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Several years ago we demonstrated that the Casimir energy for perfectly reflecting and imperfectly
reflecting parallel plates gravitated normally, that is, obeyed the equivalence principle. At that time the
divergences in the theory were treated only formally, without proper regularization, and the coupling to
gravity was limited to the canonical energy-momentum-stress tensor. Here we strengthen the result by
removing both of those limitations. We consider, as a toy model, massless scalar fields interacting with
semitransparent (δ-function) potentials defining parallel plates, which become Dirichlet plates for strong
coupling. We insert space and time point-split regulation parameters, and obtain well-defined contributions
to the self-energy of each plate, and the interaction energy between the plates. (This self-energy does not
vanish even in the conformally coupled, strong-coupled limit.) We also compute the local energy density,
which requires regularization near the plates. In general, the energy density includes a surface energy that
resides precisely on the boundaries. This energy is also regulated. The gravitational interaction of this well-
defined system is then investigated, and it is verified that the equivalence principle is satisfied.
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I. INTRODUCTION

The subject of quantum vacuum energy (the Casimir
effect) dates from the same year as the discovery of
renormalized quantum electrodynamics, 1948 [1]. It puts
the lie to the presumption that zero-point energy is not
observable [2–4]. On the other hand, because of the severe
divergence structure of the theory, controversy has sur-
rounded it from the beginning. Here we will deal with
divergences carefully, by using point splitting in space
and time.
The volume divergence, sometimes called the bulk term,

is rather easily isolated, and apparently has no physical
consequences, since it does not refer to anything but the
properties of empty space. Once bodies are introduced,
additional divergences appear. Sharp boundaries and even
soft ones give rise to divergences in the local energy density
near the surface [5–7]. Curvature introduces additional
divergences, and if the surfaces possess discontinuities such

as corners, there will be additional divergent terms asso-
ciated with these. These divergences may make it impos-
sible to extract meaningful self-energies of single objects,
the cancellations for the electromagnetic field at perfectly
conducting planes [1] and spheres [8] being accidental [5].
How can something finite be meaningfully extracted from
this wealth of infinities (which are actually finite, but very
large, if a physically reasonable microscopic cutoff is
inserted)? These objections have been most forcefully
presented by Graham et al. [9,10], and by Barton
[11,12], but they date back to Deutsch and Candelas [5].
In fact, it has appeared for some time that these surface

divergences can be dealt with successfully in a process of
renormalization (see for example, Refs. [13,14]) and that
finite self-energies, in a generalization of the sense of Boyer
[8], may be extracted. So in this paper we will consider not
only the universally recognized unambiguous Casimir
interaction energies, but also the divergent, but regulated,
self-energies of the separate bodies, here planar objects. It
is critical to do this, because gravity couples to the local
energy-momentum tensor, and such surface divergences
and self-energies promise serious difficulties. How is the

*Permanent address: H. L. Dodge Department of Physics and
Astronomy, University of Oklahoma, Norman, OK 73019, USA.
milton@nhn.ou.edu

PHYSICAL REVIEW D 89, 064027 (2014)

1550-7998=2014=89(6)=064027(11) 064027-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.064027
http://dx.doi.org/10.1103/PhysRevD.89.064027
http://dx.doi.org/10.1103/PhysRevD.89.064027
http://dx.doi.org/10.1103/PhysRevD.89.064027


completely finite Casimir interaction energy of a pair of
parallel conducting plates, as well as the divergent self-
energies of nonideal plates, accelerated by gravity? We
must also address the issue of the renormalization of
Einstein’s equations resulting from singular Casimir sur-
face energy densities [15,16]. The resolution of these
questions turns out to be surprisingly less straightforward
than the reader might suspect.
In the remainder of the Introduction we shall recapitulate

the previous papers in this series [17–19]. We use natural
units (in particular, c ¼ 1), so that energy is identified with
mass, and acceleration has the units of inverse length.

A. Gravitational coupling to an ideal Casimir apparatus

Brown and Maclay [20] showed that, for parallel
perfectly conducting plates separated by a distance a in
the z direction, the electromagnetic stress tensor acquires
the vacuum expectation value between the plates

hTμνi ¼ EC

a
diagð1;−1;−1; 3Þ; EC ¼ − π2

720a3
; (1.1)

EC being Casimir’s energy per unit area. Outside the plates
the value of hTμνi is 0. What is the gravitational interaction
of this Casimir apparatus? As shown in Ref. [17], this
question can be most simply addressed through use of the
gravitational definition of the energy-momentum tensor,

δWm ≡− 1

2

Z
ðdxÞ ffiffiffiffiffiffi−gp

δgμνTμν ¼
1

2

Z
ðdxÞ ffiffiffiffiffiffi−gp

δgμνTμν:

(1.2)

For a weak field,

gμν ¼ ημν þ 2hμν; (1.3)

so if we think of turning on the gravitational field as a small
perturbation, we can ignore

ffiffiffiffiffiffi−gp
. The gravitational energy,

for a static situation, is therefore given by (δW¼−R
dtδE),

Eg ¼ −
Z

ðdxÞhμνTμν: (1.4)

The Fermi metric locally describes an inertial coordinate
system:

h00 ¼ −gz; h0i ¼ hij ¼ 0; (1.5)

which is appropriate for describing a constant gravitational
field. Let us consider a Casimir apparatus of parallel plates
separated by a distance a, with transverse dimensions
L ≫ a. Let the apparatus be oriented at an angle α with
respect to the direction of gravity. The Cartesian coordinate
system attached to the Earth is ðx; y; zÞ, where z is the
direction of −g. See Fig. 1. Now we calculate the
gravitational energy

Eg ¼
Z

ðdxÞgzT00 ¼ gECL2z0 þ K; (1.6)

where K is a constant, independent of the center z0 of the
apparatus. Thus, the gravitational force per area A ¼ L2 on
the apparatus is independent of orientation:

F ≡ F
A
¼ − ∂Eg

A∂z0 ¼ −gEC; (1.7)

a small upward push. Therefore, EC just adds to the mass
energy of the plates, precisely in accordance with the
equivalence principle.

