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The effective anisotropic stress or gravitational slip η ¼ −Φ=Ψ is a key variable in the characterization of
the physical origin of the dark energy, as it allows us to test for a nonminimal coupling of the dark sector to
gravity in the Jordan frame. It is however important to use a fully model-independent approach when
measuring η to avoid introducing a theoretical bias into the results. In this paper we forecast the precision
with which future large surveys can determine η in a way that only relies on directly observable quantities.
In particular, we do not assume anything concerning the initial spectrum of perturbations, nor on its
evolution outside the observed redshift range, nor on the galaxy bias. We first leave η free to vary in space
and time and then we model it as suggested in Horndeski models of dark energy. Among our results, we
find that a future large scale lensing and clustering survey can constrain η to within 10% if k-independent,
and to within 60% or better at k ¼ 0.1 h=Mpc if it is restricted to follow the Horndeski model.
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I. INTRODUCTION

With the recent first results of the Planck satellite [1] we
have definitely reached the era of precision cosmology: The
Planck observations of the cosmic microwave background
(CMB) are well described by the six-parameter flat ΛCDM
model, and most of those six parameters are determined to
percent-level accuracy [2]. The most impressive achieve-
ment is the measurement of the acoustic scale of the CMB
with a precision of 0.06% by Planck, but also the physical
baryon and the matter densities have been determined to
within an uncertainty of only 1% to 2%.
But the conclusion from these measurements is that we

live in a Universe where only 5% of today’s energy density
consists of the kind of matter described by the standard
model of particle physics. Another 27% appears to be
matter that is only interacting gravitationally with the
visible world, and the remaining 68% is made up of a
cosmological constant.
The physical nature of the dark sector is however

completely unknown, and especially the cosmological
constant suffers from severe theoretical problems. For this
reason it is of crucial importance to look beyond the
perfectly homogeneous cosmological constant and to
investigate general dark energy models, including also
modifications of Einstein’s theory of general relativity
(GR). When considering a general dark energy model
however, high precision is much harder to achieve, and it is
important to understand first what can actually be observed
to avoid introducing a theoretical bias into the observa-
tional results. Coming from this angle, we determined in a
recent paper [3] that cosmological measurements at linear

scales can determine, in addition to the expansion rate
HðzÞ, only three additional variables R, A and L, given by

A¼Gbδm;0; R¼Gfδm;0; L¼Ωm;0GYð1þηÞδm;0: (1)

Denoting with k the norm of the wave number and with a
the cosmic scale factor, we refer with Gðk; aÞ to the linear
growth function (normalized to unity today) with f ¼
G0=G to the growth rate, with bðk; aÞ to the galaxy bias
with respect to the dark matter density contrast and with
δm;0ðkÞ to the dark matter density contrast today. The
functions ηðk; aÞ and Yðk; aÞ describe the impact of the
dark energy on the cosmological perturbations. Later on,
we will also need the quantities Ā≡ A=δt;0, R̄≡ R=δt;0,
L̄≡ L=δt;0 with δt;0 ¼ δm;0=σ8. If we write the line element
describing the perturbed Friedmann-Lemaître-Robertson-
Walker (FLRW) metric as

ds2 ¼ −ð1þ 2ΨÞdt2 þ aðtÞ2ð1þ 2ΦÞdx2; (2)

then η and Y are defined through [4,5]

ηðk; aÞ≡ −
Φ
Ψ
; Yðk; aÞ≡ −

2k2Ψ
3 Ωmδm

: (3)

We see that η corresponds to the gravitational slip, which is
linked to the effective anisotropic stress of the dark energy,
and Y describes the clustering of the dark energy. The
function η is particularly important, as it is a key variable to
distinguish scalar-field type dark energy models from
modifications of GR [6,7].
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So far these are rather abstract considerations. An
obviously important question is whether we can actually
measure these quantities with realistic surveys, and to what
precision. In [3,8] we showed that we can use the motion of
light and of nonrelativistic test particles like galaxies to
map out the metric functions Φ and Ψ in principle, and that
therefore η is an observable quantity. But Y depends on the
dark matter distribution, which is not directly observable,
and so also Y itself is in general not directly observable due
to the dark degeneracy [9].
In order to reconstruct η from A, R and L it is necessary

to remove the dependence on δt;0 (notice that Ā, R̄ and L̄ are
not observables), since it is an unknown quantity that does
not depend on dark energy physics but rather on inflation or
other primordial effects. This can be done by considering
ratios like P1 ¼ R=A, P2 ¼ L=R and P3 ¼ R0=R. In terms
of these model-independent ratios, the gravitational slip
becomes [3,8]

1þ η ¼ 3P2ð1þ zÞ3
2E2ðP3 þ 2þ E0

EÞ
(4)

where we also set EðzÞ≡HðzÞ=H0.
When constraining η later on, we will use an equivalent

quantity which we call η̄, defined as

η̄≡ 2

1þ η
¼ 2Ψ

Ψ − Φ
: (5)

