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A six-dimensional standing-wave braneworld model has been constructed. It consists of an anisotropic
four-brane generated by standing gravitational waves whose source is normal matter. In this model, the
compact (on-brane) dimension is assumed to be sufficiently small in order to describe our Universe (hybrid
compactification). The bulk geometry is nonstatic, unlike most of the braneworld models in the literature.
The principal feature of this model is the fact that the source is not a phantomlike scalar field, as the original
standing-wave model that was proposed in five dimensions and its six-dimensional extension recently
proposed in the literature. Here, it was obtained a solution in the presence of normal matter what assures
that the model is stable. Also, our model is the first standing-wave brane model in the literature that can be
applied successfully to the hierarchy problem. Additionally, we have shown that the zero mode for the
scalar and fermionic fields is localized around the brane. In particular, for the scalar field we show that it is
localized on the brane, regardless of whether the warp factor is decreasing or increasing. This is in contrast
to the case of the local stringlike defect, where the scalar field is localized for a decreasing warp factor only.
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I. INTRODUCTION

The so-called braneworld models assume that our
Universe is a membrane, or brane, embedded in a
higher-dimensional space-time. The success of this idea
between the physicists can be explained basically because
these models have brought a solution for some insoluble
problems in the Standard Model (SM) physics, such as the
hierarchy problem. There are many theories that carry this
basic idea, but the main theories in this context are the ones
first proposed by Arkani-Hamed, Dimopoulos, and Dvali
[1–3] and the so-called Randall-Sundrum (RS) model [4,5].
In these models, it is assumed a priori that all the matter

fields are restricted to propagate only in the brane. The
gravitational field is the only one which is free to propagate
in all the bulk. However, some authors have argued that this
assumption is not so obvious, and it is necessary to look
for alternative theoretical mechanisms of field localization
in such models [6,7]. Accordingly, before studying the
cosmology of a braneworld model, it is convenient to
analyze its capability to localize fields. Therefore, for a
braneworld model to be indicated as a potential candidate

of our Universe, it is necessary to be able to localize the
Standard Model fields.
The Randall-Sundrum model was generalized to six

dimensions by several interesting works [6–29]. A high
number of the works in six dimensions refer to the
scenarios where the brane has cylindrical symmetry, the
so-called stringlike braneworlds, which are associated with
topological defects. Some of these six-dimensional models
are classified as global string [6,8,11], local string [12–14],
thick string [16,17,19–22], and supersymmetric cigar
universe [23] models. Also, the work proposed here is a
generalization of the RS model for six-dimensional (6D)
space-time. However, we treat the so-called standing-wave
brane model, which will be discussed later.
On the other hand, studies of field localization are very

common in the literature in five-dimensional (5D) [30–35]
and 6D braneworlds [6,7,12,14,26–28]. In general, we find
strategies of localization for all the Standard Model fields,
but the way that this localization is possible varies in
different works. In some of them, the localization is possible
by means of gravitational interactions only [6,7]. In other
works, it is necessary to consider the existence of auxiliary
fields, like the dilaton [33,34]. As far as we know, there is not
in the literature a purely analytical geometry that localizes all
the SM fields by means of the gravitational field interaction
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only. Hence, to look for a model that must present both
features namely, be analytical and able to localize all the SM
fields, is an appropriate reason to study the localization of
fields in different braneworld models.
The search for such a model has motivated the appear-

ance of some braneworld scenarios with nonstandard
transverse manifold. Randjbar-Daemi and Shaposhnikov
obtained trapped massless gravitational modes and chiral
fermions as well in a model that they called a Ricci-flat
space or a homogeneous space [36]. Kehagias proposed an
interesting model that drains the vacuum energy, through a
conical tear-drop-like space, which forms a transverse
space with a conical singularity. In this way, it was possible
to explain the small value of the cosmological constant
[37]. Another nontrivial geometry was proposed by
Gogberashvili et al. They have found three generations
for fermions on a three-brane whose transverse space has
the shape of an apple [38]. It is still possible to cite other
examples of space used like the torus [39], a space-time
geometry with a football shape [40], and smooth versions
of the conifold, classified as resolved conifold [41] and
deformed conifold [42–44].
The standing-wave braneworld was first proposed in five

dimensions by Gogberashvili and Singleton [45]. This is a
completely anisotropic braneworld model whose source is a
phantomlike scalar (a scalar field with a wrong sign in front
of the kinetic term in the Lagrangian). To avoid the problem
with instability, normally presented in theory with a
phantom scalar, the model is embedded in a 5D Weyl
geometry in such a way that the phantomlike scalar may be
associated with the Weyl scalar [30,31,46], which is stable.
About theWeyl scalar, we also should point out its presence
in other braneworld scenarios, like pure gravity, which
is an extension of the RS model. In the context of field
localization in the standing-wave approach, it was possible
to localize several fields in five dimensions, even though
the right-handed fermions were not localized in either
increasing or decreasing warp geometry [30,31]. It is
worthwhile to mention that the models generated by
phantomlike scalars are relevant phenomenologically since
this exotic source is useful in different scenarios, like
cosmology [25], where the phantom scalar is used to
explain dark energy theories and the accelerated expansion
of the Universe [47]. An extension for six dimensions of the
standing-wave 5D model with a phantomlike scalar was
first proposed by the authors of [48]. Additionally, the
study of massive modes was not addressed in this model in
five dimensions or even in its six-dimensional version.
In this paper, we do not specify a priori the source or the

