + 1 Eﬂypgwcdh,*wgf

- Zi(a)[ﬂ*wy] — CT)[},*CZ)D]) + ZSW”"(a)[/,*a),,] — 67)[/,*67)6])

=0, (5.3)
~ ~ - 1 g1 d
20, + 2ie,, ?0),w4 — 7 Pedly *awf — Zeﬂf"a)cdbj*w;]
- 2i<ww*&)y] + &)[ﬂ*wy]) + 2€”Uf’”(a)L,,*&)0] + &)[p*a)g])
=0. (5.4)

VI. REMAINING SELF-DUAL EQUATIONS
If Egs. (4.6), (5.3), and (5.4) are fulfilled, we can omit the

* superscript for the curvatures R4, r, 7 in (3.3) and (3.4).
Moreover, the form of (3.3) and (3.4) suggests defining

Us = Vi + Ve, (6.1)

wa=ve—ve, (6.2)

after which one can use the explicit form of the twist-
deformed exterior product of a 1-form @ = a;dx* with a 2-
form y =1y, dx*Adx", ie.

anyy =~ (apky,, + a,xy,; + a, %y, )dx Adx# Adx?.

(6.3)

AN =

Hence one finds that Eq. (3.4) reads as

064039-5
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[Uc/l*(;/w + irﬂl/) + U, *( i+ lrwl)
+ UCV*(;/IM + lrﬁﬂ)}dx’l/\dx"/\dx’“
=0. (6.4)

Remarkably, this is also part of Eq. (3.3) in the unknowns
U4 and W¢, which therefore reduces to an equation in the
unknown W, i.e.

[(W§HR g + WiikReaus + WikReay,,)
+ (Weok (7, —iry,) + W, k(7,, —ir,)
+ Wk (7, —iry,))]dx* Adx# Adx”
= 0. (6.5)

VII. SELF-DUAL EQUATIONS TO
FIRST ORDER IN 6*

At this stage we can study the full set of self-dual
equations (4.6), (5.3), (5.4), (6.4), and (6.5) to first order in
0°° as 0°° approaches 0, since, as we said already after
(1.11), there is no observational evidence so far of a regime
where noncommutativity produces (even just) finite effects,
which would justify, in turn, the consideration of higher
orders in 6”°. Hence we assume the existence, in the
neighborhood of 67 = 0, of the asymptotic expansion

C‘)Zb ~ (O)w,‘fb + HMCZ[[;;U +0(6%), (7.1)

where (V@@ is the classical spin connection from the

classical tetrad [2],

- ez.b)

(7.2)

jointly with (cf. [7])
wﬂ (6) = _wﬂ(_e) ~ H/MA#[IM] + 0(93) as 0" — 09
(7.3)

@, (0) = =@, (=0) ~ 0°By ;5 + O(6°) as 6 — 0,

(7.4)

while the asymptotic expansion of Vj; and VZ is described
by (1.10) and (1.11).

The resulting solution strategy is therefore as follows.
First, solve Eq. (4.6) to first order in 6°°, by insertion of
(7.1). Then solve Egs. (5.3) and (5.4) for @, and @, to first
order in 6”°, bearing in mind their limiting form in such a
case, 1.e.

PHYSICAL REVIEW D 89, 064039 (2014)
Za[ﬂwy} +2ieﬂbf"’8[/,a){,]

| .
—i—i(—zwcd[ﬂ*wif—%sﬂy PO @ gy WS ) +0(6?)
=0, (7.5)
28[”6),,] + 2i8m/)”a[/,67)6]
1 i .
+ <_chdtu*wi]d - quv””wcd[ﬂ*“’af) + 0(6%)
=0. (7.6)

At that stage, R
in 6°°, as well as Py Ty,

7 can be evaluated from (1.22) to first order
from (1.23) and (1.24), i.e.

;ﬂy + irlw ~ 2[8[1467)1/] + 18[,460,,]] + 0(82) as 67 — 0,
(7.7)
;IW - 2[8D45)y] - 1(9[#0)1,]] - zwcd[ﬂ*a)yl
+0(6?) as 6 — 0. (7.8)

Thus, one can solve Eq. (6.4) for Uj; and then Eq. (6.5) for
Wi and eventually obtain Vj and V“ from (6.1) and
(6. 2) i.e.

(U + ;).

=2
t\)\'—

VIII. SOLUTION OF EQ. (4.6) TO FIRST ORDER

The insertion of the asymptotic expansion (7.1) into the
self-duality condition (4.6) for the 1-form @ yields the
equation

[ abcd( ) 21( ) ab] — GPG[ZiCabMUm] _ SadeCCdﬂ[po']]'

8.1)

This condition should be identically satisfied, and we
notice that the left-hand side is independent of 6°°, while
the right-hand side does depend on it. Thus, we should set
them to O separately, and a sufficient condition is fulfill-
ment of the following self-duality conditions (with respect
to Lorentz-frame indices):

e? Vs = 2100, (8.2)
cd __ ab
P edCifh g = 2iCab . (8.3)

Interestingly, Eq. (8.2) implies that the curvature 2-form
(R of the classical background is itself self-dual.
Moreover, Eq. (8.2) also implies that, for a given choice
of solution of the self-duality condition for the classical
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spin connection, there exists a two-parameter family of
solutions of Eq. (8.3) reading as

CZﬁw] =W © )waFpa + l//ZW (O)Rﬁﬁ, (8.4)
where vy and y, are parameters, F,, = —F,, = F|,; are

the components of a generic 2-form F = 1 F,,dx* Adx*, and
W, are the components of a 1-form W ,dx*.

IX. COMPONENTS OF THE CURVATURE FORM

We can begin by studying Eq. (7.6), here reexpressed
explicitly in the form

0,1, — 0,0, +2i€,/°0, @,

1

cd cd : cd
—g(a)cdﬂ*wy — @ gy * 05 218, 0@ gy k0"

+0(6%)=0. ©.1)
At this stage, we exploit the asymptotic expansion (1.20) of
the twist-deformed product of components of 1-forms and
the asymptotic expansion (7.1) of the 1-form . Hence
we find the first-order expansion

wcdu*wgd ~© cdﬂ(o)w + © )wcd;tg c [

vlap)
o) + 0(6%).

