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We consider the retarded solution to the scalar, electromagnetic, and linearized gravitational field
equations in Minkowski spacetime, with source given by a particle moving on a null geodesic. In the scalar
case and in the Lorenz gauge in the electromagnetic and gravitational cases, the retarded integral over the
infinite past of the source does not converge as a distribution, so we cut off the null source suitably at a finite
time t0 and then consider two different limits: (i) the limit as the observation point goes to null infinity at
fixed t0, from which the “1=r” part of the fields can be extracted and (ii) the limit t0 → −∞ at fixed
“observation point.” The limit (i) gives rise to a “velocity kick” on distant test particles in the scalar and
electromagnetic cases, and it gives rise to a “memory effect” (i.e., a permanent change in relative separation
of two test particles) in the linearized gravitational case, in agreement with previous analyses. As already
noted, the second limit does not exist in the scalar case or for the Lorenz gauge vector potential and Lorenz
gauge metric perturbation in the electromagnetic and linearized gravitational cases. However, in the
electromagnetic case, we obtain a well-defined distributional limit for the electromagnetic field strength,
and in the linearized gravitational case, we obtain a well-defined distributional limit for the linearized
Riemann tensor. In the gravitational case, this limit agrees with the Aichelberg-Sexl solution. There is no
memory effect associated with this limiting solution. This strongly suggests that the memory effect—
including nonlinear memory effect of Christodoulou—should not be interpreted as arising simply from the
passage of (effective) null stress energy to null infinity but rather as arising from a “burst of radiation”
associated with the creation of the null stress energy [as in case (i) above] or, more generally, with radiation
present in the spacetime that was not “produced” by the null stress energy.
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I. INTRODUCTION

As is well known, gravitational radiation induces relative
displacements in a system of inertial test particles.
Zel’dovich and Polnarev [1] first noted that, within linear-
ized gravity, the passage of a pulse of gravitational
radiation can cause a permanent change in the relative
displacement these particles. This effect is known as the
memory effect. The net relative displacement, ΔDa, after
passage of the pulse for test masses with initial separation
Da can be expressed as

ΔDa ¼
1

2
ΔhTTabDb; (1)

whereΔhTTab is the net change in the metric perturbation in a
transverse-traceless gauge. In linearized gravity, for gravi-
tational radiation produced by a change in the motion of
particlelike sources occurring in a localized region of
spacetime, to leading order in 1=r we have [2], [3]

ΔhTTab ¼ 1

r
Δ
X
A

4MAffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2A

p
� ðvAÞaðvAÞb
1 − vA cos θA

�
TT
; (2)

where A is an index labeling the source particles, which
have mass MA and velocity vA at angle θA with respect to
the direction of the detector. The brackets ½…�TT represent
the transverse-traceless part of the object within, and Δ
means the difference between the quantity at late and early
times. In the case where there is an emission of a null-
particle-like source of energy E moving in the z direction
and all other sources (before and after the emission) are
nonrelativistic, the memory effect for a detector at ðθ;ϕÞ
becomes

ΔDa ¼
E
r
ð1þ cos θÞðθaθb − ϕaϕbÞDb; (3)

where θa and ϕa denote unit vectors in the θ and ϕ
directions, respectively.
Making use of a careful analysis of the nonlinear

Einstein equation, Christodoulou [4] found that there can
be significant nonlinear contributions to the memory effect.
Christodoulou’s formula for the nonlinear contribution to
the memory effect associated with the passage of a
gravitational radiation to future null infinity is expressed
in terms of an integral of the Bondi flux over future null
infinity. For the case where the Bondi flux is highly
localized in the z direction and the integrated flux is E,
Christodoulou’s formula reduces to (3).
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Thorne [2] and Wiseman and Will [3] soon interpreted
Christodoulou’s nonlinear memory effect as simply corre-
sponding to the linear memory effect, but with the non-
linear effective stress energy of gravitational waves
replacing the “particle” sources. Further support for this
interpretation can be found in the fact that a similar
nonlinear memory effect occurs when a flux of electro-
magnetic radiation reaches null infinity [5], thereby show-
ing that the nonlinear memory effect is not special to
gravitational waves. Very recently, Bieri and Garfinkle [6]
have shown that the linear memory effect for null matter
can be derived in close parallel to Christodoulou’s deriva-
tion, thus further confirming that the nonlinear memory
effect can be interpreted as being the same as the linear
memory effect, with the effective stress energy of gravi-
tational radiation replacing the ordinary stress energy of
null matter.
However, there remains a puzzling aspect of the alter-

native derivations of the memory effect. In the derivation of
the formula (2) for the linear memory effect, one considers
the retarded solution associated with sources. The linear
memory effect is thereby seen to be simply an aspect of the
gravitational radiation emitted by the sources. In particular,
for slowly moving sources, what is relevant for producing a
nontrivial memory effect is the net change in the time
derivative of the quadrupole moment of the sources. If the
time derivative of the quadrupole moment does not vary—
such as for the case of a single particle moving on a timelike
geodesic of Minkowski spacetime—there is no gravita-
tional radiation and no memory effect. Similar results hold
if one does not assume slow motion of the sources [3].
By contrast, in Christodoulou’s [4] derivation of the