B. Uniform acceleration, semitransparent plates

A more exact relativistic calculation is based on the
use of Rindler coordinates to describe constant acceleration
[18]. In the balance of this paper, for simplicity, we will
consider scalar fields interacting with δ-function (semi-
transparent) plates. Relativistically, uniform (but neces-
sarily ξ-dependent) acceleration is described by hyperbolic
motion,

t ¼ ξ sinh τ; z ¼ ξ cosh τ; (1.8)

which induces the metric

dt2 − dz2 − dr2⊥ ¼ ξ2dτ2 − dξ2 − dr2⊥: (1.9)

The d’Alembertian operator has cylindrical form

∂2 ¼ −
� ∂
∂t
�

2

þ
� ∂
∂z

�
2

þ∇2⊥

¼ − 1

ξ2

� ∂
∂τ
�

2

þ 1

ξ

∂
∂ξ

�
ξ
∂
∂ξ

�
þ∇2⊥: (1.10)

For two semitransparent (δ-function) [6,21] plates at ξ1
and ξ2, the Green’s function can be written as

FIG. 1 (color online). A Casimir apparatus of two parallel
plates, the normal to which makes an angle α with respect to the
direction of gravity, the negative z axis. The parallel plates are
indicated by the heavy lines.
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Gðx; x0Þ ¼
Z

dω
2π

ðdk⊥Þ
ð2πÞ2 e−iωðτ−τ0Þeik⊥·ðr−r0Þ⊥gðξ; ξ0Þ;

(1.11)

where the reduced Green’s function satisfies

�
−ω2

ξ2
− 1

ξ

∂
∂ξ

�
ξ
∂
∂ξ

�
þ k2⊥ þ λ1δðξ − ξ1Þ þ λ2δðξ − ξ2Þ

�

× gðξ; ξ0Þ ¼ 1

ξ
δðξ − ξ0Þ; (1.12)

which we recognize as just the problem of two concentric
semitransparent cylinders [22] with the replacements
m → ζ ¼ −iω and κ → k. The explicit solution for the
reduced Green’s function g is given in Ref. [18] in terms of
modified Bessel functions, Iζðk⊥ξÞ, Kζðk⊥ξÞ.
The canonical energy-momentum tensor for a scalar

field is given by

Tμν ¼ ∂μϕ∂νϕþ gμνL; L ¼ − 1

2
∂λϕ∂λϕ − 1

2
Vϕ2;

(1.13)

where the Lagrange density includes the δ-function
potential,

V ¼ λ1δðξ − ξ1Þ þ λ2δðξ − ξ2Þ: (1.14)

Using the equation of motion,

ð−∂2 þ VÞϕ ¼ 0; (1.15)

we find the energy density to be

T00 ¼
1

2

�∂ϕ
∂τ

�
2 − 1

2
ϕ

∂2

∂τ2 ϕþ ξ

2

∂
∂ξ

�
ϕξ

∂
∂ξ ϕ

�

þ ξ2

2
∇⊥ · ðϕ∇⊥ϕÞ: (1.16)

We obtain the vacuum expectation value of the stress
tensor, hTμνi, from the replacement

hϕðxÞϕðyÞi ¼ 1

i
Gðx; yÞ: (1.17)

The (gravitational) force density is given by [23]

fλ ¼ − 1ffiffiffiffiffiffi−gp ∂νð
ffiffiffiffiffiffi−gp

Tν
λÞ þ

1

2
Tμν∂λgμν; (1.18)

so the gravitational force per unit area on the system is,
upon integration by parts,

1

g
F ¼

Z
dξξfξ ¼ −

Z
dξ
ξ2

T00 ¼
Z

dξξ

×
Z

dζ̂ðdk⊥Þ
ð2πÞ3 ζ̂2gðξ; ξÞ; ðζ ¼ ζ̂ξÞ: (1.19)

This is the change of momentum per unit Rindler
coordinate time τ, which when multiplied by the gravi-
tational acceleration at ξ0, namely, g ¼ 1=ξ0, is the
gravitational force/area F on the Casimir energy in an
apparatus centered at Rindler position ξ0. The reader is
referred to Ref. [18] for details. For the purposes here, all
we need is the weak acceleration limit. This is the limit
in which ξ, ξ0, ξ1, and ξ2 all tend to infinity, but
expanded about ξ0 so that differences such as ξ − ξ0
are finite. Likewise, we rescale ζ ¼ ξ0ζ̂, and regard ζ̂ and
κ2 ¼ k2⊥ þ ζ̂2 as finite. Then the Green’s function reduces
to exactly the expected result, for example, between the
plates, ξ1 < ξ, ξ0 < ξ2 (a ¼ ξ2 − ξ1),

ξ0gðξ; ξ0Þ →
1

2κ
e−κjξ−ξ0j þ 1

2κΔ

�
λ1λ2
ð2κÞ2 2 cosh κðξ − ξ0Þ

− λ1
2κ

�
1þ λ2

2κ

�
e−κðξþξ0−2ξ2Þ

− λ2
2κ

�
1þ λ1

2κ

�
eκðξþξ0−2ξ1Þ

�
; (1.20)

where the denominator (which has a simple interpretation
in terms of multiple reflections) is

Δ ¼
�
1þ λ1

2κ

��
1þ λ2

2κ

�
e2κa − λ1λ2

4κ2
: (1.21)

The flat-space limit also holds outside the plates.
From this follows the explicit force per unit area on the

two-plate apparatus as

F ¼ g
96π2a3

Z
∞

0

dyy3
1þ 1

yþλ1a
þ 1

yþλ2a

ð y
λ1a

þ 1Þð y
λ2a

þ 1Þey − 1

− g
96π2a3

Z
∞

0

dyy2
�

1
y
λ1a

þ 1
þ 1

y
λ2a

þ 1

�

¼ −gðEC þ ES1 þ ES2Þ; (1.22)

which is just −g times the Casimir energy/area of the two
semitransparent plates, including the divergent parts asso-
ciated with each plate. Note that the divergent parts are
independent of the separation between the plates. The
divergent terms are self-energies ES1;2 which simply
renormalize the mass/area of each plate:

Etotal ¼ m1 þm2 þ ES1 þ ES2 þ EC ¼ M1 þM2 þ EC;

(1.23)
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and thus the gravitational force on the entire apparatus
obeys the equivalence principle

F ¼ −gðM1 þM2 þ ECÞ: (1.24)

This calculation has been implicitly carried out in the
vacuum state of the field quantized in the Rindler coor-
dinate system. For completeness one should also consider
the presence of Unruh radiation (or Hawking-Hartle radi-
ation, in the case of a Schwarzschild gravitational source).
This complication is left for later investigation.
A third paper in this series [19] considered a Casimir

apparatus undergoing centripetal acceleration as shown in
Fig. 2. The centripetal force on the apparatus rotating with
angular speed ω, ωr ≪ 1 is

F ¼ −ω2

Z
ðdrÞrT00ðrÞ

¼ −ω2rCMðm1 þm2 þ ES1 þ ES2 þ ECÞ; (1.25)

where rCM is the position vector of the center of energy.
Again, the self-energies correctly renormalize the mass of
the plates.
Other work demonstrating that Casimir energy possesses

the correct Einstein inertia includes Ref. [24].

