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We study phenomena happening at the surface of a star in Eddington-inspired Born-Infeld (EiBI)
gravity. The star is made of particles, which are effectively described by a polytropic fluid. The EiBI theory
was known to have a pathology that singularities happen at a star surface. We suggest that the gravitational
backreaction on the particles cures the problem. Strong tidal forces near the (surface) singularity modify the
effective equation of state of the particles or make the surface be unstable depending on its matter contents.
The geodesic deviation equations take after Hooke’s law, where its frequency squared is proportional to the
scalar curvature at the surface. For a positive curvature, a particle collides with a probing wall more often
and increases the pressure. With the increased pressure, the surface is no longer singular. For a negative
curvature, the matters around the surface experience repulsions with infinite accelerations. Therefore, the
EiBI gravity is saved from the pathology of a surface singularity.
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I. INTRODUCTION

General relativity (GR) predicts that space-time singu-
larities can be formed from regular initial data, e.g., in the
gravitational collapse of massive stars and in the early
universe. Recently, a modified theory of gravity, the so-
called Eddington-inspired Born-Infeld (EiBI) theory was
proposed in order to resolve these singularities [1]. The
theory was further studied diversely [2–17]. EiBI gravity is
equivalent to GR in vacuum and does not propagate any
degrees of freedom other than massless gravitons. On the
other hand, the theory introduces nonlinear couplings to the
matter fields [2–4], which resolve some of the singularities
appearing in GR. In the presence of a perfect fluid, the big-
bang singularity in the early universe is replaced by a
freezing, exponentially inflating, or a bouncing behavior of
the cosmological scale factor, depending on the equation
of state (EOS) of the fluid [1,5]. The gravitational collapse
of noninteracting particles does not lead to singular states in
the nonrelativistic limit [2,6]. The stability of EiBI compact
stars was considered in Ref. [7], where it was shown that
the standard results of stellar stability theory still hold.
The structure and physical properties of specific classes of
neutrons, quark and “exotic” stars in EiBI gravity were
studied [8]. They showed that the EiBI gravity stars are
more massive than their GR counterparts. Constraints on
the theory have been considered using a solar model [9] and
cosmological observations [10,12]. A tensor instability
of the homogeneous and isotropic universe was found in
Ref. [13]. In the presence of a scalar field, a regular initial
state in EiBI gravity is studied to present the inflation
paradigm [18,19], where the tensor instability was shown
not to be a problem. Metric perturbations on the

background of a homogeneous and isotropic universe based
on EiBI gravity were studied in Ref. [20,21].
With all these merits, flaws of the theory were also

discovered. In Ref. [11], it was shown that the EiBI theory
is reminiscent of Palatini fðRÞ gravity [22,23] and that it
shares the pathology such as the curvature singularity at the
surface of polytropic stars. In Ref. [17], similar singularities
were shown to exist when a phase transition happens inside
a star. These observations cast serious doubt on the viability
of EiBI gravity. In this article, we reexamine the problem
by checking the motion of particles at the surface. In the
presence of the curvature singularity, we show that one
of the following two things happens depending on the
signature of the curvature. For positive curvatures, the
(effective) EOS of particles near the surface is modified so
that the singularity is removed. This happens because the
pressure by the particles increases due to rapid oscillations
in geodesic deviation equations. For negative curvatures, on
the other hand, the surface becomes unstable.
EiBI gravity is described by the action [1],

SEiBI ¼
1

κ

Z
d4x

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jgμν þ κRμνðΓÞj

q
− λ

ffiffiffiffiffiffiffiffiffiffiffiffi
−jgμνj

q i
þ SMðg;ΦÞ; (1)

where SMðg;ΦÞ is the matter action, Φ generically denotes
any matter field, RμνðΓÞ is the Ricci tensor built from
the connection Γ, jGμνj ¼ det Gμν, λ is a dimensionless
parameter related with the cosmological constant by
Λ ¼ ðλ − 1Þ=κ, κ is the extra EiBI parameter which has
dimension of length squared, and we set 8πG ¼ 1 ¼ c. The
equations of motion are obtained by varying the action (1)
with respect to the fields gμν and Γρ

μν, respectively,*hckim@ut.ac.kr
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ffiffiffiffiffiffi
jqj
jgj

s
qμν ¼ λgμν − κTμν; (2)

gμν ¼ gμν þ κRμν; (3)

where qμν is the auxiliary metric by which the connection
Γρ
μν is defined, and qμν is the matrix inverse of qμν.
In Sec. II, we review the problem of surface singularity

for a star which consists of an ideal polytropic fluid. In
Sec. III, we calculate the gravitational backreaction on the
motions of particles by investigating the geodesic deviation
equation. We show that the surface singularity problem can
be cured. We summarize the results in Sec. IV and discuss
their physical implications.