nonlinear memory effect and in the Bieri and Garfinkle [6]
derivation of the linear memory effect for null matter, there
is no allusion to emission by sources. If one examines these
derivations, it would appear that all that is relevant to the
memory effect is that there be a flux of gravitational
radiation or null matter to future null infinity. This flux
could just as well have originated from past null infinity as
have been emitted by sources at some finite time. This
would suggest1 that the null memory effect should be
interpreted as being associated with simply the passage of
null (effective) stress energy to infinity—perhaps as a “tidal
effect”—rather than as being caused by a burst of radiation
associated with some “emission event” within the
spacetime.
We will attempt to gain insight into this issue by

considering the simple problem of obtaining retarded
solution to the wave equation in Minkowski spacetime
with source given by a particle moving on a null geodesic.
This directly yields the retarded solution of a scalar field
with a null particle scalar charge source, and it also yields

the corresponding retarded solution for the electromagnetic
and linearized gravitational cases for appropriate choices of
gauge. We now summarize our main results, after which we
explain the relevance of our results to the interpretation of
the memory effect.
First, we find in Sec. II that the retarded solution to the

wave equation in Minkowski spacetime with a delta-
function source on a complete null geodesic does not exist
as a distribution. This difficulty is not due to the “nullness”
of the source but rather to its noncompactness. However, if
we “cut off” the source at a time t0 in the past, i.e., if we
consider the scalar charge source

S0 ¼ qδðxÞδðyÞδðz − tÞΘðt − t0Þ; (4)

the retarded solution is

φ0 ¼
q
u
Θððt − t0Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz − t0Þ2

q
Þ; (5)

where

u≡ t − z: (6)

The right side of (5) is well defined as a distribution. This
scalar field associated with a null source created at time t0
will produce a force on a test particle of scalar charge Q
given by fa ¼ Q∂aφ0. Differentiation of the Θ function in
(5) will yield a δ function term in fa that will give the test
particle a 4-momentum “kick,” which can be understood as
being due to the radiation produced by the creation of the
source at time t0.
Although the limit as t0 → −∞ of expression (5) does

not exist as a distribution, we shall show in Sec. II that
limt0→−∞k½a∂b�ϕ is well defined as a distribution, where
ka ¼ ta þ za is the vector field that is parallel to the tangent
to the source worldline. Thus, although the retarded field
produced by a scalar charge moving on a (past and future
complete) null geodesic is ill defined, we obtain a well-
defined 4-momentum kick, modulo multiples of ka, from
such a source. However, this kick differs from the kick
resulting from a creation event at a finite time t0.
As we shall see in Sec. III, the situation in the

electromagnetic case is similar. Maxwell’s equations in
Lorenz gauge reduces to four scalar wave equations, so we
can immediately write down the retarded solution for the
vector potential Aa in terms of the retarded solution to the
scalar wave equation. However, one important difference is
that Maxwell’s equations require a conservation of charge,
so one cannot simply create a charge at a finite time t0, as in
(4). Nevertheless, one can consider a charge that sits “at
rest” until time t0 and thereafter moves on a null geodesic.
To order 1=r, the radiation from this sharp change in the
4-velocity of the source produces an electromagnetic field
of the form

1Neither Christodoulou [4] nor Bieri and Garfinkle [6] propose
an interpretation of the “cause” of the memory effect.
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Fab ¼ −2q 1
r

sin θ
1 − cos θ

θ½aKb�δðUÞ; (7)

where Ka ¼ ta þ ra andU is given by Eq. (23) below. This
field, in turn, will produce a “velocity kick” on a distant test
particle, in agreement with recent results of Bieri and
Garfinkle [7].
In Sec. III, we also consider the limit as t0 → −∞ in the

electromagnetic case. The limit of the vector of the vector
potential in Lorenz gauge does not exist, but the limit of the
field tensor Fab ¼ 2∇½aAb� does exist, and we find

Fab ¼ −4q 1
ρ
ρ½akb�δðuÞ; (8)

where ρ ¼ ðx2 þ y2Þ1=2 and ρa ¼ ∇aρ. This agrees with
results of Jackiw, Kabat, and Oritz [8]. This retarded field
of a charged particle that moves on a null geodesic forever

also gives rise to a velocity kick on a distant test particle,
but this kick is very different from the velocity kick
produced by the field (7).
In Sec. IV, we treat the linearized gravitational case.