II. REGULATED CALCULATION OF
CASIMIR ENERGY OF PARALLEL

SEMITRANSPARENT PLATES

A. Fundamental formulas

In this and the following two sections we will consider
Minkowski spacetime. We will also be freely using the
same symbols to represent operators and functions illus-
trated by the Green’s function

Gðx; x0Þ ¼ hxjGjx0i: (2.1)

The imaginary frequency is represented by ζ.

The fundamental formula for the Casimir energy can be
taken to be the famous trace-log formula,1

E ¼ − 1

2

Z
∞

−∞
dζ
2π

Tr lnG: (2.2)

From this, by formal integration by parts, one obtains
another commonly used form

E ¼ −
Z

∞

−∞
dζ
2π

ζ2TrG: (2.3)

But one might rightly be suspicious of this because the
integrals are not well defined. We will properly define the
regulated versions of these integrals in the following
subsection.
The analysis sketched in the Introduction may be equally

well criticized for not dealing with divergences properly,
and including manipulations with divergent integrals. In
this paper, we will remedy this situation. We also wish to
include arbitrary values of the conformal coupling param-
eter, because these correspond to more general couplings to
gravity, and include the conformally coupled case which
may have special virtues [25]. We will consider two
semitransparent plates interacting with a massless scalar
field, with the potential

V ¼ λ1δðzÞ þ λ2δðz − aÞ: (2.4)

The time-Fourier transformedGreen’s function has the form

Gðr; r0;ωÞ ¼
Z ðdk⊥Þ

ð2πÞ2 eik⊥·ðr−r0Þ⊥gðz; z0Þ; (2.5)

where, between the plates, 0 < z, z0 < a, the reducedGreen’s
function has precisely the form given in Eq. (1.20) with ξ and
ξ0 replaced by z and z0, ξ1 ¼ 0, ξ2 ¼ a, and ζ̂ → ζ. In
particular, κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ζ2

p
. In the region outside the plates,

the reduced Green’s function has the form

z; z0 < 0∶ gðz; z0Þ ¼ e−κjz−z0j
2κ

− eκðzþz0Þ

2κΔ

�
λ2
2κ

�
1 − λ1

2κ

�

þ λ1
2κ

�
1þ λ2

2κ

�
e2κa

�
; (2.6a)

z; z0 > a∶ gðz; z0Þ ¼ e−κjz−z0j
2κ

− eκð2a−z−z0Þ
2κΔ

�
λ1
2κ

�
1 − λ2

2κ

�

þ λ2
2κ

�
1þ λ1

2κ

�
e2κa

�
; (2.6b)

where Δ is given by Eq. (1.21).

FIG. 2 (color online). Casimir apparatus undergoing circular
motion. The Casimir energy contributes in the usual manner to
the inertial mass of the system, and the divergent contributions to
the energy renormalize the masses of the two Casimir plates. The
first panel shows the normal of the apparatus in the radial
direction, the second with that axis making an arbitrary angle
α with respect to the radius.

1A convincing argument for using this as a starting point is that
then the correct free energy emerges upon replacing the imagi-
nary frequency integral by the sum over Matsubara frequencies.
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B. Point-split regularization

To define the integrals, we adopt point splitting in the
time and the transverse directions (but not in the z direction,
so as not to complicate the boundary conditions):

τ ¼ tE − t0E → 0; R⊥ ¼ ðr − r0Þ⊥ → 0: (2.7)

Here we have made a Euclidean rotation,

ω → iζ; t → itE; so ωt → −ζtE: (2.8)

Effectively G is now the cylinder kernel in the sense of
Refs. [15,16,26]. For our transversely translationally invari-
ant system, if we insert Eq. (2.5) into our fundamental form
for the energy (2.2), and use the above regulator factors, we
obtain for the energy per unit area

E ¼ − 1

2

Z
dζ
2π

Z ðdk⊥Þ
ð2πÞ2 eiκ·δTr ln g; (2.9)

in terms of the reduced Green’s function. Here we have
united frequency and transverse momentum as
κ ¼ ðζ;k⊥Þ, and similarly united the time and transverse
spatial splittings as δ ¼ ðτ;R⊥Þ. Let γ be the angle between
δ and the time axis. Thus, γ ¼ 0 corresponds to time-
splitting regularization, γ ¼ π=2 to transverse space split-
ting. The latter splitting is in the neutral direction, as
defined in Ref. [16], that is, not involved in the definition of
the relevant stress-tensor component, or in the geometri-
cally relevant direction. In that case, the integration by parts
in passing to the regulated form of the energy (2.3) is
legitimate, because the cutoff function does not depend on
ζ. In general, when integrating over the spherical angles for
κ, α, and β, we encounter

fðγÞ ¼
Z

1

−1
d cos α

Z
2π

0

dβcos2αeiκ·δ →
4π

3
;

wðγÞ ¼
Z

1

−1
d cos α

Z
2π

0

dβeiκ·δ → 4π: (2.10)

The limits are as jδj ¼ δ → 0. For transverse space split-
ting, the explicit forms of the cutoff functions are

fðπ=2Þ ¼ 4π

�
− cos κδ

ðκδÞ2 þ sin κδ
ðκδÞ3

�
;

wðπ=2Þ ¼ 4π
sin κδ
κδ

; (2.11)

and as a result

Eðγ ¼ π=2Þ ¼ − 1

ð2πÞ3
Z

∞

0

dκκ4fðπ=2ÞTrg: (2.12)

For time splitting, the corresponding forms of the cutoff
functions are obtained from

fð0Þ ¼ d
dδ

½δfðπ=2Þ�; wð0Þ ¼ wðπ=2Þ: (2.13)

However, in this case the integration by parts leading to the
regulated form of Eq. (2.3) proceeds as follows:

Eðγ ¼ 0Þ ¼ −1

2

Z
dζ
2π

ðdk⊥Þ
ð2πÞ2 e

iζτTr lng¼ −
Z

∞

0

dκκ2

ð2πÞ3

×
Z

1

−1
d cosα

Z
2π

0

dβκ cosα
1

iδ
ðeiκδcosα − 1ÞTrg;

(2.14)

which uses the indefinite integral

Z
dζeiζτ ¼ 1

iτ
ðeiζτ − 1Þ; (2.15)

and, in view of the realization of g−1 as a differential
operator,

g−1 ¼ ζ2 þ k2⊥ − d2

dz2
þ V; (2.16)

we have

g−1 ∂
∂ζ g ¼ − ∂

∂ζ g
−1g ¼ −2ζg: (2.17)