II. THE SINGULARITY AT THE SURFACE
OF A POLYTROPIC STAR

Because we are interested in stars in a flat background,
we set λ ¼ 1. We also restrict our interests to the case with
positive κ, because the gravitational collapse does not lead
to singularities [6]. We consider a spherically symmetric
star made of particles which are effectively described by a
perfect fluid with polytropic EOS

p ¼ ppoly ≡ KρΓ; (4)

whereK is a constant compensating dimensional difference
and Γ is a positive dimensionless constant. The stress tensor
of the fluid is given by Tμν ¼ ðρþ pÞuaub þ pgab. The
metric and auxiliary metrics for a spherically symmetric
star are

gμνdxμdxν ¼ −eνðrÞdt2 þ eλðrÞdr2 þ R2eχðrÞdΩ2; (5)

qμνdxμdxν ¼ −eβðrÞdt2 þ eαðrÞdr2 þ r2dΩ2; (6)

where νðrÞ, λðrÞ, χðrÞ, αðrÞ, and βðrÞ are arbitrary
metric functions of the radial coordinate r, dΩ2 ¼
dθ2 þ sin2 θdϕ2, and R is a constant representing the
radius of the star. The problem was analyzed in
Refs. [7,8,17] recently. We follow their convention except
for the metric function χ, where fðrÞ was used in place of
R2eχ in Ref. [8]. The scalar curvature for the metric gμν is
given by

Rg¼−e−λðν00 þ2χ00Þ−e−λ
2

½−ν0λ0 þν02þ2ðν0−λ0Þχ0 þ3χ02�
þ2R−2e−χ ; (7)

where the prime denotes the derivative with respect to r.
Outside the star r > R, the metric should be the vacuum
Schwarzschild solution with

eν ¼ eβ ¼ 1 − 2M
r

¼ e−λ ¼ e−α; R2eχ ¼ r2; (8)

where M is the mass of the star. The continuity equation
gives

p0 þ ν0

2
ðρþ pÞ ¼ 0: (9)

With the EOS (4), the continuity equation in Eq. (9) is
integrated to give

ρ ¼
�
1

K
exp

�
Γ − 1

2Γ
ðν0 − νÞ

�
− 1

K

�
1=ðΓ−1Þ

: (10)

For Γ ≤ 1, p vanishes at the places where ν → ∞. The
energy density and pressure exponentially decrease with ν.
For Γ > 1, the surface of a star is defined by the place
r ¼ R where the pressure vanishes at νðRÞ ¼ ν0.
Let us describe how the curvature singularity happens at

the surface of a star composed of an ideal fluid described
by Eq. (4) in EiBI gravity. In Appendix A, the equations of
motion (2) and (3) are reduced into portable forms. Based
on the results, an EiBI generalization of the Tolman-
Oppenheimer-Volkoff equation in GR was developed in
Refs. [7,8,17]. Differentiating Eq. (A1), we get

λ0 ¼ α0 − a0

a
− b0

b
; ν0 ¼ β0 þ a0

a
− 3b0

b
;

χ0 ¼ 2

r
− a0

a
− b0

b
; (11)

where

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κρ

p
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κp

p
: (12)

One can also show that the function α is differentiable and β
is of class C2 for positive r. The continuity of their first
derivatives can be ensured from Eqs. (A7) and (A8).
Differentiating Eq. (A8), we express β00 as a sum of
continuous functions

2β″ ¼ 4eα−β
κ

ðeν − eβÞ − β0ðβ0 − α0Þ − 4β0

r
: (13)

This guarantees the continuity of β00 at the star surface.
Because α ∈ C1 and β ∈ C2, possible divergent contri-

butions to the curvature scalar in Eq. (7) come from the
discontinuity of the derivatives of ρ and p. Noting p0