Again, we can immediately write down the solution to the
linearized Einstein equation in Lorenz gauge in terms of the
retarded solution to the scalar wave equation. However,
the linearized Einstein equation requires conservation of
4-momentum of the source, so we can neither create a mass
at time t0 nor have a mass initially at rest suddenly start
moving on a null geodesic. Nevertheless, we can start with
a particle of mass M at rest and, at time t0, have it “emit” a
particle of energy E that moves on a null geodesic, with the
original particle then losing mass and recoiling so as to
conserve total 4-momentum. As we shall see in Sec. IV, to
order 1=r and to leading order in E=M, the Riemann tensor
of the retarded solution is

Rabcd ¼ 4E
1

r

�
2

1 − cos θ
k½aKb�K½ckd�

− ð2K½aðtb�z½c þ zb�t½cÞKd� þ ð1þ cos θÞð2K½atb�t½cKd� þ K½aηb�½cKd�ÞÞ
�
δ0ðUÞ: (9)

This Riemann tensor produces a “relative displacement
kick” on test particles of the form

ΔDa ¼ E
1

r
ð1þ cos θÞðθaθb − ϕaϕbÞDb; (10)

in agreement with the form of the memory effect for null
matter.
In Sec. IV, we also take the limit as t0 → −∞. Although

the metric perturbation in Lorenz gauge does not exist as a
distribution in this limit, the linearized Riemann tensor has
the limit

Rabcd ¼ 16E
1

ρ2
k½aðρb�ρ½c − ϕb�ϕ½cÞkd�δðuÞ

− 16πEk½aqb�½ckd�δðxÞδðyÞδðuÞ; (11)

where qab is the projection of the metric into the “x-y”
plane. Thus, the Riemann tensor (11) corresponds to the
retarded linearized curvature produced by a null particle.
Equation (11) agrees with the Aichelberg-Sexl solution [9]
[modulo what appear to be some sign misprints in their
Eq. (3.12)]. The Riemann tensor (11) has no “derivative of
a δ function” piece, so unlike (9), it provides no relative
displacement kick to test particles. However, it does
provide a “relative velocity kick” to test particles, which
falls off as 1=r2. Interestingly, as we shall show in Sec. IV,
this instantaneous relative velocity kick agrees, up to a
factor of 2, with the integrated relative velocity change of

test particles that would occur in Newtonian gravity due to
tidal effects produced by the passage of a particle of mass
m ¼ E moving with velocity v ¼ c. Thus, the Aichelberg-
Sexl Riemann tensor may be thought of as corresponding to
a “special relativistic compression” of the Newtonian tidal
effects of a particle moving at the speed of light into the null
hyperplane containing the null particle source.
Returning, finally, to the questions that motivated our

investigations, we see that the Riemann tensor (11) repre-
sents the retarded field produced by a null particle source in
linearized gravity. As just noted above, this is a “pure tidal
field” and there is no memory effect associated with this
tidal field. We conclude that the memory effect should not
be interpreted as being “caused by” the passage of null
(effective) stress energy to infinity. Conversely, the fact that
there is a memory effect associated with the passage of null
(effective) stress energy to infinity is directly related to the
fact that the Riemann tensor (11) is not physically accept-
able: It fails to be asymptotically flat at spatial infinity (even
if we “smooth out” the source, as we can in linearized
gravity), since the Riemann tensor vanishes in all non-
equatorial directions and falls off too slowly (as 1=r2) in
equatorial directions near spatial infinity. In order to have a
solution with a null source that is asymptotically flat at
spatial infinity, one must either emit the null source at a
finite time or have “additional radiation” incoming from
infinity. The memory effect should be thought of as being
produced by the gravitational radiation resulting from such
an emission event or such additional radiation.
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II. SCALAR FIELD

As discussed in the previous section, we are interested in
obtaining the retarded solution to the massless scalar wave
equation in Minkowski spacetime

∇a∇aφ ¼ −4πS; (12)

where the source, S, corresponds to a (scalar) charged
particle moving on a null geodesic, which we take to be
moving in the “z direction” in some global inertial
coordinates ðt; x; y; zÞ

Sðt; x; y; zÞ ¼ qδðxÞδðyÞδðz − tÞ: (13)

We will denote events in spacetime by capital letters (i.e., X
and X0), so as not to confuse spacetime points with the
x coordinate of our global inertial coordinates.
We note, first, that although there appears to be a

widespread belief that charged particle sources that move
at the speed of light (or faster than light) should somehow
be “illegal” (see, e.g., the remark below Eq. (2.7) of [9]),
there is, in fact, no difficulty in obtaining the retarded
solution (as a distribution) to the wave equation (12) for any
distributional source, S, of compact support. This can be
seen as follows: If S is of compact support, the problem of
obtaining the (distributional) retarded solution, φRðXÞ, to
(12) is essentially the same as defining the product of the
distributions GRðX;X0Þ and SðX0Þ, where GR denotes the
retarded Green’s function,

GRðt; x⃗; t0; x⃗0Þ ¼
1

2π
δ½−ðt − t0Þ2 þ jx⃗ − x⃗0j2�Θðt − t0Þ;

