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Recently, a combined model of the primordial inflation and the present cosmic acceleration has been
proposed in the context of fðRÞ gravity. This model is composed of the late-time acceleration term and an
R2 term, which enables the model to avoid high curvature singularity and describe a quasi–de Sitter
inflationary phase in the early universe. An interesting feature of this model is that the reheating dynamics
after the inflation is significantly modified, in contrast to the original R2 model, and affects the shape of a
gravitational-wave background (GWB) spectrum. Here we investigate the production of a GWB during the
inflation and reheating eras in the R2-corrected fðRÞ model and compute a GWB spectrum. We found that
an interesting region of the model parameters has already been excluded by the cosmological limit on the
abundance of GWs.
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I. INTRODUCTION

The physical origin of two accelerated expansion
regimes of the early and late-time universes has been
veiled for a long time and is one of the most important
issues to address for modern cosmology. Various theoreti-
cal models have been proposed to explain accelerated
expansion (for a review, see, e.g., [1] and references
therein): a cosmological constant, additional energy com-
ponents of the Universe such as scalar fields (inflaton or
dark energy), modification of gravity at a large distance,
and matter inhomogeneities. Although most of them
describe one of the two accelerated expansions, it is
actually possible to deal with both of them at the same
time in the framework of fðRÞ gravity, originally attempted
in [2].
fðRÞ gravity is a fourth-order theory of gravity, which is

a relatively simple and nontrivial generalization of general
relativity (for recent reviews, see [3–5]). It generalizes the
Einstein-Hilbert action by introducing a function of scalar
curvature fðRÞ. By choosing suitable functional form of
fðRÞ, one can describe the accelerated expansion of the
Universe because the additional degree of freedom of the
function fðRÞ plays a role of a scalar field, which is called
scalaron, and is responsible for the acceleration. The
original idea of fðRÞ modification has been proposed in
[6], where the de Sitter expansion was derived as a solution
for the Einstein equation with quantum one-loop contri-
butions. If one writes down the action for this Einstein
equation in the presence of one-loop terms, the action
includes the R2 term. It tells us that the modification of the
Einstein-Hilbert action by adding the R2 term admits de
Sitter expansion. In addition, this de Sitter expansion is

followed by the gravitational reheating and subsequent
radiation-dominated era (RD). Thus, it is a self-consistent
scenario of the early universe and is referred to as the R2

inflation model. The prediction of the R2 model is a slightly
red-tilted spectrum and modest tensor-to-scalar ratio, which
are consistent with recent observational data [7].
Meanwhile, fðRÞ gravity can also explain the late-time

acceleration. After some early challenges, the viable fðRÞ
models were proposed which realize stable matter-
dominated regime and subsequent late-time cosmic accel-
eration [8–10]. In these models, the expansion history of
the Universe is close to that in the concordance Λ cold dark
matter (ΛCDM) model at the recent epoch. However, the
viable fðRÞ models for the late-time acceleration still have
theoretical problems [10] such as divergence of the scalaron
mass in the past [11] and curvature singularity [12–15]. To
cure the theory of these pathological behaviors, one needs
some correction in a high curvature regime. Actually it has
been found that R2 correction works well [16]. As a result,
the R2-corrected fðRÞ model by Appleby and Battye (we
call it gR2-AB model) has the late-time acceleration term
and the R2 term which drives the inflation. It is interesting
that reheating after inflation in this model is significantly
different from that in the pure R2 model, which is the main
theme of the previous work [17] and the present paper.
In an observational side, it is important to distinguish the

small deviation of fðRÞ models from the ΛCDM model
since fðRÞ models are constructed so as to reproduce the
cosmic expansion in the ΛCDM model at the background
level. Since in fðRÞ gravity, the effective gravitational
constant depends on time and distance scales, the growth of
the matter density fluctuations is enhanced at the cosmo-
logical distance and is useful to measure the deviation
[8,10,18–23]. Also, this enhancement mitigates cosmologi-
cal constraint on neutrino mass, allowing its total mass up
to ∼0.5 eV [24] and sterile neutrino mass up to ∼1 eV [25],
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because massive neutrinos suppress the evolution of matter
fluctuations by free streaming and cancels the anomalous
enhancement of matter growth in fðRÞ gravity. Other
distinguishable features of fðRÞ gravity would be imprinted
on cosmological gravitational waves (GWs) [26–28].
Future pulsar timing experiments and gravitational-wave
detectors will be able to probe them directly and test gravity
theories [29–34].
In this paper, we investigate the production of a

gravitational-wave background (GWB) during the inflation
and reheating regimes in the gR2-AB model [16] and
discuss the observational constraint on the model from
GWs. In this model, the gravity action fðRÞ is elaborated so
as to smoothly connect two accelerated cosmic expansions
in the early universe and the present time, avoiding
instability and singularity of the model. The inflation
and reheating dynamics in the model have already been
studied in the Jordan frame [16] and in the Einstein frame
[17]. Inflation is driven by the R2 term and thus time
evolution is the same as that in the original R2 inflation
model. However, reheating is quite different from the R2

model because of an additional term in the fðRÞ action. As
a result, the modification of gravity alters cosmic expansion
during the reheating phase, whose analytic solution is
systematically derived in [17], as if there exists effective
fluid with the equation of state of w≡ p=ρ ¼ 1. Thus, we
expect that a GWB spectrum at high frequencies is
significantly enhanced. One might consider that it is easy
to construct the other specific functional forms of fðRÞ that
avoid singularities and describe both the primordial and
present cosmic accelerated expansions. However, these
functions belong to the same class because the stability
conditions demand them to have similar behaviors even
though they have different parametrizations [35]. In this
sense, it is worth studying one specific model in detail as an
example of such a class of extended fðRÞ models.
This paper is organized as follows. In Sec. II, we briefly

review the basic equations in fðRÞ gravity in both the
Jordan frame and the Einstein frame. We also present the
inflation and reheating dynamics in the gR2-AB model and
their analytical solutions. In Sec. III, we define effective
cosmic expansion including the contribution of modified
gravity and compute a GWB spectrum with a quantum-
field formulation. In Sec. IV, we derive the constraint on
model parameters of the R2-corrected fðRÞ model from an
observational limit on the abundance of GWs. Section V is
devoted to conclusions and discussion. Throughout the
paper, we adopt units c ¼ ℏ ¼ 1.

