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We show that the presence of a nonminimal interaction between dark matter and dark energy may lead to
a violation of the null energy condition and to the formation of a configuration with nontrivial topology
(a wormhole). In this it is assumed that both dark matter and dark energy satisfy the null energy condition, a
violation of which takes place only in the inner high-density regions of the configuration. This is achieved
by assuming that, in a high-density environment, a nonminimal coupling function changes its sign in
comparison with the case where dark matter and dark energy have relatively low densities which are typical
for a cosmological background. For this case, we find regular static, spherically symmetric solutions
describing wormholes supported by dark matter nonminimally coupled to dark energy in the form of a
quintessence scalar field.
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I. INTRODUCTION

Since its creation, Einstein’s general relativity has proved
to be a powerful tool used in considering various systems
for which relativistic gravitational effects are significant. It
has been used successfully both in describing the cosmo-
logical evolution of the early and present Universe and in
modeling various strongly gravitating compact objects.
In the latter case, perhaps the most exotic objects predicted
by general relativity are black holes and wormholes. It is
commonly believed that such objects might be formed in
regions of strong gravitational fields. The principal feature
of any wormhole is the presence of a throat, defined as a
two-dimensional hypersurface of minimal area. This throat
can connect either two distant regions of our Universe or
even different universes, and far from the throat, spacetime
may either be flat or have a curved geometry.
A necessary condition to construct a throat is the

presence of matter violating the so-called null energy
condition (NEC), Tμνkμkν ≥ 0, where kμ is any null vector,
and Tμν is the energy-momentum tensor of matter. In
general, Tμν can contain different types of matter, for
instance, fluids and/or various fundamental fields. In the
simplest case of a perfect isotropic fluid having only one
radial pressure, pr, and the energy density ε, the NEC can
be presented in the form ðεþ prÞ ≥ 0. Then, if such a fluid
is described by a simple equation of state in the form
pr ¼ wε, a violation of the NEC becomes possible when
the equation-of-state parameter w < −1.

This form of matter is called exotic matter. It has been
used both in describing the present accelerated expansion
of the Universe [1–4] and in constructing such exotic
objects as wormholes [5–17]. A quantity of greater interest
are models of a traversable Lorentzian wormhole, sug-
gested by Morris and Thorne [18] (for a review, see the
book by Visser [19]). The traversability assumes that matter
and radiation can travel freely through the wormhole which
can lead to some interesting observable consequences [20].
There are several possibilities to introduce exotic matter.

This can be a consideration of systems with the above-
mentioned linear equation of state pr ¼ wε with w < −1
[13,14], or the use of ghost/phantom scalar fields [5–9,15,17],
or a consideration of systems beyond the bounds of Einstein
gravity [10,21]. In any case, to build a model of a static
traversable wormhole in general relativity, one has to violate
the NEC [22] which requires the use of exotic matter, in one
form or another, even if in arbitrarily small quantities [11,20].
Here the question arises whether such exotic forms of

matter can exist in the Universe. A strong argument in favor
of such a possibility is the observed accelerated expansion
of the present Universe. The numerous attempts to give a
theoretical description of the current accelerated expansion
of the Universe are usually reduced to introducing a new
form of matter, called dark energy (DE), which is believed
to be responsible for such an acceleration. Having large
negative pressure, dark energy causes the Universe to
expand increasingly fast, according to a power law or
exponentially. Moreover, astronomical observations (see,
e.g., Refs. [23,24] and more recent estimates [25]) indicate
the possibility, that an even more exotic form of energy
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exists in the Universe, called phantom dark energy. The
presence of such an energy assumes the violation of the
NEC and results in even faster acceleration.
The amount of dark energy is about 70% of the total

energy density of the Universe. Another important com-
ponent of the present Universe is dark matter (DM) which
contributes about 25% of the total energy density, and is
clustered on scales of the order of galaxies and clusters
of galaxies. Although the true nature of neither DM nor
DE is currently known, various ways have been suggested
to model them. In the simplest case this can be the so-called
ΛCDMmodel, where DE is described by Einstein’s Λ term,
and DM is supposed to be a pressureless fluid (cold dark
matter). However, due to the well-known cosmological
constant problem [1–4], alternative possibilities are being
suggested to describe the evolution of the present Universe.
One of the approaches to address the origin of DE and
DM are theories that involve various fundamental fields
[1–4], including cosmological models with DE and DM
interacting with each other not only gravitationally but also
by a direct coupling [26–38] (for a review, see, e.g.,
Refs. [2–4,39]). In turn, the supposed presence in the
Universe of DE, in one form or another, and DM provides
the basis for concluding that compact systems consisting of
dark energy [40], of dark matter [41,42], or of interacting
DE and DM [43,44] might also exist.
In the present paper, we study compact, spherically

symmetric configurations consisting of DE and DM non-
minimally interacting with each other. In doing so, wemodel
DE in the formof a usual (nonghost) quintessence-type scalar
field, and DM is described as a perfect fluid satisfying the
NEC. Here our objective will be to construct regular static
solutions describing self-consistently a configuration with
nontrivial topology, where the violation of the NEC is
achievedbyanappropriatechoiceof theformofanonminimal
coupling between dark matter and dark energy.
The paper is organized as follows. In Sec. II Awe discuss

the choice of the dark matter/dark energy interaction
Lagrangian, using which we derive the general set of
equations for equilibrium configurations in Sec. II B. In
Sec. III A the statement of the problem is presented, for
which in Sec. III B we find the necessary conditions
providing the existence of a throat in the system under
consideration. Using these conditions, in Sec. III C we
consider an explicit example of obtaining regular static
solutions with nontrivial topology with a particular choice
of a nonminimal coupling function. Finally, in Sec. IV our
results are summarized.