(14)

since for any test function, f, we have φRðfÞ ¼ GRSðFÞ,
where FðX;X0Þ ¼ fðXÞhðX0Þ, with h being any test

function with h ¼ 1 on the support of S. As a distribution
onR4 ×R4, the wavefront set of GRðX;X0Þ is known to be
of the form [10], [11]

WF½GR� ¼ fðX;K;X0;−K0Þg; (15)

where X lies on a future-directed null geodesic starting
from X0, K is a (future- or past-directed) (co-)tangent to this
geodesic2 at X, and K0 is the parallel transport of K to X0.
As a distribution on R4 ×R4, the wavefront set of SðX0Þ is
of the form fðX; 0;X0; K0Þg where ðX0; K0Þ is in the
wavefront set of S as a distribution on R4. Hence, we
cannot get a zero cotangent vector in R4 ×R4 by adding
cotangent vectors in WF½GR� to those in WF½S�. It follows
(see, e.g., [12]) thatGRS is well defined as a distribution for
any distribution S, and the retarded solution is well defined
as a distribution for any S of compact support. Note that this
argument generalizes straightforwardly to an arbitrary
globally hyperbolic curved spacetime.
On account of the support properties of GR, it is obvious

that the requirement that S be of compact support can be
replaced by the requirement that S vanish to the past of
some Cauchy surface. However, the source (13) does not
have this property, so it is not obvious that the retarded
solution exists. Consequently, we will, instead, consider the
source

S0ðt; x; y; zÞ ¼ qδðxÞδðyÞδðz − tÞΘðt − t0Þ; (16)

corresponding to the “creation” of a scalar charged particle
at time t0, which subsequently moves on a null geodesic.
By the above general arguments, the retarded solution with
source (16) exists as a distribution. We will then consider
the limit t0 → −∞.
The retarded solution with source (16) is

φ0ðXÞ ¼ 4π

Z
d4x0GRðX;X0ÞS0ðX0Þ

¼ 2q
Z

d4x0δ½−ðt − t0Þ2 þ jx⃗ − x⃗0j2�Θðt − t0Þδðx0Þδðy0Þδðz0 − t0ÞΘðt0 − t0Þ: (17)

Carrying out the δ-function integrations over x0; y0; z0, we obtain

φ0ðXÞ ¼ 2q
Z

dt0δ½−ðt − t0Þ2 þ x2 þ y2 þ ðz − t0Þ2�Θðt − t0ÞΘðt0 − t0Þ

¼ 2q
Z

dt0δ½2ðt − zÞt0 − t2 þ x2 þ y2 þ z2�Θðt − t0ÞΘðt0 − t0Þ

¼ q
t − z

Θ
�
t − t2 − x2 − y2 − z2

2ðt − zÞ
�
Θ
�
t2 − x2 − y2 − z2

2ðt − zÞ − t0

�
: (18)

2For X ¼ X0, the wavefront set is fX;K;X;−Kg for all K ≠ 0.
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The two step functions can be combined into a single step
function to produce our final result

φ0 ¼
q

t − z
Θððt − t0Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz − t0Þ2

q
Þ: (19)

Note that although φ0 is unbounded (since it diverges as
t↓z at x ¼ y ¼ 0) it is locally in L1 and thus is well defined
as a distribution.
The “4-force,” fa, exerted by the field φ0 on a test

particle of charge Q is

fa ¼ Q∇aφ0: (20)

Unlike the case of electromagnetism, fa is not automati-
cally orthogonal to the 4-velocity of the test particle, and
hence will, in general, produce a change in the rest mass of
the particle as well as a change in its momentum. From
(19), we obtain

fa ¼ qQ
u2

kaΘðUÞ

− qQ
u

�
ta þ rra − t0zaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ ðz − t0Þ2
p

�
δðUÞ; (21)

where

u ¼ t − z (22)

U ¼ ðt − t0Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz − t0Þ2

q
; (23)

and ta and ra are unit vectors in the time and radial
directions. Note that U ¼ 0 corresponds to the future light
cone of the event occurring at t ¼ z ¼ t0, x ¼ y ¼ 0, where
the source (16) was created. To leading order in 1=r, our
expression (21) becomes

fa ¼ −qQ
r

Ka

1 − cos θ
δðUÞ þOð1=r2Þ; (24)

where

Ka ¼ ta þ ra: (25)

This δ-function contribution to fa will give rise to an
instantaneous kick in the 4-momentum of the test particle.
If the test particle is initially at rest and its motion remains
nonrelativistic, then the change in 4-momentum due to this
instantaneous kick is given by

ΔPa ¼ − qQ
r

Ka

1 − cos θ
: (26)

