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We discuss the (2 + 1)-dimensional parity-violating charged fluid on a finite cutoff surface X, dual to
the nondynamical and dynamical Chern-Simons (CS) modified gravities. Using the nonrelativistic long-
wavelength expansion method, the field equations are solved up to O(€?) in the nondynamical model. Tt is
shown that there exists nonvortical dual fluid with shear viscosity # and Hall viscosity #, on the cutoff
surface Z... The ratio of shear viscosity over entropy density #/s of the fluid takes the universal value 1/4x,
while the ratio of Hall viscosity over entropy density 7, /s depends on the Z. and black brane charge ¢.
Moreover, the nonvortical dual fluid obeys the magnetohydrodynamic (MHD) equation. However, these
kinematic viscosities v and v, related to # and 7, do not appear in this MHD equation due to the constraint
condition ézﬂ ;=0 for the (2 + 1)-dimensional dual fluid. Then, we extend our discussion to the
dynamical CS modified gravity and show that the dual vortical fluid possesses another so-called Curl
viscosity {4, whose ratio to entropy density , /s also depends on the . and ¢g. Moreover, the value of 7/s
still equals 1/4z and the result of 7,/s agrees with the previous result under the probe limit of the
pseudoscalar field at the infinite boundary in the charged black brane background for the dynamical CS
modified gravity. This vortical dual fluid corresponds to the MHD turbulence equation in plasma physics.
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I. INTRODUCTION

Recently, there have been a lot of studies on the fluid/
gravity dualities [1-3], which are considered special appli-
cations of the AdS/CFT correspondence [4—6]. It was argued
that the dual field theory at the anti—de Sitter (AdS) boundary
can be described by hydrodynamics in the long-wavelength
limit. The ability to derive hydrodynamic equations and
transport coefficients from this duality provides fresh
perspectives in understanding holography. A remarkable
description of the fluid/gravity duality was further setup ona
finite cutoff surface X, outside the horizon [7]. The
discussions have been extended to different models in
Einstein relativity [8—11] and modified gravity models with
higher-order curvatures corrections [12—-14]. Imposing the
Petrov-like condition on the Z.(r = r,) in the near horizon
limit, the incompressible Navier-Stokes equations (or modi-
fied equations) for a fluid living on the flat (or spatially
curved) spacetime with one fewer dimensions have been
demonstrated in Refs. [15-21]. The physics on a finite cutoff
surface X with finite energy scale is appealing since it could
be reached by experiments. The study of holography on the
finite surface X. may be helpful to understand the micro-
scopic origin of gravity. Other recent works on the fluid/
gravity correspondence can be found in Refs. [22-28].

Besides the shear viscosity # and bulk viscosity {
appearing in the usual hydrodynamic system, we know
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that in the parity-violating hydrodynamic system, there
exists other important transport coefficients, the Hall
viscosity 774 and Curl viscosity {4, which are often studied
in condensed matter physics. The Hall viscosity, which is a
nondissipative viscosity coefficient, does not contribute to
the entropy production of the fluid and has been frequently
investigated in the field theory approach [29-36]. In the
quantum Hall fluids, at zero temperature, the usual dis-
sipative shear and bulk viscosities vanish, while the non-
dissipative Hall viscosity can be nonzero, provided that the
quantum Hall fluid has an energy gap and broken time-
reversal symmetry [37]. How can we study this Hall
viscosity from holography? This is an interesting question
to pursue.

Recently, the fluid/gravity duality was explored in a
system with parity violation. The Chern-Simons (CS)
modified gravity generally possesses parity-violating gravi-
tational term, even including electromagnetic CS term in the
action [38,39], which is considered a simple model to realize
the holographic description of a (2 4 1)-dimensional iso-
tropic fluid with broken spatial parity [40—43]. Itis expected
that in this gravity model, the dual fluid may possess a
nonzero Hall viscosity at the AdS boundary. Since the Hall
viscosity is related to the presence of a nontrivial back-
ground scalar field, it is natural to anticipate that it encodes
the parity violation in CS gravity. The Hall viscosity of the
dual fluid can be affected by the electromagnetic field if one
considers the influence by the electromagnetic CS term on
the phase transition of holographic superconductors in four
dimensions [44,45]. In addition, the vorticity of holographic
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fluid is another interesting property, and the holographic
boundary vortical fluids of analogue gravity systems have
been explored in Refs. [46-50].

Using the nonrelativistic fluid expansion method, Cai
et al. [51] investigated the (2 + 1)-dimensional parity-
violating hydrodynamics, dual to the dynamical CS modi-
fied gravity on a finite cutoff surface X. outside the
uncharged black brane horizon. They presented the dual
hydrodynamics with Hall viscosity and Curl viscosity
obeying the incompressible Navier-Stokes equations.
Note that the CS gravity model has two frameworks, the
dynamical one and the nondynamical one, which are
classified by whether or not there is a kinetic term for the
scalar field in the action [52]. In this paper, we will extend the
study to discuss the holographic hydrodynamics dual to
nondynamical and dynamical CS modified gravity, respec-
tively. Besides the gravitational CS term, we will include the
electromagnetic CS term in our discussion. We will show
that the holographic fluid/gravity duality can be realized
both in the nondynamical and the dynamical CS gravities. In
the nondynamical model, the dual nonvortical fluid pos-
sesses the shear viscosity # and Hall viscosity 7, and obeys
the magnetohydrodynamic (MHD) equation. However,
these kinematic viscosities v and v, related to 7 and 7,
do not appear in this MHD equation due to the constraint
condition 0%f; = ;= 0. Here, the ratio 5/s of the fluid equals
1/4x, while the ratio 7, /s depends on the cutoff surface X,
and black brane charge ¢g. As to the dynamical model, the
dual vortical fluid obeys the MHD turbulence equation in
plasma physics. Besides the shear and Hall viscosities, the
dual fluid possesses another so-called Curl viscosity (g,
whose ratio to entropy density ¢, /s depends on the X, and
black brane charge g.