9.2)
|

i
4 (O)O)ideaﬁccdy[aﬂ] + 59[)6((0)wcdﬂ.p)((0)

PHYSICAL REVIEW D 89, 064039 (2014)

Interestingly, this first-order asymptotic expansion leads to
exact cancellation of the four terms involving C‘”[;M] in the
course of evaluating, in Eq. (9.1), the difference between
the first two terms within the round bracket which is
multiplied by —%. Thus, by virtue of the asymptotic
expansion (7.4), Eq. (9.1) becomes the following partial

differential equation in the unknown B,

0 [Byjap) u = Bufup)o 216" Bojap) )

i i
= geaﬂ (<0) de/t,a) <(0>(’)Zdﬁ)

(O)O)cdp(o)wchd+%6aﬂ( a)cdpa)( a) ) (9 3)

+Z8m,p6

Bearing in mind that the Levi-Civita tensor is fully
antisymmetric, and also the identity, [see Eq. (10.20)]

(%,c dp)(o)wf,]d =0,

the term independent of % in Eq. (9.3) is found to vanish,
so that this equation reduces to

1 o 1 107 C 3 No C J—
eaﬂ [Bu[a/)’],u - Bﬂ[aﬂ],b + 215;41/) Bo—[aﬁ],p] = ge ﬂ[(w)a)cdﬂ,a)((())wu,dﬁ) + lgﬂv/ (<0)a)cdp,a)((0)wafiﬁ>] = U/w' (94)
|
Now we define, from the right-hand side of (7.3) and (7.4), ' ' i .,
A = @A B =0°B (9 5) rﬂl/ _lrlw NHﬂD _IGMD _Zgaﬁ((mwcdﬂ,a) ((O)w5ﬂ> + 0(92)
u = ulpo] = ulpol :
as 0% 0. 9.8)

and we exploit the constancy of % to define the skew-
symmetric “field strengths”

Guw=0,A—-8,A,,  H,=08,8,-0,B, (9.6

Hence we find, from (7.7) and (7.8), the asymptotic
expansions in the self-dual case:

Fu + 17 ~ Hyy +1G,, +0(6?) as 6% -0, (9.7)

In these formulas, G,, and H,, are found by solving
equations like (9.4), as is shown in Sec. X.

Last, but not least, we have to evaluate the
curvature components R from Eq. (1.22) to first
order in 6. By virtue of the self-duality assumption
(4.6) and of the asymptotic expansions used so far,
we find

Rib ~2[0, O} +070,Coh o]+ O, Qo — Vo, Owsp
+ 5eaﬂ[(aaw)whc[ﬂ)(aﬂ(O)wia) - (aa(o)wac[ﬂ)(aﬁ Ch)] + 29aﬁ[ [ﬂ C le|v][ap]
+ D@t C yap] + 2[Vafy (B —iA),) + (B—iA4), Qo] + O(6%) as 67 - 0, 9.9)
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where Eq. (8.4) can be used to express C;’ba R In the next
section, we are going to solve Eq. (9.4) anc; tﬂ)e associated
equation for A,. This makes it possible to compute all
asymptotic expansions of the curvature forms, and the first-
order part of the tetrad can be found eventually from the
equation derived in Sec. XI.

X. WAVE EQUATIONS FOR A, AND 35,

Our self-dual solution scheme is fully computable
provided that one is able to obtain the general solution
of first-order partial differential equations like (9.4). For
this purpose, we begin by remarking that Eq. (9.4) can be
written in the form

H, +2%H, =U,, (10.1)
while, from Eq. (7.5), one finds
G, +2i"G,, = —iU,. (10.2)

Note now that the Hodge dual of Eq. (10.1) yields

®H,, —2iH, ="U,, (10.3)
and hence Eqgs. (10.1) and (10.3) lead to
Lo
H, = 5[21 Upw—Uul (10.4)

Moreover, since the right-hand side of Eq. (10.2) is —i
times the right-hand side of Eq. (10.1), we find also

G

7%

- —% RIVU,, - U,). (10.5)

Hv

Note now that, from the point of view of partial differ-
ential equations, Eq. (10.4) can be written explicitly as

ol

(10.6)

1
0uB, 9,8, = V,B, =V, B, =1 2i)U,, U

where V, is a torsion-free metric compatible covariant
derivative of the classical background endowed with
classical tetrad covectors e“,. We need the transition from
d, to V,,, because the latter makes it possible to act with an
appropriate derivative operator on both sides of the tensor
equation (10.6), i.e.

ViV,B, — ViV, B, = —0,, (10.7)

having defined
1 .
0, = _gw 2i%U,, —U,). (10.3)

Eventually, this reads as

PHYSICAL REVIEW D 89, 064039 (2014)

(=6,0+ RY)B, + V,(divB) = Q,. (10.9)
where —&,] + R/ is the wave operator in curved spacetime
acting on (co)vectors. It maps elements of T,(M) into
elements of T',(M), and elements of 77, (M) into elements
of T7,(M); in the language of differential forms, it reads as
dé 4 od, 6 being the codifferential. Upon imposing the
Lorenz gauge condition
divB = V¥B, =0, (10.10)
Eq. (10.9) becomes the familiar inhomogeneous wave
equation in curved spacetime, for which existence theorems
for the solution are available, since the pioneering work of
Leray [12] on the existence of Green functions of hyper-
bolic operators in curved spacetime [13].
Interestingly, we have therefore found that solutions of
the equation
(=6, +RY)B, = 0,. (10.11)
with B, satisfying the Lorenz gauge, generate solutions of a
family of self-dual noncommutative gravity field equations,
in the way made precise by Sec. IX and the following
section. In particular, on considering classical backgrounds
which solve the vacuum Einstein equations in four dimen-
sions, the Ricci term in Eq. (10.11) vanishes, and our wave
operator takes the simple form

