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We discuss the (2þ 1)-dimensional parity-violating charged fluid on a finite cutoff surface Σc, dual to
the nondynamical and dynamical Chern-Simons (CS) modified gravities. Using the nonrelativistic long-
wavelength expansion method, the field equations are solved up to Oðϵ2Þ in the nondynamical model. It is
shown that there exists nonvortical dual fluid with shear viscosity η and Hall viscosity ηA on the cutoff
surface Σc. The ratio of shear viscosity over entropy density η=s of the fluid takes the universal value 1=4π,
while the ratio of Hall viscosity over entropy density ηA=s depends on the Σc and black brane charge q.
Moreover, the nonvortical dual fluid obeys the magnetohydrodynamic (MHD) equation. However, these
kinematic viscosities ν and νA related to η and ηA do not appear in this MHD equation due to the constraint
condition ~∂2βj ¼ 0 for the (2þ 1)-dimensional dual fluid. Then, we extend our discussion to the
dynamical CS modified gravity and show that the dual vortical fluid possesses another so-called Curl
viscosity ζA, whose ratio to entropy density ζA=s also depends on the Σc and q. Moreover, the value of η=s
still equals 1=4π and the result of ηA=s agrees with the previous result under the probe limit of the
pseudoscalar field at the infinite boundary in the charged black brane background for the dynamical CS
modified gravity. This vortical dual fluid corresponds to the MHD turbulence equation in plasma physics.

DOI: 10.1103/PhysRevD.89.064036 PACS numbers: 04.20.-q, 11.15.Yc, 11.25.Tq, 47.10.ad

I. INTRODUCTION

Recently, there have been a lot of studies on the fluid/
gravity dualities [1–3], which are considered special appli-
cations of theAdS/CFTcorrespondence [4–6]. It was argued
that the dual field theory at the anti–deSitter (AdS) boundary
can be described by hydrodynamics in the long-wavelength
limit. The ability to derive hydrodynamic equations and
transport coefficients from this duality provides fresh
perspectives in understanding holography. A remarkable
description of the fluid/gravity dualitywas further set up on a
finite cutoff surface Σc outside the horizon [7]. The
discussions have been extended to different models in
Einstein relativity [8–11] and modified gravity models with
higher-order curvatures corrections [12–14]. Imposing the
Petrov-like condition on the Σcðr ¼ rcÞ in the near horizon
limit, the incompressible Navier-Stokes equations (or modi-
fied equations) for a fluid living on the flat (or spatially
curved) spacetime with one fewer dimensions have been
demonstrated inRefs. [15–21]. The physics on a finite cutoff
surfaceΣcwith finite energy scale is appealing since it could
be reached by experiments. The study of holography on the
finite surface Σc may be helpful to understand the micro-
scopic origin of gravity. Other recent works on the fluid/
gravity correspondence can be found in Refs. [22–28].
Besides the shear viscosity η and bulk viscosity ζ

appearing in the usual hydrodynamic system, we know

that in the parity-violating hydrodynamic system, there
exists other important transport coefficients, the Hall
viscosity ηA and Curl viscosity ζA, which are often studied
in condensed matter physics. The Hall viscosity, which is a
nondissipative viscosity coefficient, does not contribute to
the entropy production of the fluid and has been frequently
investigated in the field theory approach [29–36]. In the
quantum Hall fluids, at zero temperature, the usual dis-
sipative shear and bulk viscosities vanish, while the non-
dissipative Hall viscosity can be nonzero, provided that the
quantum Hall fluid has an energy gap and broken time-
reversal symmetry [37]. How can we study this Hall
viscosity from holography? This is an interesting question
to pursue.
Recently, the fluid/gravity duality was explored in a

system with parity violation. The Chern-Simons (CS)
modified gravity generally possesses parity-violating gravi-
tational term, even including electromagnetic CS term in the
action [38,39], which is considered a simplemodel to realize
the holographic description of a (2þ 1)-dimensional iso-
tropic fluid with broken spatial parity [40–43]. It is expected
that in this gravity model, the dual fluid may possess a
nonzero Hall viscosity at the AdS boundary. Since the Hall
viscosity is related to the presence of a nontrivial back-
ground scalar field, it is natural to anticipate that it encodes
the parity violation in CS gravity. The Hall viscosity of the
dual fluid can be affected by the electromagnetic field if one
considers the influence by the electromagnetic CS term on
the phase transition of holographic superconductors in four
dimensions [44,45]. In addition, the vorticity of holographic
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fluid is another interesting property, and the holographic
boundary vortical fluids of analogue gravity systems have
been explored in Refs. [46–50].
Using the nonrelativistic fluid expansion method, Cai

et al. [51] investigated the (2þ 1)-dimensional parity-
violating hydrodynamics, dual to the dynamical CS modi-
fied gravity on a finite cutoff surface Σc outside the
uncharged black brane horizon. They presented the dual
hydrodynamics with Hall viscosity and Curl viscosity
obeying the incompressible Navier-Stokes equations.
Note that the CS gravity model has two frameworks, the
dynamical one and the nondynamical one, which are
classified by whether or not there is a kinetic term for the
scalar field in the action [52]. In this paper,wewill extend the
study to discuss the holographic hydrodynamics dual to
nondynamical and dynamical CS modified gravity, respec-
tively. Besides the gravitational CS term, wewill include the
electromagnetic CS term in our discussion. We will show
that the holographic fluid/gravity duality can be realized
both in the nondynamical and the dynamical CS gravities. In
the nondynamical model, the dual nonvortical fluid pos-
sesses the shear viscosity η and Hall viscosity ηA and obeys
the magnetohydrodynamic (MHD) equation. However,
these kinematic viscosities ν and νA related to η and ηA
do not appear in this MHD equation due to the constraint
condition ~∂2βj ¼ 0. Here, the ratio η=s of the fluid equals
1=4π, while the ratio ηA=s depends on the cutoff surface Σc
and black brane charge q. As to the dynamical model, the
dual vortical fluid obeys the MHD turbulence equation in
plasma physics. Besides the shear and Hall viscosities, the
dual fluid possesses another so-called Curl viscosity ζA,
whose ratio to entropy density ζA=s depends on the Σc and
black brane charge q.
The outline of this paper is as follows. In Sec. II, we

adopt two finite diffeomorphism transformations and make
nonrelativistic hydrodynamic expansion to a general black
brane metric, the pseudoscalar and electromagnetic fields.
By applying this formalism to nondynamical CS modified
gravity coupled to the electromagnetic field, we calculate
the stress-energy tensor of the dual fluid through the
Brown-York tensor and analyze the properties of the dual
fluid on the cutoff surface Σc. In Sec. III, we extend the
above investigation to the dynamical CS modified gravity.
We finally summarize our results in Sec. IV.