Note that this expression for the net kick is independent of
t0, i.e., a change in t0 affects the kick only to higher order in
1=r (although, of course, a change of t0 affects the time at
which the kick is felt). Since the kick arises from the δðUÞ
term in the force, the kick can be understood as being
produced by a burst of radiation emitted when the source
was created. Note that the kick diverges as θ → 0.
Let us now take the limit as t0 → −∞. Naively taking the

limit of (19), we obtain

φ ¼ lim
t0→−∞φ0 ¼

q
t − z

Θðt − zÞ: (27)

However, the right side of this equation is not locally in L1

and does not make sense as a distribution. Indeed, it is easy
to see that for any fixed, non-negative test function f with
f ≠ 0 at some point at which t ¼ z we have

lim
t0→−∞

Z
φ0f ¼ ∞; (28)

so the weak distributional limit of φ0 does not exist as
t0 → −∞. We conclude, therefore, that for the scalar wave
equation, it does not make sense to talk about the retarded
field of a charged particle3 source that moves forever on a
null geodesic. As our derivation has indicated, the problem
with obtaining a distributional solution arises from the
“forever” (i.e., noncompactness) character of the source
rather than its “null” character.
Nevertheless, although limt0→−∞φ0 does not exist as a

distribution, some aspects of this limit do exist.
Specifically, let ka ¼ ta þ za be the vector field on
Minkowski spacetime that is everywhere parallel to the
tangent to the null geodesic source (16). Then we claim that
the weak distributional limit limt0→−∞k½a∇b�φ0 does exist.
To see this, let αab be a smooth, antisymmetric tensor field
of compact support. We wish to evaluate

lim
t0→−∞ −

Z
φ0ka∇bα

ab ¼ lim
t0→−∞ −

Z
U>0

d4x
1

u
ka∇bα

ab:

(29)

Integrating by parts, we obtain

−
Z
U>0

d4x
1

u
ka∇bα

ab ¼ −
Z
U>0

d4x
1

u2
ka∇buαab

−
Z
U¼0

1

u
kanbαab; (30)

3Since, in Minkowski spacetime, averaging over the observa-
tion point is equivalent to averaging over the source, the failure to
obtain a distributional solution for a particle source moving
forever on a null geodesic implies the failure to have any retarded
solution at all for a smooth, null fluid source with everywhere
parallel 4-velocity.
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where na is the normal to the U ¼ 0 surface,

na ¼ ta þ ρρa þ ðz − t0Þzaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − t0Þ2

p : (31)

[Here ρ ¼ ðx2 þ y2Þ1=2 and ρa ¼ ∇aρ.] The bulk integral vanishes because αab is antisymmetric and k½a∇b�u ¼ 0. The
surface term is

−
Z
U¼0

1

u
kanbαab ¼ −

Z
U¼0

ρdρdϕdz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − t0Þ2

p
k½atb� þ ρk½aρb� þ ðz − t0Þk½azb�

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − t0Þ2

p − ðz − t0ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − t0Þ2

p αab: (32)

As t0 → −∞, the numerator in this expression converges
uniformly on compact sets to ρk½aρb�, whereas the denom-
inator converges uniformly on compact sets to ρ2=2.
Furthermore, as t0 → −∞, we have U → u. From this it
can be seen that the (weak) limit of k½a∇b�φ0 as t0 → −∞
exists and is given by

lim
t0→−∞k

½a∇b�φ0 ¼ 2q
1

ρ
ρ½akb�δðuÞ: (33)

Thus, in the limit t0 → −∞, the force exerted on a test
particle is well defined modulo addition of multiples of ka.
Since this force also has a δ-function character, it gives rise
to a 4-momentum kick of the form

ΔPa
∞ ¼ −2qQ 1

ρ
ρa (34)

modulo multiples of ka. This 4-momentum kick is very
different in form from the kick (26) produced by the burst
of radiation arising from a “creation event.”

III. ELECTROMAGNETIC FIELD

In this section, we wish to obtain the retarded solution to
Maxwell’s equations with a charged particle source moving
on a null geodesic. As in the case of the scalar wave
equation, in order to have a well-defined solution, we
would like to “create” the source at a finite time t0 and then
consider the limit t0 → −∞. However, unlike the scalar
case, we cannot create a charge at a finite time because
Maxwell’s equations require conservation of charge.
Therefore, we consider, instead, a situation where a charge
sits at rest until time t ¼ t0 and thereafter moves on a null
geodesic, i.e., we take the 4-current to be

ja0 ¼ qδðxÞδðyÞ½δðz − t0ÞΘðt0 − tÞta þ δðz − tÞΘðt − t0Þka�;
(35)

where ka ¼ ta þ za is tangent to the null geodesic
x ¼ y ¼ 0, t ¼ z.
Maxwell’s equations for the vector potential, Aa, in

Lorenz gauge, ∇aAa ¼ 0, take the form of a wave

equation (12) for each global inertial component of Aa.
Therefore, we can immediately write down the retarded
solution in Lorenz gauge using the well-known Coulomb
solution for the source for t < t0 and using (19) for t ≥ t0.
We obtain