The outline of this paper is as follows. In Sec. II, we
adopt two finite diffeomorphism transformations and make
nonrelativistic hydrodynamic expansion to a general black
brane metric, the pseudoscalar and electromagnetic fields.
By applying this formalism to nondynamical CS modified
gravity coupled to the electromagnetic field, we calculate
the stress-energy tensor of the dual fluid through the
Brown-York tensor and analyze the properties of the dual
fluid on the cutoff surface .. In Sec. III, we extend the
above investigation to the dynamical CS modified gravity.
We finally summarize our results in Sec. I'V.

II. DUAL FLUID TO NONDYNAMICAL CS
MODIFIED GRAVITY

With the electromagnetic CS term OFF, the action of
nondynamical CS modified gravity model reads [53]

6= 6 G | dV/=9(R 2\~ 42GF, )

1 N 3
+7 / d*x\/=g(MORR + 1,OFF), (1)
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where 4; and 4, are the coupling constants, ORR and OFF
are gravitational and electromagnetic CS terms with

T %gpwﬁ R o — %eﬂwr F .

Hv wxd>

RR = R""R,,,., ~ FF=F"F,,.
Here, ¢#*P7 is the four-dimensional Levi-Civita tensor in the
bulk with the convention "™ = 1/,/=g. The strengths of
the gravitational and electromagnetic CS corrections are
controlled by the pseudoscalar field 8. Usually, the pseu-
doscalar field @ is not a constant, but a function of
spacetime, thus, serving as a deformation function. If
6 = const, CS modified gravity reduces to the Einstein
gravity. The negative cosmological constant A equals
—3/I%, where [ is the AdS radius. We take / = 1 in what
follows, for convenience.

As usual, we obtain the field equations by varying the
action with respect to the metric, electromagnetic, and
pseudoscalar fields, respectively, yielding

1
W, =R, —=guR+ Ag, +162G1,C,,

# 2
+87GTL) =0, )
Wty = VP — 1,0,0F" =0, 3)
Wg = L RR + ,FF =0, 4)

where the stress-energy tensor of the electromagnetic field
T fﬁ) and the so-called Cotton tensor C,, are

1
A
T,(w) - 1

Cu = 6’,56“/3”(”R

gﬂuFaﬂFaﬂ - FﬂaFuav
vpsa + Q;MRG(#T:/)'

It is interesting to take the covariant derivative of the
equations of motion (EOM) Eq. (2),

1
V” <le — Egle + Ag;w) + 1671'G11V”C”,,
+ 82GVATS = 0. (5)

As we know, the Bianchi identity enforces
V#(R,, —39uR + Ag,,) = 0. The covariant derivatives
of the Cotten tensor C,, and the stress-energy tensor of
electromagnetic T,(w) satlsfy [53,54]

1. - s
ViC,, = —gﬁﬂRR, VMT,S/;‘) = —/Z—ZGDGFF. (6)

Since the pseudoscalar field is spacetime coordinate de-
pendent, which leads to 9,0 # 0, then Eq. (5) reduces to
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MRR + ,FF =0, (7)
which is exactly the pseudoscalar field equation W g = 0.
Hence, the pseudoscalar field equation is not independent
of the EOM (2).

Considering the traceless properties of C,, and stress-

energy tensor T,f: , we have

W, = E, +164,zGC,, =0, (®)
where E,, = R, — Ag,, + 87rGT,(,/3), and we have used the
trace of EOM R = 4A.

To study the dynamics of the dual fluid in (2 + 1)-
dimensional flat spacetime, we assume the general (3 + 1)-
dimensional black brane metric [40]
ds* = —f(r)de* +2H(r)drdr + r’dx;dx’,

i=12. (9

Then, the induced metric on the cutoff surface .(r = r.)
outside the horizon r;, with the intrinsic coordinates x* ~

(7=/f(r)r,x =r.x') is
ds3 | = yupdx®dx® = —f(r.)d7® + ridx;dx’

= —d7* + §,;dx'dx/. (10)
We require the metric Eq. (10) to be flat when perturbing
the bulk metric Eq. (9) and will investigate the dual fluid
living on the X.(r = r,.).

