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The bulk (Einstein-Hilbert) and boundary (Gibbons-Hawking) terms in the gravitational action are gen-
erally renormalized differently when integrating out quantum fluctuations. The former is affected by non-
minimal couplings, while the latter is affected by boundary conditions. We use the heat kernel method to
analyze this behavior for a nonminimally coupled scalar field, the Maxwell field, and the graviton field.
Allowing for Robin boundary conditions, we examine in which cases the renormalization preserves
the ratio of boundary and bulk terms required for the effective action to possess a stationary point.
The implications for field theory and black hole entropy computations are discussed.

DOI: 10.1103/PhysRevD.89.064034 PACS numbers: 04.62.+v, 04.70.Dy, 11.10.Gh

I. INTRODUCTION

Quantum field fluctuations, when integrated out on a
curved background spacetime, generally lead to renorm-
alization of gravitational couplings. If the background has
a boundary, then also the couplings in the boundary action
are renormalized. The boundary conditions on the quan-
tum fields do not affect the local bulk couplings but can
affect the local boundary couplings; on the other hand,
nonminimal coupling terms in the action affect the bulk
but not the boundary couplings [1]. Renormalization
can therefore change the balance between bulk and boun-
dary terms.
In this paper we investigate the impact of nonminimal

couplings and boundary conditions for matter and metric
fields on the renormalization of the bulk Einstein-Hilbert
(EH) term (

R
M

ffiffiffi
g

p
R) and the boundary Gibbons-

Hawking (GH) term (
R
∂M

ffiffiffi
h

p
K). On a manifold with boun-

dary, the GH term must appear with the relative coefficient
2 if the metric variation of the total action is to have no
boundary term when the boundary metric is held fixed.
This is required in order for the action to be stationary
at solutions to the equations of motion. The same is true
in the presence of nonminimally coupled matter fields,
when the Ricci scalar appears multiplied by a function
of fields in the action. If this bulk/boundary balance were
to be upset, it seems that the existence of a classical limit
and a valid perturbative expansion around a stationary point
would be compromised.
In particular, when Dirichlet boundary conditions are

used for a nonminimally coupled field, the bulk and boun-
dary terms of the a2 coefficient of the heat kernel expansion
(which provides the renormalization of Newton’s constant)
do not have the proper balance [2,3]. This was interpreted
in [2] as indicating that the boundary renormalization

should be evaluated as a limit from the bulk, restoring
the balance, while it was argued in [3] that the nonbalanced
result is actually the correct one. Within the exact renorm-
alization group approach that the latter authors use, this
implies that the beta functions for the “bulk Newton con-
stant” and the “boundary Newton constant” are different,
which causes the scale-dependent effective action Γk to
be “mismatched” and not lead to proper equations of
motion [except at most at one scale where the two cou-
plings can be fixed as equal as a renormalization group
(RG) initial condition].
The Gibbons-Hawking term also plays an important role

in black hole thermodynamics. When the Euclidean path
integral for matter and gravitational fields is evaluated
on a black hole solution that is a stationary point of the
effective gravitational action, the (renormalized) entropy
and other thermodynamical quantities are computed only
from this boundary term. This is sometimes called the
“on-shell” method for computing black hole entropy and
its quantum corrections [4–6]. Thus it would seem that
the choice of boundary conditions could affect the (leading
order) value of the entropy when computed using the
on-shell method. If so, it would lead to a puzzle, because
the entropy can also be computed from an “off-shell” pro-
cedure involving a conical defect [7,8], in which case the
entropy depends only upon the bulk action. Thus it would
seem that the two methods would generally not yield the
same results for all boundary conditions.
Questions about the equations of motion and the black

hole entropy are not directly physical when phrased in
terms of regulated, would-be divergent quantities. One
might therefore take the viewpoint that only the renormal-
ized effective action need exhibit a proper matching of bulk
and boundary couplings. However, renormalization also
contributes finite observable effects, such as under a change
of renormalization scale as mentioned above or, more spe-
cifically, when integrating out the effects of a particular
massive field. Such questions provide the motivation
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for this paper, but they will not be fully resolved here. We
aim to develop some results that should contribute toward
understanding them. In particular, we shall study the
renormalization of the EH and GH terms under a broader
class of boundary conditions than has been previously
studied in this context, including Robin conditions of a
particular kind. For simplicity, we will restrict ourselves
to the one-loop effective action framework assuming non-
interacting quantum fields, but we expect our conclusions
to be transferable to the exact renormalization group
approach.
In Sec. II, we summarize the computation of the effective

action from the heat kernel expansion and its dependence
on nonminimal coupling and boundary conditions. In
Sec. III, we discuss the case of the nonminimally coupled
scalar field, and we find that a particular Robin boundary
condition is the only one ensuring the balanced renormal-
ization of the GH boundary term. (The necessity of Robin
boundary conditions for preserving bulk/boundary balance
in the presence of nonminimal coupling has previously
been argued by Solodukhin [9], but to our knowledge it
is not discussed in the literature.) In Sec. IV we discuss
the Maxwell field, and find that in this case the boundary
conditions compatible with gauge invariance, which are of
mixed Dirichlet-Robin type, automatically ensure the bal-
ance. In Sec. V we discuss the case of the graviton field.
A naive analysis shows that the balance is not preserved
when using gauge-invariant boundary conditions (on cer-
tain backgrounds); however, we argue that the question
for gravitons is more subtle and requires further study.
Section VI includes a discussion of the main results and
the questions they leave open, and a discussion and reso-
lution of the puzzle about black hole entropy men-
tioned above.