II. DERIVATION OF THE EQUATIONS FOR
EQUILIBRIUM CONFIGURATIONS

A. The dark matter/dark energy interaction
Lagrangian

At the moment, there exists no fundamental theory that
allows one to choose a specific coupling in the dark sector.

Therefore, any type of coupling will necessarily be phe-
nomenological, although some models may appear to be
more physically motivated than others. In modeling DE in
the form of a scalar field, one can meet in the literature
different types of couplings between the field and dark
matter. This can be the possibility, inspired by scalar-tensor
theories of gravity, when one assumes the presence of an
interaction of the form QTðDMÞφ;ν, where TðDMÞ is the trace
of the energy-momentum tensor of dark matter, φ is the
cosmological scalar field, and Q can be a constant
[27,28,32] or be field dependent [29,30,35].
If one initially works within the framework of general

relativity, the appearance of a direct coupling between the
scalar field and matter is also possible when the mass of
matter particles is assumed to be explicitly dependent on
the scalar field. This can be an exponential dependence
(for cosmological implications, see Ref. [45]) or a linear
dependence appearing as a consequence of the presence of
the Yukawa coupling. The latter type of interaction has
been repeatedly considered in the literature. In particular, it
was used in studying compact objects in Refs. [43,46,47],
in describing structure formation in Ref. [48], and in
modeling interacting DM and DE in Refs. [33,38].
An explicit dependence of the mass of particles on a

scalar field implies that by going to a description of matter
in the form of a fluid its pressure and density become
functions depending explicitly on the scalar field (see, e.g.,
Ref. [43]). However, one can use instead a phenomeno-
logical possibility when a description of the interaction
between the scalar field and matter is performed assuming
that the pressure and density are not initially explicit
functions of a scalar field. Such a coupling can be
expressed through an interaction Lagrangian of the form

Lint ¼ fðφÞLm; (1)

where Lm is the Lagrangian of matter (ordinary or dark) and
the coupling function fðφÞ characterizes the interaction
between φ and the matter. The case f → 1 corresponds to
the absence of a direct coupling between matter and the
scalar field, when the two sources are coupled only via
gravity.
In the cosmological context, the interaction Lagrangian

(1) was used in modeling the present accelerated expansion
of the Universe [34,49–53], in describing structure for-
mation [54], and when considering compact configurations
[53,55]. In doing so, a choice of the Lagrangian Lm is, in
general, not unique. It can be taken as Lm ¼ −ε [56] or
Lm ¼ p [57], where ε and p are the energy density and the
pressure of an isentropic perfect fluid. By varying both
these matter Lagrangians with respect to a metric, one
obtains the same energy-momentum tensor of the perfect
fluid in the conventional form. However, it can be
shown that, for instance, for static configurations, these
Lagrangians will give different equations for an equilibrium
configuration (see, e.g., the discussion in Ref. [53]).
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Apparently, at the present time, it is difficult to make a
motivated choice among these Lagrangians Lm, or any
other Lagrangians used in the literature (for the other
possible Lagrangians and a discussion of their choice for
nonminimally coupled systems see, e.g., Ref. [58]). For this
reason, a description of various systems with nonminimal
coupling of the type fðφÞLm is made, in effect, using an
ad hoc choice of Lm.

B. General set of equations

As pointed out in the Introduction, the objective of the
present paper is to study the possibility of obtaining
solutions describing static configurations with nontrivial
topology sourced by a usual (nonghost) cosmological
scalar field interacting with dark matter both gravitationally
and through a direct coupling. The general Lagrangian for
such a system can be presented in the form

L ¼ − c4

16πG
Rþ 1

2
∂lφ∂lφ − VðφÞ þ fðφÞLDM

− 1

4
FlmFlm: (2)

Here φ is the real scalar field with the potential VðφÞ, Flm is
the the electromagnetic field tensor, and LDM ¼ −ε is the
Lagrangian of dark matter, where ε denotes the energy
density of dark matter. The case f ¼ 1 corresponds to the
absence of a direct coupling between dark matter and the
scalar field. However, even in this case the two sources are
still coupled via gravity.
The energy-momentum tensor can be obtained by vary-

ing the matter part of the Lagrangian (2) with respect to a
metric,

Tk
i ¼ f½ðεþ pÞuiuk − δki p� þ ∂iφ∂kφ − Fl

iF
k
l

− δki

�
1

2
∂lφ∂lφ − VðφÞ − 1

4
FlmFlm

�
; (3)

where p is the pressure of a dark matter fluid, and ui is the
four-velocity.
In considering equilibrium wormhole-like configura-