Pl=_s'0, (10.12)
and B, reads as
B, =b,+B, (10.13)

where b, is the general solution of the homogeneous
equation

(10.14)

while BM is a particular solution of the inhomogeneous
equation (10.11) with a vanishing Ricci term. In terms of
the Green function G,, = G,,(x,x') of the operator P/,
which solves by definition the equation [14]

5(x, x")

PiGY =&, , (10.15)
—9
one finds
B, = / GY Q, (') \/—g(x)d*¥'. (10.16)

To obtain an explicit example, we may consider the
classical self-dual spin connection of a Kasner spacetime
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[15], which belongs to the class of Bianchi models. In such
a case, the metric reads as

g=—dt @ dt + */1dx @ dx + r*P2dy ® dy

+ ?P3dz @ dz, (10.17)

where the p; are constants satisfying the conditions

3
(10.18)

pr=1, (10.19)

i=1

called the Kasner plane and Kasner 2-sphere condition,
respectively. Each ¢ = const hypersurface of this cosmo-
logical model, which solves the vacuum Einstein equations,
is a flat three-dimensional space, and the worldlines of
constant x, y, z are timelike geodesics along which galaxies
or other matter, viewed as test particles, can be imagined to
move [16]. This model represents an expanding universe,
since the volume element is constantly increasing, but the
expansion is anisotropic. The distances parallel to the x axis
expand at a rate proportional to 71, while those along the y
axis can expand at a rate proportional to #”2. Moreover,
along one of the axes, distances contract rather than
expand. Thus, if blackbody radiation were emitted at
one time ¢ in a Kasner universe and never subsequently
scattered, later observers would see blueshifts near one pair
of antipodes on the sky and redshifts in most other
directions [16]. Despite these features not vindicated by
observations, the model remains of interest, both in the
analysis of classical cosmological singularities [17] and for
our purposes, since we have no a priori reasons for
selecting a particular self-dual solution of the vacuum
Einstein equations, but we rather try to build their non-
commutative counterpart with the help of geometric and
analytic techniques.

In a Kasner spacetime, the spin connection satisfies the
self-duality condition (8.2), and its nonvanishing compo-
nents are given by [we use the general formula (7.2), and
our coordinate indices u range from O through 3]

Vi=1,23.
(10.20)

O)gh = — (59087 — §2064) p;ePi,

Thus, the tensor U, given by the right-hand side
of Eq. (9.4) is found to vanish [because the term in square
brackets on the right-hand side of (9.4) vanishes if
a # f and u # v], which implies in turn that the field
strengths H,, and G,, vanish, by virtue of the general
formulas (10.4) and (10.5). Hence both .AM and B, can be
expressed as the gradient of one and the same scalar
function ¢, i.e.

PHYSICAL REVIEW D 89, 064039 (2014)

A, =B,=V,¢, (10.21)
and the Lorenz gauge condition upon them leads to the
scalar wave equation for ¢, i.e.

O 0,(v/=99"0,)¢ = 0. (10.22)

1
TV

In the Kasner coordinates of Eq. (10.17), this reads as

2 2 2 2
[_8__19+t2m%+t2ﬂz 9 + £2P3 9

o tot ) 0y? 8_4 =0

(10.23)

The work in Ref. [18] suggests looking for solutions in
the form

qﬁ(t,x,y,z):/codkl/oodkz/oodk3A(k’ t)ei(klirkzerkgz),
(10.24)

where k is a concise notation for the triple (ky, k,, k3) and
A(k, 1) solves, from (10.23), the partial differential equation

? 10
————=—+ U(k.1)|A(k.1) = 0, 10.25
5 e+ Uk |Gk (1025)
having defined
3
Ulk.t)=> 1. (10.26)
i=1

One can turn Eq. (10.25) into a simpler equation, where the
coefficient of the first derivative vanishes, by setting

Ak, 1) = "W (k,1). (10.27)
This yields the equation
@ QQa+1)W W
- —————+U(k,1t)|A(k,t) =0, (10.28
- - B L Uk Atk =0, (1029
where our goal is achieved by setting a = —%. Hence we
find that W should solve the equation
o + ! Uk, t)|W(k,t) =0 (10.29)
o 412 ’ B ’

To get an understanding of some features of the possible
solutions, we may consider the particular case p; =1,
p> = p3 =0, which is consistent with the Kasner
conditions (10.18) and (10.19). Hence we arrive at the
equation
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o> 1
R LR k%] W(k.t)=0.  (10.30)

At this stage it is clear that we cannot find solutions by
means of finitely many positive or negative powers of . We
rather have to consider W as a function admitting a Laurent
expansion as 7 €0, o[, i.e.

W(k.t)= Y W,k (10.31)
By virtue of (10.31), Eq. (10.30) takes the form
> fulk)rm =0, (10.32)

m=—0o0

where

Fulb)= (143 ) Wora0) = (R ()~ W54,

(10.33)

Thus, having to set f,, (k) =0 for all m, we obtain a
countable infinity of three-term recurrence relations for the
evaluation of W(k,t) and hence of A(k,t) = %W(k, 1),
which yields in turn ¢(z,x,y,z) from (10.24). We also
notice that the particular solutions of Eq. (10.23) with slow
spatial variation are “harmful” in that they have a loga-
rithmic dependence on time and hence blow up in the
neighborhood of ¢ = 0.

The wave equation in Kasner had been studied in
Ref. [19] for a quantum scalar field with mass and a
conformal coupling term to gravity, with application to the
regularized and renormalized energy-momentum tensor.
Moreover, the classical wave equation in a Kasner space-
time had been studied in Ref. [20] for the electromagnetic
|

PHYSICAL REVIEW D 89, 064039 (2014)

potential, where the author obtained plane-wave solutions
such that the temporal component of the electromagnetic
potential vanishes, jointly with two of the spatial compo-
nents. The work in Ref. [21] had instead evaluated directly
the electric and magnetic field in Bianchi models, including
a Kasner universe.