II. DUAL FLUID TO NONDYNAMICAL CS
MODIFIED GRAVITY

With the electromagnetic CS term θ ~FF, the action of
nondynamical CS modified gravity model reads [53]

IG ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi−gp ðR − 2Λ − 4πGFμνFμνÞ

þ 1

4

Z
d4x

ffiffiffiffiffiffi−gp ðλ1θ ~RRþ λ2θ ~FFÞ; (1)

where λ1 and λ2 are the coupling constants, θ ~RR and θ ~FF
are gravitational and electromagnetic CS terms with

~Rμν
ρτ ¼ 1

2
ϵρτχϕRμνχϕ; ~Fμν ¼ 1

2
ϵμνρτFρτ;

~RR ¼ ~RμνρτRνμρτ; ~FF ¼ ~FμνFμν:

Here, ϵμνρτ is the four-dimensional Levi-Cività tensor in the
bulk with the convention ϵrτxy ¼ 1=

ffiffiffiffiffiffi−gp
. The strengths of

the gravitational and electromagnetic CS corrections are
controlled by the pseudoscalar field θ. Usually, the pseu-
doscalar field θ is not a constant, but a function of
spacetime, thus, serving as a deformation function. If
θ ¼ const, CS modified gravity reduces to the Einstein
gravity. The negative cosmological constant Λ equals
−3=l2, where l is the AdS radius. We take l ¼ 1 in what
follows, for convenience.
As usual, we obtain the field equations by varying the

action with respect to the metric, electromagnetic, and
pseudoscalar fields, respectively, yielding

Wμν ¼ Rμν − 1

2
gμνRþ Λgμν þ 16πGλ1Cμν

þ 8πGTðAÞ
μν ¼ 0; (2)

Wν
ðAÞ ¼ ∇μFμν − λ2∂μθ ~F

μν ¼ 0; (3)

WðθÞ ¼ λ1 ~RRþ λ2 ~FF ¼ 0; (4)

where the stress-energy tensor of the electromagnetic field
TðAÞ
μν and the so-called Cotton tensor Cμν are

TðAÞ
μν ¼ 1

4
gμνFαβFαβ − Fμ

αFνα;

Cμν ¼ θ;σϵ
αβσðμRνÞβ;α þ θ;στ ~R

σ
ðμ
τ
νÞ:

It is interesting to take the covariant derivative of the
equations of motion (EOM) Eq. (2),

∇μ

�
Rμν − 1

2
gμνRþ Λgμν

�
þ 16πGλ1∇μCμν

þ 8πG∇μTðAÞ
μν ¼ 0: (5)

As we know, the Bianchi identity enforces
∇μðRμν − 1

2
gμνRþ ΛgμνÞ ¼ 0. The covariant derivatives

of the Cotten tensor Cμν and the stress-energy tensor of
electromagnetic TðAÞ

μν satisfy [53,54]

∇μCμν ¼ − 1

8
∂νθ ~RR; ∇μTðAÞ

μν ¼ − λ2
4
∂νθ ~FF: (6)

Since the pseudoscalar field is spacetime coordinate de-
pendent, which leads to ∂νθ ≠ 0, then Eq. (5) reduces to

DE-CHENG ZOU, YUNQI LIU, AND BIN WANG PHYSICAL REVIEW D 89, 064036 (2014)

064036-2



λ1 ~RRþ λ2 ~FF ¼ 0; (7)

which is exactly the pseudoscalar field equation WðθÞ ¼ 0.
Hence, the pseudoscalar field equation is not independent
of the EOM (2).
Considering the traceless properties of Cμν and stress-

energy tensor TðAÞ
μν , we have

Wμν ¼ Eμν þ 16λ1πGCμν ¼ 0; (8)

where Eμν ¼ Rμν − Λgμν þ 8πGTðAÞ
μν , and we have used the

trace of EOM R ¼ 4Λ.
To study the dynamics of the dual fluid in ð2þ 1Þ-

dimensional flat spacetime, we assume the general ð3þ 1Þ-
dimensional black brane metric [40]

ds2¼−fðrÞdτ2þ2HðrÞdrdτþ r2dxidxi; i¼ 1;2: (9)

Then, the induced metric on the cutoff surface Σcðr ¼ rcÞ
outside the horizon rh with the intrinsic coordinates ~xa ∼
ð~τ ¼ ffiffiffiffiffiffiffiffiffiffiffi

fðrcÞ
p

τ; ~xi ¼ rcxiÞ is

ds22þ1 ¼ γabdxadxb ¼ −fðrcÞdτ2 þ r2cdxidxi

¼ −d~τ2 þ δijd~xid~xj: (10)

We require the metric Eq. (10) to be flat when perturbing
the bulk metric Eq. (9) and will investigate the dual fluid
living on the Σcðr ¼ rcÞ.
Substituting the metric Eq. (9) into field equation (8), we

find that the Cotten tensor Cμν automatically vanishes, and
Rμν − Λgμν only depends on r. This leads the electromag-
netic tensor TðAÞ

μν to be only r dependent. In this paper, we
only consider the electric field for the static background
solution. Hence, the vector potential A only depends on r,
which ensures that TðAÞ

μν is only r dependent. We set
Aμdxμ ¼ Aðr; qÞdτ, where q is related to the charge of

the black hole and then A0ðr; qÞ is obviously nonzero. As to
the pseudoscalar field θ for the static and stable background
configuration, we consider the pseudoscalar field θ to be
spatially dependent first without loss of generality. From
the electromagnetic field equation (3), there exists three
components of the electromagnetic field equation:

Wx1 ðAÞ ¼ − λ2A0ðr; qÞ
r2HðrÞ

∂θðr; x1; x2Þ
∂x1 ¼ 0;

Wx2 ðAÞ ¼
λ2A0ðr; qÞ
r2HðrÞ

∂θðr; x1; x2Þ
∂x2 ¼ 0; (11)

WτðAÞ ¼
1

rH3ðrÞ ½rH
0ðrÞA0ðr; qÞ − 2A0ðrÞHðrÞ

− rA00ðr; qÞHðrÞ� ¼ 0: (12)

Therefore, the pseudoscalar field θ only depends on r and is
independent of coordinates x1 and x2 to keep Eq. (3)
satisfied for A0ðr; qÞ ≠ 0. In addition, it is worth noting that
the pseudoscalar field θðrÞ for the background solution
usually has been employed in some other discussion on the
holographic models for fluid/gravity duality [40–42].
As to the bulk metric Eq. (9), following Ref. [9], we can

introduce two types of diffeomorphism transformations: (i)
a Lorentz boost with constant boost parameter βi and (ii) a
transformation of r and associated rescalings of τ and xi.
Taking the nonrelativistic hydrodynamic long-wavelength
expansion parametrized by ϵ → 0, we have

∂τ ∼ ϵ2; ∂i ∼ ϵ; ∂r ∼ ϵ0: (13)

Together with βi¼ rcffiffiffiffiffiffiffiffi
fðrcÞ

p vi, vi¼viðτ;xiÞ, P ¼ Pðτ; xiÞ, and
scaling vi ∼ ϵ and P ∼ ϵ2, we can express the transformed
bulk metric up to Oðϵ2Þ in the form [51]

ds2 ¼ −fðrÞdτ2 þ 2HðrÞdrdτ þ r2dxidxi − 2r2
�
1 − r2cfðrÞ

r2fðrcÞ
�
vidxidτ − 2r2cHðrÞ

fðrcÞ
vidxidrþ r2

�
1 − r2cfðrÞ

r2fðrcÞ
�

×

�
v2dτ2 þ r2cvivj

fðrcÞ
dxidxj

�
þ fðrÞ

�
rf0ðrÞ
fðrÞ − rcf0ðrcÞ

fðrcÞ
�
Pdτ2 þ r2cHðrÞ

fðrcÞ
v2drdτ

þ
�
rcf0ðrcÞHðrÞ

fðrcÞ
− 2HðrÞ − 2rH0ðrÞ

�
Pdrdτ þOðϵ3Þ; (14)

where the terms in the last two lines are all of Oðϵ2Þ.
Under these two types of diffeomorphism transformations, both θðrÞ and Aμdxμ will be expanded. After promoting vi

and P to be ðτ; xiÞ dependent and adopting the scaling vi ∼ ϵ and P ∼ ϵ2, we have