tions, we will use the polar Gaussian coordinates

ds2 ¼ AðlÞðdx0Þ2 − dl2 − r2ðlÞdΩ2; (4)

where A and r are functions of the radial coordinate l,
the time coordinate x0 ¼ ct, and dΩ2 is the metric on
the unit two-sphere. The coordinate l covers the entire
range ð−∞;þ∞Þ.
Here we consider only radial components of electric and

magnetic fields, F01 ¼ Er and F23 ¼ −Hr, with the fol-
lowing ansatz for the magnetic field: F23 ¼ ∂θA3, where
A3 ¼ Qm cos θ, Qm is the magnetic charge, and θ is the
angular coordinate on a sphere. Then, using Maxwell’s

equations ½ ffiffiffiffiffiffi−gp
Fik�;k ¼ 0, one can find Er ¼ Qe=r2,

where Qe is the electric charge.
For our purposes, we use the ð00Þ, ð11Þ, and ð22Þ compo-

nents of the Einstein equations, which can be obtained by
using the metric (4) and the energy-momentum tensor (3)
in the following form, respectively (hereafter we work in
natural units c ¼ ℏ ¼ 1):

−
�
2
R00

R
þ
�
R0

R

�
2
�
þ 1

R2

¼ 8π

�
fεþ 1

2
ϕ02 þ VðϕÞ þ β

2

Q2

R4

�
; (5)

−
R0

R

�
R0

R
þ A0

A

�
þ 1

R2

¼ 8π

�
−fp − 1

2
ϕ02 þ VðϕÞ þ β

2

Q2

R4

�
; (6)

R00

R
þ 1

2

A0

A
R0

R
þ 1

2

A00

A
− 1

4

�
A0

A

�
2

¼ 8π

�
fp − 1

2
ϕ02 − VðϕÞ þ β

2

Q2

R4

�
; (7)

where the prime denotes differentiation with respect to the
radial coordinate. Here we have introduced dimensionless
variables,

ξ ¼ l
L
; R ¼ r

L
; ϕ ¼ φ=MPl; ~ε ¼ ε

m4
;

~p ¼ p
m4

; ~VðϕÞ ¼ VðφÞ
m4

with L ¼ MPl

m2
; (8)

where m is the mass of dark matter particles, andMPl is the
Planck mass. Also, the parameter β ¼ ðm=MPlÞ4 and
Q2 ¼ Q2

e þQ2
m. For convenience, we drop the tilde in

Eqs. (5)–(7) and hereafter.
Since not all of the Einstein field equations are inde-

pendent because of the conservation of energy and momen-
tum, Tk

i;k ¼ 0, the i ¼ 1 component of this equation gives

dp
dξ

¼ −ðεþ pÞ
�
1

2

A0

A
þ 1

f
df
dϕ

ϕ0
�
: (9)

Equations (5)–(7) and (9) must be supplemented by an
equation for the scalar field which follows from the
Lagrangian (2),

1ffiffiffiffiffiffi−gp ∂
∂xi

� ffiffiffiffiffiffi−gp
gik

∂φ
∂xk

�
¼ −

�
dV
dφ

þ ε
df
dφ

�
;

and gives
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ϕ00 þ
�
1

2

A0

A
þ 2

R0

R

�
ϕ0 ¼ dV

dϕ
þ ε

df
dϕ

: (10)

Thus, we have five unknown functions: A;R;ϕ; ε, and p.
Keeping in mind that ε and p are related by an equation
of state, there remains only four unknown functions. To
determine these functions, we can use any three equations
from the system (5)–(7), (9) together with the scalar-field
equation (10).

III. AN EXPLICIT EXAMPLE

A. Statement of the problem

Here we consider the conditions under which the system
described by the Lagrangian (2) may permit the existence
of configurations with nontrivial topology. In doing so, we
proceed from the following assumptions.
(i) Dark matter, being clustered in a finite region

of space, has the boundary at some ξ ¼ ξb where
its energy density and pressure become equal to
zero, εðξbÞ; pðξbÞ ¼ 0.

(ii) At large distances (ξ ≫ ξb) the coupling function f
tends to 1.

(iii) At large distances (ξ ≫ ξb) the scalar field ϕ goes to
some constant (cosmological) value ϕ0 providing the
positive energy density of dark energy close to the
critical energy density ≃10−47 GeV4, which repre-
sents the averaged cosmological energy density in the
Universe today. This in turn implies the positivity of
the potential energy VðφÞ.

(iv) It is assumed that both the dark matter and the dark
energy do not violate the NEC.

Then, taking into account that at large distances the
energy density of the electric and magnetic fields is much
smaller than the scalar-field energy density (see below in
Sec. III C), the resulting Lagrangian becomes identical in
form to that used in describing the cosmological evolution
of the Universe. In this sense, configurations being studied
here may be thought of as embedded in a cosmological
background.
To obtain a nontrivial topology in the system under

consideration, it is necessary to violate the NEC in the
vicinity of the center. Here we will consider solutions
symmetric with respect to the center with the boundary
conditions given by Eq. (12) (see below). Since, by
definition, a throat is a two-dimensional hypersurface of
minimal area, then the areal radius Rmust have a minimum
at the throat. Without loss of generality, we can take this
throat to occur at ξ ¼ 0. Then, mathematically, we need
to: i) provide a minimum of the function RðξÞ at the point
ξ ¼ 0, and ii) ensure that Rð0Þ is real. Taking into account
that the derivative of the scalar field is equal to zero at the
throat [see Eq. (12)] and the condition (iv), it will be shown
in Sec. III B that the function R has a minimum only when
f < 0 in the vicinity of the center.