XI. EQUATIONS FOR THE TETRAD AND THEIR
SOLUTION

First, by relabeling dummy indices and exploiting the
skew symmetry of R, 7', I, and of the exterior product
dx*Adx#, we find that the three terms on the first line of
Eq. (6.5) are equal, and the same holds for the three terms
on the second and third line of Eq. (6.5). Thus, upon
defining

an;w = Rca;w + nca(;/w - iryv)7 (111)

we find that Eq. (6.5) can be expressed in the form

WK Z g0, A" Adx# Adx” = 0, (11.2)
where, in light of (1.10), (1.11), and (6.2), W¢ has the
asymptotic expansion

W¢~—ef + H“ﬁPj as 0% = 0,

+0(6?) (11.3)

[af]

while, in light of (9.8), (9.9), and (11.1), we write

ZC“’“’ ~ <0)RC“I¢D + eaﬁzcaﬂv[uﬂ] + 0(62) as 0% — 0,

(11.4)
where <0>me, is the #-independent part of the asymptotics

(9.9), while % Z capvjap) 18 the sum of the parts linear in 6 in
the asymptotic expansions (9.8) and (9.9), i.e.

i
gaﬁzcuuy[a/ﬂ = 9(1/3 {28[;4C|Lau] [ap)] + E [(8(1(0) wad[}t) (8/}(0) w|dc‘y]) - (8(1(0) wcd[u) (a/}(()) w"i{‘y] )]

+2[O0f), Ceaay + V0, C adwaﬂl]} +2[Owg),(B—iA),) + (B —id), Yoy

. i
+ Nea |:H;w - IG;w - Zeaﬁ((o)wpqy,a)(m

!

(11.5)

Thus, the term W{*Z_,,, in Eq. (11.2) is found to have, in the neighborhood of 0%’ = 0, the asymptotic expansion

i
lel *Zamu ~ _eg(O)Rcaﬂu + 6% [_egzcaﬂu[aﬂ] + Pj[aﬂ] <O)Rca;w 5 eia(@)Rcaﬂu,ﬁ) + 0(92)’

5 (11.6)

where the term independent of 8% on the right-hand side of (11.6) gives a vanishing contribution to Eq. (11.2), if the
classical background is taken to solve the vacuum Einstein equations as we have done in Sec. X. Thus, Eq. (11.2) yields the
following “solution” for Pj{[aﬁ], which expresses the odd part of the tetrad in the asymptotic expansion (1.11):
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i
Pf{[a/}] (O)Rcuﬂv = ejzcayu[aﬂ] + Eei[a(mR\caﬂy\,ﬁ]- (11.7)

This equation should be studied jointly with Eq. (6.4),
where the three terms are equal, so that it reads
Ux (T +iry, )dx* Ada Adx? = 0. (11.8)

By working to first order in 6%, and introducing the
2-forms G and H corresponding to the field strengths G,

and H,,, i.e.
1 1
G EEGMDdx”/\dx", HEEHde”/\dx”, (11.9)
Eq. (6.4) leads to the nontrivial restriction
e‘AN(H +1G) = 0. (11.10)

As far as we can see, this means that we should choose the
solutions of the wave equations for A, and B, in such a
way that the resulting 2-forms G and H fulfill Eq. (11.10).
After having checked this, the task remains of solv-
ing Eq. (11.7).

In the case of a classical background of the Kasner type,
as considered in the end of Sec. X, both G and H vanish,
and hence Eq. (11.10) is identically satisfied, whereas
Eq. (11.7) takes a simplified form, obtained by setting
G,=H, =0 and A, =B, in the formula (11.5).
Moreover, in a Kasner background, (11.5) is further
simplified by the vanishing of contributions built from
partial derivatives of the classical spin connection, while
(1.22) and (10.20) lead to the following formulas for
nonvanishing components of the classical curvature
2-form:

(O)Ralb — 5a05lb _ 5b05[o_1 pilpi—1 tP[—27
0 ( pil ) (11.11)
Vi=1,23,
ORE = (6/8] = 856 pip;t7 ™72, Vi j=1,2.3.
(11.12)

These formulas, bearing also in mind that the tetrad
covectors for the metric (10.17) read as (with no summation
over i on the right-hand side)
ey = 040y + 6¢1Pidy;, (11.13)
imply that the skew symmetrization of partial derivatives on
the right-hand side of Eq. (11.7) vanishes, because the
product of such partial derivatives therein is always propor-
tional to the symmetric term &40545. Thus, Eq. (11.7)
reduces to
Py

OOR .y = €42 (11.14)

[af] capvlap]
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where, on the left-hand side, we read off components of the
classical curvature 2-form from (11.11) and (11.12), while
on the right-hand side we use (11.13) for the classical tetrad
and read off from (11.5) the nonvanishing terms in

anﬂu[aﬂ]? Le.
anm/[aﬂ] = Zawc\ca‘v][aﬁ]
+ 2[(0)605[,,C|cd\u] [af] + <0)a)g[yc\ad|y][aﬂﬂ
+ 201 =)V wcapBuiap) + Biujiag) @jeas]
(11.15)

In this expression of Z.,, 44 in the Kasner case, we can set,
bearing in mind the definition (9.5),

B
B — apu ,
ulap] ore gpo

(11.16)

where B, is obtained from the gradient of the function
(10.24), while the tensor CZ’[;M] admits the general decom-

position displayed in (8.4). We cannot make our solution
more explicit than this. For each choice of F and W in (8.4),
we have a form of Z,.,,, 4, and hence Eqs. (11.11)—(11.16)
yield algebraic equations for the components Pj[aﬁ], i.e. the

odd part of the tetrad in the asymptotic expansion (1.11).
Our solution task is hence fully accomplished to first order
in 6°°.