stuff from which the brane is formed. We consider a general
matter source and look for a standing-wave solution. In
contrast to the work of Gogberashvili and collaborators in
the 5D model [30], in which the source is a phantomlike
scalar field, here we have obtained standing gravitational
wave solutions of Einstein equations in the presence of

normal matter (we are using the classification for different
types of matter given by M. Visser [49]). Since it is done by
normal matter, the model constructed here is stable. Our
model with normal matter as a source is the first 6D one,
but quite recently Midodashvili et al. [50] constructed a 5D
standing-wave braneworld model with a real field as a
source.
The model built here consists of a 6D braneworld with

an anisotropic four-brane, where the small, compact
dimension belongs to the brane. The bulk is completely
anisotropic, except for some points called the anti–de Sitter
(AdS) islands [30,31]. The dynamics, as in the case of the
works of Gogberashvili and collaborators and their exten-
sions, represent a special feature in the sense that both
metric and source are time dependent. We present two types
of solutions: one with an isotropic cosmological constant
where the source despite the fact that all its components are
positive do not satisfy the dominant energy condition
(DEC). This source may be classified as a not normal
matter [49]. In the other case, we make use of a recently
proposed approach that suggests an extension for the
Randall-Sundrum model to higher dimensions in the
presence of an anisotropic cosmological constant [51]. In
this case, we find solutions in the presence of normal
matter.
We have obtained an analytical solution for the warp

factor, which corresponds to a thin brane, for both
decreasing and increasing warp factor. The bulk is smooth
everywhere and converges asymptotically to an AdS6
manifold. We have considered a minimally coupled scalar
field, and we have shown that it is localized in this model.
Here, we have obtained results that are more general that
those encountered for the stringlike defect and the 5D and
6D versions of the standing-wave approach. Indeed, here
the scalar field is trapped for both decreasing and increasing
warp factor whereas in the stringlike is a localized mode for
a decreasing warp factor only. In addition, in 5D and 6D
versions of the standing-wave models the scalar field is
localized for increasing warp factor only.
Furthermore, our six-dimensional standing-wave

braneworld with physical source is an interesting scenario
in order localize fermions fields. Indeed, we show that
right-handed fermions can be localized in this brane.
We organize this work as follows: in Sec. II the model is

described and the Einstein equations are solved in order to
obtain the general expressions for the source and the
function that characterizes the anisotropy. In Sec. III we
have found the standing-wave solutions, and we have
discussed its main features. We still show that the
energy-momentum components are all positive. In the case
of an anisotropic cosmological constant, they obey all the
energy conditions that characterize a normal matter source.
The localization of the zero mode of scalar and fermionic
fields has been done in Secs. IV and V, respectively. Some
remarks and conclusions are outlined in Sec. VI.

L. J. S. SOUSA, W. T. CRUZ, AND C. A. S. ALMEIDA PHYSICAL REVIEW D 89, 064006 (2014)

064006-2



II. THE MODEL

Our intent is to derive a standing-wave solution of the
Einstein equations by considering normal matter as source.
So, we consider the standard Einstein-Hilbert action in
six-dimensional space-time added by a matter field action
that may be time dependent, namely,

S ¼ 1

2κ26

Z
d6x

ffiffiffiffiffiffi−gp ½ðR − 2Λ6Þ þ Lm�; (1)

where κ6 is the six-dimensional gravitational constant,Λ6 is
the bulk cosmological constant, and Lm is any matter field
Lagrangian.
From the action (1) we derive the Einstein equations

RMN − 1

2
gMNR ¼ −ΛgMN þ κ26TMN; (2)

where M;N;… denote D-dimensional space-time indices
and the TMN is the energy-momentum tensor defined as

TMN ¼ − 2ffiffiffiffiffiffi−gp δ

δgMN

Z
d6x

ffiffiffiffiffiffi−gp
Lm: (3)

The general ansatz for the metric considered in this work
is given as follows

ds2 ¼ eAð−dt2 þ eudx2 þ eudy2 þ e−3udz2Þ þ dr2

þ R2
0e

Bþudθ2; (4)

where the functions AðrÞ and BðrÞ depend only on r and
the function u depends on r and t variables. For this metric
ansatz, (4), the Einstein equations (2) may be rewritten as

Gxx ¼ Gyy ¼
�
1

4
eAþu

�
ð6A02 þ B02 þ 3A0B0 þ 6A00

þ 2B00 þ 6ðu02 − e−A _u2Þ þ 2e−Aü − 5A0u0 − 2u00Þ
¼ κ26Txx − eAþuΛ6; (5)

Gzz ¼
�
1

4
eA−3u

�
ð6A02 þ B02 þ 3A0B0 þ 6A00 þ 2B00

þ 6ðu02 − e−A _u2Þ − 6e−Aüþ ð11A0 þ 4B0Þu0 þ 6u00Þ
¼ κ26Tzz − eA−3uΛ6; (6)

Gtt ¼
�
1

4
eA
�
ð−6A02 − B02 − 3A0B0 − 6A00 − 2B00

− 6ðu02 þ e−A _u2Þ þ ðA0 − B0Þu0Þ
¼ κ26Ttt þ eAΛ6; (7)

Grt ¼
1

4
_uðA0 − B0 − 12u0Þ ¼ κ26Trt; (8)

Grr ¼
�
1

4

�
ð6A02 þ 4A0B0 − 6ðu02 þ e−A _u2Þ þ ðA0 − B0Þu0Þ

¼ κ26Trr − Λ6; (9)

and

Gθθ ¼
�
1

4
R2
0e

Bþu

�
ð10A02 þ 8A00 þ 6ðu02 − e−A _u2Þ

þ 2e−Aü − 5A0u0 − 2u00Þ
¼ κ26Tθθ − R2

0e
BþuΛ6: (10)