II. HEATKERNELANDBOUNDARYCONDITIONS

We consider a set of free quantum fields φA, labeled by a
tensor, spinor or internal index A, on a four-dimensional
manifold M with background Euclidean metric gμν and
boundary ∂M. We assume that the action can be written
in the form

S½g;φA� ¼ − 1

16πGb

Z
M

d4x
ffiffiffi
g

p ðR − 2Λb þ � � �Þ

þ 1

2

Z
M

d4x
ffiffiffi
g

p
φADABφ

B þ S∂ ½g;φA�; (1)

where we have included a bare gravitational action
(the dots stand for unwritten higher order in curvature
terms). Here DAB is a second-order differential operator
of the Laplace type, by which we mean that it has the
structure

DAB ¼ −ðηABgμν∇μ∇ν þ EABÞ; (2)

where ∇ is the covariant derivative, ηAB a suitable metric 1

on the configuration space φA, and EAB involves no
derivatives and can include mass parameters as well as
background structures such as the curvature. (In this, as
in most of this section, we follow the notation of [1].)
S∂ in (1) is a suitable boundary action that leads to
well-defined equations of motion when S is varied with
respect to both gμν and φA; neglecting higher order
curvature terms, its purely gravitational part consists of
the well-known Gibbons-Hawking term,

− 1

8πGb

Z
∂M

d3x
ffiffiffi
h

p
K; (3)

where h is the induced metric on ∂M and K the extrinsic
curvature.2 This might be supplemented by terms similarly
required for “balancing” the matter action and leading to
well-defined equations of motion upon variation subject
to the boundary conditions.
For example, for a single massless nonminimally

coupled scalar field φ we may have ηAB ¼ 1,
EAB ¼ −ξR, and

S∂ ½g;φ� ¼
Z
∂M

d3x
ffiffiffi
h

p
K

�
− 1

8πGb
þ ξφ2

�
:

Upon variation with respect to gμν and φ, subject
to Dirichlet boundary conditions on the metric
(δgμνj∂M ¼ 0) and the scalar field (φj∂M ¼ 0), the boun-
dary term in the variation vanishes and the bulk one yields
the equations of motion: the Einstein equations with source
Tμν½φ�, and the Klein-Gordon equation with nonminimal
coupling ξ. The addition of a suitable extra term to the
boundary action can allow the Dirichlet boundary condition
to be replaced by a Robin boundary condition, as described
in detail in Sec. III.
The quantum theory of φA on a classical background gμν,

is defined by the path integral

Z½g� ¼
Z

DφAe−S½g;φA�; (4)

where the integral is done over fields satisfying suitable
boundary conditions at ∂M. Expanding the action as in
(1) into bulk and boundary parts, it is seen that if the boun-
dary action S∂ vanishes for fields satisfying the boundary
conditions, the boundary action makes no contribution and

1For a collection of scalars, ηAB is the identity matrix. For a
vector field it is the spacetime metric, and for a tensor field
the DeWitt metric.

2The extrinsic curvature is defined asK ¼ hijKij, where Kij ¼− 1
2
Lnhij defines the second fundamental form by the Lie deriva-

tive of the intrinsic boundary metric along the outward normal
direction. The reason for the minus sign is that we denote by
nμ the inward-directed unit normal. This follows the conventions
of [1]. Note that under these conventions K > 0 for a sphere.
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the path integral evaluates to the determinant of the operator
D (up to an irrelevant constant).3 Defining the effective
action Γ½g� ¼ − ln Z, we have then at the formal level

Γ½g� ¼ Sb½g� þ
1

2
Tr ln D≡ Sb½g� þW½g�: (5)

The W term is divergent and needs regularization.4 We
will define it through the heat kernel expansion with a
short-distance cutoff ϵ, and cancel the terms divergent as
ϵ → 0 by suitable counterterms in the bare action Sb, lead-
ing to renormalized gravitational couplings in Γ. In this
framework, we can write

W½g� ¼ − 1

2

Z
∞

ϵ2
dt
Kðt; DÞ

t
; (6)

where the trace of the heat kernel, Kðt; DÞ, is given by

Kðt; DÞ ¼ Tr½e−tD�: (7)

Kðt; DÞ has a small t expansion in terms of the form

Kðt; DÞ ∼
X
j≥0

tðj−4Þ=2ajðDÞ; (8)

where the heat kernel coefficients ak are integrals over M
and ∂M involving geometrical tensors, the matrix E, and
quantities appearing in the expression of the boundary
conditions.
From (6) and (8) it follows that the leading divergences

in W can be expressed as

W½g� ∼ − 1

2

�
1

2ϵ4
a0ðDÞ þ 2

3ϵ3
a1ðDÞ þ 1

ϵ2
a2ðDÞ þ � � �

�
:

(9)