Aa
0 ¼

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz − t0Þ2

p Θð−UÞta þ q
t − z

ΘðUÞka;

(36)

where U was defined in (23) above.
The electromagnetic field tensor is given in terms of the

vector potential by Fab ¼ 2∇½aAb�. From (36), we obtain

ðF0Þab ¼ −2q 1
r

sin θ
1 − cos θ

θ½aKb�δðUÞ þOð1=r2Þ: (37)

The force on a test particle of chargeQ and 4-velocity ua is
fa ¼ QFabub. As in the scalar case, the leading order in
1=r contribution to fa is a δ-function term, which will give
the particle an instantaneous momentum kick. In the case of
electromagnetism, fa is automatically orthogonal to ua

and, hence, does not change the rest mass of the test
particle, i.e., the particle gets only a velocity kick. For a test
particle that is initially at rest and whose motion remains
nonrelativistic, the instantaneous kick in 4-momentum is
given by

ΔPa ¼ qQ
1

r
sin θ

1 − cos θ
θa: (38)

This agrees with the velocity kick obtained by Bieri and
Garfinkle [7].
Let us now take the limit t0 → −∞. The contribution of

the first (Coulomb) term in (36) clearly goes to zero in this
limit. However, apart from the factor of ka, the contribution
of the second term in (36) is identical to the scalar case, and
hence it does not have a distributional limit. We conclude
that the retarded solution for the vector potential of a
charged particle that moves forever on a null geodesic does
not exist in Lorenz gauge. Nevertheless, since the Coulomb
contribution vanishes in the limit, we see that
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Fab ≡ lim
t0→−∞ðF0Þab ¼ −2 lim

t0→−∞k½a∇b�φ0; (39)

with φ0 given by (19). As we showed in the previous
section, the limit on the right side of this equation does exist
as a distribution, and we obtain

Fab ¼ −4q 1
ρ
ρ½akb�δðuÞ: (40)

Equation (40) may thus be interpreted as providing the
retarded field4 of a charged particle that moves on a null
geodesic for all time, in agreement with Jackiw, Kabat and
Oritz [8] (see also problem 11.18 of the third edition of
Jackson [13]).
The field (40) produces an instantaneous momentum

kick on a test particle of chargeQ (assumed to be initially at
rest) given by

ΔPa
∞ ¼ 2qQ

1

ρ
ρa: (41)

Again, this differs in form from the momentum kick (38)
produced by the burst of radiation associated with the
instantaneous change of motion of the source at time t0.

IV. LINEARIZED GRAVITATIONAL FIELD

We now turn to the case of linearized gravity, with a
source Tab corresponding to a particle moving on a null
geodesic. As in the scalar and electromagnetic cases, we
would like to create this particle at time t0 and then take the
limit t0 → −∞. However, the linearized Einstein equation
requires conservation of stress energy, which, for particle
sources, requires conservation of 4-momentum. Thus, the
simplest case to consider would be a particle of mass M
which is at rest until time t0, at which time it emits a null
particle of energy, E, and then loses mass and recoils so as
to conserve 4-momentum. Thus, we consider a stress-
energy source of the form

Tab
0 ¼δðxÞδðyÞ½Mδðz− t0ÞΘðt0− tÞtatb

þM0δðz0− t0ÞΘðt− t0Þt0at0bþEδðz− tÞΘðt− t0Þkakb�;
(42)

whereM0 and t0a are chosen so as to conserve 4-momentum
and z0 is the global inertial “z coordinate” in the frame in
which the recoiling particle is at rest.
We denote the metric perturbation by hab. As is well

known, in Lorenz (harmonic) gauge, the linearized Einstein
equation for h̄ab ≡ hab − 1

2
hηab (where ηab is the

Minkowski metric and h ¼ ηabhab) takes the form

∇c∇ch̄ab ¼ −16πTab; (43)

yielding a wave equation for each of its global inertial
components. We can therefore immediately obtain the
retarded solution for h̄ab with source (42)—and, hence,
obtain the retarded solution for hab—as a sum of 3 pieces:
(I) a linearized Schwarzschild piece arising from the first
(“particle at rest”) term in the source,

ðhI0Þab ¼
2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ ðz − t0Þ2
p ðηab þ 2tatbÞΘð−UÞ;

(44)

(II) a boosted Schwarzschild piece arising from the second
(“recoiling particle”) term in the source

ðhII0 Þab ¼
2M0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ ðz0 − t0Þ2
p ðηab þ 2t0at0bÞΘðUÞ;

(45)

and (III) a piece arising from the third (“null particle”) term
in the source

ðhIII0 Þab ¼
4E
t − z

kakbΘðUÞ: (46)

The linearized Riemann tensor, Rabcd, associated with
metric perturbation hab is

Rabcd ¼ 2∇½a∇j½dhc�jb�: (47)

The leading order in 1=r contribution to the linearized
Riemann tensor will arise from differentiation of the Θ
functions appearing in (44–46). Assuming E ≪ M and
keeping only the leading order term in E=M, we find