The case A ¼ B ¼ 2ar was treated in a previous work
[48]. As a matter of fact, in this case, it is possible to find a
standing gravitational wave solution in the presence of a
phantomlike scalar field, similar to the one first found in
five dimensions. Another 6D standing-wave braneworld
has been recently proposed [50]. However, in that case the
metric is quite different from the one considered here as
given by Eq. (4). In this last model the spatial metric
components x; y; z are all multiplied by the same factor
e2arþu, while the compact extra dimension is multiplied by
e2ar−3u. The solution, in this case, is similar to the one
found in Ref. [48] and the source is still a phantomlike
scalar field. The two models are still similar in the results of
field localization.
As was mentioned above, the two 6D standing-wave

braneworld models recently proposed in the literature have
shown interesting results in field localization, but both are
generated by exotic matter, a phantomlike scalar. Here,
we are interested in studying the possibility to have a
standing-wave braneworld generated by normal matter
whereas maintains the efficiency in localizing fields. So
we will consider the case where A ≠ B, AðrÞ ¼ 2cr, and
BðrÞ ¼ c1r. In this case, the set of equations (5)–(16) will
be simplified to�
1

4

�
ð24c2 þ c21 þ 6cc1 þ 6ðu02 − e−2cr _u2Þ þ 2e−2crü

− 10cu0 − 2u00Þ ¼ κ26T
x
x − Λ6; (11)

�
1

4

�
ð24c2 þ c21 þ 6cc1 þ 6ðu02 − e−2cr _u2Þ

− 6e−2crüþ ð22cþ 4c1Þu0 þ 6u00Þ ¼ κ26T
z
z − Λ6; (12)

−
�
1

4

�
ð−24c2 − c21 − 6cc1 − 6ðu02 þ e−2cr _u2Þ

þ ð2c − c1Þu0Þ ¼ κ26T
t
t − Λ6; (13)

1

4
_uð2c − c1 − 12u0Þ ¼ Trt; (14)
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�
1

4

�
ð24c2 þ 8cc1 − 6ðu02 þ e−2cr _u2Þ þ ð2c − c1Þu0Þ

¼ κ26T
r
r − Λ6; (15)

and�
1

4

�
ð40c2 þ 6ðu02 − e−2cr _u2Þ þ 2e−2crü − 10cu0 − 2u00Þ

¼ κ26T
θ
θ − Λ6: (16)

In order to have a standing-wave solution, we will
choose

−e−2crüþ 1

6
ð22cþ 4c1Þu0 þ u00 ¼ 0: (17)

In this case, the energy-momentum components have to
satisfy the relations

κ26T
x
x ¼ κ26T

y
y

¼ 1

4

�
6ðu02 − e−2cr _u2Þ − 4

3
ð2c − c1Þu0 þ 6cc1

�
;

(18)

κ26T
z
z ¼

1

4
ð6ðu02 − e−2cr _u2ÞÞ þ 6cc1Þ; (19)

κ26T
t
t ¼ − 1

4
ð−6ðu02 þ e−2cr _u2Þ þ ð2c − c1Þu0 − 6cc1Þ;

(20)

κ26T
r
r ¼

1

4
ð−6ðu02 þ e−2cr _u2Þ þ ð2c − c1Þu0 − c21 þ 8c1cÞ;

(21)

and

κ26T
θ
θ ¼

1

4

�
6ðu02 − e−2cr _u2Þ − 4

3
ð2c − c1Þu0 þ 16c2 − c21

�
:

(22)

The component κ26Trt must be equal to Grt. This energy-
momentum component, as will be seen, does not influence
the general results here, since we will consider only time-
averaged features of the above quantities. This will be
better explained later in Sec. IV.
Finally, the bulk cosmological constant will assume the

relation

Λ6 ¼ − 1

4
ð24c2 þ c21Þ: (23)

This will imply Λ6 < 0, which allows us to obtain
relations between c, c1, and jΛ6j, namely,

c1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jΛ6j − 24c2

q
; (24)

where

c2 ≤
1

6
jΛ6j: (25)

It may be useful to highlight that for the configurations
AðrÞ ¼ 2cr and BðrÞ ¼ c1r, the metric (4) will assume the
simpler form,

ds2 ¼ e2crðdt2 − eudx2 − eudy2 − e−3udz2Þ − dr2

− R2
0e

c1rþudθ2: (26)

Here c and c1 ∈ R are real constants. The range of the
variables r and θ are 0 ≤ r < ∞ and 0 ≤ θ < 2π, respec-
tively. The function u ¼ uðr; tÞ depends only on the
variables r and t. The compact dimension θ, different
from the stringlike defect model, lives on the brane; i.e.,
θ is a brane coordinate for r ¼ 0. This particular feature
is called hybrid compactification [52].
The metric ansatz (26) is a combination of the 6D

warped braneworld model through the e2cr and ec1r terms
(particularly this is similar to the global stringlike defect)
[6–8,25] plus an anisotropic (r, t)-dependent warping
of the brane coordinates, x, y, and z, through the terms
euðt;rÞ and e−3uðt;rÞ. This may be seen as a six-dimensional
generalization of the 5D standing-wave braneworld model
[29–31,45,46] and a 6D generalization of the six-
dimensional standing-wave braneworld [48,50]. Still, we
can see our model as an extension of the global stringlike
defect [6,7]. Therefore, for u ¼ 0, the metric (26) is the same
of the thin global stringlike defects [6,7]. As will be seen,
there is more than one point where u ¼ 0. In these points the
geometry is the so-called AdS island.
In addition, we can consider the exponential of the

function uðr; tÞ as a correction of the stringlike models,
resulting in an anisotropic, time-dependent braneworld.