Let us assume that the boundary conditions imposed are
either Dirichlet,

φAj∂M ¼ 0; (10)

or Robin,

ðnμ∇μφ
A þ SABφBÞj∂M ¼ 0; (11)

where nμ is the inwards-pointing normal unit vector on
∂M; the particular case of Neumann boundary conditions
is covered when S ¼ 0. The heat kernel coefficients

corresponding to these boundary conditions have been
computed in [1,10,11] and are

a0ðDÞ ¼ 1

ð4πÞ2
Z
M

d4x
ffiffiffi
g

p
d; (12)

a1ðDÞ ¼ � 1

4

1

ð4πÞ3=2
Z
∂M

d3x
ffiffiffi
h

p
d; (13)

a2ðDÞ ¼ 1

6

1

ð4πÞ2
�Z

M
d4x

ffiffiffi
g

p ðRdþ 6EA
AÞ

þ2

Z
∂M

d3x
ffiffiffi
h

p
Kdþ 6SAAÞ

�
: (14)

Here d ¼ ηABηAB stands for the dimension of the vector
space where φA lives, the � in (13) stands for Robin
and Dirichlet boundary conditions respectively, and SAB
should be set to zero in (14) for the Dirichlet case. The case
of mixed boundary conditions, when some components of
φA satisfy Dirichlet conditions and some satisfy Robin con-
ditions, is covered by the same formulas, with the trace of
SAB in (14) taken only over the subspacewhere it is defined.
We assume that the Λb is set so that the combination

Λb=Gb in the bare gravitational action contains suitable
divergences leading to a finite renormalized cosmological
term in Γ. We further assume that S∂ contains an ∼ϵ−3 vol-
ume term that cancels a1. Our attention in the rest of the
paper will be focused on the a2 term, and the renormaliza-
tion of Newton’s constant it implies for both the bulk and
the boundary terms in the action.
It is immediate from (14) that if EAB does not involve

R (minimal coupling) and also the boundary condition
coefficients SAB do not involve the extrinsic curvature K,
then the bulk R term and the boundary K terms of a2 have
the same relation as the bulk R term and boundary
Gibbons-Hawking term in the bare gravitational action.
This means that the renormalized effective action Γ will
also have the general form

Γ½g� ¼ − 1

16πG0

Z
M

d4x
ffiffiffi
g

p ðR − 2Λ0 þ � � �Þ

− 1

8πG0

Z
∂M

d3x
ffiffiffi
h

p
K; (15)

in terms of renormalized couplingsΛ0,G0; in particular, the
renormalization of G is written

G0 ¼ Gb þ
d

12πϵ2
: (16)

This equation applies equally for the bulk term and for the
boundary term of the action; this fact guarantees that

3We discuss a different viewpoint at the end of Sec. III.
4We should also introduce for dimensional consistency a mass

scale μ in the path integral measure, leading to Tr lnðD=μ2Þ in
(5). The μ dependence in Γ can be canceled as well by adjusting
the bare action and it plays no role in the rest of our analysis.
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δΓ=δg ¼ 0 leads to the Einstein field equations, whereas if
this bulk-boundary balance were broken, δΓ would contain
a boundary term with normal derivatives of δgμν.
It is noteworthy that the heat kernel coefficients

for a minimally coupled scalar field with Dirichlet or
Neumann boundary conditions have precisely the ratio
required in order to preserve the bulk-boundary balance
for the renormalized gravitational couplings. To our
knowledge, this fact has not been remarked upon before.
It may be purely coincidental, but perhaps it can receive
an explanation by considering how the heat kernel
responds to variations of the background metric. If so,
that might provide insight into what happens for nonmi-
nimally coupled fields and alternative boundary condi-
tions, which will occupy our attention for most of
this paper.
Returning to (14), it is also clear that if the field is non-

minimally coupled to the curvature (so that EAB includes
R), then the Dirichlet boundary condition fails to produce
the proper balance within the bulk and boundary terms
of a2. The same happens for minimally coupled fields
if Robin boundary conditions are imposed with SAB
involving K, or for nonminimally coupled fields if Robin
boundary conditions are imposed that do not involve K
in SAB in a very particular way. This failure to achieve
bulk-boundary balance would entail that a key property
of the action (yielding the equations of motion when var-
ied under Dirichlet conditions for the metric) is not pre-
served from the bare to the renormalized gravitational
action.
The observation concerning Dirichlet conditions and

nonminimal coupling was made in [3], in the context of
the exact renormalization group, which we proceed to
explain now in a brief detour from our main focus.
When an effective action at scale k is introduced, interpo-
lating between the full effective action Γ at k → 0 and the
bare action at k → ∞, it satisfies the exact renormalization
group equation

k∂kΓk ¼
1

2
Tr

�
k∂kRk

Dk þRk

�
; (17)

where Dk is the Hessian of Γk with respect to the fields it
depends on (thus being analogous to D in our formalism),
and Rk is an IR cutoff function which also depends on Dk.
The trace of a general function FðDkÞ can be computed
with the heat kernel method [12] as

Tr½FðDkÞ� ¼
X
j≥0

ajðDkÞQ4−j
2
ðFÞ;

QnðFÞ ¼
1

ΓðnÞ
Z

dzzn−1FðzÞ: (18)