Substituting the metric Eq. (9) into field equation (8), we
find that the Cotten tensor C,,, automatically vanishes, and
R/‘”. —Agy on(% depends on r. This leads the .electromag—
netic tensor 7, to be only r dependent. In this paper, we
only consider the electric field for the static background
solution. Hence, the vector potential A only depends on r,
which ensures that T,(fé) is only r dependent. We set
A,dx* = A(r, q)dr, where ¢ is related to the charge of
|
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the black hole and then A’(r, ¢) is obviously nonzero. As to
the pseudoscalar field @ for the static and stable background
configuration, we consider the pseudoscalar field 6 to be
spatially dependent first without loss of generality. From
the electromagnetic field equation (3), there exists three
components of the electromagnetic field equation:

_ AA'(r, q) 00(r, x,, x,)

Wi = r*H(r) 0x, =0,
X, WA (r, q) 86(r,x1,x2) _
W = rH(r) 0x, =0, )
1
Wi = i [H (DA () = 24/
—rA"(r,q)H(r)] = 0. (12)

Therefore, the pseudoscalar field € only depends on r and is
independent of coordinates x; and x, to keep Eq. (3)
satisfied for A’(r, ¢) # 0. In addition, it is worth noting that
the pseudoscalar field 6(r) for the background solution
usually has been employed in some other discussion on the
holographic models for fluid/gravity duality [40-42].

As to the bulk metric Eq. (9), following Ref. [9], we can
introduce two types of diffeomorphism transformations: (i)
a Lorentz boost with constant boost parameter f; and (ii) a
transformation of r and associated rescalings of 7 and x'.
Taking the nonrelativistic hydrodynamic long-wavelength
expansion parametrized by € — 0, we have

9, ~ €. (13)

Together with ' = \/J%

scaling v; ~ € and P ~ €%, we can express the transformed
bulk metric up to O(e?) in the form [51]

v, v;=v;(7,x"), P = P(r,x'), and

ds? = —f(r)dz® + 2H(r)drdr + rPdx;dx’ — 27 <1 = r’f]{((:c))> vidxide — 2;?56()’) vidxidr + r2 (1 - ’f]{c((ri)))
oy ) () 2H()
X (v2d12 +Trc)jdx dx/) +f(r)<f(r) =) )Pdr2 + 0 v2drde

rof (r)H(r)
* ( (o)

where the terms in the last two lines are all of O(e?).

—2H(r) — 2rH’(r)>PdrdT + O(€%),

(14)

Under these two types of diffeomorphism transformations, both 6(r) and A,dx* will be expanded. After promoting v
and P to be (z,x') dependent and adopting the scaling v; ~ ¢ and P ~ €2, we have

(e

Al(r,q)r

A(I‘, q)dr—)A(r, ‘I) |:d7_ f(l” )

2v(z, x')? ref'(re)
24(r) d”(

- >P(r,xi)d1] +O(S), (15

2f(re)  Alr.q)
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O(r) = 0(r) — r0 (r)P(z, x'). (16)

In this charged configuration, we only focus on the
electromagnetic degrees of freedom (d.o.f.) induced by
the above two kinds of diffeomorphisms, which can be
roughly regraded as gravitational and do not turn on the
independent electromagnetic d.o.f. [13]. Note that the same
approach recently has been adopted to set up a new
magnetohydrodynamic/gravity correspondence in higher-
dimensional flat Minkowski space for the independent
electromagnetic d.o.f. [11].

Now substituting the perturbed black brane metric
Eq. (14), electromagnetic field Eq. (15), and pseudoscalar
field Eq. (16) into field equations (2)—(4), we have the
EOM at O(°):

CO—cO_c0_g p0_1_,
" i ’ rH(r) ’
(0) _ ' (r)H'(r) = f"(r) '(r)
Ee = 1) [_3_ 2H(r) | 2H(r) | rHE(Y)
47GA"™(r.q)]
- HA(r) } o
0y HOHE) 0o
BTG T B
4rGrrA(r, ,
—Hz(r)<q>:0, (i=1,2). (17)

The pseudoscalar field equation automatically reaches

WES; =0 and the electromagnetic field equation W’E%

takes the same form as Eq. (12). From Eﬁ(,’), the function

H(r) should equal a constant and here we take H(r) =1
for simplicity. Then, f(r) and A(r, ¢) can be obtained in the
forms

q2

_ 2 m g q
f(r)_r r+r27

1
=dr. 18
VarGr 1%

The integral constants m and ¢ here are related to the

gravitational mass M = mVZ and the total charge Q* = 4”‘1
respectively. Moreover, m in terms of the real root of

Aﬂdx” =

f(ry)=0ism=r; + Z—:. Then, the Hawking temperature
T}, of the black brane is obtained:

! 2
r, =St _ 1 <3r —q—3). (19)

4 4 rh

The condition 37} > ¢* should be satisfied for 7, > 0.
Moreover, the perturbed metric Eq. (14) also solves these
field equations (2)—(4) at O(e).