Aðr; qÞdτ → Aðr; qÞ
�
dτ − r2cviðτ; xiÞ

fðrcÞ
dxi þ r2cvðτ; xiÞ2

2fðrcÞ
dτþ

�
rcf0ðrcÞ
2fðrcÞ

− A0ðr; qÞr
Aðr; qÞ

�
Pðτ; xiÞdτ

�
þOðϵ3Þ; (15)
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θðrÞ → θðrÞ − rθ0ðrÞPðτ; xiÞ: (16)

In this charged configuration, we only focus on the
electromagnetic degrees of freedom (d.o.f.) induced by
the above two kinds of diffeomorphisms, which can be
roughly regraded as gravitational and do not turn on the
independent electromagnetic d.o.f. [13]. Note that the same
approach recently has been adopted to set up a new
magnetohydrodynamic/gravity correspondence in higher-
dimensional flat Minkowski space for the independent
electromagnetic d.o.f. [11].
Now substituting the perturbed black brane metric

Eq. (14), electromagnetic field Eq. (15), and pseudoscalar
field Eq. (16) into field equations (2)–(4), we have the
EOM at Oðϵ0Þ:

Cð0Þ
rr ¼ Cð0Þ

ττ ¼ Cð0Þ
ii ¼ 0; Eð0Þ

rr ¼ 2H0ðrÞ
rHðrÞ ¼ 0;

Eð0Þ
ττ ¼ fðrÞ

�
−3 − f0ðrÞH0ðrÞ

2H3ðrÞ þ f00ðrÞ
2H2ðrÞ þ

f0ðrÞ
rH2ðrÞ

− 4πGA02ðr; qÞ
H2ðrÞ

�
¼ 0;

Eð0Þ
ii ¼ 3r2 þ rfðrÞH0ðrÞ

H3ðrÞ − fðrÞ
H2ðrÞ −

rf0ðrÞ
H2ðrÞ

− 4πGr2A02ðr; qÞ
H2ðrÞ ¼ 0; ði ¼ 1; 2Þ: (17)

The pseudoscalar field equation automatically reaches

Wð0Þ
ðθÞ ¼ 0 and the electromagnetic field equation Wτð0Þ

ðAÞ
takes the same form as Eq. (12). From Eð0Þ

rr , the function
HðrÞ should equal a constant and here we take HðrÞ ¼ 1
for simplicity. Then, fðrÞ and Aðr; qÞ can be obtained in the
forms

fðrÞ ¼ r2 −m
r
þ q2

r2
; Aμdxμ ¼

1ffiffiffiffiffiffiffiffiffi
4πG

p q
r
dτ: (18)

The integral constants m and q here are related to the

gravitational massM ¼ mV2

8πG and the total charge Q2 ¼ 4πq2

G ,
respectively. Moreover, m in terms of the real root of

fðrhÞ ¼ 0 is m ¼ r3h þ q2

rh
. Then, the Hawking temperature

Th of the black brane is obtained:

Th ¼
f0ðrhÞ
4π

¼ 1

4π

�
3rh − q2

r3h

�
: (19)

The condition 3r4h ≥ q2 should be satisfied for Th ≥ 0.
Moreover, the perturbed metric Eq. (14) also solves these
field equations (2)–(4) at OðϵÞ.
At Oðϵ2Þ, a correction term

ds2c ¼ r2ðFðrÞσij þ FAðrÞσAijÞdxidxj (20)

needs to be added to the perturbed metric Eq. (14) to cancel
the terms of the tensor sector and pseudoscalar sector due to
the spatial SOð2Þ rotation symmetry of the black brane
background [51]. Here, σij and σAij take ∂ðivjÞ − 1

2
δij∂kvk

and 1
2
ðϵikσjk þ ϵjkσi

kÞ, respectively. The gauges FðrcÞ ¼ 0

and FAðrcÞ ¼ 0 are chosen to keep the induced metric γab
invariant. Then, the equations of the pseudoscalar and
electromagnetic fields at Oðϵ2Þ are obtained:

Wð2Þ
ðθÞ ¼

�
λ1f2ðrÞ
r3H3ðrÞ

�
f0ðrÞ
fðrÞ −

2

r

�
2

þ λ2ðA2ðr;qÞÞ0
2r2HðrÞ

�
r2cΩ
fðrcÞ

¼ 0;

(21)

Wrð2Þ
ðAÞ ¼

A0ðr; qÞ
H2ðrÞ ∂ivi ¼ 0; (22)

Wτð2Þ
ðAÞ ¼−

F0ðrÞA0ðr;qÞ
H2ðrÞ ∂iviþλ2

r2cAðr;qÞθ0ðrÞ
r2fðrcÞ

Ω¼ 0; (23)

where Eq. (22) leads to the incompressible condition
∂ivi ¼ 0 of the dual fluid on the Σc for A0ðr; qÞ ≠ 0.
Then, we can also obtain the so-called nonvortical con-
dition Ω≡ ϵij∂ivj ¼ 0 for Eqs. (21) and (23) with sol-
utions (18). With these incompressible and nonvortical
conditions, a new constraint condition at Oðϵ3Þ reads as

∂2vi ¼ 0; i ¼ 1; 2: (24)

From EOM Wð2Þ
μν ¼ 0, the Cotten tensors Cð2Þ

μν are
given by

Cð2Þ
rr ¼− r2cHðrÞ

2r4fðrcÞ
d
dr

�
r2fðrÞ
H2ðrÞ

�
f0ðrÞ
fðrÞ−

2

r

�
θ0ðrÞ

�
Ω;

Cð2Þ
ττ ¼−

r2c
2r3HðrÞfðrcÞ

d
dr

�
rf3=2ðrÞ
H2ðrÞ

�
f0ðrÞ
fðrÞ−

2

r

�
θ0ðrÞ

�
Ω;

Cð2Þ
xx þCð2Þ

yy ¼−
r2c

2HðrÞfðrcÞ
d
dr

�
f2ðrÞ
H2ðrÞ

�
f0ðrÞ
fðrÞ−

2

r

�
θ0ðrÞ

�
Ω;

(25)

and also vanish with Ω ¼ 0. With the help of the incom-
pressible condition ∂ivi ¼ 0, Eð2Þ

μν disappears when impos-
ing the requirement

d
dr

�
r2
�
fðrÞ
HðrÞF

0ðrÞ þ 1

��
~σij þ

d
dr

�
r2
�
fðrÞ
HðrÞF

0
AðrÞ

þ λ1fðrÞθ0ðrÞ
2H2ðrÞ

�
f0ðrÞ
fðrÞ −

2

r

���
~σAij ¼ 0: (26)