In this case where FðDkÞ ¼ ðDk þRkðDkÞÞ−1k∂kRkðDkÞ,
the coefficientsQn will depend only on k and the functional

form of the cutoffRk; the details of the form of the operator
Dk, and the boundary conditions, influence only the heat
kernel coefficients ak, which are computed in the same
way as for the one-loop effective action.
Hence, when a Γk suitable for quantum gravity is

expanded in geometric terms, the right-hand side of the
flow equation (17) will give different beta functions to
the coefficients in the bulk

R
R and the boundary

R
K

terms, as long as the relation between a nonminimal
term in Dk and the boundary conditions imposed is not
of the particular form discussed above. In particular, for
Dirichlet boundary conditions any nonminimal coupling
in the action entails a different renormalization group
flow for the “bulk Newton constant” and the “boundary
Newton constant.” Then the variation of Γk with respect
to the metric does not lead to well-defined equations of
motion, except at most at one scale k0 where the balance
can be postulated as part of the initial condition for the
RG flow.
In the following sections we will address in turn the sca-

lar field, the Maxwell field and the graviton field, and dis-
cuss for each of them the prospects of balancing the bulk
and boundary renormalizations by employing Robin boun-
dary conditions that are “matched” to the nonminimal cou-
pling in a particular way.

III. SCALAR FIELD

In this section we consider a single massless nonmini-
mally coupled scalar field. We take the action to be

S½g;φ� ¼ 1

2

Z
M

d4x
ffiffiffi
g

p
φð−∇2 þ ξRÞφ

þ
Z
∂M

d3x
ffiffiffi
h

p
ðξKφ2 þ αφ∇nφÞ: (19)

We have included an extra boundary term proportional
to φ∇nφ for compatibility with Robin boundary condi-
tions; α is an arbitrary numerical parameter and ∇n ¼
nμ∇μ is the (inwards) normal derivative. The boundary
term ξKφ2 is required to ensure that variation with
respect to the metric leaves no uncanceled boundary
term involving ∇ng.
Issues related to the choice of boundary conditions for

the nonminimally coupled scalar field have been consid-
ered previously in several contexts by Solodukhin. In par-
ticular, he considered a Robin boundary condition, both in
the context of the “brick-wall” technique for computing
black hole entropy [13], and in a more general context
for manifolds with boundaries [9], where also the
necessity of Robin boundary conditions for preserving
bulk/boundary balance in the presence of nonminimal cou-
pling was argued. The full range of possible boundary con-
ditions and associated boundary terms was also discussed
in [14].
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Variation of the action with respect to φ leads to

δS ¼
Z
M

d4x
ffiffiffi
g

p
δφð−∇2 þ ξRÞφ

þ
Z
∂M

d3x
ffiffiffi
h

p ���
αþ 1

2

�
∇nφþ 2ξKφ

�
δφ

þ
�
α − 1

2

�
φ∇nðδφÞ

�
: (20)

To infer the equation of motion ð−∇2 þ ξRÞφ ¼ 0 from the
bulk term, a boundary condition that makes the boundary
term vanish is needed. If α ¼ 0, only the vanishing
Dirichlet boundary condition,

φj∂M ¼ 0; (21)

ensures the vanishing of the boundary term in (20). For
nonzero α, the Robin condition

�
∇nφþ ξK

α
φ

�����∂M ¼ 0; (22)

is also permissible. The nonvanishing Dirichlet condition
can be implemented with the choice α ¼ 1=2, and the
Neumann boundary condition can be implemented with
the limit α → ∞.
According to (9) and (14), the terms of W that are linear

in (bulk or extrinsic) curvature are

WjR;K ¼ − 1

12ϵ2
1

ð4πÞ2
�Z

M
d4x

ffiffiffi
g

p
Rð1 − 6ξÞ

þ 2

Z
∂M

d3x
ffiffiffi
h

p
Kð1þ 6SÞ

�
: (23)

Here S should be set to zero for Dirichlet boundary condi-
tions and to ξ=α for Robin boundary conditions of the form
(22). It is then clear that the balance between the bulk and
the boundary terms of the gravitational effective action
can be preserved only if the boundary condition is
Robin with the value S ¼ −ξ, corresponding to the special
value α ¼ −1.
The renormalization of Newton’s constant in both bulk

and boundary terms reads for this value of α

1

G0

¼ 1

Gb
þ 1

12πϵ2
ð1 − 6ξÞ: (24)

Had we imposed different boundary conditions, we would
still have this expression for the renormalization of Gbulk
(i.e. the coefficient of the

R
R term) and a different one

for the renormalization of Gð∂Þ (i.e. the coefficient of the
boundary K term):

1

Gð∂Þ
0

¼ 1

Gð∂Þ
b

þ 1

12πϵ2

�
1þ 6ξ

α

�
; (25)

where α → ∞ covers both the Dirichlet and the
Neumann case.
We reach therefore the conclusion that when a nonmini-

mally coupled scalar is integrated out, the balanced renorm-
alization of the bulk and boundary terms in the gravitational
effective action (necessary in order to reproduce the
Gibbons-Hawking term in Γ½g�) is not possible if the field
satisfies Dirichlet boundary conditions, and is in fact only
possible if it satisfies Robin boundary conditions of the spe-
cific form

ð∇nφ − ξKφÞj∂M ¼ 0: (26)

This is a surprising conclusion, because a wider range of
boundary conditions (Dirichlet, Neumann, and Robin with
arbitrary coefficients) is admissible for the scalar field on its
own, and one could have naively expected that the effective
dynamics of the gravitational field is well defined for any of
them. Is there any way to avoid the conclusion that only one
preferred Robin boundary condition is allowed for the non-
minimally coupled scalar?
We will return to this issue in the Discussion section.