Rabcd ¼ 4E
1

r

�
2

1 − cos θ
k½aKb�K½ckd�

− ð2K½aðtb�z½c þ zb�t½cÞKd� þ ð1þ cos θÞð2K½atb�t½cKd� þ K½aηb�½cKd�ÞÞ
�
δ0ðUÞ; (48)

4Note that although we showed above that the retarded vector potential in Lorenz gauge does not exist for this solution, one can find
other gauges in which a distributional vector potential for the field (40) can be found; see [8] and [13].
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where the first term in the square brackets arises from
ðhIII0 Þab and the remaining terms arise from ðhII0 Þab.
Although we have chosen a particular decay/recoil process
in order to do these calculations, the details of the process
are irrelevant at OðE=MÞ provided that all of the particles
apart from the null particle are nonrelativistic, i.e., the
details of the decay process would affect (48) only at higher
orders in E=M.
The linearized Riemann tensor will produce a relative

acceleration (i.e., geodesic deviation) for nearby freely
falling test particles. If the particles are initially at rest (i.e.,
4-velocity parallel to ta) and separated by spatial displace-
ment Da, then

te∇etf∇fDa ¼ −Rbcd
atbtdDc; (49)

i.e., in terms of components

d2Dμ

dt2
¼ −Rtνt

μDν: (50)

The “derivative of a δ-function” terms in the linearized
Riemann tensor will therefore produce an instantaneous
relative displacement kick to the test particles. This is
precisely the memory effect. For the Riemann tensor (48),
we obtain

ðΔD0Þa ¼
E
r
ð1þ cos θÞðθaθb − ϕaϕbÞDb: (51)

This agrees with the memory effect formulas of
Christodoulou [4] and Bieri and Garfinkle [6].
Let us now take the limit as t0 → −∞ of the metric

perturbation (44–46). It is clear from Eqs. (44) and (45) that

lim
t0→−∞ðh

I
0Þab ¼ lim

t0→−∞ðh
II
0 Þab ¼ 0: (52)

On the other hand, ðhIII0 Þab ¼ 4φ0kakb, so the limit as t0 →−∞ of ðhIII0 Þab does not exist. We conclude that, as in the
electromagnetic case, the retarded solution for the metric
perturbation of a particle that moves forever on a null
geodesic does not exist in the Lorenz gauge. On the other
hand, the contribution of ðhIII0 Þab to the linearized Riemann
tensor is

ðRIII
0 Þabcd ¼ 8∇½a∇j½dφ0kc�jkb�; (53)

and it follows that the limit as t0 → −∞ of ðRIII
0 Þabcd does

exist. In fact, we obtain

Rabcd ¼ lim
t0→−∞ðR

III
0 Þabcd ¼ 4k½a∇b�Fcd; (54)

where Fab is given by (40) (with q replaced by E) and the
derivative is taken in the distributional sense. To calculate
this distributional derivative more explicitly, let βabcd be

smooth and of compact support and have the tensor
symmetries of the linearized Riemann tensor. We wish
to evaluate

−16
Z

∇bβ
abcdka

�
− 1

ρ
ρckd

�
ρdρdϕdz: (55)

To do so, we exclude a disc of radius ε about ρ ¼ 0,
integrate by parts with respect to ρ, and then let ε → 0. We
thereby obtain

Rabcd ¼ 16E
1

ρ2
k½aðρb�ρ½c − ϕb�ϕ½cÞkd�δðuÞ

− 16πEk½aqb�½ckd�δðxÞδðyÞδðuÞ; (56)

where qab is the projection of the metric into the x-y plane.
Equation (56) agrees with the Riemann curvature tensor of
the Aichelburg-Sexl solution—apart from several sign
discrepancies, which are undoubtedly misprints in
Eq. (3.12) of their paper.5 Equation (56) may be interpreted
as the linearized curvature6 of the retarded field of particle
of energy E that moves on a null geodesic forever.
Although, as we have seen, the retarded solution for the
perturbed metric in the Lorenz gauge, does not exist as a
distribution, it should be possible to find other gauges in
which a distributional metric perturbation giving rise to
(56) does exist.
Unlike (48), the Riemann tensor (56) does not have a

derivative of a δ-function term. Furthermore, its effects fall
off at large distances like 1=r2 rather than 1=r.
Consequently, we conclude there is no memory effect
associated with the retarded field of a particle that moves on
a null geodesic forever. However, the δ function in (56) will
produce an instantaneous relative velocity kick to a system
of test particles moving on geodesics. Integrating (56), we
find that if the particles have initially separation Da, the
relative velocity kick will be

Δva ¼ 4E
1

ρ2
ðρaρb − ϕaϕbÞDb: (57)

This velocity kick can be given a simple interpretation in
terms of Newtonian tidal effects. Consider, in Newtonian
gravity, a particle of mass E traveling with velocity c along
the z axis. The Newtonian potential produced by such a
particle at time t is

5In particular, the Ricci component R00 is easily computed by
adding together the first two lines of their Eq. (3.12) and does not
agree with the (correct) expression they give below Eq. (3.12);
their Eq. (3.12) also fails to be rotationally invariant in the plane
orthogonal to the direction of the particle.