ρ0 ¼dp
dρ ¼ KΓρΓ−1 → 0 for Γ > 1, we find that most singular
contributions to Eq. (7) come from ρ00, which are included
in ν00 and χ00. After calculating the explicit form for ρ0 and
ρ00 in Appendix B, one can ensure that ρ02, p02, p00, and ρ0p0
do not contain a divergent contribution. The curvature
scalar at the stellar surface, as r → R and ρ → 0, is
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Rg ≈ −e−λðν00 þ 2χ00Þ

¼ −e−λ
�
β00 − 4

r2
−
�
a0

a

�0 − 5

�
b0

b

�0�

≃ κe−λ
2

ρ00; (14)

where we keep only the potentially divergent parts in the
first and third equalities and ignore κρ and κp compared to
one. Assuming the continuity of λðrÞ, we may replace it to
its surface value by using e−λðRÞ ¼ 1 − 2M=R.
The second derivative of ρ is obtained in Appendix B.

From the result in Eq. (B4) and Eq. (14), we get

Rg ≈
κ

2

�
1 − 2M

R

�
8>>>>>>>><
>>>>>>>>:

0; 0 < Γ ≤ 1

ð2−ΓÞβ02
ð2ΓKÞ2

�
ρ3−2Γ − κ

4ΓK ρ
5−3Γ

�
; 1 < Γ < 2

−β00
4Kþκ=2 þ β02ð4K−κÞð2K−κÞ

2ð4Kþκ=2Þ3 ; Γ ¼ 2

− 2β00
κ þ 4β02

κ

�
3þ 5Γ − 3Γ2 − 4ΓðΓ−2ÞK

κ2
ρΓ−3

�
; Γ > 2:

(15)

We find that the curvature scalar diverges for 3=2 < Γ < 2
and 2 < Γ < 3. This implies that the surface singularity is
happening for a star composed of an ideal polytropic fluid.
The result for 0 < Γ < 2 was known in Ref. [11]. On the
other hand, the precise divergent structure for 2 < Γ < 3
and the absence of divergences for Γ ¼ 2 and Γ > 3 are
new results in this work.

III. GRAVITATIONALBACKREACTIONTHROUGH
THE GEODESIC DEVIATION EQUATION

An important example of polytropic fluid with diverging
surface curvature is the nonrelativistic degenerate Fermi gas
withΓ ¼ 5=3, whichhappens for denseFermi particleswhen
the Fermi energy exceeds the temperature by far. Examples
are the electron gas inmetals and in white dwarf stars and the
neutron star, whose density is so high that the neutron gas is
degenerate.We derive theEOS for the Fermi gas roughly and
then discuss its validity. At low temperatures and/or high
densities we approach the uncertainty principle. In such a
case, the Pauli exclusion principle will cause the pressure to
be higher than that inferred by the temperature. The complete
degenerate case happens when two electrons are occupied
for each phase space volume. The average magnitude of the
momentum of a Fermi particle is roughly given by the Fermi
momentum, PF ¼ mvF ¼ ℏð3π2nÞ1=3, where n and m are
the number density andmass of a Fermi particle, respectively.
The pressure, the total momentum transfer on a unit surface
area per unit time, is

pF ≈ PFnvF ¼ ℏ2

m
ð3π2Þ2=3n5=3: (16)

From this equation,we take theEOS for thedegenerateFermi
gas as pF ¼ ðρ=KÞ5=3 because n ∝ ρ.

A. The geodesic deviation equations

Let us examine how robust the degenerated Fermi gas
approximation at the surface of the star is. The approxi-
mation holds only when the temperature is smaller than
the Fermi energy. Therefore, the degenerate Fermi gas
approximation does not hold for low number densities. This
observation presents one reason to suspect the validity of
the polytropic fluid approximation because the surface
singularity happens in the low density regime. However, if
a star is very cold, the approximation will be valid even
for an extremely low energy density. Let us check how the
geometry reacts on the motions of the particles constituting
the fluid. The EOS (16) is derived from the motions of
Fermi particles in a flat space-time. On the basis that the
energy density and the pressure are local quantities, the
extension to curved space-times is justified by the principle
of general covariance. However, wewould like to argue that
the pressure may not be local in the presence of a high
curvature. Note that two distant objects, a colliding particle
and a probing wall, are necessary to define the pressure
microscopically. Therefore, if some high curvature effects
probe/modify the microscopic structure, the covariant
justification for the pressure may not hold, which is the
situation happening near the surface singularity. To exam-
ine the effect, let us study the geodesic deviation equations.
The relative acceleration aað≡d2Xa=dλ2Þ of the separation
Xa with the motions ua ¼ ð∂=∂λÞa is given by