Notice that ~σij and ~σAij have different tensor structures,
which leads two second-order differential equations, which
can be solved separately as
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F0ðrÞ ¼ HðrÞ
fðrÞ

�
cF
r2

− 1

�
;

F0
AðrÞ ¼

1

fðrÞ
�
HðrÞ
r2

cFA
− λ1f0ðrÞθ0ðrÞ

2HðrÞ
�
þ λ1θ

0ðrÞ
rHðrÞ : (27)

The integration constants cF and cFA
are determined by

keeping the functions FðrÞ and FAðrÞ regular at the horizon
rh. It is easy to find that the constants cF and cFA

are

cF ¼ r2h; cFA
¼ λ1r2hf

0ðrhÞθ0ðrhÞ
2H2ðrhÞ

: (28)

According to the fluid/gravity duality, the Brown-York
tensor on the Σc can be identified as the energy-
momentum tensor of the dual fluid. Since the existence
of the gravitational CS term, there are three possible
contributions that need to be explained: the usual
Gibbons-Hawking boundary term, a term arising from
the variation of the gravitational CS term, and the

boundary counterterm. The Brown-York tensor TBY
ab on

the Σc can be derived from

TBY
ab ¼ 1

8πG
ðKγab − Kab − Tcs

ab þ CγabÞ; (29)

where γab ¼ gab − nanb is an induced metric on the Σc,
and K is the trace of the extrinsic curvature tensor Kab of
Σc which is defined by Kab ¼ γδa∇δnb. As shown in
Ref. [55], the contribution Tcs

ab from θ ~RR does not
contribute to the Brown-York tensor. C is an unfixed
constant which can bring a finite result when the cutoff
surface goes to the AdS boundary, as determined below.
Plugging the perturbed metric Eqs. (14) and (20) into

Eq. (29), the Brown-York tensor TBY
ab of the dual fluid in the

~xa ∼ ð~τ; ~xiÞ coordinates can be described as

~TBY
ab ¼ ~Tð0Þ

ab þ ~Tð1Þ
ab þ ~Tð2Þ

ab þOðϵ3Þ; (30)

where

8πG ~Tð0Þ
ab d~x

ad~xb ¼ −
�
2

ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
rc

þ C
�
d~τ2 þ 1ffiffiffiffiffiffiffiffiffiffiffi

fðrcÞ
p

�
f0ðrcÞ
2

þ fðrcÞ
rc

þ C
�
d~xid~xi;

8πG ~Tð1Þ
ab d~x

ad~xb ¼ −
�
fðrÞ
r2

�0

c

r2cβiffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p d~xid~τ;

8πG ~Tð2Þ
ab d~x

ad~xb ¼
�
fðrÞ
r2

�0

c

r2c
2

ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p ½ð2Pþ β2Þd~τ2 þ ðβiβj þ κPδijÞd~xid~xj�

− ½ð1þ fðrcÞF0ðrcÞÞ ~σij þ fðrcÞF0
AðrcÞ ~σAij�d~xid~xj þOðϵ3Þ; (31)

with κ ¼ r3c
2fðrcÞ ð

fðrÞ
r2 Þ

0
c − 3 − rcðfðrÞr2 Þ

00
c=ð

fðrÞ
r2 Þ

0
c. Here, the

trace of the stress-energy tensor ~Tab in the ~xa ∼ ð~τ; ~xiÞ
coordinates can be computed up to Oðϵ2Þ with
~Tc ¼ ~TBY

ab ~γ
ab ¼ 2Kþ3C

8πG . For the boundary at infinity, we
can take the corresponding factor C ¼ −2 to remove the
divergence in the energy-momentum tensor.
In these ð2þ 1Þ-dimensional parity-violating hydrody-

namic systems, the energy-momentum tensor of the fluid
with the first-order gradient expansion usually takes the
following form:

~Tab ¼ ρ ~ua ~ub þ p ~Pab − 2η ~σab − ζ ~Θ ~Pab − 2ηA ~σ
ab
A

− ζA ~Ω ~Pab; (32)

where ~Pab ¼ ~γab þ ~ua ~ub. The shear viscosity η and the
bulk viscosity ζ are canonical transport coefficients, while
the Hall viscosity ηA and curl viscosity ζA arise from the

parity-violating effect. Here, ~ua ¼ ð1;βiÞffiffiffiffiffiffiffiffi
1−β2

p , ρ is the energy

density, p is the pressure, ~σab is the shear, and ~Θ ¼ ~∂a ~ua

describes the expansion.
Under the nonrelativistic long-wavelength expansion, in

the above stress-energy tensor we have ~Θ ¼ 0 by using the

incompressible condition ~∂a ~ua ∼ ~∂iβ
i ¼ 0 at the order ϵ2,

which results in the vanishing of the term ζ ~Θ ~Pab. With
the incompressible and nonvortical conditions ( ~Θ ¼ 0

and ~Ω ¼ 0), up to Oðϵ2Þ, the components of the
energy-momentum tensor in the nonrelativistic limit are
given by

~Tττ ¼ ρþ ðpþ ρÞβ2; ~Tτi ¼ −ðpþ ρÞβi;
~Tij ¼ ðpþ ρÞβiβj þ pδij − 2η ~σij − 2ηA ~σ

A
ij: (33)

The energy density ρ0 and pressure p0 of the dual fluid at
Oðϵ0Þ take the following form:

ρ0 ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
4πGrc

− C
8πG

;

p0 ¼
1

8πG
ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
�
f0ðrcÞ
2

þ fðrcÞ
rc

�
þ C
8πG

;

ω ¼ ρ0 þ p0 ¼
r2c

16πG
ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
�
fðrÞ
r2

�0

c
: (34)
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Up to Oðϵ2Þ, the energy density ρc and the pressure pc are
corrected to be

ρc ¼ ρ0 þ 2ωP; pc ¼ p0 þ ωκP; (35)

and the transport coefficients such as the shear viscosity η
and Hall viscosity ηA of the dual fluid are given by

η ¼ 1þ fðrcÞF0ðrcÞ
16πG

; ηA ¼ fðrcÞF0
AðrcÞ

16πG
: (36)

Based on Eq. (28), the shear viscosity η and Hall viscosity
ηA are obtained:

η ¼ 1

16πG
r2h
r2c

;

ηA ¼ λ1
32πGr2c

ðr2hθ0ðrhÞf0ðrhÞ − r2cf0ðrcÞθ0ðrcÞ

þ 2rcfðrcÞθ0ðrcÞÞ: (37)

It is worth noting that the Hall viscosity ηA depends on the
gravitational CS term λ1θ ~RR. If taking the vanishing of
λ1θ ~RR for the parameter λ1 ¼ 0, we have ηA ¼ 0.
Fromthemetric (9),weconsider aquotient under shift ofxi,

xi ∼ xi þ ni withni ∈ Z. The spatialR2 on theΣc turns out to
be a two-tours T2 with rc-dependent volume V2ðrcÞ ¼ r2c.
Then, the entropy density sc on the Σc is described by

