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Recent perturbative self-force computations [Shah et al., Phys. Rev. D 89, DM11229 (2014)], both
numerical and analytical, have determined that half-integral post-Newtonian terms arise in the conservative
dynamics of black hole binaries moving on exactly circular orbits. We look at the possible origin of
these terms within the post-Newtonian approximation, find that they essentially originate from nonlinear
“tail-of-tail” integrals and show that, as demonstrated in the previous paper, their first occurrence is at the
5.5PN order. The post-Newtonian method we use is based on a multipolar–post-Minkowskian treatment of
the field outside a general matter source, which is reexpanded in the near zone and extended inside the
source thanks to a matching argument. Applying the formula obtained for generic sources to compact
binaries, we obtain the redshift factor of circular black hole binaries (without spins) at 5.5PN order in the
extreme mass ratio limit. Our result fully agrees with the determination of the 5.5PN coefficient by means
of perturbative self-force computations reported in the previously cited paper.
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I. INTRODUCTION

Post-Newtonian (PN) approximations (see Ref. [1] for a
review) are well suited to describe the inspiraling phase
of compact binary systems, when the post-Newtonian
parameter ϵ ∼ v=c is small independently of the mass ratio
q ¼ m1=m2 between the compact bodies. On the other hand,
self-force (SF) analyses, based on black hole perturbation
theory [2–5] (see Refs. [6–8] for reviews), give an accurate
description of extreme mass ratio binaries for which q ≪ 1,
even in the strong field regime. The problem of the
comparison between these two powerful methods in their
common domain of validity, that of the slow-motion and
weak-field regime of an extreme mass ratio compact binary
system, has received a great deal of attention recently [9–12].
These efforts rely on the identification of a suitable

gauge invariant quantity derived by means of the very
separate and distinct SF and PN calculations. The results
can be usefully compared, regardless of their manner of
computation. At the heart of all previous comparisons lies a
quantity that has come to be known as the redshift factor or
observable, and was identified and first shown by Detweiler
[9] to be gauge invariant for circular orbits. It can be
characterized as the redshift a photon would experience in
escaping from the small compact object to infinity along
the orbital axis. It is directly related to the particle’s Killing
energy that is associated with the helical Killing symmetry.

The redshift factor will be at the basis of the comparison
we pursue here.
In the most recent PN-SF comparison (see the

companion paper [12]), it was found that the post-
Newtonian expansion of the redshift factor for extreme
mass ratio compact binaries contains half-integral PN terms
starting at the 5.5PN order. This result had previously been
unexpected, because one may naively think that half-
integral PN terms are associated with gravitational radiation
reaction damping. However here they actually describe the
conservative part of the dynamics, since the compact binary
moves on an exactly circular orbit, and dissipative radiation
reaction effects are explicitly neglected.
The goal of the present paper is to explain this fact using

post-Newtonian theory, and to directly compute, using
PN methods, the dominant half-integral 5.5PN coefficient
for comparison with the SF result, obtained both numeri-
cally and analytically in Ref. [12]. We shall find perfect
agreement with that result, given by Eq. (20) in [12],
showing again strong internal consistency between ana-
lytical PN and numerical/analytical SF methods, and their
joint effectiveness in describing the dynamics of compact
binary systems.
We shall compute here the redshift factor introduced

in Ref. [9], for a particle moving on an exact circular orbit
around a Schwarzschild black hole. The ensuing space-time
is helically symmetric, with a helical Killing vectorKα such
that its value Kα

1 at the location of the particle (labeled 1) is
tangent to the particle’s four-velocity uα1, defined as usual
with unit timelike norm. The redshift factor uT1 is then
defined geometrically by
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uα1 ¼ uT1K
α
1: (1.1)

Adopting a coordinate system in which the helical Killing
vector reads Kα∂α ¼ ∂t þ Ω∂φ (which defines its normali-
zation), where Ω is the orbital frequency of the circular
motion, the redshift factor reduces to the t component
uT1 ¼ ut1 ≡ dt=dτ1 of the particle’s four-velocity (where dτ1
is the particle’s proper time), namely

uT1 ¼
�
−gαβðy1Þ v

α
1v

β
1

c2

�−1=2
: (1.2)

Here gαβðy1Þ denotes the metric evaluated at the particle’s
location yα1 ¼ ðct; yi1Þ by means of an appropriate self-field
regularization (in principle dimensional regularization
[13,14]), and vα1 ≡ dyα1=dt ¼ ðc; vi1Þ is the ordinary coor-
dinate velocity.
Our strategy will be to obtain first the metric gαβ in

the exterior of a general matter system by means of a
multipolar–post-Minkowskian expansion [15], and to
extend next the validity of the solution inside the source
using a matching argument. More precisely, we consider in
a first stage a general smooth matter distribution with
compact support and slow internal velocities (post-
Newtonian source). The field outside the post-Newtonian
source is a solution of the vacuum field equations, which is
reexpanded in the exterior part of the source’s near zone.
The matching argument we use is based on a variant of the
method of matched asymptotic expansions which has been
developed to connect the exterior near-zone field to the
inner field of a post-Newtonian source (see e.g. Ref. [1]).
At the dominant level, we will deal with a homogeneous
solution of the wave equation which, being of the type
retarded minus advanced, is regular all over the near zone
of the source, and thus can directly be extended by
matching inside the source.
Eventually, in a second stage, the source will be

specialized to a binary point-particle system and the metric
will be evaluated at the location of one of the particles.
In principle, our PN calculations are valid for any mass
ratio, but it turns out that the multipole interactions needed
at 5.5PN order are rather involved for arbitrary mass ratios.
In the extreme mass ratio (SF) limit, we shall essentially
find that only one simple multipole interaction is required,
namely the interaction between two mass monopoles
and the mass quadrupole moment (consistently with an
observation made in Ref. [12]), known in the literature as a
“tail-of-tail” [16].
In the context of general relativity, tails are nonlinear

effects physically due to the backscattering of linear waves
from the space-time curvature generated by the total mass
of the source. They are nonlinear in the usual language
of the PN approximation (which expands flat space-time
retarded wave operators), because they are associated
with the nonlinear coupling between radiative multipole

moments and the source’s mass monopole. The tails
imply a nonlocality in time since they involve an integral
depending on the history of the source from the remote
past to the current time. They are also appropriately
referred to as “hereditary” contributions [17], in contrast
to the “instantaneous” contributions which depend on
the dynamics of the source only at the current time. In
this paper we shall prove that half-integral conservative
post-Newtonian terms are due to hereditary effects.
In the process, we shall shed all unnecessary instantaneous
terms and focus primarily on the relevant hereditary
contributions.
The plan of this article is as follows. In Sec. II we use

dimensionality arguments to discuss the first occurrence of
half-integral conservative PN terms. In Sec. III we present
the source terms for the so-called tail-of-tail hereditary
integrals that are responsible for the 5.5PN effect in the
extreme mass ratio limit. Section IV is devoted to basic
formulas enabling us to obtain the near-zone expansion of a
retarded integral, given that of its source. Finally, in Sec. V
we obtain the piece of the metric (in two different gauges)
corresponding to the tail-of-tail at 5.5PN order and com-
pute the redshift factor. A most crucial but technical proof is
relegated to the Appendix.