Note also that, when #”? has such an orientation to the
three preferred Kasner axes for which only 6** and 6% are
nonvanishing and equal to ®; and ©,, respectively (the
theorem on the reduction to canonical form [22] of 6°°
ensures this is always possible), its effect reduces to
obtaining the following formula for our B, .4

Sa/jBﬂ

B =——. 11.17
ol =3, 1 6,) D

XII. RESULTS AND OPEN PROBLEMS

In this paper, we have tried to develop a powerful
“calculus” to find solutions of the field equations of
noncommutative gravity, motivated by the unsuccessful
attempt of applying the Seiberg-Witten map [8,9] to this
task when the action functional is built from twist-
deformed exterior products. As far as we know, our analysis
is original, and its results can be summarized as follows.
(i) On assuming that the spacetime manifold is paral-
lelizable, so that tetrads can be introduced, the
torsion-free equations resulting from the action
(2.1) take the index-free form (2.7) and (2.8) or,
with Lorentz-frame indices made manifest, the form
(2.12) and (2.13).

(i1) In the self-dual (respectively, anti—self-dual) case,
such equations reduce to (3.3) and (3.4) [respec-
tively, (3.6) and (3.7)]. Self-duality (respectively,

064039-11



DI GREZIA, ESPOSITO, AND VITALE

anti-self-duality) of the 1-form w’ [see (4.6)] is a
sufficient condition for self-duality (respectively,
anti—self-duality) of the Lorentz-Lie-algebra-valued
part of the full curvature 2-form. The remaining
parts of the curvature 2-form are self-dual if
Egs. (5.3) and (5.4) are satisfied. The full set of
self-dual equations consists of (4.6), (5.3), (5.4),
(6.4), and (6.5).

(iii) The self-dual equations can be solved by assuming
that the tetrad and connection admit an asymptotic
expansion (not of Poincaré type; see Appendix D
and examples in Ref. [23]) to first order in non-
commutativity in the neighborhood of 67°. This
assumption does not exploit the full potentialities
of the twist-deformed exterior product but might be
appropriate after all, since no experimental evidence
is available as yet of finite (let alone “large”) effects
resulting from noncommutativity.

(iv) Furthermore, all our field equations can be explicitly
solved provided that one is able to integrate the first-
order partial differential equation (9.4), which turns
out to be equivalent to a inhomogeneous wave
equation on 1-form fields, subject to a Lorenz gauge
condition.

(v) To first order in noncommutativity, the tetrad should
fulfill Eq. (11.7), provided the consistency condition
(11.10) is satisfied.

(vi) The whole scheme has been tested when the
classical background is Kasner spacetime, which
is a Bianchi model solving the vacuum Einstein
equations with a self-dual spin connection. In such a
case, the solution of the scalar wave equation (10.23)
is the desired “generator” of a solution for the tetrad
form and connection form, to first order in non-
commutativity.

We find it encouraging that the self-dual option can be
pursued to the extent shown in our paper, without any use
of the Seiberg-Witten map or yet other techniques applied
in the previous literature [24-37], and the nontrivial
cancellations of terms encountered at some stages provide
further evidence in favor of a new level of internal
consistency of gravity being in sight for the first time.
Nevertheless, the mathematical potentialities of noncom-
mutative gravity remain largely unexplored, especially the
field equations and their solutions at finite values of 6%,
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APPENDIX A: TWIST DIFFERENTIAL
GEOMETRY

1. Twist

In this section, we review the concept of twist, together
with some of the noncommutative geometry associated
with it. The presentation is based on Refs. [7,38,39].

Let = be the linear space of smooth vector fields on a
smooth manifold M, and UZ its universal enveloping
algebra [if G is a connected Lie group whose Lie algebra
G is spanned by the vector fields {L,}, the universal
enveloping algebra U(G) is defined to be the algebra
generated by the L,’s and the identity, with relations given
by the Lie brackets [40]]. Given the commutative algebra of
functions on M, denoted by Fun(M) = A, many associative
noncommutative products may be obtained from the usual
pointwise product y(f ® g) = fg via the action of a twist
operator F € U= Q UZ=:

frg={F 1 (f®9)}.

We denote the deformed algebra of functions by A,. The
associativity of the product is a consequence of the defining
properties of the twist (an element of U= @ U= is said to
be a twist if it is invertible, is properly normalized, and
satisfies a cocycle condition). On using the standard
notation

(AD)

F=F'QF, F'=F'QF, (A2
with f‘l,fa,j:(’,j:a elements of UZ, the star product

acquires the form

fxg= ﬁa(f)ﬁa(g)v

where the elements of UZ act on functions as Lie
derivatives. They are sums of products of vector fields:
the Lie derivative with respect to products of vector fields is
thus extended by means of

(A3)

L. = LyL,y.... (A4)

The class of x products which can be obtained by a twist
is quite rich. Among them, a wide class is given by the so-
called Abelian twists:

F = e "X®%, (AS)

with X, mutually commuting vector fields and % a
constant antisymmetric matrix. The Moyal twist is a
particularly simple instance of such a family with
X, =0,, the infinitesimal generators of translations,
globally defined on R,

We also introduce the universal R matrix

R’=f21f71, (A6)
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where by definition F,:=F, ® F°. Hereafter we use the
notation

R =R*Q®R,. R!'=R*QR,. (A7)
The R matrix measures the noncommutativity of the
product. Indeed, it is easy to see that

hokg = R%(g) %R, (h). (A8)

The permutation group in noncommutative space is natu-
rally represented by R. Formula (A8) says that the x
product is R commutative in the sense that, if we permute
(exchange) two functions by using the R-matrix action,
then the result does not change.

2. Vector and tensor fields

We now use the twist to deform the spacetime commu-
tative geometry into a noncommutative one. The guiding
principle is the one used to deform the product of functions
into the * product of functions. Every time we have a
bilinear map

u: XxY = Z, (A9)

where X, Y, Z are vector spaces, with an action of 7! on X
and Y, we can combine this map with the action of the
twist. In this way we obtain a deformed version u, of the
initial bilinear map u:

/4*::/40]:_1’
Uyt X XY = Z

(X V) pa (X, Y) = u(FU(X). Foly). (A1)
The % product on the space of functions is recovered by
setting X = Y = A = Fun(M). We now study the case of
vector fields, 1-forms, and tensor fields.