S=V2ðrcÞ in the form 1
4G

r2h
r2c
[7]. So, the ratios of the shear

viscosity and Hall viscosity to entropy density read as

η

sc
¼ 1

4π
;

ηA
sc

¼ λ1
8π

��
3rh − q2

r3h

�
θ0ðrhÞ −

�
3rh þ

3q2

r3h
− 4q2

r2hrc

�
θ0ðrcÞ

�
:

(38)

Apparently, the ratio η=sc is independent of rc and does
not receive any influence from the gravitational and
electromagnetic CS terms. However, the ratio ηA=sc is
cutoff dependent and background dependent. If we take
the cutoff surface to approach the black brane horizon,
rc → rh, ηA=sc vanishes. In the infinite boundary limit
rc → ∞, if we take the following assumptions θðrcÞ → 0,

ηA=sc becomes ηA
sc
¼ λ1θ

0ðrhÞ
8π ð3rh − q2

r3h
Þ, which is non-

negative for Th ≥ 0.
The local temperature Tc on the Σc is identified as the

temperature of the dual fluid. With the Tolman relation, we
get the local temperature Tc:

Tc ¼
Thffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p ¼ 1

4π
ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
�
3rh − q2

r3h

�
: (39)

With Tc ¼ 0, the ratio ηA=sc of the dual fluid disappears in
the infinite boundary. It implies that the parity-violating
dual fluid corresponds to quantum Hall fluid with time-
reversal symmetry.
In addition, we define the chemical potential μc as μc ¼
1

4πG
ffiffiffiffiffiffiffiffi
fðrcÞ

p ð qrh − q
rc
Þ and the charge density qc ¼ q

V2ðrcÞ with
q
r2c

on the Σc. Then, the thermodynamic relation can be
verified,

ω − scTc ¼ qcμc: (40)

The conservation equations of the Brown-York tensor on
the Σc, the so-called momentum constraint, can be deduced
from EOM (2),

− ðRμν − 1

2
gμνRþ ΛgμνÞnμγνb

¼ ð16λ1πGCμν þ 8πGTðAÞ
μν Þnμγνb

⇒ ~∂a ~TBY
ab ¼ TðAÞ

μb n
μ; (41)

where nμ is the unit normal vector of Σc, and the Cotton
tensor Cμν vanishes since it has no contribution to the
source terms of the momentum constraint up to Oðϵ3Þ.
Taking the index b ¼ τ, the temporal component of the
momentum constraint at Oðϵ2Þ reads as

~∂a ~TBY
aτ ¼ TðAÞ

μτ nμ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p Tr
τ ¼ 0;

⇒ −
�
fðrÞ
r2

�0

c

r2cffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p ~∂iβ
i ¼ 0; (42)

which leads to the incompressible condition of the dual
fluid ~∂iβ

i ¼ 0.
Taking the index b ¼ j, the spatial component of the

momentum constraint at Oðϵ3Þ is given by

~∂a ~TBY
aj ¼ TðAÞ

μj n
μ ¼ FjaJa;

⇒

�
fðrÞ
r2

�0

c

r2c
2

ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p ð ~∂τβj þ βi ~∂iβj þ κ ~∂jPÞ

− ½ð1þ fðrcÞF0ðrcÞÞ ~∂2βj þ fðrcÞF0
AðrcÞϵij ~∂2βi�

¼ FjaJa: (43)

With Eq. (24), the vanishing of ∂2vj implies ~∂2βj ¼ 0 at
Oðϵ3Þ. Then, the momentum constraint reduces to

~∂τβj þ βi ~∂iβj þ ~∂jPr ¼ fj; ðj ¼ 1; 2Þ; (44)

~∂iβ
i ¼ 0; ~Ω≡ ϵij ~∂iβj ¼ 0; (45)

which corresponds to the MHD equation [56,57]. Note that
the nonvortical dual fluid possesses the shear viscosity η
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and Hall viscosity ηA, but these kinematic viscosities ν and
νA related to η and ηA do not appear in Eq. (44). It is special
for the (2þ 1)-dimensional dual fluid. Here, the pressure
density and external force density read as

fj ¼
FjaJa

rcω
; Pr ¼

~pc − ~p0

~ρ0 þ ~p0

¼ ~pc − ~p0

ω
¼ κP: (46)

For this external force density fj, the term FjaJa consists of
FjiJi and FjτJτ, where FjτJτ arises from the background
electric field, while FjiJi corresponds to the Lorentz force
due to the magnetic field arising from the perturbation of
the background electric field. Moreover, the current Ja dual
to the bulk electromagnetic field is obtained by Ja ¼
−nμFμa on the Σc. We have Jτ ¼ −nrFrτ at Oðϵ0Þ and
Ji ¼ −nrFri at OðϵÞ. The partial derivative for the boun-
dary current Ja satisfies ∂aJa ∼ ϵ2. With the electromag-
netic field equation (3) and the transformation of θðrÞ
Eq. (15), there exists a current conservation law ∂aJa ¼ 0
at Oðϵ2Þ, which is not affected by the pseudoscalar field.
This shows that the conservation law of the boundary
current Ja coincides with the incompressible condition
~∂iβ

i ¼ 0 for the constant dual charge density.
On the other hand, the MHD equation (44) can be

expanded in the form

~∂1
~∂τβ2þ ~∂1ðβ1 ~∂1β2Þþ ~∂1ðβ2 ~∂2β2Þþ ~∂1

~∂2Pr¼∂1f2; (47)

~∂2
~∂τβ1þ ~∂2ðβ1 ~∂1β1Þþ ~∂2ðβ2 ~∂2β1Þþ ~∂2

~∂1Pr¼∂2f1: (48)

Considering Eqs. (47) and (48), we can obtain

~∂τð ~∂1β2 − ~∂2β1Þ þ ~∂1ðβ1 ~∂1β2Þ − ~∂2ðβ2 ~∂2β1Þ
þ ~∂1ðβ2 ~∂2β2Þ − ~∂2ðβ1 ~∂1β1Þ ¼ ∂1f2 − ∂2f1: (49)

Using the nonvortical condition ~Ω≡ ϵij ~∂iβj ¼ 0 and the
incompressible condition ∂iβ

i ¼ 0, the above equation
leads to

~∂τΩþ βj ~∂jΩ ¼ ϵij∂ifj ¼ 0: (50)

In the nondynamic case, there is a constraint condition
ϵij∂ifj ¼ 0 for the external force, but this constraint of the
external force is of the order ϵ4, while the MHD equation
we focused on is of the order ϵ3. The constraint conditions
we considered in the paper, such as the nonvortical and
incompressible conditions, are of the order not higher than
ϵ3. In the order of ϵ3, the above MHD equation for the dual
fluid is kept.
We can also try to set up the holographic duality between

the nondynamical CS gravity and ð2þ 1Þ-dimensional
vortical fluid in the cutoff flat surface Σc, namely,
Ω ≠ 0. Notice that the expressions for Cð2Þ

μν [Eq. (25)] do
not disappear for black brane solutions fðrÞ and HðrÞ
[Eq. (18)]. As in Ref. [51], we introduce some correction

terms in the perturbed metric to cancel the residual curl
scalar Ω at Oðϵ2Þ,

ds2s ¼ ð−fðrÞkðrÞdτ2 þ 2HðrÞhðrÞdrdτ þ r2gðrÞdxidxiÞΩ;
(51)

and then the overall perturbed metric with Eqs. (14) and
(20) is given by

ds2o ¼ ds2 þ ds2c þ ds2s : (52)