II. DIMENSIONALITY ARGUMENTS

We look at the dominant occurrence of terms at half-
integral PN orders, i.e. at n

2
PN orders where n is an odd

integer, that arise in the conservative dynamics of binary
point-particles systems, moving on exactly circular
orbits. Such terms cannot stem from nontail/nonhereditary
sources, and may be expected to occur first at rather high
PN order. Indeed, any instantaneous (nontail) term at any
half-integral PN order will be zero for circular orbits, as
can be shown by a simple dimensional argument. To see
this, let us look at the general structure of instantaneous
terms in the redshift factor (1.2). We assume that the
expression of uT1 is given in the frame of the center of mass,
and has been consistently order reduced, i.e. that all
accelerations have been replaced by the lower-order equa-
tions of motion—the normal practice in PN theory. We
have (in order of magnitude)

ðuT1 Þinst ∼
X
j;k;p;q

νj
�

Gm
r12c2

�
k
�
v212
c2

�
p
�
n12 · v12

c

�
q
; (2.1)

where m ¼ m1 þm2 is the sum of the two masses, ν ¼
m1m2=m2 the symmetric mass ratio, r12 ¼ jy1 − y2j the
relative distance between particles and n12 ¼ ðy1 − y2Þ=r12
the relative direction. Furthermore v212 ¼ _r212 þ r212Ω2 is the
squared Euclidean norm of the relative velocity between the
two particles, and n12 · v12 ¼ _r12 is the Euclidean scalar
product between the unit separation vector and the relative
velocity. In Eq. (2.1) we have assumed that we take the
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expansion when the mass ratio ν → 0. For comparison with
the SF based calculation in linear perturbation theory, we
can limit ourselves to terms linear in ν.
The simple counting of the powers of 1=c shows that the

post-Newtonian order of the generic term in Eq. (2.1) is
given by n

2
PN where

n ¼ 2kþ 2pþ q − 2: (2.2)

If n is an odd integer, then q is also an odd integer;
hence Eq. (2.1) contains at least one factor n12 · v12 and
vanishes for circular orbits. The crucial point in this
argument is that we are dealing with instantaneous
(nonhereditary) terms, so that the velocity v12 and unit
direction n12 are taken at the same time, which is the
current time t at which we are evaluating those quantities.
Thus there is no integration over some intermediate time
extending from the infinite past up to t, which would
allow a coupling between these vectors at different times.
In conclusion, half-integral conservative post-Newtonian
terms that are instantaneous give zero, and only truly
hereditary integrals can contribute.
It is known that the first hereditary integral in the

near-zone metric is the tail occurring at the 4PN order
[18,19]. This tail is associated with the mass quadrupole
moment, and produces both conservative and dissipative
effects. Higher-order tails are associated with higher
multipole moments (mass octupole, current quadrupole,
etc.) and arise at higher but still integral PN orders
(5PN, 6PN, etc.). The conservative part of these tail
effects is responsible for the appearance of logarithmic
terms in the redshift factor as well as the ADM mass
and angular momentum of the binary system, which
have previously been computed at 4PN [11,20] and
5PN [11,21] orders.
Interestingly, as we shall see now, the next complicated

hereditary integrals called tails-of-tails [16] do occur at
half-integral PN orders, and give a first contribution at
precisely the 5.5PN order. We first simplify the problem by
noticing that, for comparison with linear SF results, any
product between two or more mass or current multipole
moments IP and JP other than the mass M can be
discarded, since each multipole carries in front a mass
ratio ν, and we want to compute (1.2) at linear order in ν.
The only moment that does not carry a factor ν is the mass
monopole or total ADM mass M of the source. We thus
consider only multipole interactions of type M × � � � ×
M × IP or M × � � � ×M × JP.
We shall prove below that, at the dominant level, the

relevant piece of the metric is a homogeneous solution of
the wave equation of the type retarded minus advanced
which is regular all over the near zone of the source. The
near-zone expansion of such a homogeneous solution,
when r ¼ jxj → 0, is of the type n̂Lrlþ2i with i being a
positive integer and n̂L the symmetric trace-free (STF)

angular factor. The general structure of this term in the
“gothic” metric deviation, corresponding to the interaction
M × � � � ×M × IP, is

1

hαβM×���×M×IP
∼

X
k;p;l;i

GkMk−1
c3kþp n̂L

�
r
c

�
lþ2i

×
Z þ∞

−∞
duκαβLPðt;uÞIðaÞP ðuÞ: (2.3)

Here k is the number of moments in the particular
interaction we are considering; it is thus made of k − 1
mass monopoles M and one nonstatic multipole IP. The
tensorial function καβLPðt; uÞ denotes a certain dimensionless
hereditary kernel (typically a logarithmic kernel as we shall
demonstrate below). The number of time derivatives on the
moment is a ¼ kþ pþ lþ 2iþ 1. Counting the powers
of 1=c we find that the PN order of the generic term in
Eq. (2.3) is n ¼ 3kþ pþ lþ 2iþ s − 2, where s is the
number of spatial indices among αβ, i.e. s ¼ 0, 1, 2
according to whether αβ ¼ 00, 0i, or ij. Now we have
the inequality jl − pj ≤ s (“law of addition of angular
momenta”) which states that the indices on the STF tensors

n̂L and IðaÞP must be either some free spatial indices coming
from αβ ¼ 0i or ij, or be contracted with each other. In fact
we have l ¼ p when s ¼ 0, l ¼ p − 1 or pþ 1 when
s ¼ 1, and l ¼ pþ 2, p or p − 2 when s ¼ 2. Notice that
s has always the same parity as l − p. From this we can
write the PN order as

n ¼ 3kþ 2pþ 2j − 2; (2.4)

where j is a positive integer. For a half-integral PN order we
must have k odd; hence k ¼ 3; 5;…, since we eliminate
k ¼ 1 which corresponds to a linear term deprived of tail.
For k ≥ 5, recalling that we have at least p ≥ 2 for evolving
mass moments, we see that the PN order (2.4) satisfies
n ≥ 17, which means at least 8.5PN order. We can
thus restrict ourselves to the case of cubic interactions
k ¼ 3 for the structure portrayed in Eq. (2.3). In this

1Our notation is as follows: the gothic metric deviation is hαβ ≡ffiffiffiffiffiffi−gp
gαβ − ηαβ where g and gαβ are, respectively, the determinant

and the inverse of gαβ, and ηαβ ¼ diagð−1; 1; 1; 1Þ; L ¼ i1 � � � il
or P ¼ i1 � � � ip denote multi-indices composed of l or p spatial
indices (ranging from 1 to 3); ∂L ¼ ∂i1 � � � ∂il is the product
of l partial derivatives ∂i ≡ ∂=∂xi; xL ¼ xi1 � � � xil is the product
of l spatial positions xi; similarly nL ¼ ni1 � � � nil is the product of
l unit vectors ni ¼ xi=r; the symmetric-trace-free (STF) projec-
tion is indicated with a hat, i.e. x̂L ≡ STF½xL�, n̂L ≡ STF½nL�,
∂̂L ≡ STF½∂L�. The mass and current multipole moments IP and
JP are STF, IP ¼ ÎP and JP ¼ ĴP. In the case of summed-up
(dummy) multi-indices L or P, we do not write the l or p
summations from 1 to 3 over the dummy indices. Symmetrization
over indices is denoted by TðijÞ ¼ 1