For the moment we will limit ourselves to commenting
on the different point of view taken in [2], which also
examines nonminimally coupled fields on manifolds with
boundary. There the vanishing Dirichlet boundary condi-
tion is assumed, and hence the standard expression for
the effective action W¼1

2
Tr lnD exhibits bulk-boundary

mismatch. However, the authors argue that the effective
action contains in addition to this term a further one con-
sisting of an integral over the boundary of ξKhφ2i, evalu-
ated as a limit approaching the boundary from the bulk.
When this contribution is taken into account the bulk-
boundary balance is restored.
Explained in more detail, the argument in [2] starts from

the partition function for the action (19) with α ¼ 0, and
computes as

W ¼ − ln
Z

Dφ e−ξ
R
∂M d3x

ffiffi
h

p
Kφ2

e−Sbulk½g;φ�

¼ W̄ þ ξh
Z
∂M

d3x
ffiffiffi
h

p
Kφ2i þOðξ2K2Þ; (27)

in a formal perturbative expansion; here W̄ is the standard
expression 1

2
Tr ln D, where D ¼ Sð2Þbulk ¼ −∇2 þ ξR. It is

argued that despite the Dirichlet boundary conditions, the
expectation value hφ2i does not vanish, and can be substi-
tuted by a standard heat kernel expansion evaluation. To the
order we are interested in, it is computed from a0 coeffi-
cient evaluated as an integral over the boundary. Thus it
is found that the one-loop contribution to the effective
action is
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WjR;K ¼ W̄ þ 1

ð4πϵÞ2 ξ
Z
∂M

d3x
ffiffiffi
h

p
K þOðξ2K2Þ: (28)

Comparison with the expression for W̄ given by setting
S ¼ 0 in (23) shows that the bulk-boundary balance is
exactly restored by this procedure.
However appealing this conclusion, we do not accept the

reasoning that leads to it. The functional integral in the first
line of (27) is supposed to be over all field configurations
φðxÞ satisfying the chosen boundary conditions at ∂M. If
Dirichlet boundary conditions are chosen, it follows
immediately that the boundary action vanishes and one
must integrate only the exponential of the bulk action, a
procedure leading back to W̄. The calculation that obtains
a separate boundary contribution, from this standpoint,
appears to contain an illicit evaluation by a limiting pro-
cedure that first computes the expectation value hφ2i in
the bulk and then evaluates it in the limit that the boundary
is approached.

IV. MAXWELL FIELD

In this section we consider a gauge field Aμ, restricting
ourselves for simplicity to the Abelian case. The physics
must be invariant under gauge transformations of the form

Aμ → A0
μ ¼ Aμ þ∇μξ: (29)

The bulk action can be written as

Sbulk½g; Aμ� ¼
1

2

Z
M

d4x
ffiffiffi
g

p ½−Aμ∇ν∇νAμ

þ Aμ∇μ∇νAν þ AμAνRμν�: (30)

The quantum theory is defined by a path integral including
Fadeev-Popov gauge-fixing and ghost terms, which we also
represent by ξ. We use the Lorenz gauge,

∇μAμ ¼ 0; (31)

which disposes of the second term in the square brackets
in (30) by adding its negative as the gauge-fixing term.
Then the full effective action including gauge and ghost
contributions takes the form [1],

Γ½g� ¼ Sb½g� þ
1

2
Tr ln DðAÞ − Tr ln DðξÞ; (32)

with the gauge field and the ghost operators being

DðAÞ ¼ −gμν∇2 þ Rμν d ¼ 4; (33)

DðξÞ ¼ −∇2 d ¼ 1: (34)

We still need to fix the boundary conditions at ∂M
which, as in the scalar case, can be done including a suit-
able boundary action so that the boundary term in δS

vanishes upon applying the boundary conditions.
However, there is an extra requirement that must be
met in the gauge field case. If one works within the stan-
dard framework with Fadeev-Popov ghosts, the required
gauge invariance of the physical results implies that
boundary conditions must be invariant under the gauge
transformations (29). In other words, if Aμ satisfies the
boundary conditions then A0

μ related by (29) must
also [1,15].
A Dirichlet boundary condition for both gauge and ghost

fields, for example, does not satisfy this requirement; if we
impose Aμ ¼ 0 ¼ ξ on ∂M, then we will have that on ∂M

A0
n ¼ ∇nξ ≠ 0: (35)

Working within the Lorenz gauge, there are two alternative
sets of boundary conditions that, unlike the Dirichlet
conditions, satisfy this requirement. They are called the
“absolute” and the “relative” boundary conditions [1,16]
and can be written respectively as

Anj∂M ¼ 0; ð∇nAi − KijAjÞj∂M ¼ 0;∇nξj∂M ¼ 0;