Inserting this overall perturbed metric into the field
equations (2)–(4), we find that the pseudoscalar field
equation still takes the form of Eq. (21), and the electro-
magnetic field equations at Oðϵ2Þ are changed to

Wrð2Þ
ðAÞ ¼

A0ðr; qÞ
H2ðrÞ ∂ivi þ

3hðrÞfðrÞA0ðr; qÞ
2H3ðrÞ

×

�
f0ðrÞ
fðrÞ −

H0ðrÞ
HðrÞ þ

h0ðrÞ
3hðrÞ

�
Ω ¼ 0; (53)

Wτð2Þ
ðAÞ ¼ −

F0ðrÞA0ðr; qÞ
H2ðrÞ ∂ivi

þ
�
g0ðrÞA0ðr; qÞ þ λ2

r2cAðr; qÞθ0ðrÞ
r2fðrcÞ

�
Ω ¼ 0: (54)

Consider A0ðr; qÞ ≠ 0, Ω ≠ 0, and different structures of
∂ivi and Ω in these electromagnetic field equations,
Eqs. (53) and (54) lead to the incompressible condition
∂ivi ¼ 0 and

f0ðrÞ
fðrÞ −

H0ðrÞ
HðrÞ þ

h0ðrÞ
3hðrÞ ¼ 0; (55)

g0ðrÞA0ðr; qÞ þ λ2
r2cAðr; qÞθ0ðrÞ

r2fðrcÞ
¼ 0: (56)

In addition, in order to satisfy the pseudoscalar field
equation (21) with Ω ≠ 0, we have

λ1f2ðrÞ
r3H3ðrÞ

�
f0ðrÞ
fðrÞ −

2

r

�
2

þ λ2ðA2ðr; qÞÞ0
2r2HðrÞ ¼ 0: (57)

One can see that Eq. (57) does not vanish with HðrÞ ¼ 1
and the black brane solution fðrÞ Eq. (18), while it
disappears in the trivial case for the locally pure AdS
spacetimes with fðrÞ ¼ r2 and Aðr; qÞ ¼ 0. Therefore, this
new fluid/gravity duality does not set up in the non-
dynamical CS modified gravity.
It is interesting to note that the action of dynamical CS

modified gravity is related to the kinetic term for the
pseudoscalar field θ [39]; it is expected that this dynamical
CS modified gravity can help to overcome the difficulty.
We will discuss this possibility in the next section.
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III. DUAL FLUID TO DYNAMICAL CS
MODIFIED GRAVITY

The action of dynamical CS modified gravity coupled to
the electromagnetic CS term is [41]

IG ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi−gp ðR−2Λ−4πGFμνFμνÞ

þ
Z

d4x
ffiffiffiffiffiffi−gp �

λ1
4
θ ~RRþ λ2

4
θ ~FF−1

2
∂μθ∂μθ−VðθÞ

�
:

(58)

The corresponding new equations of motion (NEOM), the
electromagnetic and scalar fields equations read

Ŵμν ¼ Rμν − 1

2
gμνRþ Λgμν þ 16λ1πGCμν

þ 8πGTðθÞ
μν þ 8πGTðAÞ

μν ¼ 0; (59)

Ŵν
ðAÞ ¼ ∇μFμν − λ2∂μθ ~F

μν ¼ 0; (60)

ŴðθÞ ¼
λ1
4

~RRþ λ2
4

~FF þ□θ − dV
dθ

¼ 0; (61)

with the stress-energy tensor of the pseudoscalar field

TðθÞ
μν ¼ −∂μθ∂νθ þ

1

2
gμνð∂θÞ2 þ gμνVðθÞ:

Obviously, the new electromagnetic field equation Ŵν
ðAÞ is

not influenced by the newly added dynamical terms of the
pseudoscalar field and still takes the expression as Eq. (3).
Similarly, the new pseudoscalar field equation can be
derived also by the covariant derivative of NEOM, and
the NEOM can also be rewritten as

Ŵμν ¼ Êμν þ 16λ1πGCμν ¼ 0; (62)

with Êμν ¼ Eμν − 8πGð∂μθ∂νθ þ gμνVðθÞÞ.
Similar to the analysis for the case in the nondynamical

CS modified gravity, we also consider that the vector
potential A only relates to r for the background configu-
ration in this case, and then the pseudoscalar field θ should
be related only to r from the electromagnetic field equation
(60). Then, substituting the overall perturbed black brane
metric Eq. (52), perturbed pseudoscalar field Eq. (16), and
electromagnetic field Eq. (15) into the NEOM Ŵμν and the
new pseudoscalar field equation ŴðθÞ, respectively, the
background equations for the NEOM atOðϵ0Þ are obtained:

Êð0Þ
rr ¼Eð0Þ

rr −8πGθ02ðrÞ¼0;

Êð0Þ
ττ ¼Eð0Þ

ττ þ8πGfðrÞVðθÞ¼0;

Êð0Þ
ii ¼Eð0Þ

ii −8πGr2VðθÞ¼0; Cð0Þ
rr ¼Cð0Þ

ττ ¼Cð0Þ
ii ¼0: (63)

The new pseudoscalar field equation at Oðϵ0Þ can be
worked out as

Ŵð0Þ
ðθÞ ¼ −dVðθÞ

dθ
þ θ0ðrÞfðrÞ

H2ðrÞ
�
2

r
−H0ðrÞ

HðrÞ þ
f0ðrÞ
fðrÞ

�

þ θ00ðrÞfðrÞ
H2ðrÞ ¼ 0; (64)

and the new electromagnetic field has only a τ component
and takes the same expression for Eq. (12) in nondynamical
CS modified gravity.
Unfortunately, getting the analytic solutions for func-

tions fðrÞ, HðrÞ, and Aðr; qÞ from field equations (12),
(63), and (64) is hard work. We can expand the functions
fðrÞ, HðrÞ, Aðr; qÞ, and θðrÞ with a small parameter ξ,

fðrÞ ¼ f0ðrÞ þ ξf1ðrÞ þ � � � ;
HðrÞ ¼ H0ðrÞ þ ξH1ðrÞ þ � � � ;

Aðr; qÞ ¼ A0ðr; qÞ þ ξA1ðr; qÞ þ � � � ;
θðrÞ → ξθðrÞ;
VðθÞ → ξ2VðθÞ; (65)

where f0ðrÞ, H0ðrÞ, and A0ðr; qÞ can be obtained by
solving these field equations (63) at Oðξ0Þ, which reads
as Eq. (18),

f0ðrÞ ¼ r2 −m
r
þ q2

r2
; H0ðrÞ ¼ 1;

A0ðr; qÞ ¼
1ffiffiffiffiffiffiffiffiffi
4πG

p q
r
: (66)

Substituting Eq. (65) into field equations (12), (63), and
(64), at OðξÞ, we have

f1ðrÞ ¼ − 4
ffiffiffiffiffiffiffi
πG

p
qC1

r2
; H1ðrÞ ¼ 0;