2
ðTij þ TjiÞ. Time derivatives

of the moments are indicated by superscripts ðnÞ.
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case we have n ¼ 7þ 2pþ 2j corresponding to terms
5.5PN; 6.5PN;… for the mass quadrupole p ¼ 2, to terms
6.5PN; 7.5PN;… for the mass octupole p ¼ 3, and so on.
The first occurrences of half-integral orders for the current
moments can be deduced from the previous discussion by
noticing that the polar tensor aaaεijaJaP−1, with aaaεija
denoting the three-dimensional Levi-Civita tensor, has the
same physical dimension as dIP=dt and is endowed with
one extra index. Therefore, the relations between a, n and
k, p, lþ 2i follow formally from those obtained for IP by
making the substitutions a → a − 1 and p → pþ 1. This
yields terms 6.5PN; 7.5PN;… for the current quadrupole
p ¼ 2, terms 7.5PN; 8.5PN;… for the current octupole
p ¼ 3, and so on.
We find in the end that theminimal order forwhichwehave

an occurrence of half-integral PN hereditary terms
(at linear order in the mass ratio ν) is 5.5PN. It corresponds
to the cubic interaction M ×M × Iij, between two mass
monopoles and the mass quadrupole moment, or tail-of-tail.
Nevertheless, it should be noted that the structure ∼n̂Lrlþ2i

assumed in Eq. (2.3) for terms of half-integral PN order
is only the starting point of a PN iteration. It should generate at
higher PN order some other terms possibly of more compli-
cated form. The details of this iteration depend on the adopted
coordinate system.We shall see that at 5.5PN order it plays a
crucial role in harmonic coordinates, but can be avoided by
choosing appropriately another coordinate system.

III. SOURCE TERMS FOR THE
TAIL-OF-TAIL INTERACTION

Tails arise from a quadratic interaction between the
mass monopole moment or ADM mass M of the source,
and STF nonstatic (propagating) multipole moments IP, JP
for which p ≥ 2: dominantly the mass quadrupole Iij,
subdominantly the mass octupole Iijk and current quadru-
pole Jij, and so on. If we consider only source terms that
are relevant for the dominant tail interaction, the gothic
metric deviation in harmonic coordinates (i.e. satisfying
∂βhαβ ¼ 0), in the vacuum region outside the matter source,
obeys

□hαβM×Iij
¼ Λαβ

M×Iij
; (3.1)

where □≡□η is the flat d’Alembertian operator, and
ΛM×Iij is the gravitational source term composed of
quadratic products involving derivatives of linear terms,
hM and hIij , solutions of the linearized vacuum field
equations. The metric solution of Eq. (3.1) diverges at
the origin r ¼ 0 located inside the matter source, and is
supposed to be matched to the actual post-Newtonian
expansion of the field inside the source.
At cubic order the gothic metric for the tail-of-tail

interaction obeys

□hαβM×M×Iij
¼ Λαβ

M×M×Iij
; (3.2)

where ΛM×M×Iij is made of quadratic products between
hM×M and hIij and between hM and hM×Iij , as well as cubic
products between hM, hM and hIij . This source term has
been computed in Eqs. (2.14)–(2.16) of Ref. [16], where it
is split into a local (instantaneous) part IM×M×Iij and a
nonlocal (hereditary) part HM×M×Iij :

Λαβ
M×M×Iij

¼ Iαβ
M×M×Iij

þHαβ
M×M×Iij

: (3.3)

Clearly the hereditary part comes from the tails that are
already present in hM×Iij and interact with hM to contribute
to the cubic source term ΛM×M×Iij .
The solutions of Eqs. (3.1) and (3.2) are obtained

iteratively by applying the flat retarded integral operator,
denoted □−1

ret , on the source term, but after multiplying
it by a regularization factor rB to cope with the divergence
of the multipole expansion when r → 0. Analytic con-
tinuation in B ∈ C is invoked and the finite part when
B → 0 provides a certain particular solution. To ensure
that the harmonic coordinate condition is satisfied at
each step, one must add to the latter solution a specific
homogeneous retarded solution [15], which does not
generate tail integrals when expanded in the near zone,
and can be safely ignored.
The instantaneous part of the cubic source term (3.2)

explicitly reads [16]2

I00
M×M×Iij

¼ M2nabr−7f−516Iab − 516rIð1Þab − 304r2Ið2Þab − 76r3Ið3Þab þ 108r4Ið4Þab þ 40r5Ið5Þab g; (3.4a)

I0i
M×M×Iij

¼ M2n̂iabr−6
�
4Ið1Þab þ 4rIð2Þab − 16r2Ið3Þab þ 4

3
r3Ið4Þab − 4

3
r4Ið5Þab

�

þM2nar−6
�
− 372

5
Ið1Þai − 372

5
rIð2Þai − 232

5
r2Ið3Þai − 84

5
r3Ið4Þai þ 124

5
r4Ið5Þai

�
; (3.4b)

2From now on we generally pose G ¼ c ¼ 1.
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I ij
M×M×Iij

¼ M2n̂ijabr−5f−190Ið2Þab − 118rIð3Þab − 92

3
r2Ið4Þab − 2r3Ið5Þab g

þM2δijnabr−5
�
160

7
Ið2Þab þ 176

7
rIð3Þab − 596

21
r2Ið4Þab − 160

21
r3Ið5Þab

�

þM2n̂aðir−5
�
− 312

7
Ið2ÞjÞa −

248

7
rIð3ÞjÞa þ

400

7
r2Ið4ÞjÞa þ

104

7
r3Ið5ÞjÞa

�

þM2r−5
�
−12Ið2Þij − 196

15
rIð3Þij − 56

5
r2Ið4Þij − 48

5
r3Ið5Þij

�
: (3.4c)

Here, all the time derivatives of the quadrupole moment IðpÞab are evaluated at the current retarded time t − r, hence the
instantaneous character of this term. The hereditary part of the source term (3.2) is

H00
M×M×Iij

¼ M2nabr−3
Z þ∞

1

dx

�
96Q0I

ð4Þ
ab þ

�
272

5
Q1 þ

168

5
Q3

�
rIð5Þab þ 32Q2r2I

ð6Þ
ab

�
; (3.5a)

H0i
M×M×Iij

¼ M2n̂iabr−3
Z þ∞

1

dx

�
−32Q1I

ð4Þ
ab þ

�
− 32

3
Q0 þ

8

3
Q2

�
rIð5Þab

�

þM2nar−3
Z þ∞

1

dx

�
96

5
Q1I

ð4Þ
ai þ

�
192

5
Q0 þ

112

5
Q2

�
rIð5Þai þ 32Q1r2I

ð6Þ
ai

�
; (3.5b)

Hij
M×M×Iij

¼ M2n̂ijabr−3
Z þ∞

1

dx

�
−32Q2I

ð4Þ
ab þ

�
− 32

5
Q1 − 48

5
Q3

�
rIð5Þab

�

þM2δijnabr−3
Z þ∞

1

dx

�
− 32

7
Q2I

ð4Þ
ab þ

�
− 208

7
Q1 þ

24

7
Q3

�
rIð5Þab

�

þM2n̂aðir−3
Z þ∞

1

dx

�
96

7
Q2I

ð4Þ
jÞa þ

�
2112

35
Q1 − 192

35
Q3

�
rIð5ÞjÞa

�

þM2r−3
Z þ∞

1

dx

�
32

5
Q2I

ð4Þ
ij þ

�
1536

75
Q1 − 96

75
Q3

�
rIð5Þij þ 32Q0r2I

ð6Þ
ij

�
: (3.5c)