II. f ðRÞ INFLATION AND REHEATING

We briefly review the basic equations of fðRÞ gravity
theory and a viable model, so-called the gR2-AB model,
which unifies the primordial inflation and the present
accelerating expansion of the Universe. Also we summarize

the results of [17], which are needed for the computation of
a GWB spectrum after Sec. III.

A. f ðRÞ gravity and conformal transformation

fðRÞ gravity is defined by the action

S ¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
Pl

2
fðRÞ þ LMðgμνÞ

�
; (1)

where LM is the Lagrangian density for the matter sector
and MPl ≡ ð8πGÞ−1=2 is the reduced Planck mass. In
general, the equation of motion is a fourth-order differential
equation and is difficult to solve. To analyze the inflation
and the reheating in fðRÞ gravity, it is useful to perform the
conformal transformation and move to the Einstein frame,
in which the additional degree of freedom due to the
modified action of gravity is interpreted as a scalar field
with a potential term. Then we have the second-order
equation of motion and are able to use the analogy of
single-field inflation. Since we regard the Jordan frame as
the physical frame, we need to recast resultant quantities
obtained in the Einstein frame back to the Jordan frame
after the calculation. Transforming the metric as ~gμν ¼
FðRÞgμν and defining the canonical scalar field ϕ, the
scalaron, as

FðRÞ≡ dfðRÞ
dR

≡ e
ffiffi
2
3

p
ϕ

MPl ; (2)

the action is rewritten as

S ¼
Z

d4x
ffiffiffiffiffiffi−~g

p �
M2

Pl

2
~R − 1

2
~gμν∂μϕ∂νϕ

− VðϕÞ þ LMðe−
ffiffi
2
3

p
ϕ

MPl ~gμνÞ
�
; (3)

with the potential term

VðϕÞ ¼ M2
Pl

2

RðϕÞFðRðϕÞÞ − fðRðϕÞÞ
FðRðϕÞÞ2 :

In these equations, the tildes denote physical quantities in
the Einstein frame. The Einstein equation in the Einstein
frame reduces to

~H2 ¼ 1

3M2
Pl

�
1

2

�
dϕ
d~t

�
2

þ VðϕÞ þ ~ρ

�
; (4)

d ~H
d~t

¼ −
1

2M2
Pl

��
dϕ
d~t

�
2

þ ~ρþ ~P

�
: (5)

The scalar field obeys the equation of motion,
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d2ϕ
d~t2

þ 3 ~H
dϕ
d~t

þ V;ϕðϕÞ ¼
1ffiffiffi
6

p
MPl

ð~ρ − 3 ~PÞ: (6)

By the conformal transformation, the time coordinates
and scale factors in both frames are related by

dt ¼ e−
1ffiffi
6

p ϕ
MPld~t; a ¼ e−

1ffiffi
6

p ϕ
MPl ~a: (7)

From the above definitions, the transformation of the
Hubble parameter is given by

H ¼ e
1ffiffi
6

p ϕ
MPl

�
~H − 1ffiffiffi

6
p

MPl

dϕ
d~t

�
: (8)

B. gR2-AB model

The gR2-AB model [16] has been proposed to combine
the accelerated expansions in both the early and the present
universes, satisfying several conditions for theoretical
stability during the whole cosmological expansion history.
The model is described by the following fðRÞ action:

fðRÞ ¼ ð1 − gÞRþ gM2δ log

�
coshðR=M2δ − bÞ

coshb

�

þ R2

6M2
; (9)

where g, b, δ, and M are positive-definite model param-
eters. g should be in the range of 0 < g < 1=2 to hold the
stability conditions of fðRÞ gravity: FðRÞ > 0 and
dFðRÞ=dR > 0, where

FðRÞ ¼ 1 − gþ R
3M2

þ g tanhðR=M2δ − bÞ: (10)

To make the physical role of each term more transparent,
the above fðRÞ function is equivalently expressed as

fðRÞ ¼ R − Rvac

2
þ gM2δ log ½1þ e−2ðR=M2δ−bÞ�

þ R2

6M2
; Rvac ≡ 2gM2δfbþ logð2 cosh bÞg: (11)

In the high curvature regime R ≫ M2, the fourth term in
Eq. (11) dominates and causes nearly de Sitter inflationary
expansion of the Universe, which is the same as the R2

inflation [6]. The parameter M determines the energy scale
of inflation. Since the e-folding number, when the cosmic
microwave background (CMB) scale today exits the
horizon during the inflation, is N ∼ 66 counted from the
end of the inflation, the amplitude of the temperature
fluctuation of CMB anisotropy at k ¼ 0.002 Mpc−1 [36]
fixes the parameter M to M ≈ 1.2 × 10−5MPl [17]. For this
choice of M, the spectral indices of the scalar and tensor
modes and the tensor-to-scalar ratio defined at the CMB

scale are given by nS−1≈−2=N≈0.97, nT ≈ −3=ð2N2Þ≈
−3.4 × 10−4, and r ≈ 12=N2 ≈ 2.8 × 10−3, at the leading
order in the slow-roll parameter [37]. So the current
observations [36] are all consistent with the values of
nS, nT , and r predicted by the gR2-AB model.
On the other hand, in low curvature regime, the first and

second terms in Eq. (11) are equivalent of general relativity
with a small cosmological constant at present. Thus, the
parameter δ should be determined so that the current
observation of accelerated expansion, Rvac ∼ 10−120M2

Pl,
is reproduced, and is given by

δ ¼ Rvac

2gM2ðbþ log½2 coshb�Þ ; (12)

depending on the other parameters g and b. Choosing a
correct value of δ is not enough to realize the current
accelerated expansion. The theory has to have at least a
stable de Sitter solution, which means that we have to
choose the model parameters to satisfy the de Sitter
condition and the stability condition [38]. For the existence
of the solution, the parameter g and b has to be in the range
[17]

1

4
þ 0.28
ðb − 0.46Þ0.81 ≤ g ≤

1

2
: (13)