At O(€?), a correction term

dS% = }"z(F(}")O','j + FA( ) l])dx dxj (20)
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needs to be added to the perturbed metric Eq. (14) to cancel
the terms of the tensor sector and pseudoscalar sector due to
the spatial SO(2) rotation symmetry of the black brane
background [51]. Here, o;; and o7} take d(;v;) — 36,00
and 1 (e;0;% + €j,0,%), respectively. The gauges F(r,) = 0
and F4(r.) = 0 are chosen to keep the induced metric y,,
invariant. Then, the equations of the pseudoscalar and
electromagnetic fields at O(e?) are obtained:

W@ _ [ﬂnfz(r) ( '(r) 2>2+22(A2(W))’] reQ _

) — r3H3(r) f(r) r ZVZH(}") f(rc)_ s
@)
Al(r, )
Wi = H(;(:g) 9w =0, (22)
2 __F(A(ra), o reArg)d'(n)
R I

where Eq. (22) leads to the incompressible condition
;9" =0 of the dual fluid on the X. for A'(r,q) # 0.
Then, we can also obtain the so-called nonvortical con-
dition Q = €9,v; = 0 for Egs. (21) and (23) with sol-
utions (18). With these incompressible and nonvortical
conditions, a new constraint condition at O(e?) reads as

0*v; =0, i=1,2. (24)
From EOM W,(,ZJ =0, the Cotten tensors C,%) are
given by

2
@  reH(r) d (r) (f'(r) 2V,
N c>dr[H2()< (") r)"(’)}g
@) _ re [f3/2()<f’(r)_2> ' }
e 576 o )70

@ A2 T ') 2\,
T TBTIC )diH%( GEE ]
(25)

and also vanish with € = 0. With the help of the incom-
pressible condition 0;v' = 0, Ef,,,) disappears when impos-
ing the requirement

% {rz <%F’(r) + 1)]&” +% [ﬂ (1];((;)) Fy(r)

e

Notice that 6;; and &‘3 have different tensor structures,
which leads two second-order differential equations, which
can be solved separately as
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'(r H(r) (cF

ro = (5-1)

yoy - L (H) o LS e | 4 (r)
Falr) f(r)< 2 T T aH )+ TN

The integration constants ¢ and cp, are determined by
keeping the functions F(r) and F 4 (r) regular at the horizon
ry- It is easy to find that the constants ¢y and ¢y, are

aref'(r)o (r

cp =17, p, = R R h;[-;;(l})’h)( W o)
According to the fluid/gravity duality, the Brown-York
tensor on the X, can be identified as the energy-
momentum tensor of the dual fluid. Since the existence
of the gravitational CS term, there are three possible
contributions that need to be explained: the usual
Gibbons-Hawking boundary term, a term arising from
the variation of the gravitational CS term, and the
|

r

82GT) dxedxb = (

c

(1) r=a g=p _ @)’ repi
82GT') dxedx <r2 T

871'GT( )dx“dx <f(r)) 2\/L

- [(1 +f(rc) (rc))gij +f(rc)

. K -
with =57 (M) =3 —r (B /(Z5)). Here, the
trace of the stress-energy tensor T, in the X% ~ (7,X)
coordinates can be computed up to O(e?) with

T, = T5 7% =2.3C For the boundary at infinity, we
can take the corresponding factor C = —2 to remove the
divergence in the energy-momentum tensor.

In these (2 + 1)-dimensional parity-violating hydrody-
namic systems, the energy-momentum tensor of the fluid
with the first-order gradient expansion usually takes the

following form:
T = piaib + pP™ — 235 — C(:)P“b - 277A&j§h
— QP (32)

where P, = 7.5 + iil,. The shear viscosity # and the
bulk viscosity ¢ are canonical transport coefficients, while
the Hall viscosity 1, and curl viscosity (4 arise from the
parity-violating effect. Here, u* = NN p is the energy
i

density, p is the pressure, o, is the shear, and 0= 8uu
describes the expansion.

Under the nonrelativistic long-wavelength expansion, in

the above stress-energy tensor we have 0=0 by using the

PHYSICAL REVIEW D 89, 064036 (2014)

boundary counterterm. The Brown-York tensor 7BY oy on
the 2, can be derived from
1
Ty = 5og Kray =Ky =T+ Crap). - (29)
where y,;, = g, — 11, 18 an induced metric on the X,
and K is the trace of the extrinsic curvature tensor K ,;, of
Y. which is defined by K,, = y°,Vsn,. As shown in
Ref. [55], the contribution 7¢) from ORR does not
contribute to the Brown-York tensor. C is an unfixed
constant which can bring a finite result when the cutoff
surface goes to the AdS boundary, as determined below.
Plugging the perturbed metric Egs. (14) and (20) into
Eq. (29), the Brown-York tensor 75Y of the dual fluid in the
X ~ (7,X") coordinates can be described as

7Y =T 47U+ 73 1 o), (30)

ab

where

2 | c> 42 +

1 f/(rc) f(rc) ) Y. A
f(%)( > + py + C |dx;dx',

dx'dz,

(2P + p?)d7* + (Bif; + kPS;;)dX dx/]

F(r.)o8)dx dx/ + O(e?), (31)

|

incompressible condition 5,112” ~ éiﬁi = 0 at the order €2,
which results in the vanishing of the term {®P,,. With
the incompressible and nonvortical conditions (® =0

and Q=0), up to O(¢?), the components of the
energy-momentum tensor in the nonrelativistic limit are
given by

~

—(p +p)pi.
— 2, (33)

rr:p+(p +p)ﬂ27 TTi:
Tij=(p+p)Bib; + psi; —

The energy density p, and pressure p, of the dual fluid at
O(€%) take the following form:

7o
PO= T 4aGr. T 82G
_ 1 "(re) f(n-)) C
p0_87rG\/f(rc)< 2 " n ) &G
2 (1)
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Up to O(€?), the energy density p, and the pressure p,. are
corrected to be
pe = po+2wP, Pe = Po + wkP, (35)

and the transport coefficients such as the shear viscosity 7
and Hall viscosity 7, of the dual fluid are given by

_ 1) F(re) _SCF(re)

1626~ T lenG (36)

Based on Eq. (28), the shear viscosity # and Hall viscosity
n4 are obtained:

17
T~ 162G r’
1
I = s (RO (1) = R )0 ()

+2ref(re)6'(re))- 37)

It is worth noting that the Hall viscosity 7,4 depends on the
gravitational CS term A,0RR. If taking the vanishing of
/1,91~QR for the parameter 1; = 0, we have 14, = 0.