The kernels of the above tail integrals are made of
Legendre functions of the second kind, Qm, which are here
computed at x, while the quadrupole moments IðpÞab , all
appearing inside the integrals, are evaluated at time t − rx.
Since x ranges from 1 to þ∞ the hereditary character of all
terms in Eq. (3.5) is evident. The Legendre function QmðxÞ
has a branch cut from −∞ to 1 and is conveniently
expressed in terms of the usual Legendre polynomial
PmðxÞ by means of the explicit formula

QmðxÞ ¼
1

2
PmðxÞ ln

�
xþ 1

x − 1

�
−Xm

j¼1

1

j
Pm−jðxÞPj−1ðxÞ:

(3.6)

IV. GENERAL FORMULA FOR INTEGRATING
THE SOURCE TERMS

For any source term of the type n̂LSðr; t − rÞ, i.e. which
has some definite multipolarity l, and is sufficiently regular
when r → 0, we can write the usual retarded integral □−1

ret
of this source as [15]

uLðx; tÞ≡□
−1
ret

�
n̂LSðr; t − rÞ

�

¼
Z

t−r
−∞

ds∂̂L

�
Rðt−r−s

2
; sÞ − Rðtþr−s

2
; sÞ

r

�
; (4.1a)

where Rðρ; sÞ ¼ ρl
Z

ρ

0

dλ
ðρ − λÞl

l!

�
2

λ

�
l−1

Sðλ; sÞ: (4.1b)

In the present case we have to apply this formula to two
types of source terms, either instantaneous or hereditary,
which can generically be written as

Sðr; t − rÞ ¼ rB−kFðt − rÞ; (4.2a)

or Sðr; t − rÞ ¼ rB−k
Z þ∞

1

dxQmðxÞFðt − rxÞ: (4.2b)

Here F represents some time derivative IðpÞab of the quadru-
pole moment. Notice the important factor rB which is
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systematically included and, when ℜðBÞ is large enough,
ensures the regularity of the source term as r → 0 as well as
the applicability of the integration formula (4.1). Complex
analytic continuation in B ∈ C is assumed throughout.
Since, ultimately, we shall be interested in the metric at

the location of one of the particles, our goal is to compute
the near-zone expansion of the solution (4.1) when r → 0.
For that purpose it is not necessary to control the full
solution uLðx; tÞ. Indeed we can obtain this expansion
directly from the near-zone expansion of the corresponding
source thanks to the following formula [19]:

uLðx; tÞ ¼ ∂̂L

�
Gðt − rÞ −Gðtþ rÞ

r

�

þ□
−1
inst½n̂LSðr; t − rÞ�; (4.3a)

with GðuÞ ¼
Z

u

−∞
dsR

�
u − s
2

; s

�
: (4.3b)

The first term in Eq. (4.3a) will be of primary interest. It is a
homogeneous solution of the wave equation which is of
retarded-minus-advanced type and is thus regular when
r → 0. Clearly such a solution will be directly valid inside
the matter source by virtue of a matching argument. For
later reference we note that the near-zone expansion r → 0
of this term is

∂̂L

�
Gðt − rÞ −Gðtþ rÞ

r

�

¼ −2x̂L
Xþ∞

k¼0

r2k

ð2kÞ!!ð2kþ 2lþ 1Þ!!G
ð2kþ2lþ1ÞðtÞ: (4.4)

The second term in (4.3a) is a particular solution of the
inhomogeneous equation which is defined by means of the
operator of “instantaneous” potentials as

□
−1
inst½n̂LSðr; t − rÞ� ¼

Xþ∞

i¼0

� ∂
∂t
�

2i
Δ−1−i½n̂LSðr; t − rÞ�:

(4.5)

Such operator acts directly on the formal near-zone
expansion of the source, indicated by the overbar, namely

Sðr; t − rÞ ¼
Xþ∞

j¼0

ð−rÞj
j!

SðjÞðtÞ: (4.6)

Note that the instantaneous operator (4.5) is always well
defined when acting to source terms of the type (4.2) that
are multiplied by the regularization factor rB. As usual we
apply repeatedly the Poisson operatorsΔ−1 on source terms
∼n̂LrBþj using analytic continuation, and consider at the
end the finite part when B → 0. An important point is that

the term (4.5) diverges when r → 0 and cannot be extended
inside the matter source. It should be matched to a full-
fledged solution of the field equations inside the source.
As we shall prove in the Appendix, this term will actually
contribute only at integral PN orders. Therefore the only
effect at the half-integral 5.5PN order comes from the first
term in Eq. (4.3a) containing the functionG, which we now
compute.
In order to apply the formulas (4.3) explicitly we need

to find the expression of the function GðuÞ for source
terms of the type (4.2). This is easily done for the
instantaneous source terms (4.2a) but is more tricky for
the tail terms (4.2b). Here we shall give the result only for
the tail terms (4.2b). The case for the instantaneous terms
can be deduced from it by replacing the Legendre function
QmðxÞ by a truncated delta function δþðx − 1Þ such thatRþ∞
1 dxδþðx − 1ÞϕðxÞ ¼ ϕð1Þ, i.e. given formally by
δþðx − 1Þ ¼ Yðx − 1Þδðx − 1Þ where Y is Heaviside’s
function.
To get GðuÞ we have to manipulate three integrations:

one in the definition of the function G, Eq. (4.3b); one in
the definition of the function R, Eq. (4.1b); and one present
in the source term itself, Eq. (4.2b). These three integrations
can be rearranged after appropriate commutations of
integrals, changes of variables and integrations by parts, as

GðuÞ ¼ Ck;l;mðBÞ
Z þ∞

0

dττBFðk−l−2Þðu − τÞ; (4.7)

where the B-dependent coefficient is given by

Ck;l;mðBÞ ¼
2l

l!
ΓðB − kþ lþ 3Þ

ΓðBþ 1Þ
Z þ∞

0

dyQmð1þ yÞ

×
Z

1

0

dz
zB−k−lþ1ð1 − zÞl
ð2þ yzÞB−kþlþ3

; (4.8)

Γ being the usual Eulerian function. Notice that, depend-
ing on the values of k and l, the function Fðu − τÞ in
Eq. (4.7) will appear either with multitime derivatives or
multitime antiderivatives. The formula for the coefficient
(4.8), thanks to the use of Γ functions, is able to treat both
cases at the same time, and is valid in either case. Again,
we have finally to take the finite part of the Laurent
expansion of the result when B → 0. An alternative
form of Eq. (4.8), in which one integration is explicitly
performed, reads

Ck;l;mðBÞ ¼
ΓðB − k − lþ 2Þ

2ΓðBþ 1Þ

×
Xl
i¼0

ðlþ iÞ!
i!ðl − iÞ!

ΓðB − kþ lþ 3Þ
ΓðB − kþ iþ 3Þ

×
Z þ∞

0

dy

�
y
2

�
i Qmð1þ yÞ
ð2þ yÞB−kþ2

: (4.9)
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Suppose that the coefficient (4.8) or equivalently (4.9)
admits the singular Laurent expansion when B → 0

Ck;l;mðBÞ ¼
Xþ∞

i¼−q
αðiÞBi; (4.10)

with finite part coefficient αð0Þ, residue coefficient αð−1Þ,
and so on. Applying the finite part at B ¼ 0 we see that the
function GðuÞ reads

GðuÞ ¼ −αð0ÞFðk−l−3ÞðuÞ

þ
Xq
j¼1

αð−jÞ
j!