The third term in Eq. (11) smoothly connects the
accelerated expansion in the early universe and the follow-
ing reheating, radiation-dominated, matter-dominated, and
current accelerating universes, without giving rise to the
instability of the theory. As a consequence, the third term
significantly alters reheating dynamics after the inflation. In
the original R2 model, the scalaron oscillates harmonically
and reheats the Universe. However, in the presence of the
third term, the scalaron oscillates anharmonically.
Since the equations of motion in the Jordan frame are

complicated, it would be helpful to consider the Einstein
frame in order to intuitively understand the dynamics of the
inflation and reheating. Scalar-field potential in the Einstein
frame is shown in Fig. 1. The scalar field starts slow rolling
from ϕ > 0, plays a role of the inflaton, and drives quasi–
de Sitter expansion. This is also true for the scale factor in
the Jordan frame because in Eq. (7) the scale factors in both
frames are related by multiplying an exponential factor of
ϕ, which is almost constant during the slow-roll regime.
For ϕ > 0, the potential coincides with that of a R2 model
and is almost independent of the model parameters g, b, and
δ. As the scalaron approaches ϕ ¼ 0, it rolls faster and
enters the potential plateau with the kinetic energy larger
than the potential energy. Then the scalaron oscillates in the
plateau and gradually loses its kinetic energy. During the
oscillation, the scale factor in the Jordan frame undergoes
the periodic evolution due to the exponential factor in
Eq. (7) [17]. At a much later time, the scalar field is trapped
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by the false vacuum and its nonzero potential energy drives
the current accelerated expansion of the Universe.

C. Analytic solutions of f ðRÞ reheating
To investigate the reheating dynamics, it is easy to solve

the motion of the scalar field by working in the Einstein
frame and to translate it back to the Jordan frame. In this
section, we summarize the basic results that are needed for
the later sections of this paper. As for a concrete derivation
of the solutions, see Ref. [17].
In the inflation and reheating in fðRÞ gravity, there is no

inflaton field from the point of view in the Jordan frame.
Consequently, particle creation occurs not through the
decay of the inflaton but through the gravitational particle
creation [39–42]. Here we use the word “reheating” in the
meaning that the energy density of the created radiation is
subdominant in the total energy density at the end of
inflation but after that it gradually dominates the energy
component of the Universe, not via inflaton decay.
Let us consider a matter field which is created through

the gravitational reheating. We introduce a massless scalar
field χ into the matter action,

S ¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
Pl

2
fðRÞ − 1

2
gμν∂μχ∂νχ − 1

2
ξRχ2

�
;

(14)

where ξ is a coupling parameter between χ and gravity. The
reason why we consider the massless scalar field is that
conformally invariant fields such as an electromagnetic
field and massless Dirac fields are not created via the
gravitational reheating [43]. Although a massive field
breaks the conformal symmetry, the particle production

rate is suppressed by its mass, compared with the massless
case. Thus, we consider only a massless scalar field with
nonminimal coupling to gravity.
The number density of the created scalar particles is

[39–41]

nðtÞ ¼ ð1 − 6ξÞ2
576πa3

Z
t

−∞
dt0a3R2; (15)

which holds regardless of the functional form of fðRÞ.
For ϕ > 0 the potential is reduced to that of the pure R2

model, for which the slow-roll approximation can be
implemented. Then the field equations (4)–(6) are analyti-
cally solved and the initial conditions for the reheating era
are obtained [17]. However, the slow-roll approximation
does not hold at the transition stage from the slow roll to the
fast roll. To estimate reheating temperature precisely, we
need to use accurate boundary conditions. From the numeri-
cal calculation performed in [17], we found Hend ¼ 0.26M,
where the subscript “end” denotes quantities at the time t ¼
tend when the scalar field ϕ first crosses zero. Also, in the R2

model, the integral in Eq. (15) can be performed analytically
by substituting the analytic solutions of inflation under the
slow-roll approximation in the Einstein frame. According to
[17], the energy density of created radiation at t ¼ tend in the
Jordan frame turns out to be

ρr;end ¼
c0g�ð1 − 6ξÞ2

1152π
M4; (16)

where g� denotes the relativistic degree of freedom relevant
for the particle creation and the constant c0 found in the
numerical computation is c0 ¼ 0.72.
During both inflation and reheating, the energy density

of the created radiation is of course subdominant in
comparison with that of the inflaton before the reheating
completes. Thus, we can neglect its backreaction to the
background dynamics. Also after the end of the inflation,
the kinetic energy of the inflaton is dominant. Then we can
use the fast-roll approximation neglecting the potential
contribution during the oscillation phase.
Under these two approximations, we can solve

Eqs. (4)–(6) by separately considering the time intervals
dependent on the direction of the motion of the inflaton. To
do so, we regard the reflection that occurs instantly at
potential walls and define the first reflection time of the
scalar field at the left wall as ~t ¼ ~t1. After that, the inflaton
reaches the right wall at ϕ ¼ 0 and is reflected at ~t ¼ ~t2. As
well, we can periodically define ~tn. According to [17],
analytic solutions for ~tn−1 < ~t < ~tn in the Einstein frame
are as follows:

~Hð~tÞ ¼
~Hend

3 ~Hendð~t − ~tendÞ þ 1
; (17)

~að~tÞ ¼ ~aend½3 ~Hendð~t − ~tendÞ þ 1�1=3; (18)

2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

MPl

V

M
2

M
Pl2

FIG. 1 (color online). Inflaton potential of the gR2-AB model in
the Einstein frame for parameters g ¼ 0.35, b ¼ 5, and
δ ¼ 5 × 10−8. For ϕ > 0 and ϕ <

ffiffiffi
6

p
MPl log γ, the potential is

similar to that in pure R2 inflation. On the other hand, forffiffiffi
6

p
MPl log γ < ϕ < 0, there is the characteristic plateau. The

scalaron starts slow rolling from ϕ > 0, and enters the plateau
with large kinetic energy and oscillates inside it.
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ϕð~tÞ
MPl

¼
8<
:

−
ffiffi
2
3

q
log½3 ~Hendð~t − ~tendÞ þ 1� − ðn − 1Þ ffiffiffi

6
p

log γ ðn∶ oddÞ;ffiffi
2
3

q
log½3 ~Hendð~t − ~tendÞ þ 1� þ n

ffiffiffi
6

p
log γ ðn∶ evenÞ;