From the metric (9), we consider a quotient under shift of x’,
x' ~x! 4+ n' withn’ € Z. The spatial R? on the X turns out to
be a two-tours 72 with r.-dependent volume V,(r.) = r2.
Then, the entropy density s. on the X. is described by
S/V,(r.) in the form g% [7] So, the ratios of the shear

viscosity and Hall v1scos1ty to entropy density read as

na A q2 3q 4612
_— = — 3 _— 6/ —_ 3 —_— 9/ .
=g G e (35

(39%)

Apparently, the ratio #/s,. is independent of r. and does
not receive any influence from the gravitational and
electromagnetic CS terms. However, the ratio 74/s,. is
cutoff dependent and background dependent. If we take
the cutoff surface to approach the black brane horizon,
re = ry, Na/s. vanishes. In the infinite boundary limit
r. = oo, if we take the following assumptions 6(r.) — 0,

Na/s. becomes "4 — 4 e(r”) (3ry ——:) which is non-
¢ h
negative for 7, > 0.
The local temperature 7'. on the X, is identified as the

temperature of the dual fluid. With the Tolman relation, we
get the local temperature T .:

T,

Vi

2
T. = ‘1—) NG)

1
NG <3rh o
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With T, = 0, the ratio 74/, of the dual fluid disappears in
the infinite boundary. It implies that the parity-violating
dual fluid corresponds to quantum Hall fluid with time-
reversal symmetry.

In addition, we define the chemical potential y. as p. =

47:G\/

on the Z Then, the thermodynamic relation can be
verified,

4 _ 4 and the charge density g, = L~ with £
Va(re) I

c

o — scTc = {qcHec- (40)

The conservation equations of the Brown-York tensor on
the 2., the so-called momentum constraint, can be deduced
from EOM (2),

1
~59uR + Agu)nty’y
— (164,2GC,, + 87GT) )nty",

= T8 =T, (41)

- (Rm/

where n* is the unit normal vector of X, and the Cotton
tensor C,, vanishes since it has no contribution to the
source terms of the momentum constraint up to O(e?).
Taking the index b = 7, the temporal component of the
momentum constraint at O(e?) reads as

San 1
TE = T 0 = 7, =0,
f(re)
! 2 ~
= Jef(re)
which leads to the incompressible condition of the dual
fluid 9,4' = 0.

Taking the index b = j, the spatial component of the
momentum constraint at O(e?) is given by

§TE =T\ = F 00,

= (Lr))/ e (D.8; + BO,B; + kD, P)
r2 02 /f(rc> Ty ) J
~ [+ FIF (r)T By + F (r)Fo(r)e 0]
=F;J" (43)
With Eq. (24), the vanishing of §*v; implies ba p;=0at
O(e?). Then, the momentum constralnt reduces to

51,51 +ﬂiéiﬁj +éjPr =fj (J=12), @4

p =0, Q=éidp; =0, (45)

which corresponds to the MHD equation [56,57]. Note that
the nonvortical dual fluid possesses the shear viscosity #
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and Hall viscosity 7,4, but these kinematic viscosities v and
v, related to # and 774 do not appear in Eq. (44). It is special
for the (2 4 1)-dimensional dual fluid. Here, the pressure
density and external force density read as

_ Fjd?

i Pil‘ac—ﬁozi)c_i?OZ
r.w

Po + Po )

fj kP.  (46)

For this external force density f, the term F;,J¢ consists of
FjJ" and F;J*, where F;.J* arises from the background
electric field, while F;;J' corresponds to the Lorentz force
due to the magnetic field arising from the perturbation of
the background electric field. Moreover, the current J¢ dual
to the bulk electromagnetic field is obtained by J¢ =
—n, F* on the ¥,. We have J* = —n,F"" at O(e’) and
J' = —n,F" at O(e). The partial derivative for the boun-
dary current J¢ satisfies 0,J¢ ~ €. With the electromag-
netic field equation (3) and the transformation of 6(r)
Eq. (15), there exists a current conservation law d,J¢ =
at O(e?), which is not affected by the pseudoscalar field.
This shows that the conservation law of the boundary
current J¢ coincides with the incompressible condition
9, = 0 for the constant dual charge density.