III. STANDING WAVE SOLUTION

In order to obtain a standing-wave solution, we rewrite
here the differential equation for the uðr; tÞ function (17) as

e−2crüðr; tÞ − au0ðr; tÞ − u″ðr; tÞ ¼ 0; (27)

where prime and dots mean differentiation with respect to r
and t, respectively, and a ¼ 1

6
ð22cþ 4c1Þ. In order to solve

Eq. (27), we proceed as in Ref. [45] by choosing
uðr; tÞ ¼ sinðωtÞρðrÞ. The general solution to the equation
for the variable ρðrÞ is given by

ρðrÞ¼D1e−
a
2
rJ− a

2c

�
ω

c
e−cr

�
þD2e−

a
2
rJ a

2c

�
ω

c
e−cr

�
; (28)

where D1 ¼ C1ðω=2cÞa=2cΓð1 − a=2cÞ and D2 ¼
C2ðω=2cÞa=2cΓð1 þ a=2cÞ. C1 and C2 are integration
constants. J− a

2c
and J a

2c
are the first types of Bessel functions
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of orders − a
2c and a

2c, respectively, and Γ represents the
Gamma function. Now that we found the solution (28), we
have the so-called standing-wave solution, which general-
izes the 5D work [45] and the 6D works [48,50].
Depending on the values of c and a, one can obtain
solutions similar to that in six dimensions. If one has
a ¼ 5c and D1 ¼ 0, the solution will depend on the Bessel
function J5

2
, which is the case in the works in six

dimensions. So these present solutions are more general
then those obtained in the works cited above.
Some features of the function uðr; tÞ can be derived from

the above solution. The first one is the fact that both
functions J− a

2c
and J a

2c
are regular at the origin and at infinity

(r → ∞), given the possibility to maintain the general
solution (28). Depending on the relation betweenω, c and a
the functions J− a

2c
and J a

2c
converge for both c > 0 or c < 0

enabling solutions with decreasing and increasing warp
factor. Furthermore, we require that the function u is zero
on the brane, i.e., at r ¼ 0 [45]. This assumption may be
expressed by

ω

c
¼ X� a

2c;n
; (29)

where X� a
2c;n

represents the nth zero of J− a
2c
or J a

2c
, depend-

ing on whether C1 or C2 is equal to zero in (28). The
boundary condition (29) quantizes the ω frequency.
By this consideration the u function will assume the

value zero in some specific r values, namely, rm. For these
rm values our model may be identified with other 6D
braneworld models [6–8,12–14,23,25], as one can see in
the metric (26). For c > 0 the convergence of the function
(28) for C1 ¼ 0 or C2 ¼ 0 will depend essentially on the
value of the ratio ω=c. The quantity of zeros, or AdS
islands, will depend on the value of c and mainly on the
value of this ratio. For the case discussed here, we have a
finite number of zeros. For c < 0 (with either C1 ¼ 0 or
C2 ¼ 0Þ, the solution will present infinite zeros.
Once we know u, we may obtain the components of the

energy-momentum tensor. This will be done for the cases
where a and c have the same sign and for the case where
they have opposite sign.

A. Case A: The same sign for a and c

In this case we will choose a ¼ 4c, which will imply
c1 ¼ c

2
. Here we will consider only the time average of the

energy-momentum tensor components. This option will be
better explained in the section about field localization. In
the case a ¼ 4c and D1 ¼ 0, the solution (28) will depends
on J2, so our energy-momentum components will be done
in terms of this function.
In the figures below we plot the quantities hTx

xi ¼
hTy

yi ¼ hTz
zi, hTt

ti, hTr
ri, and hTθ

θi for D2 ¼ κ6 ¼ c ¼ 1;
ω ¼ 5.13. In Fig. 1 the dot-dashed line represents
hTx

xi ¼ hTy
yi ¼ hTz

zi, the dotted one represents hTr
ri, the

dashed line represents hTθ
θi, and finally the filled line

represents the energy density hTt
ti. As one can see, all these

quantities are positive (part of Tr
r is negative but

jhTr
rij < jhTr

rij), which is an advantage when one compares
it with the other works in this context [45,48,50]. But it is
not possible to say that this is a normal matter once the
DEC is violated. However, it is not an exotic source once
the null (NEC), strong (SEC), and weak (WEC) energy
conditions are satisfied. By following the matter classifi-
cation given in [49], this is a “not normal matter.”
But we are interested in a solution generated by normal

matter. In order to have a normal matter solution it is
necessary that ρ ≥ p. In order to treat this unique possibil-
ity, we have to consider an anisotropic cosmological
constant. As a matter of fact, recently, a higher-dimensional
Randall-Sundrum toy model was proposed by Archer
and Huber [51], which contains a bulk with anisotropic
cosmological constant given by

Λ ¼

0
B@

Λημν
Λ5

Λ6

1
CA;

where ημν is the metric of the brane.
Following this procedure it is possible to find our

solution in the presence of normal matter. For an aniso-
tropic cosmological constant where its brane part is given
by Λ¼−1