(19)

d
d~t

ϕð~tÞ ¼
8<
:

− ffiffiffi
6

p
~Hð~tÞ ðn∶ oddÞ;

ffiffiffi
6

p
~Hð~tÞ ðn∶ evenÞ;

(20)

with γ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2g

p
. Times in the Jordan frame and the Einstein frame are related by

tð~tÞ ¼
� tn−1 þ γn−1

4 ~Hend
½f3 ~Hendð~t − ~tendÞ þ 1g4=3 − γ−4ðn−1Þ� ðn∶ oddÞ;

tn−1 þ γ−n
2 ~Hend

½f3 ~Hendð~t − ~tendÞ þ 1g2=3 − γ−2ðn−1Þ� ðn∶ evenÞ;
(21)

where tn is given by

tn ¼
� tend þ ðγ4þγ2þ2Þðγ−3ðn−1Þ−1Þ

4 ~Hendðγ4þγ2þ1Þ þ γ−4−1
4 ~Hendγ

3ðn−1Þ ðn∶ oddÞ;

tend þ ðγ4þγ2þ2Þðγ−3n−1Þ
4 ~Hendðγ4þγ2þ1Þ ðn∶ evenÞ:

(22)

From Eqs. (7), (8), (17), (18), and (21), the Hubble parameter and the scale factor in the Jordan frame evolve as

HðtÞ ¼
8<
:

2γ3ðn−1Þ ~Hend

4γ3ðn−1Þ ~Hendðt−tn−1Þþ1
ðn∶ oddÞ;

0 ðn∶ evenÞ;
(23)

aðtÞ ¼
8<
:

aendγ−ðn−1Þ½4γ3ðn−1Þ ~Hendðt − tn−1Þ þ 1�1=2 ðn∶ oddÞ;

aendγ−n ðn∶ evenÞ:
(24)

HðtÞ periodically oscillates, jumping at t ¼ tn (n ¼ 1; 2;…)
between Hn ¼ 2 ~Hn ¼ γ3nHend and Hn ¼ 0.
As discussed in [17], the time-averaged behavior of the

Hubble parameter and scale factor in the Jordan frame are
obtained by being careful about the inhomogeneous tick of
the Jordan-frame time viewed from the Einstein frame and
weighting the odd and even periods by appropriate coef-
ficients. Hence, the averaged Hubble parameter and scale
factor are

hHðtÞi ¼ Hend

3Hendðt − tendÞ þ 1
; haðtÞi

¼ aend½3Hendðt − tendÞ þ 1�1=3:

By comparing the energy densities of radiation and gravity,
the reheating temperature is estimated. The particle creation
during the plateau oscillation phase is negligible because
R≃ bδM2 ≪ 1. Therefore, ρr approximately scales as

hρrðtÞi ∝ haðtÞi−4 ∝ ðt − tendÞ−4=3. On the other hand,
the effective energy density of gravity is defined with
the equation of motion in the Jordan frame as
H2 ¼ ðρr þ ρgÞ=ð3M2

PlÞ. Then we find that the effective
energy density of gravity scales as hρgi ∝ ðt − tendÞ−2.
Therefore, the reheating temperature Treh defined by the
condition hρri ¼ hρgi is given by

Treh

M
≈ 8.1 × 10−3½g�ð1 − 6ξÞ2�1=2

�
M
MPl

�
; (25)

where the boundary conditions at the end of inflation, c0 ¼
0.72 and Hend ≈ 0.26M, are used. For minimally coupled
scalar fields with g� ¼ 100 and M=MPl ¼ 1.2 × 10−5, the
reheating temperature is Treh ≈ 3.0 × 107 GeV. We empha-
size that the parameters g, b, and δ considerably alter the
dynamics of the reheating in the gR2-AB model but do not
affect the reheating temperature, the averaged Hubble
parameter, and the averaged scale factor. As we investigate
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in the next section, crucial parameters for a GWB spectrum
are M and the combination g�ð1 − 6ξÞ2. However, M has
already been fixed by the observation of CMB. Therefore,
g�ð1 − 6ξÞ2 is the only free parameter of the gR2-AB model
for a GWB spectrum. In the rest of this paper, we will show
that g�ð1 − 6ξÞ2 is constrained from the current observa-
tional limit on the energy abundance of GWs.

III. GRAVITATIONAL WAVES

We consider the production and evolution of gravita-
tional waves during inflation and the following reheating
era. Tensor perturbations δgij ¼ a2hij have two polariza-
tions and can be written with polarization tensors eþij
and e×ij as

hij ¼ hþeþij þ h×e×ij: (26)

Hereafter we will work in the transverse-traceless gauge.
The polarization tensors are exx ¼ −eyy ¼ 1 and exy ¼
eyx ¼ 1 for the GW propagating in the z direction. In the
Friedmann-Robertson-Walker background, each tensor
perturbation obeys the following equation [44]:

ḧþ 3Heff
_h − ∇2

a2
h ¼ 0; (27)

where we abbreviate the subscript of the polarizations. The
dot denotes the derivative with respect to t. The effective
Hubble parameter including the modification of gravity
from GR is defined by

Heff ≡H þ
_F
3F

; (28)

in which F is given in Eq. (2). Introducing new variables
aeff ≡ a

ffiffiffiffi
F

p
and u≡ aeffh, we write Eq. (27) as

u00 −
�
∇2 þ a00eff

aeff

�
u ¼ 0; (29)

where the prime is the derivative with respect to the
conformal time τ≡ R

dt
aðtÞ.