On the other hand, the MHD equation (44) can be
expanded in the form

éléfﬂ2+él(ﬂlélﬂ2)+é1(ﬂ252ﬂ2)+é152pr:61f27 47
5251ﬁ1+52(ﬁlélﬂl)+52(ﬁ2é2ﬂl)+5251Pr282f1' (48)

Considering Eqgs. (47) and (48), we can obtain

ér(élﬂZ - éZﬂl) + 51(,515152) - 52(ﬁ252ﬂ1)

+ 01(B20x5,) — 05(f'01p1) = 01f2 — Oof 1. (49)
Using the nonvortical condition Q = €9, ;=0 and the
incompressible condition 9;4" = 0, the above equation
leads to

0.Q+p10,Q=¢€0,f; =0. (50)
In the nondynamic case, there is a constraint condition
€9, f; = 0 for the external force, but this constraint of the
external force is of the order ¢*, while the MHD equation
we focused on is of the order €3. The constraint conditions
we considered in the paper, such as the nonvortical and
incompressible conditions, are of the order not higher than
€3. In the order of €, the above MHD equation for the dual
fluid is kept.

We can also try to set up the holographic duality between
the nondynamical CS gravity and (2 + 1)-dimensional
vortical fluid in the cutoff flat surface X., namely,
Q # 0. Notice that the expressions for C,(,%) [Eq. (25)] do
not disappear for black brane solutions f(r) and H(r)
[Eq. (18)]. As in Ref. [51], we introduce some correction

PHYSICAL REVIEW D 89, 064036 (2014)
terms in the perturbed metric to cancel the residual curl
scalar Q at O(e?),
ds? = (—f(r)k(r)de® + 2H(r)h(r)drdr + r*g(r)dx;dx")Q,

(S

and then the overall perturbed metric with Egs. (14) and
(20) is given by

ds? = ds® + ds? + ds?. (52)

Inserting this overall perturbed metric into the field

equations (2)—(4), we find that the pseudoscalar field

equation still takes the form of Eq. (21), and the electro-
magnetic field equations at O(e?) are changed to

[ _A(rq) , ;  3h(r)f(r)A'(r.q)
Wi =20 O T
f'(ry H(r) W),
wa‘Hm+%mP‘Q 53
2 "(r)A'(r, ‘
WTEA)) =-7 (h)[z<f,) 4) o'

reA(r.q)0'(r)
r’f(re)

Consider A’(r,q) #0, Q # 0, and different structures of
O;v" and Q in these electromagnetic field equations,

Egs. (53) and (54) lead to the incompressible condition
0;v' =0 and

+ [d(r)A’(r, q) + 4 }Q =0. (54)

£0) HG) K
R ICREL G 42
O (rq) + 2 ALDTE o s

rf(re)

In addition, in order to satisfy the pseudoscalar field
equation (21) with Q # 0, we have

M f(r r) 2\%2  (A%*(r,q))
02 o o

flr) r

One can see that Eq. (57) does not vanish with H(r) =1
and the black brane solution f(r) Eq. (18), while it
disappears in the trivial case for the locally pure AdS
spacetimes with f(r) = r?> and A(r, q) = 0. Therefore, this
new fluid/gravity duality does not set up in the non-
dynamical CS modified gravity.

It is interesting to note that the action of dynamical CS
modified gravity is related to the kinetic term for the
pseudoscalar field € [39]; it is expected that this dynamical
CS modified gravity can help to overcome the difficulty.
We will discuss this possibility in the next section.

064036-7
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III. DUAL FLUID TO DYNAMICAL CS
MODIFIED GRAVITY

The action of dynamical CS modified gravity coupled to
the electromagnetic CS term is [41]

T 4 R—2A—4nGF,, F*
G16G d*x\/=g( G )

/ d4x\/_( 9RR—|—’Z€FF——8 0010 — V(e))
(58)

The corresponding new equations of motion (NEOM), the
electromagnetic and scalar fields equations read

N

1
=R, — > 9uR+ Ag,, + 164,2GC,,

W/w y11% 2
+ 872GTY) + 82GT) =0, (59)
Wty =V, P — 3,0,0F" =0, (60)

. Moe Ay dv

with the stress-energy tensor of the pseudoscalar field
T — —9,00,0 + 2 4,,(96)* + ., V(0)
122 n’Yv 29/41/ g/ﬂ/ .

Obviously, the new electromagnetic field equation W'E 4 1
not influenced by the newly added dynamical terms of the
pseudoscalar field and still takes the expression as Eq. (3).
Similarly, the new pseudoscalar field equation can be
derived also by the covariant derivative of NEOM, and
the NEOM can also be rewritten as

W, = E,, +164,2GC,, =0, (62)

with Eﬂy =E,, —81G(0,00,0 + g,,V(0)).

Similar to the analysis for the case in the nondynamical
CS modified gravity, we also consider that the vector
potential A only relates to r for the background configu-
ration in this case, and then the pseudoscalar field € should
be related only to r from the electromagnetic field equation
(60). Then, substituting the overall perturbed black brane
metric Eq. (52), perturbed pseudoscalar field Eq (16), and
electromagnetic field Eq. (15) into the NEOM W and the
new pseudoscalar field equation W( 0)» respectlvely, the
background equations for the NEOM at O(¢°) are obtained:

EW =EY 872G (r) =0,

EV=EY 182G f(r)V(e) =0,
EV=EY _82Grv ()=

124

, ==Y 0. (63)

11
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The new pseudoscalar field equation at O(e’) can be
worked out as

S0 dv(e)  @(nf(r) (2 H(r) | fr)

Wiy = - o T TH() <?_H(r)+f(r)>
0"(n)f(r) _
NG o

and the new electromagnetic field has only a 7 component
and takes the same expression for Eq. (12) in nondynamical
CS modified gravity.