Now the integral over the angles in Eq. (2.14) is

Z
1

−1
d cos α

Z
2π

0

dβκ cos α
1

iδ
ðeiκδ cos α − 1Þ ¼ κ2fðπ=2Þ;

(2.18)

that is, there is no difference between time and space
splitting. The pressure anomaly [16] apparently affects only
Eq. (2.3), not Eq. (2.2). Thus,

Eðγ ¼ 0Þ ¼ Eðγ ¼ π=2Þ ¼ − 1

ð2πÞ3
Z

∞

0

dκκ4fðπ=2ÞTrg:
(2.19)

(We have not examined other values of γ.)
Hence, if we insert the reduced Green’s function given

above in Eqs. (1.20) and (2.6), we find the energy/area to be
given by (Lz is the extent of the system in the z direction)

E ¼ −
Z

∞

0

dκκ2

ð2πÞ3 κ
2fðπ=2Þ

�
Lz

2κ
þ 1

4κ2Δ

�
4ðκaþ 1Þ λ1λ2

ð2κÞ2

− 2e2κa
�
λ1 þ λ2
2κ

þ 2
λ1λ2
ð2κÞ2

���
: (2.20)

First we look at the Weyl, or bulk, term, that would be
present with no boundaries, corresponding to the term in
Eq. (2.20) proportional to Lz:
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EWðγ ¼ π=2Þ ¼ − V
8π3

Z
∞

0

dκκ2fðπ=2Þ 1
2
κ ¼ − V

2π2δ4
;

(2.21)

just as expected. If we had replaced fðπ=2Þ by fð0Þ to
obtain the corresponding time-split divergence we would
have obtained using Eq. (2.13)

EWðγ ¼ 0Þ ¼ 3

2π2
V
δ4

; (2.22)

as is familiar, but as we have seen, if we regard Eq. (2.2)
rather than Eq. (2.3) as fundamental, this is not legitimate,
and Eq. (2.21) is the bulk energy for either type of
regularization.

C. Self- and interaction energies

It is then straightforward to calculate the balance of the
energy/area (y ¼ 2κa):

E − EW ¼ 1

128π3a3

Z
∞

0

dyy2fðπ=2Þ
�

1
y
λ1a

þ 1
þ 1

y
λ2a

þ 1

�

− 1

96π2a3

Z
∞

0

dyy3
1þ 1

yþλ1a
þ 1

yþλ2a

ð y
λ1a

þ 1Þð y
λ2a

þ 1Þey − 1
:

(2.23)

We have set the cutoff to zero in the second, finite term.
That term is the same as given in Eq. (1.22) for the Casimir
interaction energy EC of parallel semitransparent plates.
The divergent term, which agrees with that in Eq. (1.22),

ES1;2 , when the formal replacement in Eq. (2.10) is made, is
the sum of contributions from each plate separately, which
are unaware of the other plate. The self-energy of a single
plate is, as δ → 0,

ESi ¼
λi
8π2

�
1

δ2
− λi

8

π

δ
− λ2i
12

�
ln λiδ=2þ γ − 4

3

��
þOðδÞ;

i ¼ 1; 2: (2.24)

This is for finite λi, λiδ ≪ 1. (Here γ is Euler’s constant.)
This expansion can be found from the heat kernel expan-
sion given, for example, in Ref. [27]; to compare with our
spatial-splitting results, we convert the heat kernel expan-
sion to the cylinder kernel expansion using the formulas in
Ref. [26]. See also Refs. [13,14]. In the Dirichlet limit,
λi → ∞, the self-energy is more divergent:

ESi ¼
1

8π

1

δ3
: (2.25)

This also corresponds to the known surface term in the
heat kernel expansion. The total energy thus has four
components:

E ¼ EW þ ES1 þ ES2 þ EC: (2.26)

The interpretation of this result is straightforward: the Weyl
term EW is the unobservable vacuum energy of empty
space, the self-energies ES1;2 renormalize masses of the
plates, and only the interaction term EC is the observable
Casimir energy.

III. LOCAL ENERGY DENSITY

A. Forms of stress tensor

To answer the question of how Casimir energy interacts
with gravity, we must look at local quantities. The stress
tensor, now including the conformal term, for a massless
scalar field is

Tμν ¼ ∂μϕ∂νϕ − 1

2
gμνð∂λϕ∂λϕþ Vϕ2Þ

− ηð∂μ∂ν − gμν∂2Þϕ2; (3.1)

where η is the conformal parameter; η ¼ 1=6 is the choice
that makes conformal invariance manifest. Then, the
Fourier-transformed expectation value of the stress tensor
tμν given by

hTμνi ¼
Z

dζ
2π

ðdk⊥Þ
ð2πÞ2 eiζτeik⊥·R⊥tμνðz; z0Þjz0→z (3.2)

is obtained with the quantum-mechanical replacement
(1.17). In particular, the energy density is

T00 ¼ 1

2
ð∂0ϕÞ2 þ 1

2
ð∇ϕÞ2 þ 1

2
Vϕ2 − η∇2ϕ2: (3.3a)

Equation (3.3a) is the form obtained directly by variation of
the Lagrangian with respect to g00, but it can be rewritten
using the equation of motion (1.15), including the potential
(2.4), without changing the numerical values of T00. For
example, the equation of motion can be used to eliminate V
entirely:

T00 ¼ 1

2
ð∂0ϕÞ2 − 1

2
ϕð∂0Þ2ϕþ 1

4
ð1 − 4ηÞ∇2ϕ2; (3.3b)

which generalizes the flat-space analog of Eq. (1.16). If we
take the vacuum expectation value of this, use the transform
(3.2), and integrate over all space, we immediately obtain,
for the spatial regulator, the energy (2.19).
The form (3.3b) does not mean that the energy density is

free of δ functions, however; from Eq. (1.15) it is clear that
the singularities in V must be compensated by singularities
in the second-order z derivatives of ϕ, hence ultimately of
the reduced Green’s function g. Note that such terms are
absent from the part of Eq. (3.3b) that survives when
4η ¼ 1. A case can be made for using the equation of
motion in the reverse direction in the remaining term,
replacing it as
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T00 ¼ 1

2
ð∂0ϕÞ2 − 1

2
ϕð∂0Þ2ϕ

þ 1 − 4η

2
½ð∇ϕÞ2 þ ϕð∂0Þ2ϕþ Vϕ2�: (3.3c)

In this form the energy density that resides exactly on the
surface is exhibited explicitly by the δ functions in V,
because (as will be verified) the time derivatives and first-
order space derivatives are benign. In particular, the surface
energy arises only when 4η ≠ 1.
To forestall confusion we must belabor two elementary

distinctions. First, in the remainder of this section we will
see that the largest parts of the bulk energy are concentrated
close to the plates; such terms have also sometimes been
called “surface energy,” but here we will reserve that term
for energy density that resides exactly on the surface.
Second, because ∇2ϕ2 is a divergence, its integral over the
region between the plates (or the region to either side) can
be reduced to a surface integral over the plates; but that is
merely a mathematical representation of energy that physi-
cally resides in the bulk. However, as we will see in Sec. IV,
this surface integral is another way of describing the surface
energy that resides on the plates.