A. Cosmic expansion

To solve Eq. (29), we need the time evolution of the
cosmic background expansion and _F=F on the Friedmann-
Robertson-Walker background. During the inflation era,
the gR2-AB model is well approximated by the R2 inflation
model, which has been well studied. The deviation from the
exact de Sitter inflation is parametrized by ν, which is 3=2
for the de Sitter inflation, and the inflationary expansion is
given by

a00eff
aeff

¼ ν2 − 1=4
τ2

:

In a general model of fðRÞ gravity, the parameter ν is
related to the inflationary slow-roll parameters [37]

ϵ1 ≡− _H
H2

; ϵ3 ≡
_F

2HF
; (30)

as

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ ð1þ ϵ3Þð2 − ϵ1 þ ϵ3Þ

ð1 − ϵ1Þ2
s

≈
3

2
þ ϵ1 þ ϵ3; (31)

to the first order in the slow-roll parameters. By using
ϵ1 ≈ −ϵ3, which is obtained from the field equation and
holds up to the first order in slow-roll parameters, we end
up with ν ≈ 3=2, which means that the inflation is nearly a
de Sitter expansion.
During the following cosmic eras, since finding the

solutions of the cosmic expansion in the Jordan frame is so
complicated, we instead use the solution of a scalar-field
motion in the Einstein frame. From Eqs. (2) and (7),

_F
F
¼

ffiffiffi
2

3

r
_ϕ

MPl
¼ 1

MPl

ffiffiffi
2

3

r
dϕ
d~t

e
ϕffiffi
6

p
MPl : (32)

First let us consider the reheating era. During the
reheating, the scalar field undergoes anharmonic oscilla-
tion. Correspondingly, the Hubble parameter in the Jordan
frame periodically change its magnitude between H ≈
1=ð2tÞ for _ϕ < 0 and H ≈ 0 for _ϕ > 0 as in Eq. (23).
Using the analytic solutions in Eqs. (17), (19), (20), (21),
and (23), we can show _F=F ¼ −H for _ϕ < 0. On the other
hand, for _ϕ > 0, using the same set of equations,
we have

_F
F
¼ 2 ~Hendγ

3n−2

2 ~Hendγ
3n−2ðt − tn−1Þ þ 1

:

Then substituting Eq. (22) for even n into the above
equation and keeping the leading term in γ gives

_F
F
¼ 2 ~Hendγ

3n−2

2 ~Hendγ
3n−2ðt − tendÞ þ 1 − γ

≈
1

t − tend
:

At the last equality, we used the fact that the constraint on g
in Eq. (13) restricts the range of γ to 0 ≤ γ ≲ 0.7. Therefore
we obtain for both signs of _ϕ,
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Heff ≈
1

3t
; for reheating: (33)

Equation (33) indicates that the Hubble parameter which
the tensor perturbation feels is the same as that in the case
of perfect fluid domination whose equation of state is
w≡ p=ρ ¼ 1. This cosmological phase is often called the
stiff phase (SP) or the kinetic-energy dominant phase in the
case of inflation caused by scalar fields [45,46]. The cosmic
expansion results in the effective scale factor, aeff ∝ t1=3,
which can be obtained directly from aeff ¼ a

ffiffiffiffi
F

p
by

averaging over many periods of the Hubble oscillation
during the reheating [17]. Note that Heff ≠ _aeff=aeff , but
both coincide only after time averaging.
After the end of the reheating, the energy of radiation

created during the inflation and reheating dominates the
Universe. Then as in the standard cosmology the RD is
followed by the matter-dominated era (MD) and the
cosmological constant-dominated era (ΛD). In the
gR2-AB model, the late-time accelerated expansion is
caused by modification of gravity. Since R ≪ M2 in
Eq. (10) after the reheating, we have

_F
F
¼ g sech2σ

1 − gþ g tanh σ
_σ; σ ≡ R

M2δ
− b: (34)

In RD, R ¼ 0 gives _F=F ¼ 0 and then Heff ¼ H. In ΛD, R
is constant and also Heff ¼ H. In MD, the curvature R
should be greater than Rvac ∼M2δ during MD so that
MD is followed by ΛD. Since σ ≫ 1, Eq. (29) is approxi-
mated to

_F
F
≈ 4ge−2σ _σ ∼ e−2σσH ≪ H:

So the contribution of modified gravity to Heff , namely,
_F=F, is much smaller than the physical Hubble parameter
H. Thus, we also have Heff ¼ H during MD. In summary,
the cosmic expansions in RD, MD, and ΛD phases are the
same as those in the standard cosmology, in contrast to the
cosmic expansion during the reheating phase characteristic
to the gR2-AB model.
The evolution of the effective scale factor including the

modification due to fðRÞ gravity is expressed by matching
its value and the first derivative at their transitions as

aðiÞeffðτÞ ¼ aend

�
τ

τend

�ð1−2νÞ=2
; for Inf∶ −∞ < τ < τend;

(36)

aðsÞeffðτÞ ¼ aend
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ν − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ − τ

τend

r
;

for SP∶τend < τ < τreh;

(37)

aðrÞeffðτÞ ¼ −aend
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ν − 1

p τ þ τreh − 2λτendffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τendðλτend − τrehÞ

p ;

for RD∶τreh < τ < τeq; (38)

aðmÞ
eff ðτÞ ¼ −aend

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ν − 1

p τ2 þ τeqðτeq þ 2τreh − 4λτendÞ
τeq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τendðλτend − τrehÞ

p ;

for MD∶τeq < τ < τ0; (39)

where τend, τreh, τeq, and τ0 are the conformal time at the end
of inflation, the end of the reheating era, the matter-
radiation equality, and the present, respectively, and aend
is the scale factor at τend. We do not take the ΛD phase into
account for simplicity because it hardly affects observa-
tional constraint from GWs as we will see later. In these
equations, we defined the parameter

λ≡ 2ν

2ν − 1
; (40)

to merely simplify the above equations.

B. GWB energy spectrum

In the context of quantum-field theory in a curved
spacetime, GW production can be interpreted as the
amplification of vacuum fluctuations by cosmic expansion
(gravitational particle creation) and is the inevitable con-
sequence of inflation [47–49]. We quantize linear GWs, u,
in Eq. (29), and write a graviton field as

ûðτ;xÞ ¼ M−1
Pl

Z
d3k

ð2πÞ3 ffiffiffiffiffi
2k

p

× ½b̂kψðk; τÞeik·x þ b̂†kψ
�ðk; τÞe−ik·x�:

Here b̂k and b̂†k are the annihilation and creation operators,
respectively. Substituting this into Eq. (29), we have an
equation for ψ,

ψ 00 þ
�
k2 − a00eff

aeff

�
ψ ¼ 0: (41)

In each cosmological era described by Eqs. (36)–(39), the
solutions are given in terms of the Hankel function:

ψ iðk; τÞ ¼
ffiffiffiffiffi
π

4k

r
e−iπð2νþ1Þ=4 ffiffiffi

x
p

Hð2Þ
ν ðxÞ;

for Inf∶ −∞ < τ < τend; (42)
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ψ sðk; τÞ ¼
ffiffiffiffiffi
π

4k

r ffiffiffi
y

p ½αsðkÞe−iπ=4Hð2Þ
0 ðyÞ þ βsðkÞeiπ=4Hð1Þ

0 ðyÞ�; for SP∶τend < τ < τreh; (43)

ψ rðk; τÞ ¼
1ffiffiffiffiffi
2k

p ½αrðkÞe−ix þ βrðkÞeix�; for RD∶τreh < τ < τeq; (44)

ψmðk; τÞ ≈ −
ffiffiffiffiffi
π

4k

r ffiffiffiffi
w

p ½αmðkÞHð2Þ
3=2ðwÞ þ βmðkÞHð1Þ

3=2ðwÞ�; for MD∶τeq < τ < τ0; (45)

where

x≡ kτ; y≡ kðτ − λτendÞ;
w≡ k½τ þ ð

ffiffiffi
2

p − 1Þτeq�:
(46)

The mode function during MD is valid only when
τeq ≫ τreh, jτendj, which always holds in the standard
cosmic expansion history. Matching the solutions and their
first derivative at the transitions, we obtain the Bogoliubov
coefficients, whose precise expressions are given in the
Appendix. Once the Bogoliubov coefficients are obtained,
a GWB spectrum can be computed with the formula [50]

h20ΩgwðfÞ ¼
16π2

3ðH0=h0Þ2M2
Pl

f4jβj2; (47)

where H0 is the Hubble parameter at present and h0 is that
normalized by 100 kms−1Mpc−1. Note that this energy
density contains a contribution from both plus and cross
tensor polarizations. To express the GWB energy spectrum

as a function of frequency, one needs to convert x, y, and w
in Eq. (46) into frequencies as

xend ≡ kτend ¼ −2πf
�

a0
aend

�
1þ ðν − 3=2Þ

Hend

≈ − f
fend

;

yend ≡ ð1 − λÞkτend ≈ − 1

2
kτend; (48)

xreh≡kτreh ¼
f
freh

; yreh≡kðτreh−λτendÞ≈kτreh; (49)

xeq ≡ kτeq ¼
f
feq

; weq ≡
ffiffiffi
2

p
kτeq: (50)

The approximation in Eq. (48) is good only if ν ≈ 3=2 as in
the gR2-AB model. Substituting Eqs. (A5), (A8), and (A11)
into Eq. (47) together with Eqs. (48)–(50), we finally obtain
the approximated expressions of a GWB spectrum:

h20ΩgwðfÞ ¼ 1.73 × 10−50 × 22νΓ2ðνÞ
�

f
1 Hz

�
4
�

f
fend

�−2ν
; for freh < f < fend; (51)

h20ΩgwðfÞ ¼ 1.73 × 10−50 × 22νΓ2ðνÞ
�

f
1 Hz

�
4
�

f
fend

�−2ν� f
freh

�−1
; for feq < f < freh; (52)

h20ΩgwðfÞ ¼ 1.73 × 10−50 × 22νΓ2ðνÞ
�

f
1 Hz

�
4
�

f
fend

�−2ν� f
freh

�−1� f
feq

�−2
; for f0 < f < feq: (53)

Note that this formula is valid for jν − 3=2j ≪ 1, namely,
quasi–de Sitter inflation. During the inflation, the gR2-AB
model is well approximated by R2 inflation, in which the
condition jν − 3=2j ≪ 1 is satisfied.
The characteristic frequencies, fend and freh, are the

current frequencies of GWs that exit the horizon at the end
of the inflation and at the end of the reheating era,
respectively, and depend on gR2-AB model parameters,
that is, the energy scale of inflationM, the effective number
of relativistic particles g�, and the nonminimal coupling
constant ξ. Using Eqs. (16) and (25) with the boundary
conditions at the end of inflation, c0 ¼ 0.72 and

Hend ≈ 0.26M, we find

fend ¼
Hend

2π

�
aend
a0

�
≈
M
8π

�
aend
a0

�

≈ 3.2 × 1010
�
g�ð1 − 6ξÞ2
106.75

�−1=4
Hz; (54)

freh ¼
Hreh

2π

�
areh
a0

�

≈ 5.1 × 109
�
g�ð1 − 6ξÞ2
106.75

�
3=4

�
M
MPl

�
2

Hz: (55)

ATSUSHI NISHIZAWA AND HAYATO MOTOHASHI PHYSICAL REVIEW D 89, 063541 (2014)

063541-8



The frequency of a GW corresponding to the matter-
radiation equality is

feq ¼ 1.1 × 10−16Ωmh20 Hz; (56)

for which we use fixed values of standard ΛCDM cosmol-
ogy, Ωm ¼ 0.3, h0 ¼ 0.7, since their uncertainties just
slightly shift feq and do not change our conclusion in this
paper.
The frequency dependence of the GWB spectrum is the

same as that of the standard de Sitter inflationary scenario
at low frequencies, but quite different for high frequencies,
freh < f < fend. These high-frequency GWs exit the hori-
zon during the reheating era, whose equation of the state is
w ¼ 1, and respond to the rapid deceleration of the cosmic
expansion. As a result, the GWB spectrum is proportional
to f and has a large peak. We see in Eqs. (51)–(53) that the
overall amplitude of the GWB spectrum depends only on
the parameter ν. In the gR2-AB model, since inflation is
caused by the R2 term in the action and is nearly a de Sitter
expansion with ν ≈ 3=2, the overall amplitude is fixed.
However, the peak amplitude of a GWB spectrum depends
on g�, ξ, and M through fend and freh. In Fig. 2, the GWB
spectra for the parameters consistent with the observation
(M ≈ 1.2 × 10−5MPl and g� ¼ 100) are shown, varying the
nonminimal coupling parameter, ξ ¼ 0, 1=12, and 1=8. As
expected from the dependence of freh on the coupling
parameter ξ, as the parameter deviates from a conformally
coupled case (ξ ¼ 1=6), freh increases and the amplitude of
the GWB spectrum at high frequencies is less enhanced. In
other words, the less efficient the particle creation is, the
longer the reheating lasts, leading to the larger peak of the
GWB spectrum.
In the above calculation, we did not take into account an

effect of neutrino free streaming and the time-dependent
change of g� during RD. The free streaming of relativistic
neutrinos, which, decoupled from thermal equilibrium at