a0 ¼ 2ν00 þ ν02 − λ0ν0

4
u1ðX0u1 − X1u0Þ − R2eχ−λ

4
ν0χ0u3ðX0u3 − X3u0Þ;

a1 ¼ eν−λ
4

ð2ν00 þ ν02 − λ0ν0Þu0ðX0u1 − X1u0Þ − R2eχ−λ
4

½λ0χ0 − 2χ00 − χ02�u3ðX1u3 − X3u1Þ;

a3 ¼ eν−λν0χ0
4

u0ðX0u3 − X3u0Þ þ 1

4
½χ0λ0 − 2χ00 − χ02�u1ðX1u3 − X3u1Þ; (17)
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where we assume X2 ¼ 0 ¼ u2 without loss of generality
because of the spherical symmetry. Keeping only the
dominant parts, we get

a0 ≃ κρ00

4
u1ðX0u1 −X1u0Þ; a3 ≃ κρ00

4
u1ðX1u3 −X3u1Þ;

a1 ≃ κρ00eν−λ
4

u0ðX0u1 −X1u0Þ

− κρ00R2eχ−λ
4

u3ðu3X1 − u1X3Þ; (18)

where we use ν00 ≈ κρ00=2 ≈ −χ00 > 0 for Γ ¼ 5=3.
Consider two geodesics staying away radially so that
Xμ ¼ ð0; X1; 0; 0Þ. Consider time evolution only with
uμ ¼ ð1; 0; 0; 0Þ. Then, the geodesic deviation equation
takes the form

a1 ≈ − κρ00eνðRÞ−λðRÞ
4

X1; a0 ¼ 0 ¼ a3; (19)

where we set the values of ν and λ to be those at the surface
of the star. A similar expression can be obtained for a3 if
we use uμ ¼ ð1; 1; 0; 0Þ and Xμ ¼ ð0; 0; 0; X3Þ. These are
reminiscent of Hook’s law with frequency

f ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RgeνðRÞ

2

s
: (20)

For the case with 3=2 < Γ < 2, Rg is positive. By using
Eqs. (8) and (15), we get

f ≈
ϵ0
4πR

�
M
R

�� ffiffiffi
κ

p
ρ3=2−Γ
K

�
; (21)

where each term in the parenthesis is dimensionless. In the
second equality in Eq. (21), we replace an order one Γ
dependent term with ϵ0 to denote that the calculation is
approximate. We should mention that ϵ0 is an order one
dimensionless constant, which depends on the species of
the particle constituting the fluid. Following the interpre-
tation of Hooke’s law, any two nearby geodesics (e.g., a
wall and a particle) will cross each other f times per unit
period of time irrespective of the separation distance. For
the cases with 2 < Γ < 3, the frequency becomes imagi-
nary because Rg < 0. We discuss this case in Sec. III C.

B. Modification of the equation of state
for the case with 3=2 < Γ < 2

Now, let us calculate the pressure once more as we have
done in Eq. (16). Because of the oscillations in the geodesic
deviation equation (21), all Fermi particles inside an
oscillation scale collide with the wall f times. The pressure
due to the geodesic deviation motion can be estimated as

pgd ≈ flnPF; (22)

where l is the characteristic scale of the oscillations.
Because Eq. (21) is free from scales, l appears to be
nothing but the star radius, R. Let us try to set l ¼ R and
examine what happens. After setting PF ¼ mvF ¼ Aρ1=3,
where A is a constant, and n ¼ pF=ðvFPFÞ ¼ mK=A2 × ρ,
we get pgd ∝ ρ7=6. The eventual expression for the pressure
will be given by the sum, pF þ pgd. In low densities, pgd
dominates the pressure over pF. Because pgd acts as if it is
that of a polytropic fluid with Γ ¼ 7=6 < 3=2, the surface
singularity disappears. However, when the curvature
becomes too small so that ρ00 term is subdominant, there
is no reason for the pressure pgd to exist. Therefore, once
again, the EOS will be given by that of the degenerate
Fermi gas (4) and the surface singularity happens once
more. To avoid this awkward situation, a delicate balance
should be taken between the diverging curvature effect and
the modification of the EOS so that the curvature is not too
small and not too large. In the presence of such a balance,
the curvature must be finite. In addition, the characteristic
scale may not be the radius of the star but be smaller than
that. It is not an easy task to exactly determine how the
characteristic size will be decreased through the balance
between the gravity and the Fermi motions. However, a
good measure will be the ratio of the correlation scales
between the degenerate Fermion and the gravity per unit
time, given by vF=c, where we restored c for comparison
with vF. One may expect the characteristic length will be
decreased by the power of the form, l ¼ RðvF=cÞk with
k > 0. In this article, we propose k ¼ 1. Explicitly, after
setting l ¼ RvF=c, we get

pgd ¼
Rf
c

nvFPF ¼ Rf
c

pF ¼ ϵðρc2Þ3=2;