Vector fields =,.—We deform the A-module structure of
vector fields, that is, the product y: A ® = — = between
the space of functions on the spacetime M and vector fields.
According to the general prescription Eq. (A10), the
product y: A ® = — = is deformed into the product

hkv = F(h)F,(v). (A11)
The action of F* € UZ on vector fields is given by
repeated use of the Lie derivative as in (A4). This definition
is compatible with the * product in A. We denote the space
of vector fields with this % multiplication by =,. As vector
spaces = = =,, but = is an A module while =, is an A,
module.

1-forms Q,.—Analogously, we deform the product
u:AQ®Q— Q between the space A of functions on
spacetime M and 1-forms. As for vector fields, we have

hxp = F*(h)Fo(p)- (A12)
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The action of F, on forms is given by iterating the Lie
derivative action of vector fields on forms, as a trivial
generalization of Eq. (A4). Forms can be multiplied by
functions from the left or from the right (they are an A
bimodule). If we deform the multiplication from the right,
we obtain the new product

pxh = F*(p)Fq(h), (A13)

and we move h to the left with the help of the 'R matrix,

pxh = R*(h)xR,(p). (Al4)
We have therefore defined the A, bimodule of 1-forms.
Tensor fields T ,.—Tensor fields form an algebra with
the tensor product @ (over the algebra of functions). We
define 7, to be the noncommutative algebra of tensor
fields. As vector spaces 7 = 7 . The noncommutative and
associative tensor product is obtained by applying (A10):

7@, 7=F%1) @ Fu(7). (A15)
Here again the action of the twist on tensors is via the Lie
derivative. Use of the Leibniz rule gives the action of the
Lie derivative on a generic tensor.

There is a natural action of the permutation group on
undeformed arbitrary tensor fields:

Q737 @1 (A16)

In the deformed case, it is the /R matrix that provides a

representation of the permutation group on x-tensor fields:

T ®, TSRYT) @, R,(7). (A17)

It is easy to check that, consistently with oz being a

representation of the permutation group, we have
(GR)Q =1id.

Exterior forms Q5 = @,Q) .—Exterior forms form an
algebra with product A:Q° x Q" — Q. According to the
general prescription (A10), we % deform the wedge product

ONE = FHO)NF,(0). (A18)

As a particular instance of the tensor product above, the

exterior product is associative and F“ F, act as Lie

derivatives. Therefore, the exterior derivative d, commuting

with the Lie derivative, is undeformed and satisfies the
standard graded Leibniz rule

d(OA0) = dOALO + (—1)0)9A , dO'. (A19)

For Abelian twists constructed with globally defined

vector fields, the ordinary integral of forms verifies the
graded cyclicity property, that is, up to boundary terms,
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/ ONG = / ONG = (—1)dee(0)dee(?)) / o' nO

(1 )deel0) dee(@) / OAL0, (A20)

with OA@ a form of maximal rank on the spacetime
manifold. It is possible to show that the graded cyclicity
holds for more general twists.

As for complex conjugation, we have, for Abelian twists
defined in terms of real fields X,

(O 0)* = (—1)de@dee@) g A g, (A21)

which holds in particular for functions.

3. Infinitesimal x diffeomorphisms

We have mentioned in Sec. II that the gravity action
Eq. (2.1) is invariant under standard diffeomorphisms,
which are generated by vector fields, that act on forms
through the Lie derivative. Indeed we have

L, / 4 — form = /d(i1,4 — form), (A22)

which yields a boundary term. Interestingly, the % action in
(2.1) is also invariant with respect to * diffeomorphisms.
Let us describe the x-Lie algebra structure of their
infinitesimal generators.

Following the general prescription (A10), we may
combine the usual Lie derivative on functions L,k =
u(h) with the twist F:

L5 (h)=F=(u)(Fo(h)). (A23)
We obtain in this way the x-Lie derivative on the algebra of
functions A,. The differential operator £} satisfies the
deformed Leibniz rule
Li(hxg) = Li(h)*g+ R (M)*LE (9).  (A24)
This deformed Leibniz rule is intuitive: in the second
addend we have exchanged the order of u and A, and this is
achieved by the action of the R matrix, which provides a
representation of the permutation group. In the commuta-
tive case, the commutator of two vector fields is again a
vector field; we have the Lie algebra of vector fields. In this
*-deformed case, we have a similar situation. It is possible
to verify that

* Kk * * _ *
LULT — Eka(u)ﬁz’ea(w - £[u.v]*’ (A25)
where we have defined the new vector field
[, 0] = [F*(u), Fo(w)]; (A26)
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again as in (A10), the deformed bracket is obtained from
the undeformed one via composition with the twist:

], = LoF1. (A27)
Therefore, in the presence of twisted noncommutativity, we
associate to the usual Lie algebra of vector fields, =, =, , the
algebra of vector fields equipped with the * bracket (A26)
or equivalently (A27). The map [,],: E, X E, > E, is a
bilinear map and verifies the * antisymmetry and the
x-Jacoby identity

[u, ], = —[R*(v), Ry(u)],. (A28)

[u, [v, 2] )i = [[u, ], 2], + [R*(v), [Ra(”)vz]*]*'
(A29)

We have constructed the deformed Lie algebra of vector
fields =,. As vector spaces = = =,, but =, is a x-Lie
algebra. We stress that a *-Lie algebra is not a generic
name for a deformation of a Lie algebra. Rather, it is a
quantum Lie algebra of a quantum (symmetry) group [41].

Equation (A24) makes vector fields into * derivations of
A,. Moreover, it is compatible with the % multiplication on
the left by elements of A,, making =, into a left A,
module.