T ≤ 2 MeV, significantly contributes to anisotropic stress,
damping the amplitude of a GWB [51]. According to [52],
it has been shown that the neutrino anisotropic stress
suppresses the amplitude of GWB by 35.5% in the
frequency range between ≈10−16 Hz and ≈2 × 10−10 Hz.
However, this does not affect our conclusion of this paper
because the observational constraint from GWs comes from
the high-frequency peak of the GWB spectrum. Another
effect that we need to consider is the time-dependent
change of g� during RD. g� is not constant but changes
depending on time by responding to the existence of the
particle species in the Universe. Then it affects the
amplitude of a GWB. It is known that ΩgwðfÞ is corrected
by an amount of ½g�ðfÞ=g�ðf0Þ�−1=3 ≈ 0.32 if we assume
the standard model of particle physics [52]. We will take
this suppression of the GWB amplitude into consideration
when we derive an observational constraint on the gR2-AB
model in the next section.

IV. OBSERVATIONAL
CONSTRAINTS FROM GWS

We found in the previous section that the GWB spectrum
is significantly enhanced at high frequencies. However,
planned GW detectors are not sensitive enough to detect the
GWB for the parameter ξ chosen in Fig. 2, because the
sensitivity of the ground-based GW detectors under con-
struction such as advanced LIGO, advanced VIRGO, and
KAGRA (previously called LCGT) [53] is h20Ωgw ¼ 10−9
at f ¼ 100 Hz. More advanced detectors such as the
Einstein Telescope [54] and BBO/DECIGO [55,56] can
reach h20Ωgw ¼ 10−12 at f ¼ 10 Hz and h20Ωgw ¼ 10−16 at
f ¼ 0.1 Hz, respectively. But they are not sufficient for the
GWB in the gR2-AB model.
On the other hand, the indirect bound coming from the

combination of the observational data of the CMB and the
matter power spectrum tightly constrains the energy density
of a GWB [57], because the observational limit is imposed
on the integral of the energy density over a wide frequency
range above the frequency of CMB decoupling
(∼10−16 Hz). According to [57], the observational limit isZ

fmax

fmin

dðln fÞh20ΩgwðfÞ ≤ 1.0 × 10−6; (57)

where fmin is the frequency corresponding to CMB
decoupling, which is ∼10−16 Hz, and fmax is the Planck
frequency, fPl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c5=ℏG

p
∼ 1043 Hz. In practice, fmax

matches the high-frequency cutoff of the GWB spectrum,
fend. The GWB spectrum at high frequencies in Eq. (42) is
linearly proportional to the frequency and can be written as

ΩgwðfÞ ≈ ΩgwðfendÞ
�

f
fend

�
: (58)

This is a predominant contribution for the frequency
integral in Eq. (57). Then the constraint in Eq. (57) is

FIG. 2 (color online). GWB spectra for different value of ξ with
M ≈ 1.2 × 10−5MPl and g� ¼ 100. The lines are ξ ¼ 0 (red,
solid), ξ ¼ 1=12 (green, dotted), and ξ ¼ 1=8 (blue, dashed).
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h20ΩgwðfendÞ ≤ 1.0 × 10−6: (59)

As we mentioned at the end of the previous section, the
change of g� during RD suppresses ΩgwðfÞ at high
frequencies by a factor of ½g�ðfÞ=g�ðf0Þ�−1=3 [52].
Taking this fact into account and assuming that g�ðfÞ is
constant for some time duration after the inflation ends,
from Eqs. (51), (54), and (57), we have

g4=3� ð1 − 6ξÞ2 ≥ 54; (60)

where we used g�ðf0Þ ≈ 3.36 and ν ≈ 3=2 for the gR2-AB
model. In Fig. 3, the constraint on the parameters of
reheating, g� and ξ, in the gR2-AB model are shown.
For the smaller number of g�, the constraint on the coupling
parameter is tighter and the stronger coupling to gravity is
required to be compatible with observations. If one assumes
that all scalar fields are minimally coupled to gravity
(ξ ¼ 0), many scalar degrees of freedom, at least
g� ¼ 20, are needed. As the coupling approaches the
conformal (ξ ¼ 1=6) case, more scalar fields are necessary.
For exactly conformal coupling, no particle creation occurs
and the reheating fails to complete. Nevertheless, particle
creation could occur at a quantum level via a so-called trace
anomaly [43,58]. Although more detailed study is needed
to reach quantitative conclusion, this effect is of the order of
the quantum one loop and is significantly suppressed
compared to a tree level. Thus, the constraint in
Fig. 3 still holds except for the exactly conformal coupling
case.

V. CONCLUSIONS AND DISCUSSIONS

We have studied GW production during the inflation and
reheating eras in fðRÞ gravity, especially in the gR2-AB
model. In this model, gravity action, which is a function of
scalar curvature, is elaborated so as to smoothly connect

two accelerated cosmic expansions in the early universe
and at the present time, avoiding instability and singularity
in the model. Inflation is described by the original R2

inflation model. However, reheating is quite different from
the R2 model because of an additional term in the fðRÞ
action. As a result, the modification of gravity alters cosmic
expansion during the reheating phase as if there exists an
effective fluid with the equation of state of w ¼ 1.
Consequently, a GW spectrum has a large peak at high
frequencies. Since the inflation energy scale M is pinned
down by the observational data of CMB, the remaining
model parameters are the number of degrees of freedom
relevant to gravitational particle creation g� and its coupling
constant ξ. We have computed the GW spectrum and found
that the interesting region of the model parameters has
already been excluded by the cosmological limit on the
abundance of GWs coming from the observational data of
the CMB and the matter power spectrum. In the gR2-AB
model, the reheating by minimally coupled massless scalar
fields require at least g� ¼ 20 to be compatible with
observations. In the future, the improvement of the sensi-
tivity of the CMB and galaxy survey will provide us with a
more stringent test of inflation and reheating dynamics
based on fðRÞ gravity theory.
The model we have analyzed in this paper is based on

fðRÞ gravity, which is a generalization of the Einstein-
Hilbert action to a function of the scalar curvature. From the
point of view of higher-order gravity theory, it would be
possible to add also nonlinear terms in the Riemann tensor
and Ricci tensor. This modification in general introduces
scalar and vector degrees of freedom in GWs [59] and
changes the shape of GW spectra due to the modified
dynamics of inflation and reheating. Then GWs bring us an
opportunity to test the theory observationally [29–32].
However, it has been well known that some degrees of
freedom in the higher-order gravity theory are unstable and
become ghost modes [60]. Although one needs to construct
a healthy model of inflation and reheating followed by
standard cosmology, it would be interesting to extend our
results in this paper toward such a direction.
Finally, we comment on the result of the recent paper by