ϵ ¼ ϵ0
4π

GM
Rc2

ffiffiffiffiffiffiffiffiffiffiffi
8πGκ
c4

r
; (23)

where we restore G and c with the prescription κ → 8πGκ
c4 ,

M
R → GM

Rc2, ρ → ρc2, and 1=R → c=R. Later in this work, we
return to use the unit with 8πG ¼ 1 ¼ c.
The above discussions may also hold for all other matters

composing the polytropic fluid with 3=2 < Γ < 2 because
this is due to the geometric effect. Therefore, for the
corresponding particles we propose a new EOS as

p ¼ KρΓ þ ϵρ3=2: (24)

Note that ϵ decreases with the radius of the star but
increases with the mass of the star. In addition, the
correction term vanishes in the GR limit, κ → 0. With
the EOS in Eq. (24), the second term dominates the
pressure when ρ < ρc ¼ ðϵ=KÞ2=ð2Γ−3Þ. In that region,
the EOS takes after that of the polytropic fluid with
Γ ¼ 3=2, in which case no singularity appears at the star
surface. Higher curvature induces higher pressure. As the
pressure becomes higher, the EOS is modified so that Γ
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decreases. When Γ arrives at 3=2, the singularity disappears
and further modification will not happen. Therefore, the
form in Eq. (24) appears to be appropriate intuitively once
we accept the fact that the curvature modifies the EOS.
In Appendix C, we obtain ρ00 at the star surface with the

new EOS (24). Then, the curvature scalar at the surface
takes the form

Rg ≈
16π2

9ϵ20ð1 − 2M=RÞ
1

R2
: (25)

For an Oð1Þ number ϵ0, this value is acceptable.
Interestingly, the curvature scalar does not contain κ even
though it originates from the EiBI gravity. In GR, the scale
of the surface curvature is RGR ∝ ρ≃M=R3. Rg is larger
than RGR by the factor R=M. For the case of a neutron star,
this ratio is not large.

C. Instability of the surface for the case with 2 < Γ < 3

For the matters with 2 < Γ < 3, the situation is different
from that of the previous subsection. This is because the
signature of the curvature in Eq. (15) is negative contrary
to the previous case. Following Eq. (19), two nearby
geodesics do not oscillate but repel each other with infinite
acceleration. In the presence of such infinity repulsion,
no particle may stay at the surface even in the presence of
supporting pressure. A particle at the surface will be
repelled to the center of the star with infinite acceleration.
In the absence of a particle, the radius of the surface
decreases, which happens for any value of radius. We
interpret this as a signature of the instability of the surface.
A stable star surface may not exist for that matter. One may
find similar instability happens in the geodesic deviations
around a spherically symmetric Newtonian star. Let us
consider the situation that two radially displaced massive
particles fall into the star, which were at rest initially.
Outside the star, the two particles recede relatively because
the gravity is stronger inside. Even in the presence of a
constant pressure, their relative distance may not decrease.
On the other hand, inside a static star, they draw nearer
because the gravity becomes weaker inside. The given
pressure may help keep the particles stay closer. Therefore,
we may conclude that a star fails to have a stable surface
composed of matters with 2 < Γ < 3, even though such
matters can appear inside.