A1ðr; qÞ ¼ −C2

r
þ C3; (67)

and the pseudoscalar θ obeys the following equation:

θ00ðrÞ þ
�
f00ðrÞ
f0ðrÞ

þ 2

r

�
θ0ðrÞ − dVðθÞ=dθ

f0ðrÞ
¼ 0; (68)

where C1, C2, and C3 are the integral constants. This scalar
field equation for the pseudoscalar field is the same as
Eq. (17) in Refs. [41,42]. Specifying the form of the
potential, the solutions of this scalar field equation and
asymptotical behaviors of the pseudoscalar field have been
also discussed in Refs. [41,42]. With these background
equations Ŵð0Þ

μν ,Wτð0Þ
ðAÞ, and Ŵ

ð0Þ
ðθÞ, we find that the perturbed

metric together with the perturbed electromagnetic and
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pseudoscalar fields automatically satisfy the field equations
(59)–(61) at OðϵÞ.
At Oðϵ2Þ, the new electromagnetic field equations

(60) still take the forms of Eqs. (53) and (54). Then,

we can also obtain the incompressible condition
∂ivi ¼ 0 with Ω ≠ 0, A0ðr; qÞ ≠ 0, and different structures
of Ω and ∂ivi. The new pseudoscalar field equation Ŵð2Þ

ðθÞ
reads as

Ŵð2Þ
ðθÞ ¼

�
θ0ðrÞfðrÞf1=2ðrcÞ

H2ðrÞ ðk0ðrÞ − h0ðrÞ þ g0ðrÞÞ þ f1=2ðrcÞðkðrÞ − 2hðrÞÞ dVðθÞ
dθ

þ λ1r2cf2ðrÞ
r3H3ðrÞfðrcÞ

�
f0ðrÞ
fðrÞ −

2

r

�
2

þ λ2r2cðA2ðr; qÞÞ0
2r2HðrÞfðrcÞ

�
Ω: (69)

Although the existence of the pseudoscalar field makes it hard to get the solution, it can avoid the trivial solution we met in
the uncharged case. Under the incompressible condition ∂ivi ¼ 0, the nonvanishing components of Êð2Þ

μν are expressed as

Êð2Þ
rr ¼

�
2h0ðrÞ

r
þ
�
H0ðrÞ
HðrÞ −

2

r

�
g0ðrÞ − g00ðrÞ�Ω;

Êð2Þ
ττ ¼

�
ðg0ðrÞ − h0ðrÞÞf0ðrÞ − k0ðrÞfðrÞ

�
H0ðrÞ
2HðrÞ −

7f0ðrÞ
4fðrÞ −

2

r

�
þ fðrÞk00ðrÞ

− ðkðrÞ − 2hðrÞÞfðrÞ=r
�
H0ðrÞ
HðrÞ −

3f0ðrÞ
fðrÞ − 2

r

�
þ8πGA02ðr; qÞðkðrÞ − hðrÞÞ

�
fðrÞΩ
2H2ðrÞ ;

Êð2Þ
xx þ Êð2Þ

yy ¼
�
2ðh0ðrÞ − k0ðrÞÞ þ rg0ðrÞ

�
H0ðrÞ
HðrÞ −

f0ðrÞ
fðrÞ −

4

r

�
−rg00ðrÞ

þ 2ðkðrÞ − 2hðrÞÞ
�
H0ðrÞ
HðrÞ −

f0ðrÞ
fðrÞ −

1

r

�
þ8πGrfðrÞA02ðr; qÞðgðrÞ − hðrÞÞ

�
rfðrÞΩ
H2ðrÞ ; (70)

with the requirement of Eq. (26). The components of Cð2Þ
μν are shown in Eq. (25). With the Dirichlet boundary condition

kðrcÞ ¼ 0 and gðrcÞ ¼ 0, the equations of motion (25) and (70), pseudoscalar field equation (69), and electromagnetic field
equations (53) and (54) at Oðϵ2Þ are expected to be formally solved with the background equations, but here we will not
concentrate on finding these solutions.
Plugging the overall perturbed metric Eq. (52) into the Brown-York tensor TBY

ab Eq. (29) of the dual fluid, TBY
ab in the

~xa ∼ ð~τ; ~xiÞ coordinates can be described as

~TBY
ab ¼ ~Tð0Þ

ab þ ~Tð1Þ
ab þ ~Tð2Þ

ab þOðϵ3Þ; (71)

where

8πG ~Tð0Þ
ab d~x

ad~xb ¼ −
�
2

ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
rcHðrcÞ

þ C
�
d~τ2 þ

�
f0ðrcÞrc þ 2fðrcÞ
2rcHðrcÞ

ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p þ C
�
d~xid~xi;

8πG ~Tð1Þ
ab d~x

ad~xb ¼ −
�
fðrÞ
r2

�0

c

r2cβi
HðrcÞ

ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p d~xid~τ;

8πG ~Tð2Þ
ab d~x

ad~xb ¼
�
fðrÞ
r2

�0

c

r2c
2HðrcÞ

ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
���

2 − 4fðrcÞH0ðrcÞ
r2cHðrcÞ

�
fðrÞ
r2

�0−1

c

�
P

þ β2 − 2fðrcÞ3=2ðhðrcÞ − rcg0ðrcÞÞ
r3c

�
fðrÞ
r2

�0−1

c

~Ω
�
d~τ2þðβiβj þ κðrcÞPδijÞd~xid~xj�

−
��

1þ fðrcÞ
HðrcÞ

F0ðrcÞ
�
~σij þ

fðrcÞ
HðrcÞ

F0
AðrcÞ ~σAij þ

ϖðrcÞ
2HðrcÞ

~Ωδij
�
d~xid~xj þOðϵ3Þ; (72)

with
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κðrcÞ ¼
r3c

2fðrcÞ
�
fðrÞ
r2

�0

c
− 3 − rc

�
fðrÞ
r2

�0

c
=

�
fðrÞ
r2

�00

c
þ ðr2fðrÞÞ0c

r3c

H0ðrcÞ
HðrcÞ

;

ϖðrcÞ ¼ ðf0ðrcÞ þ 2fðrcÞ=rcÞhðrcÞ − 2fðrcÞðg0ðrcÞ þ k0ðrcÞÞ:

Here we have used the Dirichlet boundary condition
kðrcÞ ¼ 0 and gðrcÞ ¼ 0. We can choose the Landau frame
to make the term of ~Ω disappear in Eq. (72), which is
necessary to match the stress-energy tensor of the fluid, as
we will discuss below.
Now, the components of the stress-energy tensor in the

nonrelativistic limit with the incompressible conditions
( ~Θ ¼ 0) up to Oðϵ2Þ are
~Tττ ¼ ρþðpþρÞβ2; ~Tτi ¼−ðpþρÞβi;
~Tij¼ðpþρÞβiβjþpδij−2η ~σij−2ηA ~σ

A
ij−ζA ~Ωδij: (73)

Then, the energy density ρ0 and pressure p0 of the dual
fluid at Oðϵ0Þ satisfy

ω ¼ ρ0 þ p0 ¼
r2c

16πGHðrcÞ
ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
�
fðrÞ
r2

�0

c
: (74)