B. Energy density in bulk

For purposes of calculation, we may use any of the forms
of the energy density given above, Eqs. (3.3a), (3.3b), or
(3.3c), which directly lead to the following alternative
expressions for the energy density in “reduced form”:

t00ðz; zÞ ¼ 1

2
ð−ζ2 þ k2⊥ þ ∂z∂z0 Þgðz; z0Þjz0→z − η∂2

zgðz; zÞ

þ 1

2
VðzÞgðz; zÞ (3.4a)

¼ −ζ2gðz; zÞ þ 1

2
ð1 − 4ηÞð∂2

z þ ∂z∂z0 Þgðz; z0Þjz0→z

(3.4b)

¼ −ζ2gðz; zÞ þ 1

2
ð1 − 4ηÞðκ2 þ ∂z∂z0 þ VÞgðz; z0Þjz0→z:

(3.4c)

Deferring close examination of the surface terms to Sec. IV,
we now study the energy density in the regions excluding
the plates themselves (z ≠ 0, a):

uðzÞ ¼ hT00i ¼ uintðzÞ þ u1ðzÞ þ u2ðzÞ; (3.5)

where, excluding the Weyl term,

uintðz < 0Þ ¼ η− 1=6
π2

Z
∞

0

dκκ3λ2

�
1

2κþ λ1

1

Δ
− e−2κa
2κþ λ2

�
e2κz;

(3.6a)

uintð0 < z < aÞ

¼ 1

π2

Z
∞

0

dκκ3
λ1λ2
ð2κÞ2

1

Δ

�
− 1

6
þ
�
η − 1

6

�

×

�
1

1þ 2κ=λ1
e−2κz þ 1

1þ 2κ=λ2
e−2κða−zÞ

��
;

(3.6b)

uintðz > aÞ ¼ η − 1=6
π2

Z
∞

0

dκκ3λ1

×
�

1

2κ þ λ2

1

Δ
− e−2κa
2κ þ λ1

�
e2κða−zÞ; (3.6c)

while the parts referring to each plate separately are

u1ðzÞ ¼ − 1

16π3

Z
∞

0

dκκ3½ð1 − 4ηÞwðπ=2Þ − fðπ=2Þ�

×
1

1þ 2κ=λ1
e−2κjzj; (3.7)

while u2ðzÞ is obtained from u1ðzÞ by replacing λ1 by λ2
and z by a − z. (This is a symmetry of the energy density.)
In these equations Δ is still given by Eq. (1.21) and the
cutoff functions w and f are given in Eq. (2.10). When we
are not too close to the plates, we can replace the cutoff
function as follows:

ð1 − 4ηÞwðπ=2Þ − fðπ=2Þ → −16πðη − 1=6Þ: (3.8)

The replacement is valid for jzj ≫ δ or jz − aj ≫ δ, where
the integral over κ are absolutely convergent.

C. Strong coupling

The integrals over κ can be carried out explicitly in the
case of strong coupling, λ1;2 → ∞. In this Dirichlet limit, u2
and uint cancel for z < 0, and only u1 contributes there,
while for z > a only u2 survives. (We will also see in
Sec. IV that the surface energy vanishes in strong cou-
pling.) For example, in strong coupling, the energy density
below the plate is everywhere for a spatial cutoff (γ ¼ π=2),

uðz < 0Þ ¼ 3

8π2
ðη− 1=6Þ

ðz2 þ δ2=4Þ2 þ
1

32π2
ð1− 4ηÞ δ2

ðz2 þ δ2=4Þ3 ;

(3.9)

which is finite as z → 0, and reduces to the familiar result

uðz < 0Þ ¼ 3

8π2
η − 1=6

z4
; (3.10)

if jzj ≫ δ. Equation (3.9) agrees with the result given in
Ref. [16] found for a single plate for the special case
η ¼ 1=4. Above the top plate, the energy density is given
by the same expression (3.9) with z → a − z. And in
between, one finds
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uð0 < z < aÞ ¼ − π2

1440a4
þ 3ðη − 1=6Þ

8π2a4
½ζð4; 1þ z=aÞ

þ ζð4; 2 − z=aÞ� þ uðz < 0Þ þ uðz > aÞ;
(3.11)

where the last two terms mean that the divergent terms (as
δ → 0) are the same on both sides of the plates. Here we
have used the definition of the Hurwitz zeta function,

ζðs; xÞ ¼
X∞
n¼0

1

ðnþ xÞs ; (3.12)

which has the property

ζðs; xÞ ¼ 1

xs
þ ζðs; xþ 1Þ: (3.13)

Now when we integrate over all space, the Hurwitz zeta
functions telescope, and we obtain the energy per unit area

E − EW ¼ − π2

1440a3
þ η − 1=6

4π2a3
þ
�Z

∞

−∞
þ
Z

a

−a

�

× dz

�
3

8π2
η − 1=6

ðz2 þ δ2=4Þ2 þ
δ2

32π2
1 − 4η

ðz2 þ δ2=4Þ3
�
:

(3.14)

The integrals occurring here, for δ=a → 0, are
Z

a

−a
dz

1

ðz2 þ δ2=4Þ2 ¼
4π

δ3
− 2

3a3
;

Z
a

−a
dz

1

ðz2 þ δ2=4Þ3 ¼
12π

δ5
− 2

5a5
: (3.15)

Thus the terms in Eq. (3.14) proportional to η − 1=6 cancel,
including the term coming from 1−4η¼1=3−4ðη−1=6Þ,
and we are left with

E − EW ¼ − π2

1440a3
þ 1

4πδ3
: (3.16)

This gives us the Casimir interaction energy plus the self-
energy of both plates, twice Eq. (2.25).
If we do the temporal splitting, γ ¼ 0, the surface

divergences are slightly modified. Thus, for example,

uðz < 0Þ ¼ 3

8π2
η − 1=6

ðz2 þ δ2=4Þ2 −
δ2

8π

η

ðz2 þ δ2=4Þ3 : (3.17)