IV. SUMMARY AND DISCUSSIONS

In summary, we studied the phenomena happening at the
surface of a star in the EiBI theory, where the star is made of
particles which are effectively described by a polytropic
fluid, p ∝ ρΓ. For a star composed of a specific kind of
ideal-polytropic fluid with 3=2 < Γ < 2 and 2 < Γ < 3, a
surface singularity is shown to exist. Noting that the fluid is
a macroscopic description of the collective motions of

particles, we demonstrated the possibility that a gravita-
tional backreaction on the matter dynamics modifies the
effective descriptions. The effects are captured by means of
the geodesic deviation equation, which resembles Hooke’s
law, where its frequency squared is proportional to the
curvature. For 3=2 < Γ < 2, the curvature is positive and
Hooke’s law makes a particle collide with a probing wall
more often, which modifies the effective EOS. With the
modified EOS, the surface is no longer singular and the size
of the curvature at the surface is shown to be acceptable.
On the other hand, for the matters with 2 < Γ < 3, the
curvature is negative and the seeming Hooke’s law provides
infinite repulsions of the particles. As a result, stable star
surfaces do not form with the matter. Note, however, that
this result does not imply that the star composed of the
corresponding matter does not exist. That matter may
constitute a core of the star leaving other matter to form
the surface. These two results lead to the conclusion that the
surface singularity problem is absent in the EiBI gravity.
Accepting that the EiBI gravity is sound theoretically,

one of the most urgent tasks is to find out observable effects
which discriminate the EiBI gravity from GR. An answer is
given in Ref. [8]. There, it was shown that the EiBI stars are
more massive than their GR counterparts. They appeal that
some stellar-mass black hole candidates could be in fact
EiBI neutron or quark stars. However, it is not easy to
distinguish this modified-gravity effect from other effects in
GR because it is related to the internal structures of the star.
Another prediction is given in Sec. III C, where it was
argued that no star exists with its surface composed of
polytropic fluid with 2 < Γ < 3. A third observable sig-
nature is the relatively large surface curvature (larger than
that in GR by the factor R=M) for 3=2 < Γ < 2 stars, where
the neutron stars are included. The curvature is independent
of κ and is almost independent of the mass of the (large)
star. The merit for these two new observations is that the
surface curvature is independent of the complex internal
structures of the star but is determined by the physics at the
surface only. One may design a scattering experiment of
light which grazes the surface of a neutron star. The light
will bear information of the surface curvature, which can
be observed from a distant place independently from other
information. Therefore, this fairly large surface curvature
will provide an opportunity to distinguish the EiBI theory
from GR by means of observation.
In Ref. [7], a similar pathology as the surface singularity

was shown to happen during the phase transition inside a
star. Because the origin of the singularity is the same as that
of the present one, the problem may also be cured with the
same prescription. Similar surface singularities were known
to exist in the Palatini fðRÞ gravity [22–24] and gravity
with auxiliary field [25]. Therefore, we expect that those
singularities will be removed with the same way. An
interesting observation was presented in Ref. [26]
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on the resolution of the singularity for the Palatini fðRÞ
gravity.
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APPENDIX A: THE EQUATION OF MOTION

The equation of motion (2) presents relations between
the auxiliary metric, the physical metric, and sources as

eα ¼ abeλ; eβ ¼ b3

a
eν; Reχ ¼ r2

ab
: (A1)

The curvatures obtained from the auxiliary metric qμν are

R00 ¼
eβ−α
4

�
β0ð−α0 þ β0Þ þ 4

r
β0 þ 2β00

�
; (A2)

R11 ¼ − β02

4
− 1

2
β00 þ α0β0

4
þ α0

r
; (A3)

R22 ¼ 1þ r
eα

�
− 1

r
þ 1

2
ðα0 − β0Þ

�
: (A4)

Therefore, Eq. (3) becomes

−eβ ¼ −eν þ κeβ−α
4

�
β0ðβ0 − α0Þ þ 4β0

r
þ 2β00

�
;

eα ¼ eλ þ κ

�
α0

r
þ α0β0

4
− β00

2
− β02

4

�
;

r2 ¼ f þ κ þ κr
eα

�
− 1

r
þ 1

2
ðα0 − β0Þ

�
: (A5)

Combining the first two lines of Eq. (A5), we get

α0 þ β0 ¼ reα

κ
½eν−β − eλ−α�: (A6)

Combining this with the last equation of Eq. (A5) and using
Eq. (A1), we get

ðre−αÞ0 ¼ 1 − r2

2κ

�
2 − 3

ab
þ a
b3

�
; (A7)

ð1þ rβ0Þe−α ¼ 1 − r2

2κ

�
2 − 1

ab
− a
b3

�
: (A8)

Equation (A7) can be rewritten as

e−α ¼ 1 − 2mðrÞ
r

; (A9)

where the function mðrÞ is obtained as

dm
dr

¼ r2

4κ

�
2 − 3

ab
þ a
b3

�
: (A10)

The outside geometry of the star is nothing but that of the
Schwarzschild geometry. Therefore, mðRÞ ¼ M.