As discussed in Sec. II A, at the present time the choice
of the function f is strictly model dependent, and does not
follow from any first principles. It is usually assumed that f
is everywhere positive, and is chosen in such a way as to be
compatible with current astronomical and cosmological
observations. The latter implies, in particular, that f gives
an adequate description of a nonminimal interaction
between dark matter and a scalar field at small energy
densities which are typical for cosmology and galac-
tic halos.
On the other hand, at higher energy densities which are

typical for inner parts of compact objects, the possibility is
not excluded that conditions might occur when f becomes
negative. In particular, it may be due to quantum effects
which might lead to violations of the NEC [11]. In any case,
this important question requires special consideration,
which goes beyond the scope of this paper. Here we wish
only to analyze some general requirements for the appear-
ance of nontrivial topology in the system described by the
Lagrangian (2) with the proviso that the above conditions
(i)–(iv) are satisfied.
We note here that in the absence of a nonminimal

interaction the literature in the field offers alternative ways
to violate the NEC only in the vicinity of a throat. In
particular, in Ref. [59] the case was considered where a
scalar field (which can change the sign of the “kinetic” term
depending on the magnitude of the field) becomes a ghost
near a throat, remaining nonghost everywhere else, as in
our case.
Taking account of the choice f < 0 in the vicinity of

the center and the condition (ii), the function f, as it
moves outward from the center of the configuration to large
distances, must necessarily go through zero at some point.
Since f stands in the denominator of Eq. (9), this certainly
implies that df=dϕ also must be equal to zero at that point.
It appears that this condition cannot be realized, at least
for analytic functions. One way around this difficulty is to
choose an f that crosses zero somewhere outside the fluid
where Eq. (9) is already absent.
Another possibility is to choose a special equation of

state for dark matter. In the simplest case it can be a linear
equation of state in the form p ¼ wε, where w ¼ const,
which is widely used in cosmology. In this case Eq. (9) can
be integrated in the form

ε ¼ εc

�
fc
f

ffiffiffiffiffi
Ac

A

r �ðwþ1Þ=w
: (11)

Here the index “c” corresponds to central values of the
variables at ξ ¼ 0. Assuming that the metric function A
remains finite and nonzero everywhere, it is seen from this
expression that to provide the regularity of ε along the
radius of the system we must take w < 0.
The most popular hypothesis in modeling dark matter is

the assumption that its equation of state corresponds to cold
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dust matter [1]. Such matter is either pressureless or has a
very small pressure with the equation-of-state parameter
lying in the range −10−2 ≲ w≲ 10−3 [60]. This assumes
that the pressure can be negative. On the other hand, when
modeling dark matter by a scalar field, it is possible for w
to be considerably smaller than zero [61]. Consistent with
this, in what follows we will consider the possibility of
obtaining a nontrivial topology in our system.

B. Conditions at the throat

Let us now turn to a consideration of boundary con-
ditions for the set of equations (5)–(7) and (10). Since here
we will seek solutions which are symmetric with respect to
the center, we choose boundary conditions in the neighbor-
hood of the center of the configuration as

R≃ Rc þ
1

2
R2ξ

2;

A≃ Ac þ
1

2
A2ξ

2;

ϕ≃ ϕc þ
1

2
ϕ2ξ

2; (12)

where the index “c” corresponds to the central values of the
variables at ξ ¼ 0. Substituting these boundary conditions
and the expression for ε from Eq. (11) into Eqs. (5)–(7) and
(10), we find the following expressions. For the throat
radius, Eq. (6) gives

R2
c ¼

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−8πQ2βD

p
D

with D¼ 16πðVc−wfcεcÞ:
(13)

From Eq. (5) we have

R2 ¼ −4πð1þ wÞRcfcεc; (14)

and Eq. (7) yields

A2 ¼ 8πAc

�
ð1þ 3wÞfcεc − 2

�
Vc − β

2

Q2

R4
c

��
: (15)

Finally, from Eq. (10) we have

ϕ2 ¼
�
dV
dϕ

�
c
þ εc

�
df
dϕ

�
c
: (16)

In these expressions Vc and fc refer to the central values
of the corresponding functions of the scalar field. Since
here we deal only with negative values of w and fc, then we
always have wfcεc > 0. Then it is seen from Eq. (13) that
D can be negative or positive depending on the value of the
parameters appearing in D. In order to ensure that R is a
real function, we have the two following sets of boundary
conditions which can be realized at the throat:

ðAÞ D>0; ð1−8πQ2βDÞ≥0;
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−8πQ2βD

q �
>0;

(17)

ðBÞ D<0; ð1−8πQ2βDÞ≥0;
�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−8πQ2βD

q �
<0.