So now when we integrate the energy density over all three
regions the ð1 − 4ηÞ term instead has the factor −4η, so the
self-energy term in Eq. (3.16) changes to

ES1þS2 ¼ − 1

2πδ3
: (3.18)

This is exactly what is required by the recipe (2.13) for
passing from space splitting to time splitting, since the total
energy only depends on the cutoff function f. Starting from
the local energy density, the total energy would therefore
seem to be given by the regulated version of Eq. (2.3),
namely

EðγÞ ¼ − 1

ð2πÞ3
Z

∞

0

dκκ4fðγÞTrg; (3.19)

which is different for γ ¼ 0 from that given in Eq. (2.19).
Consistency, the perhaps dubious requirement that the
regulated energy have the same form, suggests, therefore,
that the spatial splitting γ ¼ π=2 is preferred, the point
being that calculating the energy from the energy density
leads to Eq. (2.3), not the more stable Eq. (2.2).

D. Numerical results

The energy density for the Dirichlet limit and with
spatial splitting is shown in Fig. 3. It is seen that in each
case, the energy density is concentrated near the surfaces,
and that when integrated, the rather different energy
densities correspond to a unique energy per unit area equal
to that given by Eq. (3.16). In comparison, the interaction
energy density is negligible. This makes precise what we
mean by saying that the surface divergences are without
consequence, giving rise to a self-energy of each plate,
which can be considered as renormalizing the mass of the

0.2 0.1 0.0 0.1 0.2

1000

500

0

500

1000

z a

a4
u

FIG. 3 (color online). The energy density (in units of a4) near
one of the Dirichlet plates. Note that the energy density is very
small except close to the plate. The curves are all for the cutoff
δ ¼ 0.1a. The curves are all for the spatial-splitting regulariza-
tion, but for different values of the conformal parameter η. The
solid (blue) curve is for the canonical case, η ¼ 0; the short-
dashed (red) curve is for η ¼ 1=4, where the surface energy is
zero; the long-dashed (yellow) curve is for η ¼ 1=6, the con-
formal value, and the dot-dashed, green curve is for η ¼ 1. The
energy per unit area corresponding to any of these energy
densities is the same, E ¼ 79.5=a3. This is the value given by
Eq. (2.25), since the interaction energy density is negligible
compared to the self-energy densities.
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plates. Note that these self-energy densities do not vanish
when η ¼ 1=6, a fact that is completely overlooked by a
naive calculation without cutoff [see Eq. (3.10)].
For finite coupling we must proceed numerically. In

Fig. 4 we similarly plot the Casimir energy density for finite
λ for the case when there is no surface term (as we shall see
in the next section), that is, when η ¼ 1=4 so the∇2ϕ2 term
in Eq. (3.3b) vanishes. The energy density localized near
the surfaces, corresponding to the cutoff-dependent terms
u1 and u2, Eq. (3.7), vastly dominate over the interaction
energy density. As the coupling λ → ∞, the Dirichlet
limiting form is rapidly approached.

IV. SURFACE TERMS

In the previous section we only considered points not on
the plates at z ¼ 0 and z ¼ a. But there are surface terms
residing exactly on the plates that need to be included to get
the total energy. If we naively only included the integrated
local energy density in each region, and just dropped the
divergent terms, we would get

Z
∞

−∞
dzuðzÞ ¼ − 1

96π3a3

Z
∞

0

dyy3
1þ 12ðη−1=6Þ

yþλ1a
þ 12ðη−1=6Þ

yþλ2a

ð y
λ1a

þ 1Þð y
λ2a

þ 1Þey − 1
;

(4.1)

which disagrees with the correct interaction energy con-
tained in Eq. (2.23) except for η ¼ 1=4 or for λ → ∞,
where in either case the surface contribution to the energy
vanishes.

The local surface energy density can be most easily
found by using the energy density in the form (3.3c). It is
only the potential term (which of course vanishes off the
plates) that gives the surface energy: That due to the lower
plate is therefore

Δu1ðzÞ ¼
1 − 4η

2
λ1δðzÞ

Z
∞

−∞
dζ
2π

Z ðdk⊥Þ
ð2πÞ2 eiκ·δgð0; 0Þ;

(4.2)

where we can take gð0; 0Þ to be given by Eq. (2.6a) in the
limit as z ¼ z0 → 0, since the Green’s function is continu-
ous. This gives immediately

Δu1ðzÞ ¼ δðzÞ ð1− 4ηÞ
32π3

Z
∞

0

dκκwðγÞ λ1
1þ λ1=2κ

�
1− λ2

2κ

1

Δ

�
;

(4.3)

and the energy density residing on the upper plate Δu2 is
given by a similar expression obtained by interchanging
λ1 and λ2 and replacing z by a − z. Note that the first
term in Δui is a contribution to the self-energy, while
the second term contributes to the interaction energy. Then
the total energy density is, rather than that given in
Eq. (3.5),

uðzÞ ¼ uint þ u1ðzÞ þ Δu1ðzÞ þ u2ðzÞ þ Δu2ðzÞ; (4.4)

where uint is given by Eq. (3.6), and u1ðzÞ by Eq. (3.7).
Integrating, we straightforwardly recover the total energy:

Z
∞

−∞
dzuðzÞ ¼ E − EW: (4.5)

This is exactly the result (2.23) obtained directly.
It appears that there is a self-energy contribution to the

surface energy in the strong-coupling (Dirichlet) limit,

λ → ∞∶ Δu1ðzÞ ¼ δðzÞ 1 − 4η

16π3

Z
∞

0

dκκ2wðγÞ: (4.6)

However, using the expression for the cutoff function
wð0Þ ¼ wðπ=2Þ given in Eq. (2.11), we see that the integral
here is zero:

Z
∞

0

dκκ2wðπ=2Þ ¼ 4π
1

δ

d
dδ

Z
∞

0

dκ cos κδ ¼ 0; (4.7)

since the last integral vanishes in a distributional sense—
see Ref. [7]. It is familiar that there should be no surface
term for Dirichlet boundaries.
There is another, equivalent approach to the surface

energy, which is applicable to surfaces that are not
described by potentials, such as Robin boundaries. It is
known that, except in the Dirichlet (or Neumann) limit, one
must include a term that resides exactly on the boundary
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FIG. 4 (color online). The energy density (in units of a4) near
one of the plates for various values of the coupling λ. Again the
energy density is very small except close to the plate. The curves
are all for the cutoff δ ¼ 0.1a. They are all for the case where the
surface term is zero, η ¼ 1=4. The solid (blue) curve is for the
Dirichlet limit, λ → ∞. The short-dashed (red) curve is for
λ ¼ 100; the long-dashed (yellow) curve is for λ ¼ 10, and the
dot-dashed (green) curve is for λ ¼ 1. In all cases, the interaction
energy density is negligible compared to the self-energy density.
Consequently, the integrated energy in each case agrees with that
found from Eq. (2.24).
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[6,26,28–33]. This comes simply from integratingEq. (3.3b)
over some arbitrary volume V with boundary ∂V,
Z
V
ðdrÞhT00i ¼ −