Kunimitsu and Yokoyama [61]. They have shown that if the
Higgs field φ in the standard model whose mass is mh ≈
126 GeV is minimally coupled to gravity and has positive
self-coupling with its magnitude of the order of λðμÞ≃
10−2 at the energy scale of inflation, the Higgs condensa-
tion due to long-wave quantum fluctuations acquired
during inflation may significantly contribute to density
perturbations during the reheating era. This happens in the
model in which reheating occurs through gravitational
particle production such as k-inflation [45] and quintes-
sential inflation [46]. As a consequence, the large curvature
perturbation generated by the Higgs condensation during
the kinetic reheating phase contradicts with the observed
amplitude of curvature perturbations today. This indicates

FIG. 3 (color online). Constraint on reheating in the gR2-AB
model from a GWB. The shaded region has been excluded by the
observations. The horizontal lines represent minimal coupling
ξ ¼ 0 (solid) and conformal coupling ξ ¼ 1=6 ≈ 0.17 (dashed),
respectively.
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that the reheating process due to the gravitational particle
production must not last long and then a large peak on a
GWB spectrum at high frequency does not exist. However,
it is nontrivial whether this result can be applied to the
gR2-AB model. The reason is that, due to the abrupt change
in the Hubble parameter in the Jordan frame during the
reheating regime, we cannot assume the simple picture
that the Higgs field remains constant and starts oscillation
at H ≃meff ≡

ffiffiffiffiffiffiffiffiffiffiffi
λhφ2i

p
. Since this issue on the

Higgs condensation in the gR2-AB model is beyond the
scope of the present paper, we leave it for a future
work.
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APPENDIX: BOGOLIUBOV COEFFICIENTS

Here the Bogoliubov coefficients when inflation is
followed by SP, RD, and MD eras are summarized.

(i) SP (freh < f < fend)

αs ¼ − π

4
ffiffiffi
2

p eiπν=2
�
Hð1Þ

0

�jxendj
2

��
xendH

ð1Þ
νþ1ðjxendjÞ þ

�
νþ 3

2

�
Hð1Þ

ν ðjxendjÞ
�

þxendH
ð1Þ
1

�jxendj
2

�
Hð1Þ

ν ðjxendjÞ
�
; (A1)

βs ¼ − iπ

4
ffiffiffi
2

p eiπν=2
�
Hð2Þ

0

�jxendj
2

��
xendH

ð1Þ
νþ1ðjxendjÞ þ

�
νþ 3

2

�
Hð1Þ

ν ðjxendjÞ
�

þxendH
ð2Þ
1

�jxendj
2

�
Hð1Þ

ν ðjxendjÞ
�
: (A2)

The above equations can be approximated with the small argument limit of the Hankel functions,

HðnÞ
ν ðzÞ →

�
z
2

�
ν 1

Γðνþ 1Þ∓
i
π
ΓðνÞ

�
z
2

�−ν
; for ν ≠ 0; (A3)

HðnÞ
0 ðzÞ → 1� 2i

π
log z; (A4)

where the upper and lower signs correspond to the Hankel functions of the first and the second kinds, namely, n ¼ 1
and 2, respectively. Using these formulas for jxendj ≪ 1, we obtain the relation

αs; βs ∝ 2νΓðνÞjxendj−ν: (A5)

(ii) RD (feq < f < freh)

αr ¼
eixreh

2

ffiffiffiffiffiffiffiffiffiffi
π

2yreh

r
e−iπ=4

�
αs

��
yreh þ

i
2

�
Hð2Þ

0 ðyrehÞ − iyrehH
ð2Þ
1 ðyrehÞ

�

þiβs

��
yreh þ

i
2

�
Hð1Þ

0 ðyrehÞ − iyrehH
ð1Þ
1 ðyrehÞ

��
; (A6)

βr ¼
e−ixreh
2

ffiffiffiffiffiffiffiffiffiffi
π

2yreh

r
e−iπ=4

�
αs

��
yreh − i

2

�
Hð2Þ

0 ðyrehÞ þ iyrehH
ð2Þ
1 ðyrehÞ

�

þiβs

��
yreh − i

2

�
Hð1Þ

0 ðyrehÞ þ iyrehH
ð1Þ
1 ðyrehÞ

��
: (A7)

For yreh ≪ 1,
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αr; βr ∝ 2νΓðνÞjxendj−νy−1=2reh : (A8)

(iii) MD (f0 < f < feq)

αm ¼ − 1

2

ffiffiffiffiffiffiffiffiffi
π

2weq

r
½αre−ixeqfðweq − 2iÞHð1Þ

3=2ðweqÞ þ iweqH
ð1Þ
5=2ðweqÞg

−βreixeqfðweq þ 2iÞHð1Þ
3=2ðweqÞ − iweqH

ð1Þ
5=2ðweqÞg�; (A9)

βm ¼ 1

2

ffiffiffiffiffiffiffiffiffi
π

2weq

r
½αre−ixeqfðweq − 2iÞHð2Þ

3=2ðweqÞ þ iweqH
ð2Þ
5=2ðweqÞg−βreixeqfðweq þ 2iÞHð2Þ

3=2ðweqÞ − iweqH
ð2Þ
5=2ðweqÞg�:

(A10)

For weq ≪ 1,

αm; βm ∝ 2νΓðνÞjxendj−νy−1=2reh x−1eq : (A11)
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