(18)

Both these sets are supplemented by two more con-
ditions providing a minimum of corresponding functions:
R2 ≥ 0; A2 ≥ 0. Then we have from Eqs. (14) and (15),
respectively,

fcεc ≤ 0;

�
ð1þ3wÞfcεc−2

�
Vc−β

2

Q2

R4
c

��
≥ 0: (19)

(Note here that the condition A2 ≥ 0, which ensures a
minimum of the function A, need not be necessary in
general. Examples of regular static solutions in models with
scalar fields where this condition is not satisfied can be
found in Ref. [15].)
It can be shown that in the absence of the electric

and magnetic fields, i.e., when Q ¼ 0, the inequalities
(17)–(19) cannot be fulfilled simultaneously. That is why
we will solve these inequalities simultaneously in the case
when Q ≠ 0. Then it is possible to find a range of allowed
values for the parameters of the system such that these
inequalities are fulfilled. For the case (A), there are only the
two following sets of conditions:

ðA1Þ∶ Q2 ¼ γ1
R2
c

8πβ
; fc ¼ − γ1γ2

8πð1þ wÞR2
cεc

; (20)

R2
c ¼

ð1þ wÞð2 − γ1Þ − 2wγ1γ2
16πð1þ wÞVc

; with 1 < γ1 < 2;

γ21 − 1

γ21
≤ γ2 ≤

2ðγ1 − 1Þ
γ1

; −1 < w < 0; (21)

ðA2Þ∶ Q2 ¼ γ1
R2
c

8πβ
; fc ¼ − γ2

γ1

γ21 − 1

8πð1þ wÞR2
cεc

; (22)

R2
c ¼

ð1þwÞð2− γ1Þγ1−2wðγ21−1Þγ2
16πð1þwÞγ1Vc

;

with 1< γ1< 2; 0< γ2 < 1; −1<w< 0: (23)

The free parameters γ1 and γ2 appearing here are arbitrary
and limited only in the ranges shown above.
For the case (B), the number of ranges of allowed

values for the parameters is much larger. In order to not
encumber the paper, here we show only one set of
conditions which will be used below in performing
numerical calculations:
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ðB1Þ∶ Q2 ¼ − wγ2γ3
16π2ð1þ wÞβVc

;

fc ¼
wγ22γ3

16π2ð1þ wÞ2VcR4
cεc

; (24)

R2
c ¼

1

16πVc

"
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8wγ2γ3½1þwð1þ2γ2Þ�

ð1þwÞ2
s #

; with

0< γ2< 1; 0< γ3 < 1; − 1

1þ4γ2
<w< 0: (25)

From the expressions obtained above, we can find the
relation between the throat radius rc and the central value
of the intensity of the electric and/or magnetic fields,
Hc ¼ Q2

cgs=r2c, in the cgs system of units. Namely, going
back to dimensional quantities, we have

ðA1Þ; ðA2Þ∶ rc ¼
ffiffiffiffiffiffiffiffiffi
γ1
8πG

r
c2

Hc
; (26)

ðB1Þ∶ rc ¼ αB

ffiffiffiffiffiffiffi
1

πG

r
c2

Hc
with

αB¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
wγ2γ3
1þw

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8wγ2γ3½1þwð1þ2γ2Þ�

ð1þwÞ2
s �−1s

:

(27)

Depending on the value of the arbitrary parameters γ2; γ3,
and also on the equation-of-state parameter w, the coef-
ficient αB lies in the range 1=2 < αB < 1=

ffiffiffi
2

p
. I.e., the

relations between rc and Hc in all cases (A1), (A2), and
(B1) remain approximately the same. Similar relations
between rc and Hc have been found in Ref. [20] for
magnetic wormholes supported by a radial magnetic field
with a small amount of exotic matter. In that case, the
magnetic field is, in essence, a main component of such
wormholes, since it determines their sizes and masses (see
Table 1 of Ref. [20]).
Calculating the coefficient αB in other ranges of allowed

values for the parameters of the system, one can show that a
minimum value of αB remains always of the order of 1, but
a maximum value may be much larger, for example, in the
case when there is a possibility that w → −1. Then, for
some fixed value of Hc, the throat radius, and correspond-
ingly its mass, will increase as w tends to −1. On the other
hand, since a minimum value of αB is ∼Oð1Þ, then it
appears difficult to decrease considerably the sizes and
masses of the systems under consideration in comparison
with those of Ref. [20].