Z
V
ðdrÞ

Z
∞

−∞
dζ
2π

ζ2Gðr; rÞ þ 1 − 4η

2

×
Z
∂V

dS ·∇
Z

∞

−∞
dζ
2π

Gðr; r0Þjr0→r: (4.8)

The first term on the right is the total energy; the last term is
the negative of the boundary energy. [If wewere to integrate
over all space, including the plates, the interior surface terms
would disappear, and wewould recover the result (4.5).] We
can now apply this identity as follows. Let the volume
integral over the energydensitybeonlyover the three regions
outside the potentials, that is for z < 0, 0 < z < a, and
a < z. The surfaces at z ¼ 0 and z ¼ a are outside the region
of the volume integration. Thus ∂V are surfaces just above
and below the z ¼ 0 and z ¼ a planes. Because the Green’s
function is continuous, the total energy term is insensitive to
the surfaces,whichhavemeasure zero.On theotherhand, the
boundary terms do not cancel, because the first derivatives
are discontinuous, so they give an additional contribution to
the energy. If we call the boundary term −ΔE, we have

E ¼
Z
V
ðdrÞhT00i þ ΔE: (4.9)

The integral over the energy density in the bulk (i.e.,
excluding the plates) must be supplemented by the surface
energyΔE. Combining the contributions coming fromabove
and below the two surfaces, we get here an additional
contribution to the energy that resides exactly on the surface:

ΔE ¼ − 1 − 4η

2

Z
∞

−∞
dζ
2π

ðdk⊥Þ
ð2πÞ2 eiκ·δ

X
plates

n ·∇gðz; z0Þjz0→z

¼ −
1 − 4η

32π3

Z
∞

0

dκκwðγÞ
�
− λ1
1þ λ1=2κ

− λ2
1þ λ2=2κ

þ 1

Δ
λ1λ2
2κ

�
1

1þ λ1=2κ
þ 1

1þ λ2=2κ

��
: (4.10)

The sum over n ·∇ on each plate signifies the outward
normal gradients from each region, n ·∇ ¼ �∂=∂z, with
theþ sign corresponding to the boundary of the z < 0 region
at z ¼ 0, the þ and − signs referring to the boundaries
of the 0 < z < a region at z ¼ a and z ¼ 0, respectively,
and − sign for the boundary of the z > a region at z ¼ a.
Note that the surface term depends only on the regulator
function w and not on f, so it has the same value for both
temporal and spatial splitting. Not surprisingly, this agrees
with our previous calculation,

ΔE ¼
Z

∞

−∞
dzðΔu1 þ Δu2Þ: (4.11)

V. HOW DOES SURFACE ENERGY FALL?

Now we see that the arguments sketched in the
Introduction continue to hold. Either by looking in flat
(Minkowski) space at the interaction of the Casimir
apparatus with a weak (Newtonian) gravitational field, or
by working in Rindler coordinates and looking at the limit
of small acceleration, we see that the integral of the local
energy density occurs, which gives the total energy. There
are divergences in the local energy density as the surfaces
are approached, and there are divergent contributions to the
surface energy that live entirely on the plates of the Casimir
apparatus. But we have regulated the integrals with spatial
and temporal cutoffs, and obtained therefore unique finite
values for the total energy. (The local energy density
depends on the conformal parameter.) The terms divergent
as the cutoff goes to zero are contained in self-energies
serving to renormalize the masses of the plates, so are
unobservable. Both the finite, cutoff-independent, Casimir
interaction energy, and the divergent, cutoff-dependent,
self-energies gravitate normally, that is, they obey the
equivalence principle.
To reiterate, we have found an extremely simple answer

to the question of how Casimir energy gravitates: just like
any other form of energy,

F ¼ −gEC: (5.1)

This result is independent of the orientation of the Casimir
apparatus relative to the gravitational field. This refutes the
claim sometimes attributed to Feynman that virtual photons
do not gravitate. After a period of confusion, other authors
agree with our conclusion [34]. However, the previous
arguments were formal, in that divergent self-energies were
not properly defined. We have now regulated everything
consistently, for both the global and local descriptions. We
have also considered arbitrary conformal coupling param-
eter for the scalar field. These calculations show, quite
generally, that the total Casimir energy, including the
divergent parts, which renormalize the masses of the plates,
possesses the gravitational mass demanded by the equiv-
alence principle. Similar conclusions were drawn by
Saharian et al. [35] for the finite interactions between
Dirichlet, Neumann, and conducting plates. What is new in
the present work is the explicit recognition that there is a
surface energy density residing on the Casimir plates,
which has been well defined through point-splitting regu-
larization. When that term is included, the integrated
energy density equals the total energy. Of course, if we
considered only smooth potentials, the surface energy
would become continuously distributed throughout the
region of the potential.

MILTON et al. PHYSICAL REVIEW D 89, 064027 (2014)

064027-10



ACKNOWLEDGMENTS

K. A. M. thanks the Laboratoire Kastler Brossel for
their hospitality, particularly Astrid Lambrecht and
Serge Reynaud. CNRS is thanked for their support.
This work was further supported in part by grants from
the U.S. National Science Foundation, the Simons

Foundation, and the Julian Schwinger Foundation;
earlier work summarized was supported by grants from
the U.S. Department of Energy. We thank August
Romeo and Jef Wagner for earlier collaborations on
this project and Hamilton Carter for comments on the
manuscript.

[1] H. B. G. Casimir, Kon. Ned. Akad. Wetensch. Proc. 51, 793
(1948).

[2] W. Nernst, Verh. Dtsch. Phys. Ges. 18, 83 (1916).
[3] W. Pauli, Handbuch der Physik (Springer, Berlin, 1933),

Vol. 24, p. 83.
[4] H. Kragh, Arch. Hist. Exact Sci. 66, 199 (2012).
[5] D. Deutsch and P. Candelas, Phys. Rev. D 20, 3063 (1979).
[6] K. A. Milton, J. Phys. A 37, 6391 (2004).
[7] K. A. Milton, Phys. Rev. D 84, 065028 (2011).
[8] T. H. Boyer, Phys. Rev. 174, 1764 (1968).
[9] N. Graham, R. L. Jaffe, V. Khemani, M. Quandt, M.