Unfortunately, getting the analytic solutions for func-
tions f(r), H(r), and A(r,q) from field equations (12),
(63), and (64) is hard work. We can expand the functions
f(r), H(r), A(r,q), and 0(r) with a small parameter ¢,

(r

Ny 2V(a) (65)

where f((r), Ho(r), and Ay(r,g) can be obtained by
solving these field equations (63) at O(£°), which reads
as Eq. (18),

2

fo(r):rz—%—ki]—z, Ho(r) =1,
1
Ag(r,q) = M% (66)

Substituting Eq. (65) into field equations (12), (63), and
(64), at O(&), we have

4/ nGqC
filr) === H () =0,
C
Air.q) =—=—>+C;. 67)

and the pseudoscalar € obeys the following equation:

o (-2

where C;, C,, and Cj are the integral constants. This scalar
field equation for the pseudoscalar field is the same as
Eq. (17) in Refs. [41,42]. Specifying the form of the
potential, the solutions of this scalar field equation and
asymptotical behaviors of the pseudoscalar field have been
also discussed in Refs. [41, 42] With these background
equations W,(w), Wy 9 and W( ) , we find that the perturbed
metric together w1th the per[urbed electromagnetic and

=0, (68)
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pseudoscalar fields automatically satisfy the field equations

(59)-(61) at O(e).
At O(e?), the new electromagnetic field equations
(60) still take the forms of Egs. (53) and (54). Then,
|

PHYSICAL REVIEW D 89, 064036 (2014)

we can also obtain the incompressible condition
Oy = 0 with Q # 0, A'(r, g) # 0, and different structures
of Q and 0;v'. The new pseudoscalar field equation W( 0)
reads as

0 [OOFOID) dV(0) | AR (£ 22
Aori(A%(r.q))
2r2H(r)f(rc)} )

Although the existence of the pseudoscalar field makes it hard to get the solution, it can avoid the trivial solution we met in
the uncharged case. Under the incompressible condition 9;v' = 0, the nonvanishing components of E,,,,) are expressed as

B2 - [”’“M (W—z)gm g,

r H(r) r

B2 = |(0) = W) ) =0 (505 = 2 =2) + 700

- ktr) =200/ (=D -2 snGar ) k) = )| L
EQ + B = {2(%) —K(r) +rd (1) @ ((’f)) = % = ‘—r‘) —rg"(r)
+2(k(r) — 2h(r)) <Z ((:)) - J;((:)) = i) +87Grf (rA™(r, ) (g(r) — h(r))} VIJ; g?r? : (70)

with the requirement of Eq. (26). The components of C,(,Z,) are shown in Eq. (25). With the Dirichlet boundary condition
k(r.) = 0and g(r.) = 0, the equations of motion (25) and (70), pseudoscalar field equation (69), and electromagnetic field
equations (53) and (54) at O(e?) are expected to be formally solved with the background equations, but here we will not
concentrate on finding these solutions.

Plugglng the overall perturbed metric Eq. (52) into the Brown-York tensor 78Y Eq. (29) of the dual fluid, 75Y in the
% ~ (7,%") coordinates can be described as
72 =70 L 70 1 7% 4 o), (71)
where
! 2 .
82GT) e dib = [ } N { (re)re +27(re) c] d5d,
2rcH(re)v/ f(re)
Zﬂ )
8nGT dx“dx = < > L dx’d%,
VI(re)
2 1 -1
s e — (18 ) 2 [((2 ) (1),
f(rc) rL‘H(rC) r c
3/2 _ -1 oo
+5 - 2 ) ( <rg) re () (f£2r)> Q) dT*+(BiB; + &(r.)PS;;)dx' d/]
~ f(rc) w(rc) A ~i g%
|:< rc>>6ij+H(rc> FI/Q( ) i +2H(rc) Q5ij dx'dx’ +O(€3)’ (72)
with

064036-9
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(2 f(r))e H'(rc)

LR Y, ()
<) =37 ( r2 ) ’ < : r
m<rc) = (f,<rc) + 2f(rc)/rc)h<rc) - 2f(rc)(g,(rc) + k/(rc))'

Here we have used the Dirichlet boundary condition
k(r.) = 0and g(r.) = 0. We can choose the Landau frame
to make the term of Q disappear in Eq. (72), which is
necessary to match the stress-energy tensor of the fluid, as
we will discuss below.

Now, the components of the stress-energy tensor in the
nonrelativistic limit with the incompressible conditions
(® =0) up to O(e?) are

Tw=p+(p+p)f*. Ti=—(p+p)p:

Tij: (p +p)ﬂiﬂj+p5ij_2’7&ij_2’7A&g‘_§A§25ij' (73)

Then, the energy density p, and pressure p, of the dual
fluid at O(e°) satisfy

2

C

16zGH(r.)

r

® = po+ po= (74)

7 ():

The transformed energy density p,. and the pressure p,. up
to O(e?) are corrected to be

- (2 B 4fg;)lz’c()rc) <f£2r))"1>wP,
pe=po+ wK(rc)P,é C

c

(75)

and the transport coefficients, such as the shear viscosity #,
Hall viscosity 74, and Curl viscosity {4 of the dual fluid, are
given by