C. Numerical results

The restrictions on the parameters of the system con-
sidered in the previous section are necessary conditions
assuring the possibility of the existence of a nontrivial

topology in the system. However, they still do not guar-
antee that there exist solutions satisfying the conditions
(i)–(iv) from Sec. III A. Here we demonstrate the possibility
for obtaining such solutions for definite choices of the
scalar functions fðϕÞ and VðϕÞ.
Let us seek numerical solutions of Eqs. (5), (7),

and (10) with the boundary conditions (12) and some
particular form of the functions fðϕÞ and VðϕÞ. As already
discussedabove,fðϕÞ isastrictlymodel-dependent function.
Hence, taking into account the conditions (ii) and (iii) from
Sec. III A, we may choose it, e.g., in the following form:

f ¼ 1þ aðϕ − ϕ0Þb; (28)

where a; b are free parameters and ϕ0 is the cosmological
value of the scalar field whose magnitude depends upon the
specific form of the potential energy VðϕÞ. Such a coupling
function can arise as a consequence of a conformal trans-
formation from the string frame into the Einstein frame [49].
The free parameters a; b must be such as to provide the

necessary central value fc ≡ fðϕcÞ, given by the expres-
sions (20), (22), or (24). Since these expressions depend
directly on the central value of the potential energy
Vc ≡ VðϕcÞ, on which the throat size also depends directly
[see Eqs. (21), (23), and (25)], then Vc is, in essence, the
primary determining parameter of the problem. Its value
depends on the form of the potential energy used, and may
vary within wide limits.
As a potential energy, here we use that from Ref. [62],

which can be presented in the variables being used here as
follows:

V ¼ M4ðM=MPlÞαϕ−α exp ðλϕ2Þ: (29)

Such a function has been used in describing the present
accelerated expansion of the Universe within the frame-
work of the so-called “freezing” models of quintessence
[3,39]. This potential energy is always positive and has a
minimum at ϕ ¼ ϕmin where the cosmological quintes-
sence field is eventually trapped. In cosmological applica-
tions, the two free parameters α and λ appearing here, and
also the mass scale M, are adjusted to provide conditions
under which the tracking behavior is realized (see, e.g.,
Ref. [3]). For instance, using the value of α ¼ 11 and
choosing λ ¼ 4π [62], a minimum of the potential (29)
takes place at ϕmin ≃ 0.66 (recall that here ϕ is measured in
units of the Planck mass). In describing the evolution of the
current Universe using the potential (29), it is assumed that
the scalar field varies slowly with time and stays for a
sufficiently long time in the vicinity of the minimum of the
potential, thus providing a sufficiently prolonged stage of
accelerated expansion. That is, it is assumed that the current
value of the scalar field ϕ0 ≃ ϕmin. Assuming that
Vðϕ0Þ≃ 10−47 GeV4—the current averaged cosmological
density in the Universe—the mass scale M is given by
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M ≃ 4 × 1010 GeV [62]. In subsequent calculations we
will use these values of the parameters α; λ, and M.
Using the above functions fðϕÞ and VðϕÞ, we solve

the system of equations (5), (7), and (10) subject to the
boundary conditions (12). We start the numerical procedure
at the center ξ ¼ 0 and proceed to the point ξ ¼ ξb, where
the nonminimal coupling function f goes to zero. Since in
the present paper we reckon the equation-of-state parameter
w as negative, then, according to Eq. (11), the energy
density and the pressure of the dark matter also vanish at the
point ξb. We refer to the obtained solutions as internal
solutions. Since the wormhole configurations under con-
sideration are supposed to be embedded in an external,
homogeneously distributed cosmological scalar field ϕ0,
then, to provide the smoothness of solutions along the
radius, we require the internal solutions to match external
solutions obtained for the region ξ > ξb characterized by
nonzero energy densities of the scalar and electric/magnetic
fields. Thus, for ξ > ξb, we proceed with numerical
solutions of Eqs. (5), (7), and (10) retaining only the
gravitational, electric/magnetic, and scalar fields while the
dark matter fluid is taken to be zero. These external
solutions are interrupted at the point where ϕ ¼ ϕ0, i.e.,
in the vicinity of a minimum of the potential (29), and we
also adjust the free parameters of the system in such a way
that the gradient of the scalar field becomes equal to zero
at this point.
As an example, we show the results of numerical calcu-

lations for the case (B1) [see Eqs. (24) and (25)]. Here it is
convenient to choose the free parameter γ3 in the form

γ3 ¼ − 4πVcð1 − 8πVcÞð1þ wÞ2
wγ2½1þ wð1þ 2γ2Þ�

: (30)

Substituting this expression in Eqs. (24) and (25), we have

Rc ¼ 1; fc ¼ − ð1 − 8πVcÞγ2
4π½1þ wð1þ 2γ2Þ�εc

; (31)

and the expression for Q can be found from Eq. (24) using
γ3 from Eq. (30). Then, taking some specific value of the
mass of a dark matter particle m, one can obtain solutions
for different values of the equation-of-state parameter
w < 0. Another free parameter γ2 is then chosen so that at
ξ ≫ ξb the scalar field goes to its cosmological value ϕ0 in
the vicinity of a minimum of the potential (29) with the
corresponding cosmological Vðϕ0Þ≃ 10−47 GeV4. Since
we seek solutions for which the gradient of the scalar field
at this point is ϕ0

ϕ¼ϕ0
¼ 0, this enables the solution for the

scalar field to be matched smoothly onto the cosmological
background solution ϕ ¼ ϕ0.
Let us now address the question of the total energy

density of the configurations under consideration. It is
given by the ð00Þ component of the energy-momentum
tensor,

T0
0 ¼ fεþ 1

2
ϕ02 þ VðϕÞ þ β

2

Q2

R4
: (32)