Scandurra, and H. Weigel, Phys. Lett. B 572, 196 (2003).
[10] N. Graham, R. L. Jaffe, V. Khemani, M. Quandt, O.

Schroeder, and H. Weigel, Nucl. Phys. B677, 379 (2004).
[11] G. Barton, J. Phys. A 37, 1011 (2004).
[12] G. Barton, J. Phys. A 37, 3725 (2004).
[13] K. A. Milton, F. Kheirandish, P. Parashar, E. K. Abalo, S. A.

Fulling, J. D. Bouas, H. Carter, and K. Kirsten, Phys. Rev. D
88, 025039 (2013).

[14] K. A. Milton, P. Parashar, E. K. Abalo, F. Kheirandish, and
K. Kirsten, Phys. Rev. D 88, 045030 (2013).

[15] R. Estrada, S. A. Fulling, Z. Liu, L. Kaplan, K. Kirsten, and
K. A. Milton, J. Phys. A 41, 164055 (2008).

[16] R. Estrada, S. A. Fulling, and F. D. Mera, J. Phys. A 45,
455402 (2012).

[17] S. A. Fulling, K. A. Milton, P. Parashar, A. Romeo, K. V.
Shajesh, and J. Wagner, Phys. Rev. D 76, 025004 (2007).

[18] K. A. Milton, P. Parashar, K. V. Shajesh, and J. Wagner,
J. Phys. A 40, 10935 (2007).

[19] K. V. Shajesh, K. A. Milton, P. Parashar, and J. A. Wagner,
J. Phys. A 41, 164058 (2008).

[20] L. S. Brown and G. J. Maclay, Phys. Rev. 184, 1272
(1969).

[21] M. Scandurra, J. Phys. A 33, 5707 (2000).
[22] I. Cavero-Peláez, K. A. Milton, and K. Kirsten, J. Phys. A

40, 3607 (2007).
[23] C. Møller, Theory of Relativity (Oxford University Press,

Oxford, 1972).
[24] M.-T. Jaekel and S. Reynaud, J. Phys. I (France) 3, 1093

(1993).
[25] C. G. Callan, Jr., S. R. Coleman, and R. Jackiw, Ann. Phys.

(N.Y.) 59, 42 (1970).
[26] S. A. Fulling, J. Phys. A 36, 6857 (2003).
[27] M. Bordag, K. Kirsten, and D. Vassilevich, Phys. Rev. D 59,

085011 (1999).
[28] J. S. Dowker and G. Kennedy, J. Phys. A 11, 895 (1978).
[29] G. Kennedy, R. Critchley, and J. S. Dowker, Ann. Phys.

(N.Y.) 125, 346 (1980).
[30] S. L. Lebedev, Zh. Eksp. Teor. Fiz. 110, 769 (1996) [Sov.

Phys. JETP 83, 423 (1996)].
[31] A. Romeo and A. Saharian, J. Phys. A 35, 1297 (2002).
[32] A. Saharian, Phys. Rev. D 69, 085005 (2004).
[33] J. D. Bondurant and S. A. Fulling, J. Phys. A 38, 1505

(2005).
[34] G. Bimonte, E. Calloni, G. Esposito, and L. Rosa, Phys.

Rev. D 74, 085011 (2006); 77, 109903(E) (2008).
[35] A. A. Saharian, R. S. Davtyan, and A. H. Yeranyan, Phys.

Rev. D 69, 085002 (2004).

HOW DOES CASIMIR ENERGY … PHYSICAL REVIEW D 89, 064027 (2014)

064027-11

http://dx.doi.org/10.1007/s00407-011-0092-3
http://dx.doi.org/10.1103/PhysRevD.20.3063
http://dx.doi.org/10.1088/0305-4470/37/24/014
http://dx.doi.org/10.1103/PhysRevD.84.065028
http://dx.doi.org/10.1103/PhysRev.174.1764
http://dx.doi.org/10.1016/j.physletb.2003.03.003
http://dx.doi.org/10.1016/j.nuclphysb.2003.11.001
http://dx.doi.org/10.1088/0305-4470/37/3/032
http://dx.doi.org/10.1088/0305-4470/37/11/013
http://dx.doi.org/10.1103/PhysRevD.88.025039
http://dx.doi.org/10.1103/PhysRevD.88.025039
http://dx.doi.org/10.1103/PhysRevD.88.045030
http://dx.doi.org/10.1088/1751-8113/41/16/164055
http://dx.doi.org/10.1088/1751-8113/45/45/455402
http://dx.doi.org/10.1088/1751-8113/45/45/455402
http://dx.doi.org/10.1103/PhysRevD.76.025004
http://dx.doi.org/10.1088/1751-8113/40/35/014
http://dx.doi.org/10.1088/1751-8113/41/16/164058
http://dx.doi.org/10.1103/PhysRev.184.1272
http://dx.doi.org/10.1103/PhysRev.184.1272
http://dx.doi.org/10.1088/0305-4470/33/32/308
http://dx.doi.org/10.1088/1751-8113/40/13/019
http://dx.doi.org/10.1088/1751-8113/40/13/019
http://dx.doi.org/10.1051/jp1:1993258
http://dx.doi.org/10.1051/jp1:1993258
http://dx.doi.org/10.1016/0003-4916(70)90394-5
http://dx.doi.org/10.1016/0003-4916(70)90394-5
http://dx.doi.org/10.1088/0305-4470/36/24/320
http://dx.doi.org/10.1103/PhysRevD.59.085011
http://dx.doi.org/10.1103/PhysRevD.59.085011
http://dx.doi.org/10.1088/0305-4470/11/5/020
http://dx.doi.org/10.1016/0003-4916(80)90138-4
http://dx.doi.org/10.1016/0003-4916(80)90138-4
http://dx.doi.org/10.1088/0305-4470/35/5/312
http://dx.doi.org/10.1103/PhysRevD.69.085005
http://dx.doi.org/10.1088/0305-4470/38/7/007
http://dx.doi.org/10.1088/0305-4470/38/7/007
http://dx.doi.org/10.1103/PhysRevD.74.085011
http://dx.doi.org/10.1103/PhysRevD.74.085011
http://dx.doi.org/10.1103/PhysRevD.77.109903
http://dx.doi.org/10.1103/PhysRevD.69.085002
http://dx.doi.org/10.1103/PhysRevD.69.085002