*-vector fields are the infinitesimal generators of *
diffeomorphisms. It is not difficult to verify that the action
(2.1) is invariant. We have indeed

L:/4—f0rm:/£§(4—f0rm)

= / L pa(F o4 —form).  (A30)

On using Eq. (A4) to compute L z.(,) and observing that
F, itself acts on forms as a Lie derivative, we end up with
the integral of the external derivative of a top form, as in
Eq. (A22), which yields again a boundary term.

APPENDIX B: x-GAUGE TRANSFORMATIONS
AND TRACES IN THE FIELD EQUATIONS

The form of the expansions (1.8), (1.12), and (1.16) can
be understood by making the following considerations [7].
If two infinitesimal gauge transformations 7 and 7’ are
given, reading as

T =1+ be, v =146¢, (B1)
where ¢ = ¢AT4 and T* are the generators of the algebra of
the group under consideration, the deformed commutator of
7 and 7 can be expressed in the form
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(e, 7], = [be,6¢], = %{5&,58'8}*[#, 7]
+ o [oet 608, (70,77} (B2)

Thus, since the deformed commutator of infinitesimal
gauge parameters does not vanish, for a generic Lie algebra
it is necessary to perform an extension so as to include also
the anticommutators of generators, hence considering all
their possible products.

In the specific case of the spinor representation of the
Lorentz group, the expansion of the noncommutative gauge
parameter € contains also contributions proportional to the
identity matrix / and to s, i.e.

e = e’T,, +iel + éys, (B3)
where the new parameters ¢ and €, absent in the commutative
setting, can be chosen to be real as the remaining ones, which
is equivalent to imposing the Hermiticity condition

~Yoero = €. (B4)
Thus, to achieve closure of noncommutative gauge trans-
formations, the original Lorentz group SO(3, 1) of com-
mutative theory has been extended to the group
SO(3.1) x U(1) x RT, where the matrices i/ and ys are
the generators of the compact component U(1) and non-
compact component R, respectively. More precisely, the
original gauge group SL(2, C) has been therefore extended
to the *-gauge group GL(2,C).

Since, under infinitesimal *-gauge transformations, the
full connection form € (called spin connection) undergoes
the variation

5.2 = e — [Q, €], (BS)
it takes values, jointly with the curvature 2-form, in the
GL(2, C) Lie algebra given by even products of y matrices,
according to the expansions (1.12) and (1.16), respectively.
The reality conditions for the 1-forms @, @, and the 2-forms
r, F, can be summarized through the Hermiticity conditions

700 = Q7 —7oRyo = R (B6)

Moreover, the infinitesimal *-gauge transformations for

tetrads read as

6.V =—[V,él,, B7)
and they ‘“close” in the linear space generated by odd y
matrices, i.e. both y, and y,y5, the latter resulting from the

anticommutator {y,,,7.}. Hence one arrives at the expan-
sion (1.8).
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On using Egs. (B5) and (B7), it can be easily verified that
the variation of the action (2.1) with respect to *-gauge
transformations vanishes [7]; that is, the model is x-gauge
invariant, with gauge group GL(2,C).

We also find it helpful for the general reader to evaluate the
six traces which contribute to the field equation (2.10), i.e. [7]

i
T = Tr{Z Yels (ded/\*Rabyab)}

1
= —— Tr(yaprcvars) VIARY = —€4pedVIALRY,

4
(B)
7y = Tr{=y.rsVarsr} = Te(rerars)Vin.r =0,
(B9)
73 = Tr{iy sV aneFrst = =iTr(yrg) VIALT
= —4V AT, (B10)
=T i f/d Rab
Ty =1r 47c}’5 Yars xRV ap
Z—iTr(y}/ )f/d/\ Rab
4 VdYab *
= _i(’/lbcr]ad - ”ac’/lbd)f/d/\*Rab7 (Bl 1)

15 = Tr{—y.rsV7arsAur} = Tr(ror ) VOAr = 4V AT,
(B12)

16 = {ircysV97arsAsirs} = 0. (B13)

APPENDIX C: THE HODGE DUAL

Our definitions of Hodge duals (1.17) and (1.18) are
inspired by earlier work in the literature. For example, the
work in Ref. [4] used precisely the definition (1.17) to
derive self-dual solutions of Euclidean gravity, i.e. the
asymptotically locally Euclidean Eguchi-Hanson instanton.
What is nontrivial in these definitions is that @ is a 1-form
a)ﬁb dx* but, being Lie algebra valued and skew symmetric:
o’ = —w"®, makes it possible to define a Hodge dual
(1.17) with respect to Lorentz-frame indices. The same
holds for R%, which is a 2-form written after Eq. (1.16).
Our Levi-Civita symbol with frame indices, &,,.4, 1S
precisely the one used in Ref. [7], i.e. the standard
undeformed Levi-Civita symbol with frame indices, obtain-
able from flat-space y matrices according to

i
Eabed = 7 Tr(yap¥cYa?s)- (CD

By contrast, the 2-forms r and 7 introduced in Sec. I are
Lorentz scalars or, in other words, O-forms from the point
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of view of frame indices, and hence for them we have to
generalize the definition of the Hodge dual in curved
spacetime. Indeed, in Riemannian geometry, the Hodge
dual of a 2-form a (f being another 2-form) admits the
intrinsic definition

ang = (a.f)Va, (C2)
where (a, f3) is the interior product of a with # and V, is the
volume 4-form. With index notation, one then writes [42]

(C3)

((*)a);w = E‘c"/w/mapm
where ¢,,, = +/detge,,,,, where ¢€,,, is equal to 1
(respectively, —1) for even (respectively, odd) permutation
of the indices and equal to 0 otherwise. The “curved” Levi-
Civita symbol ¢,,,, is a covariant tensor density of weight
—1, whereas &“7° is a contravariant tensor density of
weight +1. Last, but not least, the Levi-Civita symbol with
a pair of covariant and a pair of contravariant indices is a
tensor of type (2,2), skew symmetric in both pairs of
indices.