4
ðc21þ6cc1Þ, Λ5¼−1

4
ð8cc1Þ, and Λ6¼−1

4
ð16c2Þ,

the components of the energy-momentum tensor (18)–(22)
will assume the form

κ26hTx
xi ¼ κ26hTy

yi ¼ κ26hTz
zi ¼ κ26hTθ

θi

¼ 1

4
ð6ðu02 − e−2cr _u2Þ þ 24c2Þ; (30)

κ26T
t
t ¼ − 1

4
ð−6ðu02 þ e−2cr _u2Þ − 24c2Þ; (31)

and

κ26hTr
ri ¼

1

4
ð−6ðu02 þ e−2cr _u2Þ þ 24c2Þ: (32)

We plot these quantities in Fig. 2 as in Fig. 1, with the
same values for the constants. The dotted line represents the

1 2 3 4 5
r

1

1

2

3

4

5

6
T M

N r

FIG. 1. hTM
N i profile.
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spatial components, except the r component which is
represented by the shaded line. The filled line represents
the temporal component of the energy-momentum tensor.
As one can see all these quantities are positive and all the
energy conditions (particularly DEC) are satisfied. This is
sufficient to assure that our source is a normal matter and
that our model is stable. Of course it is possible to choose
the value of the cosmological constant in a different way
and still keep the normal matter solution.

B. Case B: a and c have opposite signs

For this case we will consider a ¼ −4c which will give
c1 ¼ − 23

2
c. As in the other case, if the cosmological

constant is isotropic, it is possible to find a solution with
all energy-momentum tensor components positive, but it
would not be possible to obey the dominant energy con-
dition, as in the case above. In fact, once we choose
Λ6 ¼ − 1

4
ð24c2 þ 6cc1Þ, which is positive for a ¼ −4c

(meaning that the bulk is asymptotically de Sitter), then
we obtain not normal matter as in case A above. But the
principal interest consists in a source which corresponds to
normal matter. Sowewill once again look for a solution with
an anisotropic cosmological constant. There are several
ways to choose the energy-momentum components and
cosmological constant in order to have a solution in the
presence of normal matter. Here we assume Λ ¼
− 1

4
ð24c2 þ 6cc1Þ, Λ5 ¼ − 1

4
ð24c2 þ 8cc1 − c21Þ, and Λθ ¼

− 1
4
ð40c2 − c21Þ. Since we know the relation between c and

c1, it is easy to see that the components of the anisotropic
cosmological constant are all positive. The time-averaged
components of the energy-momentum tensor are

κ26hTx
xi ¼ κ26hTy

yi ¼ κ26hTz
zi ¼ κ26hTθ

θi

¼ 1

4
ð6ðu02 − e−2cr _u2Þ þ c21Þ; (33)

κ26T
t
t ¼ − 1

4
ð−6ðu02 þ e−2cr _u2Þ − c21Þ; (34)

and

κ26hTr
ri ¼

1

4
ð−6ðu02 þ e−2cr _u2Þ þ c21Þ: (35)

For D2 ¼ 0 and a ¼ −4c in (28), we plot the time-
averaged components of the energy-momentum tensor
(34)–(35) in Fig. 3. As in Fig. 2 the filled line represents
the energy density, the dotted one gives κ26hTx

xi ¼
κ26hTy

yi ¼ κ26hTz
zi ¼ κ26hTθ

θi, and the dashed line represents
the hTr

ri component. As one can see, all these quantities are
positive and ρ ≥ p, which assures the dominant energy
condition. Therefore, we again obtained a standing-wave
solution generated by normal matter.
On the other hand, one important feature of the brane-

world models is the possibility to solve the hierarchy
problem. In other standing-wave braneworld works, this
feature was not explored. Here we are interested in showing
that it is possible to readdress this solution in this context.
The condition to solve the hierarchy problem in this context
is that the integral below be convergent, namely,

M2
4 ¼ 2πM4

6

Z
∞

0

dreð2cþ
c1
2
Þr: (36)

For c1 ¼ c ¼ 2a, where a is a positive constant, as in the
two 6D standing-wave braneworld models cited above, the
integral is not convergent and the hierarchy problem is not
solvable. The same is valid for the first case presented in
this work, where c1 ¼ 1

2
c and c > 0. But in this second

case where c1 ¼ − 23
2
c and c is positive, we obtain the

hierarchy problem solution. So this is another advantage of
the model presented here in relation to the other ones done
in this same context.
After we obtain the solutions for the standing-wave

braneworld and after we demonstrate that one of our
solutions is able to solve the hierarchy problem, we are
now interested in the potential of our model to localize the
Standard Model (SM) fields.
In the other 6D standing-wave braneworld models

[48,50], the localization issues of scalar, vector, and
fermion fields were already exhaustively studied.
Therefore, since from our model we may obtain these
other 6D standing-wave braneworlds, here it is sufficient to
assure that the scenario presented here is convenient for
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localizing Standard Model fields. However, we will briefly
present the study of localization for the scalar and fermion
fields. This last one is interesting because, in five dimen-
sions, it was not possible to localize the right fermion.