It contains the contributions from the dark matter energy
density ε, and also from the scalar and electric/magnetic
fields. The numerical calculations show that in considering
configurations with sizes of the order of or less than those
of galaxies, the contribution from the potential energy VðϕÞ
is negligibly small on these scales. The main contribution to
the mass comes from the electric and/or magnetic fields;
they determine the size of the throat [see Eqs. (26) and
(27)], and correspondingly its mass, and give significant
contributions to the energy density in the internal and
external regions of the configuration. The contributions
coming from the terms with the dark matter, fε, and the
gradient of the scalar field, ϕ02, depend on the central
energy density εc and on the parameter w whose values
determine the fraction of the exotic matter at the center of
the configuration. The amount of the exotic matter in turn
affects directly the central value of the scalar field ϕc, since
the latter is obtained by equating the expression for f from
Eq. (28) at ϕ ¼ ϕc to the expression for fc from Eq. (31).
Then, starting from ϕc thus obtained, we seek a solution for
ϕ which goes to the background cosmological value ϕ0

somewhere at ξ ≫ ξb. In this case the numerical calcu-
lations indicate that, for the values of the parameters used in
this paper, at the point where ϕ becomes equal to ϕ0, the
scalar-field energy density Vðϕ0Þ is always much larger
than the energy density of the electric and/or magnetic
fields ½ðβ=2ÞðQ2=R4Þ�ϕ¼ϕ0

. This allows one to regard the
configurations in question, to a good approximation, as
embedded only in an external, homogeneous scalar field
ϕ0. Notice that if we formally extend the solution beyond
the point ϕ ¼ ϕ0, putting here Vðϕ0Þ equal to a positive
constant corresponding to the background energy density
of dark energy (the effective Λ term), then at some point
the metric function A inevitably goes to 0 which is a
consequence of the fact that these solutions belong to the
Reissner-Nordström–de Sitter-type solutions.
Figures 1–3 show the results of numerical calculations.

Since the solutions under consideration demonstrate a de
Sitter-like behavior, the metric function A reaches a
maximum, and then drops to zero at some finite value
of ξ. By choosing appropriate values of Ac, which merely
corresponds to a redefinition of the time coordinate x0 in
the metric (4), the function A is normalized to its maxi-
mum value.
As an example, for all graphs in Figs. 1–3, the dimen-

sionless central value of the dark matter energy density is
taken as εc ¼ 10−4, and the throat size is Rc ¼ 1 [see
Eq. (31)]. By choosing some characteristic value of the
mass of a dark matter particle, say m ¼ 1 GeV, and taking
into account the expressions for the dimensionless variables
(8) used here, the corresponding dimensional quantities can
be presented in the form
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rc ¼ 2.41 × 105 cm
�
1 GeV
m

�
2

;

ρc ¼ 2.3 × 1017
g

cm3

�
m

1 GeV

�
4

εc: (33)

Here ρc is the central mass density of the dark matter. Since
at the moment it is not definitely known which type of
particles dark matter consists of, various particles with
different masses are considered in the literature. This could
be both superlight gravitinos with a mass of the order of

10−2 eV and superheavy weakly interacting massive par-
ticles with a TeV mass scale [63]. Correspondingly, the
dark matter central density and the size of the throat will
vary considerably depending on the mass of particles.
The numerical calculations thus show that, for example,
if we assume for definiteness that m lies in the range
1 eV≲m≲ 102 GeV used in describing dark matter par-
ticles in the form of fermions [42], then the solutions
presented in Figs. 1–3 remain practically unchanged. That
is, the structure of the configurations under consideration is
in essence independent of the mass of dark matter particles,
and the dimensionless solutions obtained enable one to
describe objects whose physical characteristics, in dimen-
sional units, can be found by a simple rescaling of the
variables by using the appropriate dimensional factors
from Eq. (8).
Comparing the expression for rc from Eq. (33) with

Eq. (27), it is seen that the intensity of the electric and/or
magnetic fields at the throat, which is inversely proportional
to rc, decreases with decreasing the mass of dark matter
particles. Then, for instance, at m ∼ 1 GeV we have very
compact objects with sizes and masses comparable to
those of neutron stars, and with the extremely high intensity
of the electric and/or magnetic fields at the throat
Hc ∼ 1019 Gs. Whenm ∼ 10 keV, the throat size is compa-
rable to that of quasars ∼1015 cm, with the corresponding
mass ∼1010M⊙ and Hc ∼ 109 Gs (cf. the configurations
of Ref. [20]).
It turns out that for the parameters of the scalar field used

here [see Eq. (29) and the subsequent paragraph], the
physical characteristics of the configurations in question

FIG. 2. The metric function R is shown as a function of the
relative radius ξ=ξb for different values of the equation-of-state
parameter w. The values of the parameters εc; a, and b are the
same as those in Fig. 1. At large distances (ξ=ξb ≫ 1) and up to
the point where the scalar field reaches its cosmological value ϕ0,
the metric function R → ξ.