(36)

and

Aij∂M ¼ 0; ð∇nAn − KAnÞj∂M ¼ 0; ξj∂M ¼ 0; (37)

where i, j indices label tangential components and n the
normal component, and Kij is the second fundamental
form on ∂M (whose trace is K), and the indexed expres-
sions denote the corresponding components of covariant
tensors. It can be easily checked that both sets of boun-
dary conditions are invariant under transformations (29).5

Both sets of boundary conditions are compatible with a
boundary action added to (30), and the boundary action
itself vanishes for configurations satisfying the boundary
conditions [1].
The heat kernel coefficient a2 is given by the same

expression (14) with the only difference being that the trace
of SAB is only taken over the subspace satisfying Robin
conditions where S is defined. For absolute boundary con-
ditions we have that

SabsAB → −Kij; (38)

and for relative boundary conditions we have

SrelAB → −K: (39)

In both cases its trace is −K. The matrix E equals −Rμν, its
trace is −R, and it is clear that for both absolute and for

5The invariance of the absolute boundary conditions is a matter
of straightforward computation; that of the relative boundary con-
ditions requires using that the modes summed over in the path
integral are eigenfunctions of the ghost kinetic operator ∇2,
which implies that ∇2ξj∂M ∝ ξj∂M ¼ 0 for them.
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relative boundary conditions the coefficient for the operator
DðAÞ reads

a2ðDðAÞÞ ¼ 1

6

1

ð4πÞ2
�Z

M
d4x

ffiffiffi
g

p
Rðþ4 − 6Þ

þ2

Z
∂M

d3x
ffiffiffi
h

p
Kðþ4 − 6Þ

�
; (40)

where we have separated for clarity the contribution from
the Laplacian operator (þ4R in bulk, þ4K in boundary)
from that of the nonminimal coupling (−6R in bulk) and
that of the Robin boundary condition applied to certain
components (−6K in boundary). It is seen that the bulk
and boundary terms have the appropriate balance. The
coefficient for the ghost operator, which is simply the
Laplacian subject to either Dirichlet or Neumann boundary
conditions, is in both cases

a2ðDðξÞÞ ¼ 1

6

1

ð4πÞ2
�Z

M
d4x

ffiffiffi
g

p
Rþ 2

Z
∂M

d3x
ffiffiffi
h

p
K

�
:

(41)

Hence the total renormalization of Newton’s constant due
to integrating out the electromagnetic field applies equally
to the bulk and boundary terms of the action, whether abso-
lute or relative boundary conditions are chosen. Taking into
account (32) for the relative weight of the ghost contribu-
tion, it reads

1

G0

¼ 1

Gb
þ 1

12πϵ2
ð4 − 6 − 2Þ ¼ 1

Gb
− 1

3πϵ2
: (42)

V. GRAVITON FIELD

In this section we will discuss the renormalization
of the Einstein-Hilbert action and the boundary Gibbons-
Hawking term due to integrating out a tensor field hμν,
interpreted as a quantized perturbation of the background
metric gμν. One might think that the calculation is a simple
generalization of the one for Maxwell fields; however, there
are several subtleties and complications involved.
The first one is that the linearized theory of a quantized

tensor field hμν is gauge invariant only if the background is
on shell, that is, satisfies the bare Einstein equations [17].
However, our purposes require varying the effective action
Γ½g� with respect to the background metric gμν to see if the
boundary term of the variation is canceled (this is what the
“balanced renormalization” amounts to). How is this varia-
tion to be carried out if gμν has been specified as an on-shell
solution of the bare equations of motion? The proper
answer to this question would presumably involve replac-
ing the effective action for the background metric that we
are using (suitable for analyzing the backreaction of quan-
tum fields on curved spacetime) by the Legendre effective

action, which depends on the expectation value of the met-
ric field and is defined via the background field formalism
[18,19]. However, an exploration of the issue in the context
of the background field method is beyond the scope of this
paper. Here we restrict our attention to the bulk-boundary
balance of the a2 heat kernel coefficient of different kinds
of Laplace operators (with different kinds of boundary con-
ditions) on an arbitrary background. Although results of
such calculations for gravitons are not directly applicable
to our bulk/boundary balance question without further
analysis, they could be useful in a more thorough treatment,
as well as in other applications. Hence we shall present
them briefly here.
The quantum theory of gravitons on an arbitrary

background with a boundary has been discussed e.g. in
Refs. [16,20–22]. The boundary conditions must be
gauge invariant in the same sense as discussed above for
the Maxwell field. In a similar way as we showed above
for Aμ, it is shown that Dirichlet boundary conditions
for all components of the field hμν and the ghost ξμ do
not satisfy the gauge invariance requirement.6 This already
calls into question the validity of the conclusions of [3],
where in the context of the exact renormalization group
for quantum gravity different renormalizations are found
for the bulk and boundary versions of Newton’s constant,
since there the calculation proceeds under the assumption
of Dirichlet boundary conditions for all fields.
The analogy with the Maxwell field fails, however, in

that it has been proven that on a general background there
are no gauge-invariant mixed Robin-Dirichlet boundary
conditions of the form we have been using; instead, all
gauge-invariant boundary conditions suitable for Lorentz
(rotation) invariant gauge fixing (such as those introduced
by Barvinsky [23]) include tangential derivatives of hμν
at the boundary. This makes the heat kernel ill defined
[22,24], rendering our whole calculational method
inapplicable.
Nevertheless, there is a restricted class of backgrounds

on which gauge-invariant mixed Dirichlet-Robin boundary
conditions can be found [22,25]. They are characterized by
the condition that the extrinsic curvature of the boundary is
proportional to the intrinsic boundary metric, with a
proportionality coefficient which is constant over the
boundary:

Kij ¼
K
3
gij; ∂iK ¼ 0; (43)

where i labels the tangential coordinates and gij is the
intrinsic boundary metric. On such backgrounds, and when
the action is supplemented with the de Donder gauge-fixing
term and the corresponding ghost term, the following

6A gauge transformation for the normal components hμn in-
volves normal derivatives of ξμ, which cannot be set to zero con-
sistently with a Dirichlet boundary condition.
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mixed Dirichlet-Robin set of boundary conditions is gauge
invariant 7:

∇nhnn − Khnn þ 2Kijhij ¼ 0; (44a)

∇nhij þ Kijhnn ¼ 0; (44b)

hin ¼ ξn ¼ 0; (44c)

∇nξi þ Kj
iξj ¼ 0: (44d)

Even though for the reasons discussed above we cannot
assume the physical significance of the result, we will now
outline the computation of the a2 coefficient for these boun-
dary conditions. Since the wave operator for gravitons in
the de Donder gauge is not of the Laplace type (2), it is
more convenient to switch variables from hμν to a scalar
variable, the trace Φ, and a tensor component, the traceless
part ĥμν ¼ hμν − 1

4
gμνΦ. Then the quadratic Lagrangian

decomposes into terms of the form ΦDðΦÞΦ,
ĥμνDðĥÞμνρσĥρσ and ξ̄μ ~D

μνξν for scalar, trace-free tensorial
and ghost fluctuations, with each D a Laplace-type
operator.8 In these variables the boundary conditions
(44) translate to

∇nΦþ K
2
Φþ 2Kijĥij ¼ 0; (45a)

∇nĥij − 1

8
KijΦ − 3

2
Kijgklĥkl ¼ 0; (45b)

ĥin ¼ ξn ¼ 0; (45c)

∇nξi − Kj
iξj ¼ 0: (45d)

The relevant heat kernel coefficient should be computed

as agrav2 ¼ aðΦÞ2 þ aðĥÞ2 − 2aðξÞ2 , using formula (14). The
result is

ð96π2Þagrav2 ¼
Z
M

d4x
ffiffiffi
g

p f−6Rþ 20Λbg

þ 2

Z
∂M

d3x
ffiffiffi
g

p ð−KÞ; (46)

Therefore the bulk-boundary balance fails to obtain.We
now make several remarks about this calculation.
(i) Not only have we implicitly required the background

to be on-shell (for the linearized theory to be gauge
invariant), we have required it to have certain sym-
metry properties at the boundary. This makes even
more unclear than already discussed above how the
variation of the effective action with respect to gμν
is supposed to proceed.

(ii) We have used Robin boundary conditions for the
tangential components hij, but the balance of the
Gibbons-Hawking term is required when varying
the effective action and imposing Dirichlet boundary
conditions for the intrinsic boundary metric.

(iii) The boundary conditions (44) require the addition
of a boundary action for hμν, analogous to the one
in (19), in order for the total action to be stationary
at a solution to the equations of motion. If this boun-
dary action does not vanish when the equations of mo-
tion are imposed (as happens for the scalar and the
vector field), then the effective action can receive a
further, boundary contribution that we have not
considered.

(iv) The bulk-boundary balance in (46) is restored if Λb
is replaced by R=4, to which it is equal in a solution
to the bare equation of motion. This may be a mere
coincidence, but perhaps it points to an important
feature of a more consistent treatment of the
problem.

(v) The set of Robin boundary conditions for the scalar/
traceless decomposition, and the heat kernel coeffi-
cient they imply, are new results, which could be of
interest quite apart from their application to studying
the balanced variation of the effective action.

VI. SUMMARY AND DISCUSSION

In this paper we have examined the one-loop
renormalization of Newton’s constant due to integrating
out quadratic quantum fluctuations. This renormalization
amounts to a quadratic divergence proportional to the a2
heat kernel coefficient. This coefficient takes the general
form

a2ðDÞ ∼ β1

Z
M

d4x
ffiffiffi
g

p
Rþ β2

Z
∂M

d3x
ffiffiffi
h

p
K: (47)

We have focused our attention on whether the two terms of
this coefficient stand in the proper balance,

β2 ¼ 2β1; (48)

that preserves the relationship of the bulk Einstein-Hilbert
term to the boundary Gibbons-Hawking term in the effec-
tive action. This is necessary for the latter to yield the effec-
tive equations of motion upon variation with respect to the

7These boundary conditions are found in [22]. They are quoted
here with an error corrected in the first one (2Kijhij replacing
Kgijhij) and the sign of Kij is flipped everywhere to conform
to our conventions.