Z þ∞

0

dτðln τÞjFðk−l−2Þðu − τÞ:

(4.11)

We have performed directly the integration over τ in the
first term. It can be checked that there are always enough

time derivatives on the quadrupole moment in F ¼ IðpÞab so
that this term is made of some time derivative (and not
antiderivative) of this moment. Note also that we have
discarded the contribution at τ ¼ þ∞ assuming that the
quadrupole moment becomes constant in the remote past.
Finally the first term in (4.11) is purely instantaneous and
cannot contribute at any half-integral PN order for circular
orbits as has been shown from Eq. (2.1) by dimensionality
arguments.

The terms in Eq. (4.11) with j ≥ 1 correspond to tails. As
we have seen, only tails (and tails-of-tails) can contribute
for circular orbits at the 5.5PN order. Thus, what we have to
do is control the pole part when B → 0 of the B-dependent
coefficients (4.8), and we must do that for all the source
terms in Eqs. (3.4) and (3.5). We find that only simple poles
appear for all these terms at 5.5PN order, i.e. only the term
j ¼ 1 in (4.11) contributes. Hence we require

GtailðuÞ ¼ αð−1Þ
Z þ∞

0

dτ ln τFðk−l−2Þðu − τÞ: (4.12)

V. CONTROL OF THE 5.5PN TERM
IN THE REDSHIFT FACTOR

In the Appendix we show that we do not have to consider
the second term in Eq. (4.3a), defined by (4.5), since it
contributes only at integral PN orders (4PN, 5PN, 6PN,
etc.). This situation is fortunate: we have obtained this term
only in the form of a multipole expansion valid outside the
matter source and diverging when r → 0, and to control it
we would need to invoke matching to the actual post-
Newtonian field inside the physical source.
Gathering all the results for the functionsGtailðuÞ defined

by (4.12) for all the terms in Eqs. (3.4) and (3.5), we obtain
the tail-of-tail contributions in the gothic metric as

ðh00ÞM×M×Iij ¼
116

21

G3M2

c8

Z þ∞

0

dτ ln τ∂ab

�
Ið3Þab ðt − r − τÞ − Ið3Þab ðtþ r − τÞ

r

�
; (5.1a)

ðh0iÞM×M×Iij ¼
4

105

G3M2

c7

Z þ∞

0

dτ ln τ∂̂iab

�
Ið2Þab ðt − r − τÞ − Ið2Þab ðtþ r − τÞ

r

�

− 416

75

G3M2

c9

Z þ∞

0

dτ ln τ∂a

�
Ið4Þia ðt − r − τÞ − Ið4Þia ðtþ r − τÞ

r

�
; (5.1b)

ðhijÞM×M×Iij
¼ − 32

21

G3M2

c8

Z þ∞

0

dτ ln τδij∂ab

�
Ið3Þab ðt − r − τÞ − Ið3Þab ðtþ r − τÞ

r

�

þ 104

35

G3M2

c8

Z þ∞

0

dτ ln τ∂̂aði

�Ið3ÞjÞaðt − r − τÞ − Ið3ÞjÞaðtþ r − τÞ
r

�

þ 76

15

G3M2

c10

Z þ∞

0

dτ ln τ
Ið5Þij ðt − r − τÞ − Ið5Þij ðtþ r − τÞ

r
: (5.1c)

At this stage we have the important verification that the
latter piece of the metric should be separately divergence
free, i.e. ð∂βhαβÞM×M×Iij ¼ 0. This verification is important
because it tests the rather involved formulas (4.8)–(4.9).
Once we have the metric (5.1) we compute its near-zone

expansion r → 0 thanks to the formula (4.4). We need in

fact only the leading term in that formula, corresponding
to k ¼ 0 in (4.4). In anticipation of our change from the
gothic metric hαβ to the usual covariant metric gαβ, we shall
include the contribution of the spatial trace hii ≡ δijhij

together with the h00 component. Then we get at leading
order when r → 0 the expressions
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ðh00 þ hiiÞM×M×Iij ¼ − 824

1575

G3M2

c13
xab

Z þ∞

0

dτ ln τIð8Þab ðt − τÞ þO
�

1

c15

�
; (5.2a)

ðh0iÞM×M×Iij ¼
832

225

G3M2

c12
xa

Z þ∞

0

dτ ln τIð7Þia ðt − τÞ þO
�

1

c14

�
; (5.2b)

ðhijÞM×M×Iij ¼ − 152

15

G3M2

c11

Z þ∞

0

dτ ln τIð6Þij ðt − τÞ þO
�

1

c13

�
: (5.2c)

The powers of 1=c show that this indeed corresponds
to a 5.5PN term. However, we notice that in harmonic
coordinates the ij component of the metric, which is of
order 1=c11, can be coupled to a Newtonian term
h00 ¼ −4Uext=c2 þOð1=c4Þ, where Uext is the Newtonian
potential as seen from the exterior of the source, to produce
from the next iteration a term of order 1=c13 comparable to
that in the 00 and ii components of the metric. The exterior
Newtonian potential Uext, together with the associated
“superpotential” χext such that Δχext ¼ 2Uext, are defined
by their multipole expansions,

Uextðx; tÞ ¼ G
Xþ∞

l¼0

ð−Þl
l!

ILðtÞ∂L

�
1

r

�
; (5.3a)

χextðx; tÞ ¼ 2Δ−1Uext ¼ G
Xþ∞

l¼0

ð−Þl
l!

ILðtÞ∂LðrÞ: (5.3b)

Thus we see that, in harmonic coordinates, we shall also
have a contribution from quartic interactions of the type
M ×M × Iij × IL. This includes, in the particular case
l ¼ 0, the interaction M ×M ×M × Iij which can be
viewed as a kind of “tail-of-tail-of-tail.” The equation
determining this quartic interaction is readily found to be

Δ½ðh00 þ hiiÞM×M×Iij×IL
� ¼ − 608

15

G3M2

c13
∂ijUext

Z þ∞

0

dτ ln τIð6Þij ðt − τÞ þO
�

1

c15

�
; (5.4)

and is immediately integrated as

ðh00 þ hiiÞM×M×Iij×IL ¼ − 304

15

G3M2

c13
∂ijχext

Z þ∞

0

dτ ln τIð6Þij ðt − τÞ þO
�

1

c15

�
: (5.5)

Next we want to extend these results inside the
matter source. This is straightforward for the piece (5.2)
which is regular inside the source and is valid there as it
stands. However this requires a matching argument for
the extra piece (5.5) since it diverges when r → 0.
Fortunately the problem of the matching is easily solved
by noticing that the exterior Newtonian potential Uext

and superpotential χext represent the multipole expansions
of the usual Poisson potential U and superpotential
χ given by

Uðx; tÞ ¼ G
Z

d3x0

jx − x0j ρðx
0; tÞ; (5.6a)