The transformed energy density ρc and the pressure pc up
to Oðϵ2Þ are corrected to be

ρc ¼ ρ0 þ
�
2 − 4fðrcÞH0ðrcÞ

r2cHðrcÞ
�
fðrÞ
r2

�0−1

c

�
ωP;

pc ¼ p0 þ ωκðrcÞP; (75)

and the transport coefficients, such as the shear viscosity η,
Hall viscosity ηA, and Curl viscosity ζA of the dual fluid, are
given by

η ¼ 1

16πG

�
1þ fðrcÞ

HðrcÞ
F0ðrcÞ

�
;

ηA ¼ 1

16πG
fðrcÞF0

AðrcÞ
HðrcÞ

; ζA ¼ ϖðrcÞ
16πGHðrcÞ

: (76)

With Eq. (28), the shear viscosity η takes the same value in
the nondynamical CS case, and its ratio η=sc equals 1=4π;
the Hall viscosity ηA and its ratio are obtained

ηA ¼ λ1
16πG

�
r2hθ

0ðrhÞf0ðrhÞ
2r2cH2ðrhÞ

− f0ðrcÞθ0ðrcÞ
2H2ðrcÞ

þ fðrcÞθ0ðrcÞ
rcH2ðrcÞ

�
;

ηA
sc

¼ λ1
4π

�
θ0ðrhÞf0ðrhÞ
2H2ðrhÞ

− r2cf0ðrcÞθ0ðrcÞ
2r2hH

2ðrcÞ
þ rcfðrcÞθ0ðrcÞ

r2hH
2ðrcÞ

�
;

(77)

and the ratio of the Curl viscosity reads as

ζA=sc ¼ r2cϖðrcÞ
4πr2hHðrcÞ. However, the other two ratios ηA=sc

and ζA=sc are cutoff dependent and background dependent.

If we take the cutoff surface to approach the black brane
horizon, rc → rh, ηA=sc vanishes while ζA=sc arrives at a

finite value f0ðrhÞhðrhÞ
4πHðrhÞ . In the infinite boundary limit rc → ∞;

if we take the following assumptions,

fðrcÞ
r2c

→ 1 −Oðr3h=r3cÞ; HðrcÞ → 1;

θðrcÞ → Oðrmh =rmc Þ; (78)

ηA=sc becomes

ηA
sc

¼ λ1
8π

θ0ðrhÞf0ðrhÞ
H2ðrhÞ

(79)

when m > 3. Note that the ratio ηA=sc in our charged
black brane background takes the same form as in the
neutral black brane background [41], but in our case,
the electromagnetic field influence is imprinted in the
metric function. Our result agrees with the previous result
by using the probe limit of the pseudoscalar field based on
the same action by including the electromagnetic CS
terms [42].
The conservation equations of the Brown-York tensor on

the Σc, the so-called momentum constraint, can be deduced
from NEOM (59),

−
�
Rμν − 1

2
gμνRþ Λgμν

�
nμγνb

¼ ð16λ1πGCμν þ 8πGγTðθÞ
μν þ 8πGTðAÞ

μν Þnμγνb
⇛ ~∂a ~TBY

ab ¼ ðTðθÞ
μb þ TðAÞ

μb Þnμ: (80)

Taking the index b ¼ τ, the temporal component of the
momentum constraint at Oðϵ2Þ reads as

~∂a ~TBY
aτ ¼ ðTðθÞ

μτ þ TðAÞ
μτ Þnμ ¼ 0;

⇒ −
�
fðrÞ
r2

�0

c

r2c
HðrcÞ

ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p ~∂iβ
i ¼ 0; (81)

which leads to the incompressible condition of the dual
fluid ~∂iβ

i ¼ 0.
Taking the index b ¼ j, the spatial component of the

momentum constraint at Oðϵ3Þ is given by

~∂a ~TBY
aj ¼ ðTðθÞ

μj þ TðAÞ
μj Þnμ; (82)
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⇒

�
fðrÞ
r2

�0

c

r2c
2HðrcÞ

ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p ð ~∂τβj þ βi ~∂iβj þ κðrcÞ ~∂jPÞ

−
��

1þ fðrcÞ
HðrcÞ

F0ðrcÞ
�
~∂2βj þ

fðrcÞ
HðrcÞ

F0
AðrcÞϵij∂2βi

þ ϖðrcÞ
2HðrcÞ

ϵik∂i∂jβk

�

¼ rc
ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
θ02ðrcÞ

H2ðrcÞ
∂jPþ FjaJa: (83)

With the momentum constraint, we can obtain the incom-
pressible Navier-Stokes equations,

~∂τβj þ βi ~∂iβj þ ~∂jPr − ν ~∂2βj − νAϵ
ij∂2βi

− ξAϵ
ik∂i∂jβk ¼ fj; ~∂iβ

i ¼ 0; (84)

which correspond to the MHD turbulence equation with
viscosity in plasma physics [58]. Here, the external force

density reads fj ¼
ffiffiffiffiffiffiffiffi
fðrcÞ

p
θ02ðrcÞ

H2ðrcÞω ∂jPþ FjaJa

rcω
. Besides the

Lorentz force due to the magnetic field, which arises from
the perturbation of the electric field and electric force for
the electric field, it is worth noting that the forcing term fj
is also affected by the pseudoscalar field θ withffiffiffiffiffiffiffiffi

fðrcÞ
p

θ02ðrcÞ
H2ðrcÞω ∂jP. The pressure density Pr equals κðrcÞP

and these kinematic viscosities ν, νA, and ξA are defined by
ν ¼ η=ω, νA ¼ ηA=ω, and ξA ¼ ζA=ω.

IV. CLOSING REMARKS

Based on the static black brane metric, we applied
the two finite diffeomorphism transformations and non-
relativistic long-wavelength expansion to derive the bulk

equations of motion up to Oðϵ2Þ at an arbitrary cutoff
surface Σc outside the horizon in the nondynamical and
dynamical CS modified gravities. In this nondynamical
model, the dual nonvortical fluid possesses the shear
viscosity η and Hall viscosity ηA. According to the
momentum constraint from the conservation equations
of the Brown-York tensor, the dual nonvortical fluid
obeys the MHD equation. However, these kinematic
viscosities ν and νA related to η and ηA do not appear
in this MHD equation, which is special for the (2þ 1)-
dimensional dual fluid. The ratio η=sc equals the uni-
versal value 1=4π, while the ratio ηA=s depends on the rc
and black brane charge q. In the dynamical framework,
besides the shear viscosity η and Hall viscosity ηA, the
dual fluid possesses another so-called Curl viscosity ζA,
whose ratio to entropy density ζA=s also depends on the
Σc and black brane charge q. Moreover, the dual vortical
fluid obeys the MHD turbulence equation with external
force density influenced by the electromagnetic and
pseudoscalar fields. At the infinite boundary, the ratio
ηA=sc agrees with the previous result by using the probe
limit of the pseudoscalar field in the charged black brane
background. In addition, even though the electromagnetic
field is related to the pseudoscalar field, there exists the
current conservation law ∂aJa ¼ 0 at the order ϵ2 in both
cases, which is not affected by the pseudoscalar field.
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