8The exact form of the operators can be found in e.g. [26]. The
operators DðĥÞμνρσ and ~Dμν are nonminimally coupled.
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metric.In Sec. II we established that this “bulk-boundary
balance” depends on the interplay between the nonminimal
coupling of the field and the boundary conditions imposed
on the field fluctuations. For minimally coupled fields
a Dirichlet or Neumann boundary condition produces
the desired balance. On the other hand, we showed in
Sec. III that for nonminimally coupled fields the bulk-
boundary balance is achieved only with the Robin boun-
dary condition:

ð∇nφ − ξKφÞj∂M ¼ 0: (49)

This boundary condition does not have any other justifica-
tion we are aware of. (In particular, it is not conformally
invariant for ξ ¼ 1=6.) It can be derived from an action
including a particular boundary term, namely (19) with
α ¼ −1, but this action is postulated ad hoc for this
purpose. One possibility is that if the nonminimal coupling
emerges in an effective low-energy theory from integrating
out minimally coupled degrees of freedom, as in [27], this
boundary action may emerge as well in the same way. This
possibility requires further study.
In Sec. IV we turned our attention to the Maxwell field,

where the acceptable boundary conditions are restricted by
the requirement of gauge invariance. The absolute and
the relative boundary conditions, given respectively by
(36) and (37), are both gauge invariant. They are mixed
Dirichlet-Robin boundary conditions, which include a
Robin boundary condition similar to (49) for either the nor-
mal or the tangential components of the vector potential,
and both preserve the bulk-boundary balance. This is the
“best-case scenario,” in which the boundary condition that
induces the balanced renormalization has an independent
justification, given here by the requirement of gauge
invariance.
In Sec. V we examined the graviton field. We discussed a

number of reasons why the question is not as straightfor-
ward to address as for the scalar and vector contributions,
and presented a set of gauge-invariant boundary conditions
on a restricted class of backgrounds, together with the
resulting heat kernel coefficient. However, for the reasons
explained in that section, we consider that analysis to be
inconclusive.
One possible resolution to the general problem of the

bulk-boundary balanced renormalization is to allow the
gravitational bare action to be unbalanced, with a param-
eter Gb in the bulk term and a different parameter Gð∂Þ

b in
the boundary term. Then regardless of the boundary con-
ditions it is possible to make the effective, renormalized
values of these parameters coincide by fine-tuning the bare
values. However, this procedure at most “balances” the
effective action at a single renormalization scale, and hence
is unsatisfactory in the context of the renormalization
group, where we would desire the gravitational effective
action to be well defined and yield effective equations of

motion at different values of the RG scale. Our results
establish that this is possible only if the particular boundary
conditions we have discussed are employed.
A further issue that should be addressed is whether

bulk/boundary balance should be, and is, maintained for
the renormalization of the higher derivative terms in the
effective action. This would be a more complicated prob-
lem to analyze, since the higher derivatives would bring
in more boundary terms and more involved boundary
conditions.
Finally, we remark on the connection between our results

and the “contact term” that appears as part of the quantum
correction to black hole entropy induced by nonminimally
coupled fields [28,29]. In general, this quantum correction
can be interpreted as a renormalization of Newton’s con-
stant as it appears in the Bekenstein-Hawking formula
for the entropy [30,31]. For example, for the nonminimally
coupled scalar field the area term of the quantum-corrected
entropy reads (cf. (24))

SBH ¼ A
4G0

¼ A
4Gb

þ A
12πϵ2

ð1 − 6ξÞ: (50)

Of the 1=ϵ2 terms, the first one can be interpreted as the
leading order divergence in the entanglement entropy
across the horizon of the scalar fluctuations, while the
second one (dubbed the “contact term”) is a quantum con-
tribution to the Noether charge, concentrated at the hori-
zon, that appears for nonminimally coupled fields [32].
As discussed in [6,33], the same result can be obtained
in two ways: from an off-shell computation, where the
partition function is computed on a space with a conical
singularity, and from an on-shell computation, where the
entropy comes from the Gibbons-Hawking boundary
term of the effective action evaluated at a smooth station-
ary point.
The equality between the two approaches, though, is

achieved only if the bulk and boundary versions of
Newton’s constant renormalize in the same way. The
off-shell computation matches inherently the renormaliza-
tion of bulkG, while the on-shell computation matches that
of boundary G. Naively, it would seem therefore that with
Dirichlet boundary conditions [so that (25) with α ¼ þ∞
applies] the on-shell computation of black hole entropy
yields a quantum correction consisting solely of the entan-
glement entropy, without the contact term.
Nevertheless, this is not the correct conclusion to draw

from our results. The starting point for the on-shell com-
putation is a saddle-point evaluation of the gravitational
thermal partition function on the solution of the effective
equations of motion. If the bulk and boundary terms of
the effective action are unbalanced, then the saddle point
cannot be identified and the whole procedure is ill defined.
The actual conclusion is that the correct boundary condi-
tions for all quantum fields [e.g. (49), for a nonminimally
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coupled scalar] are necessary for any calculation that will
involve treating gravity dynamically at some point. Once
they are employed, the renormalization of boundary G
includes the nonminimal coupling, and the black hole
entropy includes the contact term by whichever procedure
it is computed.
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