Both definitions recalled so far make it quite clear that, to
define the Hodge dual, one needs a metric. In Lorentzian
geometry, the metric has signature 2 in dimension 4, and
hence the Hodge dual becomes a complex structure, its
square being equal to minus the identity.

Within the framework of twist differential geometry
applied to gravity, we know that the tensor product gets
deformed according to our prescription (A15). Thus, we
deform the tensor product e ® e? in Eq. (1.3), after pointing
out that the expansion (1.8) can be written in the form

V,=E"y,, (C4)
where
E4, = VeIV s, (C5)
or, with matrix indices made explicit,
(E%) = Va8 =V, (rs),'. (C6)

Thus, what corresponds to the tetrad 1-forms e of Eq. (1.2)
is the matrix of 1-forms E¢ = E“de”, and the previous
considerations suggest considering the following definition
of metric (the factor :1; is introduced to compensate
for Trl = 4):

1
g=7 Tr(E* @y E")ay = gu(0)de" @ dx*,  (CT)

where

1 S
g/,w(e) = Z Tr<Ea;4*Ezl3)’7ab = (Va”*vbb +V ﬂ*Vbu)naba
(C8)
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which reduces to (1.1) as & — 0. Furthermore, we note that,
similarly to the way in which the undeformed tetrad e“,
turns the Levi-Civita symbol (C1) into its curved spacetime
counterpart according to

€;w/m = Subcdeauebyecpedm (C9)
we can now define, with the help of E”ﬂ,
Epe = Tr[eabcd(E“ﬂ*Eby*ECp*Eda)}
:gabcd(EaM)jl*<Ebv)lm*(Ecp)mp*(Eda)pj' (CIO)

To raise and lower indices of E,, ,;, some equally legitimate

(but different) prescriptions are available, i.e.

E,/° = (¢ "*g"*Eyqp) oOF

(gpa*Epuaﬂ*gﬂg> or (Euvaﬂ*gap*gﬂg)’ (Cll)

as well as other prescriptions differing for the relative order
of indices of metric components. Some freedom is also
available in the definition of contravariant metric ¢"*, i.e.

gﬂy*gM = 5”1 or g¢g"xg, =0, (C12)
Last, to define the Hodge dual of a 2-form when curved

spacetime is deformed according to the prescriptions of
twist differential geometry, we consider (cf. Ref. [42])

Eu7 = +/detg(0)%E,, /7, (C13)
where we define, inspired by matrix calculus,
detg(@) = Eil"'i4*glil * e *g4i47 (C14)

with the understanding that E'+ is defined according to
(C10) and the metric components are defined according
to (C8). We propose therefore the following definition of
the Hodge dual of a 2-form a = %aﬂbdx"/\dx”:

(V) =

Hv

where ¢,,7% includes /detg(6 = 0).

The transformation properties of our geometric objects
are defined when one considers their behavior under
infinitesimal * diffeomorphisms studied in Sec. III of
Appendix A. This involves studying the x-Lie derivative
of deformed products according to our Eq. (A24). In our
application to gravity, we shall therefore write Eq. (A24) in
the form

1
EWS Kk, ~ o (C15)

Mbpoapa + (O (e)a)uu ’

N[ =
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Tr[Ly (E“M*Eb,,)] = Tr[(ﬁZE“”)*Eb,,

+Ra(Eaﬂ)*£1;a(u)Eby]. (C16)
The passage to some sort of “exponentiation” to obtain the
full set of finite x diffeomorphisms is a challenging open
problem, as far as we know.

Interestingly, our definition expressed by (C15) leads to
our asymptotic expansions (3.2), which tell us that, to first
order in 0, since both r,, and 7, are odd functions of 6, one
can keep using the Levi-Civita symbol with coordinate
indices of the undeformed curved spacetime. In general, for
the purpose of studying linear effects of 0, the various
conceivable definitions of the Hodge dual of a 2- form lead
always to the asymptotic expansions (3.2).

APPENDIX D: ASYMPTOTIC EXPANSIONS

Following Ref. [23], we find it appropriate to stress that
the notion of asymptotic expansion has nothing to do with
the notion of series, despite the confusing use of the term
“asymptotic series” in the literature. A series has infinitely
many terms, whereas, by definition (see below), an
asymptotic expansion has only finitely many terms.
Talking about convergence (or lack of) of an asymptotic
expansion is therefore meaningless. The confusion arises
because, in several cases, the Taylor expansion in the
neighborhood of a real point x, of the function under
consideration can be extended arbitrarily far away from x,
and one can then try to understand whether the Taylor series
converges and what is the relation between its sum and the
function one started from. This problem, however, has no
relation whatsoever with the study of the behavior of the
given function in the neighborhood of x.

The existence of asymptotic expansions with a large
number of terms is a very special phenomenon. For
example, the function

x — x*+ xsinx

has an asymptotic expansion with one term only, i.e.
x% + o(x?), in the neighborhood of +co. Another example
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is provided by the number z(x) of prime numbers smaller
than or equal to x, for which

x dt
, logt’

z(x) ~

In general, one starts by considering the set £ of
functions of the form [23]

g: x> g(x)= x“(logx)ﬂeP(x), (D1)
where a, f are real nonvanishing constants, and
k
P(x) = Z c;xli, (D2)

=1
where the c; are real constants of arbitrary sign, while

Y1 >y > >y > 0. (D3)

By definition, given a function f, its asymptotic expan-
sion with k terms with respect to the set £ is meant to be the
sum [23]

(D4)

k
=Y big
j=1

where the b; are nonvanishing constants and the g; are

functions belonging to the set £ such that

g =o(g), Yj1<j<k-1 (D5)

One then writes

k
f= Z big; + o(g)- (D6)

J=1

The difference f—X%; is called the remainder of the
asymptotic expansion [23]. In our paper, we write this last
formula with the equality symbol replaced by the ~ symbol,
which is more commonly used in the physics-oriented
literature, although less consistent with our source [23].
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