APPENDIX B: CALCULATION OF THE
SURFACE CURVATURE

Imposing Eqs. (4) and (11) into Eq. (9), we obtain an
analytic expression for ρ0 as

ρ0ðrÞ ¼ −β0ðrÞgðρÞ;
gðρÞ≡ 2ρðK þ ρ1−ΓÞ

4ΓK þ κa−2ρ2−Γ þ κKHðρÞ ;
(B1)

where HðρÞ denotes the homogeneous function

HðρÞ ¼ ða−2 þ 3Γb−2Þρþ 3KΓb−2ρΓ: (B2)

For ρ ∼ 0, we have

g≃

8>>>>>>>><
>>>>>>>>:

ρ
2Γ ; 0 < Γ ≤ 1

Kþ1
2K ρ; Γ ¼ 1

1
2ΓK ρ

2−Γ; 1 < Γ < 2

1
4Kþκ=2 ; Γ ¼ 2

2
κ ; Γ > 2:

(B3)

The second derivative of the energy density becomes

ρ00 ¼ −β00gðρÞ þ β02gðρÞ2
�
1

ρ
þ 1 − Γ
ρþ KρΓ

− κ
ð2 − ΓÞa−2ρ1−Γ − κa−4ρ2−Γ þ KH0ðρÞ

4ΓK þ κa−2ρ2−Γ þ κKHðρÞ
�
; (B4)

where H0ðρÞ denotes the derivative of H with respect to ρ,

H0ðρÞ ¼ a−2 þ 3Γb−2 − κa−4ρ

þ 3KΓ2b−2ρΓ−1
�
1 − κρ

b2
þ κKρΓ

b2

�
:

Near the surface of the star, we may use β0 ¼ 2M=R2 ×
ð1 − 2M=RÞ−1 and β00 ¼ −4MðR −MÞ=R2ðR − 2MÞ2,
which are the surface values of the corresponding outer
solution. Taking the ρ → 0 limit, we have
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ρ00 ≃

8>>>>>><
>>>>>>:

0; 0 < Γ ≤ 1

ð2−ΓÞβ02
ð2ΓKÞ2 ðρ3−2Γ − κ

4ΓK ρ
5−3ΓÞ; 1 < Γ < 2

−β00
4Kþκ=2 þ β02ð4K−κÞð2K−κÞ

2ð4Kþκ=2Þ3 ; Γ ¼ 2

− 2β00
κ þ 4β02

κ

�
1þ ð2 − ΓÞH0ð0Þ − 4ΓðΓ−2ÞK

κ2
ρΓ−3

�
; Γ > 2;

(B5)

where H0ð0Þ ¼ 3Γþ 1.

APPENDIX C: THE SURFACE CURVATURE WITH MODIFIED EQUATION OF STATE

Let us calculate the curvature scalar at the surface once more with the new EOS (24). The first derivative
ρ0 becomes

ρ0 ¼ −β0gmðρÞ; gmðρÞ≡ 2ρðK þ ρ1−Γ þ ϵρ3=2−ΓÞ
4ΓK þ κa−2ρ2−Γ þ κKHðρÞ þ ϵρ3=2−ΓGðρÞ ; (C1)

where

GðρÞ ¼ 6þ κ

��
1

a2
þ 9

2b2

�
ρþ 3Kð2Γþ 3Þ

2b2
ρΓ þ 9ϵ

2b2
ρ3=2

�
: (C2)

Note that, when ϵ ¼ 0, Eq. (C1) reproduces Eq. (B1). The second derivative is given by

ρ00 ¼ −β00gmðρÞ þ β02gmðρÞ2
�
1

ρ

K þ ð2 − ΓÞρ1−Γ þ ð5=2 − ΓÞϵρ3=2−Γ
K þ ρ1−Γ þ ϵρ3=2−Γ

− ϵð3=2 − ΓÞρ1=2−ΓGðρÞ þ ϵρ3=2−ΓG0ðρÞ þ κ½ð2 − ΓÞa−2ρ1−Γ − κa−4ρ2−Γ þ KH0ðρÞ�
4ΓK þ κa−2ρ2−Γ þ κKHðρÞ þ ϵρ3=2−ΓGðρÞ

�
: (C3)

For 3=2 < Γ < 2, ρ00 ≃ β02=ð18ϵ2Þ.
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