6As Aichelburg and Sexl have argued, this solution may be
interpreted as a solution to the full, nonlinear Einstein equation,
not merely the linearized Einstein equation. Indeed, Aichelberg
and Sexl obtained their solution by taking an infinite boost limit
of the exact Schwarszchild solution.
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χ ¼ − Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz − ctÞ2

p : (58)

The tidal tensor associated with this potential is

Φab ¼
E
r03

ð3r0ar0b − δabÞ; (59)

where r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz − ctÞ2

p
and r0a ¼ ∇ar0. We can

integrate the tidal tensor once to get the net relative velocity
change of two neighboring test particles over all time. For
test particles initially separated by the displacement Dj, we
obtain

Δvi ¼
Z

∞

−∞
dt0Φijðt0; x; y; zÞDj

¼ 2E
1

ρ2
ðρiρj − ϕiϕjÞDj: (60)

Thus, apart from a factor of 2, the net relative velocity
change in the Newtonian case produced by a particle of
mass E that moves forever along the z axis at velocity c
agrees with the relative velocity kick in linearized gravity
produced by a particle of energy E that moves forever on a
corresponding null geodesic. The only difference is that in
Newtonian gravity, these tidal effects occur over all time,
whereas in linearized gravity, the tidal effects are “com-
pressed” into a null plane traveling along with the source.
Thus, the Newtonian tidal acceleration is gradual and
continuous, whereas in linearized gravity, one obtains an
instantaneous velocity kick.

V. SUMMARY AND CONCLUSIONS

We have have investigated the retarded solution for a
scalar field, an electromagnetic field, and a linearized
gravitational field associated with the creation of a null
particle at time t0 in Minkowski spacetime. In the scalar
case, we can simply create a charged null particle; in the
electromagnetic and linearized gravitational cases, other
sources must also be present in order to conserve,
respectively, charge and 4-momentum. There are then
two distinct limits of this retarded solution that we can
take. The first is to fix t0 and extract the leading order in
1=r behavior of the solution. In all three cases, there are
effects produced on distant test particles at order 1=r
caused by the creation of the null particle. In the scalar
and electromagnetic cases, they give rise to an instanta-
neous kick to the 4-momentum of a test particle. In the
linearized gravitational case, the Oð1=rÞ effect is to
produce an instantaneous relative displacement of test
particles—the memory effect.
The alternative limit is to fix the observation point and let

t0 → −∞. This limit can be thought of as providing the
retarded field of a null particle that moves on a null
geodesic forever. In the scalar case, we found that this

limit does not exist as a distribution. However, in the
electromagnetic and linearized gravitational cases,
although the limits of the Lorenz gauge vector potential
and Lorenz gauge metric perturbation similarly do not
exist, the limits of the electromagnetic field tensor and
linearized Riemann tensor do exist. In the electromagnetic
case, the limiting electromagnetic field tensor gives rise to a
velocity kick on distant test particles at order 1=r, but
the form of this velocity kick is very different from the
Oð1=rÞ velocity kick produced by the creation of a null
charge at finite time t0. In the linearized gravitational case,
the limiting linearized Riemann tensor yields the
Aichelberg-Sexl solution. It falls off as 1=r2 and thus
produces no effects of any kind at order 1=r. In particular,
there is no memory effect. The leading order (1=r2) effect
of this linearized Riemann tensor is to produce an instanta-
neous relative velocity kick on test particles, of exactly the
same form as the integrated Newtonian tidal force would
produce.
We conclude that in linearized gravity, the “radiation

field” (retarded solution) produced by a particle moving on
a null geodesic forever is the Aichelberg-Sexl solution,
which is a pure “tidal field” that produces no associated
memory effect. Thus, the memory effect should not be
interpreted as being caused merely by the passage of
(effective) stress energy to null infinity. However, as
already noted in the Introduction, the Aichelberg-Sexl
solution (even with a smoothed out source) fails to be
asymptotically flat at spatial infinity, and thus is not
physically acceptable. One way of producing a physically
acceptable solution is to create the null particle at a finite
time t0 via an “emission event,” as we have considered. In
that case, there will be a burst of radiation associated with
the emission event that produces a nontrivial memory
effect, in agreement with previous results. More generally,
the requirement of asymptotic flatness at spatial infinity
implies either the finite time creation of the null particle or
the presence of additional “incoming radiation” from past
null infinity that is not directly associated with the null
particle. We believe that the memory effect is most
naturally interpreted as being caused by either the emission
event or by the additional incoming radiation from past null
infinity, rather than by the passage of the particle to future
null infinity.
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