IV. SCALAR FIELD LOCALIZATION

This section is devoted to the study of the localization of
the bulk scalar field. We will follow again the proceedings
given in Refs. [30,31,45]. Then, considering the general
metric (4), we have that

ffiffiffiffiffiffi−gp ¼ R0e2AþB=2. Therefore, the
equation for the scalar field may be written as�

∂2
t − e−uð∂2

x þ ∂2
yÞ − e3u∂2

z − e−u
R2
0

∂2
θ

�
Φ

¼ e−A−B=2ðe2AþB=2Φ0Þ0: (37)

Next, we consider a solution of the form

ΦðxMÞ ¼ Ψðr; tÞχðx; yÞζðzÞeilθ: (38)

If one separates the variables r and t by making
Ψðr; tÞ ¼ eiEtρ̄ðrÞ, the equation for the r variable will
assume the form

ðe2AþB=2ρ̄ðrÞ0Þ0 − eAþB=2GðrÞρ̄ðrÞ ¼ 0; (39)

where

GðrÞ ¼ ðp2
x þ p2

yÞðe−u − 1Þ þ p2
zðe3u − 1Þ þ l2

R2
0

e−u:

(40)

It will be convenient to write (39) as an analogue
nonrelativistic quantum mechanic problem. So we will
assume the change of variable ρ̄ðrÞ ¼ e−ðAþB=4ÞΨ̄ðrÞ. With
this change we will find

Ψ̄00ðrÞ − VðrÞΨ̄ðrÞ ¼ 0; (41)

where

VðrÞ¼ 1

2

�
2A00 þB00

2

�
þ1

4
ð2A0 þB0

2
Þ2þe−AGðrÞ: (42)

From now on, we will consider A ¼ 2cr, B ¼ c1r, and
the simplified metric (26). Next, we will obtain the rt-
dependent function Ψ, in order to analyze the localization
of the scalar field. In other words it is necessary to solve
Eq. (41), but this will be done only for the zero mode scalar
and s-wave. This case is obtained when we assume (l ¼ 0)
and E ¼ p2

x þ p2
y þ p2

z . Additionally, it is considered that
ω ≫ E, which justifies performing the time-averaging of
VðrÞ, reducing the number of independent variables to one,
namely r. By applying this simplification we will find the
following expansion,

hebui ¼ 1þ
Xþ∞

n¼1

ðbÞ2n
22nðn!Þ2

�
D1e−

a
2
rJ− a

2c

�
ω

c
e−cr

�

þD2e−
a
2
rJ a

2c

�
ω

c
e−cr

��
2n
; (43)

or

hebui ¼ I0ðbρðrÞÞ; (44)

where I0 is the modified Bessel function of the first kind. It
is evident from the expression above that our problem is
still very complex. As can be seen from the expression (43),
the approach to analytically solving Eq. (41) is hard work.
Our strategy consists in considering simplification and
asymptotic approximations for the above expression.
Let us begin the approximations by making D1 ¼ 0 in

(28). Once we do this, the uðr; tÞ will depend on the first
kind of Bessel function J a

2c
. The expansion (43) will be

given by

hebui ¼ 1þ
Xþ∞

n¼1

ðbD2Þ2ne−anr
22nðn!Þ2

�
J a

2c

�
ω

c
e−cr

��
2n
: (45)

It is evident that our solution is still very general, since
the order of the function J is a=2c. This gives us the
advantage of choosing the order of the function J, which
is more convenient for our interest, since our choosing is
in accordance with the relations (24) and (25). If one
chooses a ¼ 4c, the order of J will be 2, as in case A
discussed above. This solution is very similar to the one
first proposed in five dimensions for the localization of
the scalar field, with the difference being that the authors
there considered the second kind of Bessel function, Y2,
rather than J2 [45].
After applying the above, let us study (41) by consid-

ering asymptotic approximation far from and near the
brane. For the first case, r → þ∞, the expression J a

2c
¼

J2 goes to zero (ðω=cÞe−cr → 0) and the relation (45) will
be approximated as hebui ≈ 1. This will result in the
following simpler form for Eq. (41), namely,

Ψ̄00ðrÞ − 289

64
c2Ψ̄ðrÞ ¼ 0; (46)

whose solution is e�17
8
cr. We choose Ψ̄ ¼ e−17

8
cr and c > 0,

which is convergent for all r values. This solution is similar
to the one found in the 5D standing-wave context in the
case of scalar field localization for this same asymptotic
limit assumed here [31].
The other case to be considered here for asymptotic

approximation is the case where r → 0. In this case Eq. (41)
may be approximated as
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Ψ̄00ðrÞ − ð8dc2r2 − 6dcrþ d0ÞΨ̄ðrÞ ¼ 0: (47)

This equation is more general than the equivalent
equation considered in five dimensions [31]; there it
was considered only as a first-order approximation. The
constants d and d0 are given, respectively, by

d ¼
�
D2

4

�
2
�
ω

c

�
4

ðp2
x þ p2

y þ 9p2
zÞ; (48)

and

d0 ¼ 9

4
c2 þ d: (49)

The solution of Eq. (47) is given by

Ψ̄ðrÞ ¼ E1Dμ

0
@− 3

27=4

ffiffiffiffiffiffiffiffiffiffi
d

p

c

s
þ 2

� ffiffiffiffiffiffiffiffiffiffiffiffi
c
ffiffiffiffiffiffi
2d

pq �
r

1
A

þ E2Dν

 
−i 3

27=4

ffiffiffiffiffiffiffiffiffiffi
d

p

c

s
þ 2i

� ffiffiffiffiffiffiffiffiffiffiffiffi
c
ffiffiffiffiffiffi
2d

pq �
r

!
; (50)

where D is the parabolic cylinder function, and E1 and E2

are integration constants. We see that E2 must be zero in
order to have a real solution. The μ, ν indexes are given,
respectively, by

μ ¼ − 18c2 þ 16
ffiffiffiffiffiffi
2d

p
c − d

32
ffiffiffiffiffiffi
2d

p
c

; (51)

and

ν ¼ 18
ffiffiffi
2

p
c2 − 32

ffiffiffi
d

p
c − ffiffiffi

2
p

d

64
ffiffiffi
d

p
c

: (52)