1 f(re) o,

n=1e-c (1 +H(FC)F (rc)>,

_ L f(r)Fu(r.) _ wo(r)

T e H(rf) ’ CA_16ﬂGH(rc)' 7o

With Eq. (28), the shear viscosity 5 takes the same value in
the nondynamical CS case, and its ratio /s, equals 1/4x;
the Hall viscosity 74 and its ratio are obtained

Ny = ’11 r%le/(rh)f/(rh) _f/(rc)el(rc) f(rc)gl(rc)
A7 162G\ 272H(ry) 2H?(r,) reH*(r) )’
’7_A _ /1_1 el(rh)f/(rh) _ r%f/(rc)el(rc) + rcf(rc)el(rc)
se  4m \ 2H*(ry) 2riH*(r,) rnH*(r.) )’
(717)
and the ratio of the Curl viscosity reads as
Ca)se = rwolre) - However, the other two ratios Na/Se

- 4erle (r.)
and ¢, /s, are cutoff dependent and background dependent.

()’

o H(ro)’

If we take the cutoff surface to approach the black brane
horizon, r. = ry, n4/s. vanishes while {, /s, arrives at a

- [ (ry)h(ry)
finite value W

if we take the following assumptions,

. In the infinite boundary limit . — oo;

f(re)

-0, HE) =1
O(r.) = O(ry/ri), (78)

na/s. becomes
Nna _ /1_19'<rh)f'(rh) (79

s 8z H(ry)

when m > 3. Note that the ratio 74/s. in our charged
black brane background takes the same form as in the
neutral black brane background [41], but in our case,
the electromagnetic field influence is imprinted in the
metric function. Our result agrees with the previous result
by using the probe limit of the pseudoscalar field based on
the same action by including the electromagnetic CS
terms [42].

The conservation equations of the Brown-York tensor on
the Z., the so-called momentum constraint, can be deduced
from NEOM (59),

1 v
- R;w - Egﬂl/R + Agyv nﬂy b
— (164,2GC,, + 87GyT\)) + 8xGT.L) )nty",
4)

Naq [
= 0'Ty) = (T,(lh) + T/(lb .

(80)

Taking the index b = 7, the temporal component of the
momentum constraint at O(e?) reads as

OTE = (12 + T3 )n = 0,

- () mem ™

which leads to the incompressible condition of the dual
fluid 9,4 = 0.

Taking the index b = j, the spatial component of the
momentum constraint at O(e?) is given by

81

oTBY = (19 + 1 (82)

2] Wi )"ﬂ’
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(D.B; + BOp; + k(r.)d;P)

f(re) o

- @))/ H(r >m

_ f(rc) 2 ij 92
(1 g )P0+ ey P
wo(re)
+ ZH(VL) € k(?iafﬁk}
_ eV (re)0(re) a
______3556;5___-5yf)+-f;aJ : (83)

With the momentum constraint, we can obtain the incom-
pressible Navier-Stokes equations,

— l/ézﬁj — I/Aeijazﬂi
. =0, (84)

é‘[ﬂj +ﬁi5iﬂj + éjPr
- fAeikaiajﬂk =f

which correspond to the MHD turbulence equation with
viscosity in plasma physics [58]. Here, the external force

J;J(;E—HGP—F f“J. Besides the

Lorentz force due to the magnetic field, Wthh arises from
the perturbation of the electric field and electric force for
the electric field, it is worth noting that the forcing term f;
is also affected by the pseudoscalar field 6 with
VF(r)o(r)

- H(r)o )
and these kinematic viscosities v, v4, and £, are defined by
v=n/w, vy =na/o, and &4 = {4/ w.

density reads f; =

8 P. The pressure density P, equals x(r.)P

IV. CLOSING REMARKS

Based on the static black brane metric, we applied
the two finite diffeomorphism transformations and non-
relativistic long-wavelength expansion to derive the bulk

PHYSICAL REVIEW D 89, 064036 (2014)

equations of motion up to O(e?) at an arbitrary cutoff
surface X. outside the horizon in the nondynamical and
dynamical CS modified gravities. In this nondynamical
model, the dual nonvortical fluid possesses the shear
viscosity # and Hall viscosity 74. According to the
momentum constraint from the conservation equations
of the Brown-York tensor, the dual nonvortical fluid
obeys the MHD equation. However, these kinematic
viscosities v and v, related to # and 54 do not appear
in this MHD equation, which is special for the (2 + 1)-
dimensional dual fluid. The ratio #/s. equals the uni-
versal value 1/47x, while the ratio 77, /s depends on the r,
and black brane charge ¢. In the dynamical framework,
besides the shear viscosity # and Hall viscosity 74, the
dual fluid possesses another so-called Curl viscosity {y,
whose ratio to entropy density {,/s also depends on the
%, and black brane charge ¢g. Moreover, the dual vortical
fluid obeys the MHD turbulence equation with external
force density influenced by the electromagnetic and
pseudoscalar fields. At the infinite boundary, the ratio
na/s. agrees with the previous result by using the probe
limit of the pseudoscalar field in the charged black brane
background. In addition, even though the electromagnetic
field is related to the pseudoscalar field, there exists the
current conservation law 9,J¢ = 0 at the order €* in both
cases, which is not affected by the pseudoscalar field.
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