FIG. 1. Typical distributions of the dimensionless total energy density T0
0 from Eq. (32) (left panel) and graphs of the metric function A

(right panel) are shown as functions of the relative radius ξ=ξb for different values of the equation-of-state parameter w. For both panels,
the central dark matter energy density is taken as εc ¼ 10−4, and the free parameters appearing in the coupling function f from Eq. (28)
are chosen as a ¼ −150, b ¼ 2. The thin vertical line corresponds to the boundary of the dark matter where its pressure and density are
equal to zero. At negative ξ, there are corresponding symmetric solutions.
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are similar to those of magnetic wormholes from Ref. [20].
The numerical calculations indicate that in all cases
considered here, the boundary of the dark matter fluid is
situated near 10rc. Inside this region, the contribution
coming from the exotic matter may be important. In
particular, this results in the appearance of negative energy
densities in the inner regions of the configuration (see
Fig. 1, the case with w ¼ −0.3). This allows one to reduce
the mass of matter in the inner region by choosing the
free parameters of the system in such a way as to provide
the presence of a larger amount of the exotic matter. The
possibility of making such a choice is due to the form of the
quintessence potential VðϕÞ which, being shallow enough
in the neighborhood of its minimum, permits one to change
the value of the background field ϕ0 within quite wide
limits while maintaining the necessary background energy
density Vðϕ0Þ≃ 10−47 GeV4. This in turn allows one to
adjust the central values of the scalar field so as to provide a
large amount of the exotic matter in the inner regions of the
configuration.

IV. CONCLUSION

Starting from the assumption that dark matter may be
nonminimally coupled to dark energy, we have studied
spherically symmetric systems with nontrivial topology
which is provided by a proper choice of the nonminimal
coupling function fðϕÞ. As an explicit example, we have
considered the particular case where dark energy is mod-
eled by a usual (nonghost) scalar field ϕ, and dark matter is
taken to be a perfect fluid, which satisfies the null energy
condition, and is described by the linear equation of state
p ¼ wε. For this case we assume that the function fðϕÞ
may become negative at high matter densities which

characterize the inner regions of compact objects, thereby
providing conditions for the violation of the NEC in the
vicinity of the center. Then, by considering some general
conditions under which a nontrivial topology might occur
in such a system, we have shown that solutions describing
traversable wormholes can be obtained only when 1) an
electric/magnetic charge is present, and 2) the equation-of-
state parameter w is negative.
When these conditions are satisfied, it is possible to

construct solutions which may describe configurations
embedded in an external quintessence scalar field. In this
case we sought solutions that satisfy the requirements
(i)–(iv) (see the beginning of Sec. III A), and showed
the following.
(1) There exist regular static, spherically symmetric

solutions found numerically by solving the coupled
Einstein-matter equations subject to a set of appro-
priate boundary conditions. The obtained solutions
describe compact mixed dark matter/dark energy
configurations consisting of two parts: the internal
region from the center up to the radius ξ ¼ ξb
corresponding to the boundary of the dark matter,
where the pressure and density of the dark matter
vanish, and the external region (ξ > ξb) where there
remain only the scalar and electric/magnetic fields.

(2) Assuming that the effects of the nonminimal cou-
pling are only important at relatively high densities
of dark matter, we sought solutions for the scalar
field that started from some central value ϕc and
went to the cosmological background value ϕ0 at
ξ ≫ ξb. In doing so, we assumed that the non-
minimal coupling function fðϕÞ from Eq. (28) is
always negative up to the boundary of the dark
matter fluid where it crosses zero, and then tends to

FIG. 3. The scalar field ϕ (left panel) and the coupling function fðϕÞ (right panel) are shown as functions of the relative radius ξ=ξb for
different values of the equation-of-state parameter w. The values of the parameters εc; a, and b are the same as those in Fig. 1. At large
distances (ξ=ξb ≫ 1), the scalar field goes to the cosmological value ϕ0, and the coupling function f → 1.
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unity as ϕ → ϕ0. In this case the free parameters of
the system were adjusted so that at this point the
gradient of the scalar field ϕ0

ϕ¼ϕ0
¼ 0. This enables

the solution for the scalar field to be matched
smoothly onto the homogeneous solution ϕ ¼ ϕ0.
Such configurations may be regarded as embedded
in an external, homogeneous cosmological scalar
field whose energy density is close to the critical one
≃10−47 GeV4. In other words, the configurations in
question may be thought of as embedded in the
universe described by the quintessence Lagrangian
(2) with f ¼ 1.

(3) On the scales under consideration, the potential
energy VðϕÞ has no substantial influence on the
characteristics of the objects under investigation. This
allows us to suppose that the use of other quintessence
potentials compatible with observations, instead of
that given by Eq. (29), will give rise to configurations
having similar physical parameters.

The configurations considered in the present paper
resemble magnetic wormholes from Ref. [20], in which

a magnetic field plays a key role, and exotic matter can
contribute only a small amount. Such exotic matter can
be presented as a massless ghost scalar field [5,6,9], or,
equivalently, as dust matter with negative energy density
[64] falling off quite slowly with distance (an inverse
quartic dependence). A distinctive feature of the configu-
rations studied here is that there is a possibility to con-
centrate the exotic matter around the throat at distances∼10
throat radii, and beyond these limits the “tails” of the scalar
and electric/magnetic fields, satisfying the null energy
condition, are only present.
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