For E2 ¼ 0 and ω=a ¼ 5.13, which corresponds to the
first zero of J2, and requiring μ ¼ 0, it is possible to show
that this solution is convergent for either c > 0 or c < 0, as
can be seen in the figures below. We see that the extra part
of the scalar zero-mode wave function ρ̄ðrÞ has a minimum
at r ¼ 0, increases and then falls off, for the case c ¼ 1, as
can be seen in Fig. 4. For c ¼ −1 the function has a
maximum at r ¼ 0, and it rapidly falls off as we move away
from the brane, as can be seen in Fig. 5. On the other hand,
for r → ∞, it assumes the asymptotic form e−ð17=8Þcr which
is in accordance with [31] only for c > 0. In general,
however, for other relations between a and c, it is possible
to have localization for c positive or negative, i.e., for
increasing or decreasing warp factor.
The results of this section show that we have the

localization of the zero-mode scalar field in the model
considered in this work. This is an expected result since the
study of localization of the scalar field was performed in

simpler 5D and 6D models than the one considered here. It
is relevant to stress the fact that the localization here is
possible for both increasing or decreasing warp factor,
whereas in the thin stringlike brane the localization of the
zero-mode scalar field is obtained only for a decreasing
warp factor, and in other standing-wave braneworlds, this
result was obtained only for the case of an increasing warp
factor [6,7,48,50].

V. LOCALIZATION OF SPIN 1=2 FERMIONIC
ZERO MODE

The study of localization of zero-mode spin 1=2 fer-
mions is interesting in this context since, in the 5D
standing-wave braneworld, it was not possible to localize
the zero-mode right fermion. However in the six-dimensional
models cited above, it was demonstrated that this field is
localized. Once the model presented here is more general
than that, it is natural that we find the same results here. As
a matter of fact, our results, as will be seen in this section,
are very similar to the ones found in Refs. [48,50], except
that there, the Bessel function considered is J5

2
, and here we

are using J2. Therefore, we begin with the action for the
massless spin 1=2 fermion in six dimensions, which may be
written as

S ¼
Z

d6x
ffiffiffiffiffiffi−gp

Ψ̄iΓMDMΨ: (53)
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From this action we derive the respective equation of
motion, namely,

ðΓμDμ þ ΓrDr þ ΓθDθÞΨðxMÞ ¼ 0: (54)

In this expression ΓM represents the curved gamma
matrices which relate to the flat ones as

ΓM ¼ hMM̄γ
M̄; (55)

where the vielbein hMM̄ is defined as follows:

gMN ¼ ηM̄ N̄h
M̄
Mh

N̄
N: (56)

The covariant derivative assumes the classical form,

DM ¼ ∂M þ 1

4
ΩM̄ N̄

M γM̄γN̄ : (57)

The spin connection ΩM̄ N̄
M in this case is defined as

ΩM̄ N̄
M ¼ 1

2
hNM̄ð∂MhN̄N − ∂NhN̄MÞ þ −

1

2
hNN̄ð∂MhM̄N − ∂NhM̄MÞ

− 1

2
hPM̄hQN̄hR̄Mð∂PhQR̄ − ∂QhPR̄Þ: (58)

In order to find the relations between the curved gamma
matrices and the flat gamma matrices, we refer to the metric
ansatz (26) and use the relation (55), which will give us the
nonzero results,

Γt ¼ e−crγ t̄; Γx ¼ e−cr−u
2γx̄; Γy ¼ e−cr−u

2γȳ;

Γz ¼ e−crþ3u
2 γz̄; Γr ¼ γr̄; Γθ ¼ R−1

0 e−
c1
2
r−u

2γθ̄: (59)

It is still necessary to make evident the nonvanishing
components of the spin connection (58), namely,

Ωt̄ x̄
x ¼ Ωt̄ ȳ

y ¼ 1

R0

Ωt̄ θ̄
θ ¼ − _u

2
eu=2; Ωt̄ z̄

z ¼ 3_u
2
e−3u=2;

Ωr̄ x̄
x ¼ Ωr̄ ȳ

y ¼
�
cþ u0

2

�
ecrþu=2;

Ωr̄ z̄
z ¼

�
c − 3u0

2

�
ecr−3u=2;

1

R0

Ωr̄ θ̄
θ ¼

�
c1
2
þ u0

2

�
e
c1
2
rþu=2; Ωr̄ t̄

t ¼ cecr: (60)

On the other hand, in order to solve Eq. (54), it will be
necessary to consider the case where ω ≫ E, as in the last
section. In addition, a time average of the equation of
motion must be performed. Furthermore, we assume the
decomposition ΨðxAÞ ¼ ψðxμÞρðrÞeilθ for the wave
function. This will allow us to write the equation of motion
)54 ) as

�
Dþ γr

�
3cþ c1

2
þ ∂r

�
− e−crR−1

0 l2he−u=2i
�
ψðxμÞρðrÞ

¼ 0; (61)

where the operator D is given as

D¼ e−ar½ðhe−u=2i−1Þðγx∂xþ γy∂yÞþðhe3u=2i−1Þγz∂z�:
(62)