χðx; tÞ ¼ 2Δ−1U ¼ G
Z

d3x0jx − x0jρðx0; tÞ; (5.6b)

where ρ is the Newtonian mass density of the source.
Here we neglect post-Newtonian corrections, and have
simply used the fact that the mass moments IL take on
their usual Newtonian expressions in the Newtonian
limit. Once the metric is matched, i.e. Uext and χext are
replaced by U and χ, we can consider the case where the
source is a point-particles binary for which we have, at
Newtonian order,

Uðx; tÞ ¼ Gm1

r1
þ Gm2

r2
; (5.7a)

χðx; tÞ ¼ Gm1r1 þGm2r2: (5.7b)

The metric is then complete. Coming back to the usual
covariant metric gαβ we find the following contributions
at 5.5PN order:
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g5:5PN00 ¼ 412

1575

G3M2

c13
xab

Z þ∞

0

dτ ln τIð8Þab ðt − τÞ þ 152

15

G3M2

c13
∂abχ

Z þ∞

0

dτ ln τIð6Þab ðt − τÞ þO
�

1

c15

�
; (5.8a)

g5:5PN0i ¼ 832

225

G3M2

c12
xa

Z þ∞

0

dτ ln τIð7Þia ðt − τÞ þO
�

1

c14

�
; (5.8b)

g5:5PNij ¼ 152

15

G3M2

c11

Z þ∞

0

dτ ln τIð6Þij ðt − τÞ þO
�

1

c13

�
: (5.8c)

A priori this metric will contain both conservative and
dissipative (radiation-reaction) effects. Here we want to
keep only the conservative effects, that are compatible
with the helical symmetry and exactly circular orbits.
We shall assume that the split between conservative and
dissipative effects is equivalent to a split between “time-
symmetric” and “time-antisymmetric” contributions in
the following sense. Namely, we decompose the tail
integrals in (5.8) into conservative and dissipative pieces
defined by

�Z þ∞

0

dτ ln τIðpÞab ðt − τÞ
�

cons

¼ 1

2

Z þ∞

0

dτ ln τ½IðpÞab ðt − τÞ þ IðpÞab ðtþ τÞ�; (5.9a)

�Z þ∞

0

dτ ln τIðpÞab ðt − τÞ
�

diss

¼ 1

2

Z þ∞

0

dτ ln τ½IðpÞab ðt − τÞ − IðpÞab ðtþ τÞ�: (5.9b)

This will be justified later when we check that the
equations of motion associated with the conservative/
symmetric piece of the metric are indeed conservative,
i.e. that the acceleration is purely radial. Notice that there
should be a logarithm ln r associated with the conservative
part of the tail integral, exactly as at 4PN and 5PN orders
[11,21]. However this logarithm is an instantaneous
5.5PN term and therefore is zero for circular orbits by
the argument (2.1). Finally the conservative part of the
metric at the 5.5PN order is

ðg5:5PN00 Þcons ¼
206

1575

G3M2

c13
xab

Z þ∞

0

dτ ln τ½Ið8Þab ðt − τÞ þ Ið8Þab ðtþ τÞ�

þ 76

15

G3M2

c13
∂abχ

Z þ∞

0

dτ ln τ½Ið6Þab ðt − τÞ þ Ið6Þab ðtþ τÞ� þO
�

1

c15

�
; (5.10a)

ðg5:5PN0i Þcons ¼
416

225

G3M2

c12
xa

Z þ∞

0

dτ ln τ½Ið7Þia ðt − τÞ þ Ið7Þia ðtþ τÞ� þO
�

1

c14

�
; (5.10b)

ðg5:5PNij Þcons ¼
76

15

G3M2

c11

Z þ∞

0

dτ ln τ½Ið6Þij ðt − τÞ þ Ið6Þij ðtþ τÞ� þO
�

1

c13

�
; (5.10c)

where we recall that the superpotential χ is given by
Eq. (5.7b).
The metric (5.10) corresponds to harmonic coordinates.

In harmonic coordinates we have obtained a “quartic”
nonlinear contribution at 5.5PN order given by the second
term in (5.10a). However let us introduce new coordinates,
which have the desirable property of canceling the latter
quartic nonlinear contribution, and removing the 0i and ij
components of the metric. The coordinate transformation
vector from the harmonic coordinates to the new ones is
given by

η0 ¼
77

225

G3M2

c12
xab

Z þ∞

0

dτ ln τ½Ið7Þab ðt − τÞ þ Ið7Þab ðtþ τÞ�

þO
�

1

c14

�
; (5.11a)

ηi ¼ − 38

15

G3M2

c11
xa

Z þ∞

0

dτ ln τ½Ið6Þia ðt − τÞ þ Ið6Þia ðtþ τÞ�

þO
�

1

c13

�
: (5.11b)
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The coordinate transformation at the requested order,
including the nonlinear correction with respect to a linear
gauge transformation [see e.g. Eqs. (6.9)–(6.10) in
Ref. [22]], reads

ðg05:5PN00 Þcons ¼ ðg5:5PN00 Þcons þ
2

c
∂tη0 þ

2

c2
∂iηj∂ijχ

þO
�

1

c15

�
; (5.12a)

ðg05:5PN0i Þcons ¼ ðg5:5PN0i Þcons þ
1

c
∂tηi þ ∂iη0 þO

�
1

c14

�
;

(5.12b)

ðg05:5PNij Þcons ¼ ðg5:5PNij Þcons þ ∂iηj þ ∂jηi þO
�

1

c13

�
:

(5.12c)

The nonlinear term in Eq. (5.12a) cancels the second term
in Eq. (5.10a) and we find the simple new metric

ðg05:5PN00 Þcons ¼
428

525

G3M2

c13
xab

Z þ∞

0

dτ ln τ½Ið8Þab ðt − τÞ

þIð8Þab ðtþ τÞ� þO
�

1

c15

�
; (5.13a)

ðg05:5PN0i Þcons ¼ O
�

1

c14

�
; (5.13b)

ðg05:5PNij Þcons ¼ O
�

1

c13

�
: (5.13c)

The computations to follow have been performed with the
two metrics (5.10) and (5.13) giving identical results.
Following Eq. (1.2) we compute the components of

the metric [either (5.10) or (5.13)] at the location of the
particle 1. For this, we simply replace xi by yi1 and thus
(in a center-of-mass frame) by X2xi12 where x

i
12 ¼ yi1 − yi2

and X2 ¼ m2=m. At linear order in the mass ratio ν we
can assume that X2 ¼ 1þOðνÞ. The term ∂abχ in the
harmonic-coordinate metric necessitates a regularization
and reads ð∂abχÞ1 ¼ m2ðδab − nab12Þ=r12 on particle 1.
On the other hand the quadrupole moment is given by

the usual Newtonian expression Iij ¼ mνx̂ij12 and its time
derivatives are computed for circular orbits using the
Newtonian equations of motion. Similarly the ADM mass
is given with this approximation by M ¼ m. Then the
quadrupole moment is to be evaluated in the past and in the
future, at advanced and retarded times t� τ. To do that we
relate the separation vector and relative velocity at earlier
and future times to the current values for circular orbits
by using

xi12ðt� τÞ ¼ cosðΩτÞxi12ðtÞ � sinðΩτÞvi12ðtÞ=Ω; (5.14a)

vi12ðt� τÞ ¼ ∓Ω sinðΩτÞxi12ðtÞ þ cosðΩτÞvi12ðtÞ; (5.14b)

where Ω is the orbital frequency of the circular motion. We
are then left with the integrals