Once again it is not possible to analytically solve the
equation above, and then we have to study this equation in
the limits r → 0 and r → ∞. It is relevant to note that the
operator D may be approximated as D ≈ 0 in these two
distinct regions. This is a consequence of the fact that
hebui ≈ 1 for r → 0. This result is shown schematically in
Fig. 6 below. The constant b assumes the values b ¼ −0.5
and b ¼ 1.5, represented by the filled and dotted lines,
respectively. As one can see from this figure, the quantity
hebui is approximately one for both values of the constant
b. Therefore, in both cases, Eq. (61) for the s-wave (l ¼ 0)
may be simplified as�

3cþ c1
2

þ ∂r

�
ρðrÞ ¼ 0: (63)

It is very easy to solve this equation resulting in

ρðrÞ ∝ e−
3cþc1

2
r. This solution shows that for r → 0, the

function ρ has a maximum at the origin and that it decays as

e−
3cþc1

2
r for a > 0 when r → ∞. To show the localization,

we insert this solution in the action (53). By doing this, the
resultant integral in variable r will assume the form
I ∝

R
∞
0 dre−ar. It is evident that this integral is convergent

for a > 0. This is sufficient to assure that the spin 1=2
fermion zero mode is localized in this model. Therefore,
similar to the other results in six dimensions, we show that
the geometry is important to localized fields in contrast to
the 5D standing-wave braneworld, where it is not possible
to find localization for the fermion. This still shows that
the model presented here is more general that the other
six-dimensional standing-wave braneworld model and

0 1 2 3 4 5
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2.0

FIG. 6. hebui profile. The filled line represents b ¼ −0.5 and
the dotted line represents b ¼ 1.5
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allows the localization of fields for different Bessel
functions.

VI. REMARKS AND CONCLUSIONS

In this paper, we have obtained the standing gravitational
wave solution for the six-dimensional Einstein equation in
the presence of an anisotropic brane generated by normal
matter. The compact dimension belongs to the brane and is
small enough to assure that our model is realistic. Our
metric ansatz is anisotropic and nonstatic, unlike most
models considered in the braneworld literature. We find a
solution for the warp factor which represents a thin brane,
and in this case the bulk may be seen as a generalization of
the stringlike defect [6,7]. Apart from having a physical
field as the source, our model is more general than other
six-dimensional standing-wave braneworlds recently con-
sidered in the literature [48,50], since their solutions may
be derived from our solution as special cases. Our metric
ansatz has two different warp factors e2cr and e2c1r, similar
to the global stringlike defect, and it also has general warp
factors euðr;tÞ and e−3uðr;tÞ similar to the 6D standing-wave
braneworld with an exotic source. The different warp
factors permit us to find a solution for the function u for
increasing or decreasing warp factor e�cr, which is an
advantage when compared with the similar model.
We find the standing-wave solution for the function

uðr; tÞ, and we show that this solution is more general and
comprises the other six-dimensional standing-wave brane-
world solutions that have recently appeared in the literature
[48,50]. In fact, our solutions depend on the Bessel function
J� a

2c
, which for the special case a ¼ �5c coincides with the

models cited above.
From the uðr; tÞ function, it was possible to choose the

type of matter that generates the brane. We have found two
types of matter depending on whether we consider the
isotropic or anisotropic cosmological constant. In the first
case, for a negative cosmological constant, and a ¼ 4c, we
have demonstrated that the energy density and pressure
components are all positive and the energy conditions
NEC, WEC, and SEC are satisfied, although the dominant
energy condition is violated in this case. If one considers
a ¼ −4c, similar results are found for the matter, but in this
case, the cosmological constant is positive which means
that in this case the bulk is asymptotically de Sitter, while in
the first case we have a 6D AdS space-time. It is interesting
to note that an asymptotically AdS space-time has been
considered in the other 5D and 6D standing-wave brane-
worlds, but a de Sitter geometry was found for the first time
here. For the case of the anisotropic cosmological constant,
we have considered the situation recently suggested in the

literature for the higher-dimensional Randall-Sundrum
model [51]. So we consider that the cosmological constant
on the brane has a fixed value λ, but the extra components
Λ5 and Λ6 may assume different values. This is reasonable
in our case since we are dealing with an anisotropic bulk.
Therefore, for a ¼ 4c all the “components” of the cosmo-
logical constant are negative and for a ¼ −4c they are
positive, in line with the findings for the case of the
isotropic cosmological constant discussed above. In the two
cases, we have obtained the components of the energy-
momentum tensor and shown that all of them are positive
and that all the energy conditions are satisfied. This means
that we have constructed a 6D standing-wave braneworld
that is generated by normal matter and, therefore, stable.
An important feature of some braneworld models is their

ability to solve the so-called hierarchy problem, but in the
context of the standing-wave braneworld, this problem was
never treated. Here, we have demonstrated that it is possible
to solve the hierarchy problem in this context. This is
another advantage of the model proposed in this work over
other standing-wave braneworld models.
Finally, we have considered the localization of fields in

our model. Since it generalizes our previous work in this
subject [48], it is reasonable to expect that the localization
of the fields studied there is also possible here. Indeed,
here we have considered a ¼ 4c and we studied only the
zero-mode scalar and fermion field localization. As was
expected, we have shown that there is a zero-mode
localization for both scalar and fermion fields. The solution
found here for the scalar field is in accordance with the ones
that were encountered in five dimensions [31] and six
dimensions [48,50].
It is known that quantum effects may play important

roles in braneworld models, for example, in the mechanism
of generating 4D Newtonian gravity in a static three-brane
[53,54]. Moreover, quantum corrections in warped back-
grounds may lead to gravity delocalization [55]. Therefore,
although we are dealing with normal matter, it is interesting
to study how quantum fluctuation could interfere in the
stability of our ansatz metric. This also will be left for a
future work.
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