Z þ∞

0

dτ ln τ cosð2ΩτÞ ¼ − π

4Ω
; (5.15a)

Z þ∞

0

dτ ln τ sinð2ΩτÞ ¼ − 1

2Ω
½lnð2ΩÞ þ γE�: (5.15b)

We shall find that, for the conservative part of the
dynamics, only the first integral (with the factor π)
contributes. The other integral (with Euler’s constant γE)
will not be needed.
It is important also to consider the modification of the

equations of motion which is induced by the 5.5PN metric
(5.10). We find that with the conservative symmetrized
(half-retarded plus half-advanced) expression (5.10) the
modification is purely conservative; i.e. it only affects the
relation between the orbital frequencyΩ and the coordinate
separation r12. This is a confirmation of our prescriptions
(5.9). Writing only the Newtonian and 5.5PN terms we get

Ω2 ¼ Gm
r312

�
1þ 27392

525
νπγ11=2

�
; (5.16)

where γ ¼ Gm=ðr12c2Þ. The inverse relation in terms of
x ¼ ðGmΩ=c3Þ2=3 is

γ ¼ x

�
1 − 27392

1575
νπx11=2

�
: (5.17)

We have checked that the modification of the motion does
not affect the position of the center of mass so we can use
the usual formulas when going to the center-of-mass frame.
At last we have the metric on particle 1 and we insert it

into Eq. (1.2). We then go to the frame of the center of mass
and reduce the expression to circular orbits, mindful of the
modification (5.17) to the relation between orbital separa-
tion and frequency—which we find does not actually
contribute to the final result. Posing then q ¼ m1=m2

and y ¼ ðGm2Ω=c3Þ2=3 ¼ xð1þ qÞ−2=3, we define the
SF part to the redshift factor as uT1 ¼ uTSchwðyÞ þ quTSFðyÞ þ
Oðq2Þ and find that the 5.5PN contribution therein is

uTSF ¼ y

�
1 − 13696

525
πy11=2

�
: (5.18)

We have written only the Newtonian and 5.5PN terms. This
result is in perfect agreement with the high-precision
numerical and analytic computation of the gravitational
self-force reported in Eq. (20) of the companion paper [12].
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Analytical self-force calculations, essentially extending
those in Refs. [12,23] and based on the Regge-Wheeler
equation, have recently obtained exact results up to order
6PN [24], in precise agreement with the high-precision
results of [12]. While such an approach is applicable to
all PN orders at first order in perturbation theory, our
methods in principle apply to arbitrarily high order in the
mass ratio, while also extending to higher PN order.
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APPENDIX: PROOF THAT CERTAIN
SPECIFIC TERMS DO NOT CONTRIBUTE

AT 5.5PN ORDER

The second term in Eq. (4.3a) is a particular solution
of the wave equation defined by means of the operator of
the instantaneous potentials □

−1
inst given in Eq. (4.5). It is

crucial that such an operator acts directly on the near-zone
expansion of the source term (4.6), where the source term
itself is given for this application by Eq. (4.2b) namely

Sðr; t − rÞ ¼ rB−k
Z þ∞

1

dxQmðxÞFðt − rxÞ: (A1)

We are looking for the hereditary tail part of the metric.
Since the operator □−1

inst is instantaneous, i.e. it does not
involve any integral extending over time, the only possible
tail integrals will come from the tails that are already
present in the near-zone expansion [namely Sðr; t − rÞ
when r → 0] of the source term (A1).
Let us first note that one cannot compute the near-zone

expansion of (A1) by directly expanding Fðt − rxÞ under
the integral sign because the coefficients in the expansion
will involve the integral of the Legendre function QmðxÞ
multiplied by arbitrary powers of x, which will become
divergent at some stage. Hence we split the integral (A1)
into a “recent” part from x ¼ 1 to K, where K is a constant
such that K ≫ 1, and a “remote” part from K up to þ∞.
Now we are allowed to perform the Taylor expansion of
Fðt − rxÞ when r → 0 into the recent part. That expansion
will be made of time derivatives FðnÞðtÞ with coefficients
given by finite integrals from 1 to K of some xnQmðxÞ.
Hence the expansion of the recent part is purely instanta-
neous and does not contain tails. Looking for hereditary
tails we can thus concentrate our attention to the remote
part of the integral, namely

Sðr; t − rÞjtail ¼ rB−k
Z þ∞

K
dxQmðxÞFðt − rxÞ: (A2)

In the right-hand side an overbar is implicitly understood,
meaning that the expression should be considered in the

form of a near-zone expansion. Since we assumed K ≫ 1
we are allowed to replace the Legendre function QmðxÞ
by its formal expansion when x → ∞, which is of the type
QmðxÞ ∼

Pþ∞
p¼0 x

−m−2p−1, with some constant coefficients
that we shall not need to consider here. Thus,

Sðr; t − rÞjtail ∼
Xþ∞

p¼0

rB−k
Z þ∞

K

dx
xmþ2pþ1

Fðt − rxÞ: (A3)

Next we repeatedly integrate the latter integrals by
parts. The all-integrated terms will be some functions
FðkÞðt − KrÞ which can be Taylor-expanded when r → 0
without problem. They do not contain tails so we ignore
them. After mþ 2pþ 1 integrations by parts we get

Sðr; t − rÞjtail ∼
Xþ∞

p¼0

rB−kþmþ2pþ1

×
Z þ∞

K
dx ln xFðmþ2pþ1Þðt − rxÞ: (A4)

As before we do not need to write the detailed
(B-dependent) coefficients in front of each term. Posing
next τ ¼ rx we obtain

Sðr; t − rÞjtail ∼
Xþ∞

p¼0

rB−kþmþ2p

×
Z þ∞

rK
dτ ln τFðmþ2pþ1Þðt − τÞ; (A5)

where again, a nontail term (proportional to ln r) has been
ignored. Finally we note that the recent part of the latter
integral, from 0 to rK, can also be expanded without tails. It
is then convenient to add it back in order to complete our
result (A5). Thus we have identified the tail part of the
source as

Sðr; t − rÞjtail ∼
Xþ∞

p¼0

rB−kþmþ2p

×
Z þ∞

0

dτ ln τFðmþ2pþ1Þðt − τÞ: (A6)

Following the prescription (4.5), it remains to apply the
operator □−1

inst. This gives

□
−1
inst½n̂LSðr; t− rÞ�jtail ∼

Xþ∞

i¼0

Xþ∞

p¼0

Δ−i−1ðn̂LrB−kþmþ2pÞ

×
Z þ∞

0

dτ ln τFðmþ2pþ2iþ1Þðt− τÞ:
(A7)

The iterated Poisson operators Δ−i−1 are straightforwardly
computed and, as usual, we consider the finite part when
B → 0. This yields some powers of r and possibly some
ln r due to poles ∼1=B. Thus we get (with a ¼ 0 or 1)
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□−1
inst½n̂LSðr; t− rÞ�jtail ∼

Xþ∞

i¼0

Xþ∞

p¼0

n̂Lr−kþmþ2pþ2iþ2ðln rÞa

×
Z þ∞

0

dτ ln τFðmþ2pþ2iþ1Þðt− τÞ:
(A8)

If we restore all the powers of c’s and G’s together with the
fact that F is composed of a mass squared M2 times a time
derivative of a quadrupole moment Iab, we end up with

□
−1
inst½n̂LSðr; t− rÞ�jtail∼G3M2

X
i;p

n̂Lr−kþmþ2pþ2iþ2ðln rÞa
c13−kþmþ2pþ2i

×
Z þ∞

0

dτ ln τIð8−kþmþ2pþ2iÞ
ab ðt− τÞ:

(A9)

Let us look at the actual source for that particular
interaction M2 × Iab as given by Eqs. (3.5)—as explained
already, we can ignore the nontail part (3.4) of the
source. We observe that, for all the terms in Eqs. (3.5),
the combination kþmþ l is always an odd integer.
Furthermore, using the fact that the space indices among
αβ ¼ 00, 0i, ij must be distributed between the indices of
n̂L and IðpÞab , we see that l must be even in the 00 and ij
components of the metric and odd in the 0i components;
see also the discussion above Eq. (2.4). We thus conclude
from Eq. (A9) that the powers of 1=c are even in the 00 and
ij components and odd in the 0i components, which means

precisely that all the terms in Eq. (A9) have necessarily
integral PN orders. Closer inspection of (A9) with the
explicit values of k, m and l in the source (3.5) shows that
these terms are necessarily of order 4PN, 5PN, 6PN and so
on, but can never arise at 5.5PN order.
In conclusion, we have proved that only the first term in

Eq. (4.3a) contributes at the 5.5PN order, and this is what
we have computed in the text. A related issue is that the
second term in Eq. (4.3a), that we have investigated in this
appendix, is in fact divergent when r → 0; indeed see e.g.
(A9) which involves negative powers of r, when k ¼ þ3
say, which is a typical term in the source (3.5). Thus the
second term in (4.3a) cannot be continued inside the source
by itself. It has to be matched to the actual PN expansion of
the field inside the source. Only the first term in Eq. (4.3a),
which is a regular homogeneous solution of the wave
equation, is valid inside the source and can be continued
there. This is why we could compute it at the location of
one of the particles in a binary system. The other term, by
contrast, necessitates a matching procedure which we do
not control in the present work. However, past experience
with tails (e.g. in Ref. [11]) indicates that one does not need
a complete matching in order to compute the tails inside the
source, essentially because they contribute to the radiation
reaction and can be determined as “boundary conditions”
set outside the source. Therefore we do not expect that the
second term in Eq. (4.3a) should contribute to the present
tail-of-tail effect. Regardless, in this appendix we have
directly proven that the PN order of such a term is
necessarily integral and cannot be 5.5PN.

[1] L. Blanchet, Living Rev. Relativity 17, 2 (2014).
[2] Y. Mino, M. Sasaki, and T. Tanaka, Phys. Rev. D 55, 3457

(1997).
[3] T. Quinn and R. Wald, Phys. Rev. D 56, 3381 (1997).
[4] S.Detweiler andB.Whiting, Phys.Rev.D 67, 024025 (2003).
[5] S. Gralla and R. Wald, Classical Quantum Gravity 25,

205009 (2008).
[6] E. Poisson, A. Pound, and I. Vega, Living Rev. Relativity

14, 7 (2011).
[7] S. Detweiler, in Mass and Motion in General Relativity,

edited by L. Blanchet, A. Spallicci, and B. Whiting
(Springer, New York, 2011), p. 271.

[8] L. Barack, inMass and Motion in General Relativity, edited
by L. Blanchet, A. Spallicci, and B. Whiting (Springer,
New York, 2011), p. 327.

[9] S. Detweiler, Phys. Rev. D 77, 124026 (2008).
[10] L. Blanchet, S. Detweiler, A. Le Tiec, and B. Whiting,

Phys. Rev. D 81, 064004 (2010).
[11] L. Blanchet, S. Detweiler, A. Le Tiec, and B. Whiting,

Phys. Rev. D 81, 084033 (2010).

[12] A. Shah, J. Friedmann, and B. Whiting, preceding article,
Phys. Rev. D 89, DM11229 (2014).

[13] T. Damour, P. Jaranowski, and G. Schäfer, Phys. Lett. B
513, 147 (2001).

[14] L. Blanchet, T. Damour, and G. Esposito-Farèse, Phys. Rev.
D 69, 124007 (2004).

[15] L. Blanchet and T. Damour, Phil. Trans. R. Soc. A 320, 379
(1986).

[16] L. Blanchet, Classical Quantum Gravity 15, 113 (1998); 22,
3381(E) (2005).

[17] L. Blanchet and T. Damour, Phys. Rev. D 46, 4304
(1992).

[18] L. Blanchet and T. Damour, Phys. Rev. D 37, 1410 (1988).
[19] L. Blanchet, Phys. Rev. D 47, 4392 (1993).
[20] T. Damour, Phys. Rev. D 81, 024017 (2010).
[21] A. Le Tiec, L. Blanchet, and B. Whiting, Phys. Rev. D 85,

064039 (2012).
[22] L. Blanchet and G. Faye, Phys. Rev. D 63, 062005 (2001).
[23] D. Bini and T. Damour, Phys. Rev. D 87, 121501 (2013).
[24] D. Bini and T. Damour, arXiv:1312.2503.

LUC BLANCHET, GUILLAUME FAYE, AND BERNARD F. WHITING PHYSICAL REVIEW D 89, 064026 (2014)

064026-12

http://dx.doi.org/10.12942/lrr-2014-2
http://dx.doi.org/10.1103/PhysRevD.55.3457
http://dx.doi.org/10.1103/PhysRevD.55.3457
http://dx.doi.org/10.1103/PhysRevD.56.3381
http://dx.doi.org/10.1103/PhysRevD.67.024025
http://dx.doi.org/10.1088/0264-9381/25/20/205009
http://dx.doi.org/10.1088/0264-9381/25/20/205009
http://dx.doi.org/10.12942/lrr-2011-7
http://dx.doi.org/10.12942/lrr-2011-7
http://dx.doi.org/10.1103/PhysRevD.77.124026
http://dx.doi.org/10.1103/PhysRevD.81.064004
http://dx.doi.org/10.1103/PhysRevD.81.084033
http://dx.doi.org/10.1016/S0370-2693(01)00642-6
http://dx.doi.org/10.1016/S0370-2693(01)00642-6
http://dx.doi.org/10.1103/PhysRevD.69.124007
http://dx.doi.org/10.1103/PhysRevD.69.124007
http://dx.doi.org/10.1098/rsta.1986.0125
http://dx.doi.org/10.1098/rsta.1986.0125
http://dx.doi.org/10.1088/0264-9381/15/1/009
http://dx.doi.org/10.1088/0264-9381/22/16/C01
http://dx.doi.org/10.1088/0264-9381/22/16/C01
http://dx.doi.org/10.1103/PhysRevD.46.4304
http://dx.doi.org/10.1103/PhysRevD.46.4304
http://dx.doi.org/10.1103/PhysRevD.37.1410
http://dx.doi.org/10.1103/PhysRevD.47.4392
http://dx.doi.org/10.1103/PhysRevD.81.024017
http://dx.doi.org/10.1103/PhysRevD.85.064039
http://dx.doi.org/10.1103/PhysRevD.85.064039
http://dx.doi.org/10.1103/PhysRevD.63.062005
http://dx.doi.org/10.1103/PhysRevD.87.121501
http://arXiv.org/abs/1312.2503