The reason is that even for large future surveys the expected
error on P3 is substantial, especially when we want to allow
for an unknown redshift and scale dependence. The large

error makes the division by ðP3 þ 2þ E0=EÞ in Eq. (4)
badly behaved. η̄ on the other hand is more stable, as we
discuss in more detail in the Appendix.
Based on these results, we will use the Fisher matrix

formalism in this paper to forecast the expected precision
on Ā, R̄ and L̄, which are then projected onto the accuracy
with which we can obtain P1, P2 and P3, and finally on η̄,
based on the expected performance of future large-scale
galaxy and weak lensing surveys. We will also include a
supernova survey to improve the constraints on the back-
ground expansion rate EðzÞ, although we find that its
impact on the final constraints on η is rather modest. In the
final step we will assume four models for η:
(1) First, we assume that η is constant at all scales and at

all redshifts (let us call this case the constant-η case).
This occurs for instance in ΛCDM and in all models
in which dark energy does not cluster and is
decoupled from gravity.

(2) Second, we assume that η is constant in space but
varies in redshift (z-varying case). In other words,
we assume that η has a different arbitrary value for
each redshift bin.

(3) Third, we assume η varies in both redshift and space
(z; k-varying case).

(4) Fourth, we take for η the quasistatic Horndeski
result [3]

η ¼ h2

�
1þ k2h4
1þ k2h5

�
: (6)

(Here we assume k to be measured in units of
0.1 h=Mpc, so the hi functions are dimensionless).
We denote this model as the Horndeski case. The
Horndeski Lagrangian is the most general Lagrangian
for a single scalar field leading to second-order
equations of motion. The expression (6) arises in
the quasistatic limit [5] where the time-derivative
terms are subdominant, which implies that the scales
of interest are inside the (sound-) horizon.

In all cases the fiducial model will be chosen to be ΛCDM,
for which η ¼ η̄ ¼ 1. For the first two cases we need only a
binning in redshift, while for the third and fourth case we
will bin both in redshift and in k-space. The fiducial values
in the first Horndeski case are h2 ¼ 1, h4 ¼ h5 ¼ 0.

TABLE I. Values of k1, k2 and kmax for every redshift bin, in
units of (h=Mpc).

z̄ kmin k1 k2 kmax

0.6 0.007 0.022 0.063 0.180
0.8 0.007 0.023 0.071 0.215
1.0 0.007 0.024 0.078 0.249
1.2 0.007 0.026 0.086 0.287
1.4 0.007 0.027 0.094 0.329
1.8 0.007 0.029 0.112 0.426

TABLE II. Fiducial values and errors for Ā, R̄ and E using six redshift bins. Units of galaxy number densities are ðh=MpcÞ3.
z̄ n̄ðz̄Þ × 10−3 Ā ΔĀ ΔĀð%Þ R̄ ΔR̄ ΔR̄ð%Þ E ΔE ΔEð%Þ
0.6 3.56 0.612 0.0022 0.37 0.469 0.0092 2.0 1.37 0.12 8.5
0.8 2.42 0.558 0.0017 0.3 0.457 0.0068 1.5 1.53 0.073 4.8
1.0 1.81 0.511 0.0015 0.29 0.438 0.0056 1.3 1.72 0.058 3.4
1.2 1.44 0.47 0.0014 0.29 0.417 0.0049 1.2 1.92 0.05 2.6
1.4 0.99 0.434 0.0015 0.35 0.396 0.0047 1.2 2.14 0.051 2.4
1.8 0.33 0.377 0.0018 0.47 0.354 0.0039 1.1 2.62 0.061 2.3
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The outline of the paper is as follows: In Secs. III, IV
and V we set up the Fisher matrix formalism for the galaxy
clustering, weak lensing, and SN-Ia observations. As
already mentioned above, we will see that we need to
combine the different probes to obtain constraints on η,
and we discuss the combination of the Fisher matrices in
Sec. VI before concluding in the final section.

II. NOTATION AND GENERAL DEFINITIONS

In this section we complete the definition of our notation
and provide definitions for quantities that are useful in
several of the following sections. Our metric signature and
the gravitational potentials are already defined in Eq. (2).
In Eq. (3) we define the functions η and Y that parametrize
the “dark energy perturbations” (as the dark matter does
not contribute to the anisotropic stress1). The function η
assumes a central stage in this paper as it is observable
without requiring further assumptions, see Eq. (4).
Although the observables E, A, R and L can be measured

in a fully model-independent way, the precision with which
we can determine them depends also on the true nature of
the Universe. When evaluating our forecasts, we will use a
flat ΛCDM fiducial model, characterized by the WMAP 7-
year values, Ωm;0h2 ¼ 0.134, Ωb;0h2 ¼ 0.022, ns ¼ 0.96,
τ ¼ 0.085, h ¼ 0.694 and Ωk ¼ 0. The newWMAP 9-year
and Planck results are not very different so the results are
not significantly affected by our choice. The dimensionless
background expansion rate in the fiducial model and at
low redshifts is given by

EðzÞ2 ¼ Ωm;0ð1þ zÞ3 þ ð1 −Ωm;0Þ; (7)

and we will often use the dimensionless angular diameter
distance d̂AðzÞ ¼ r̂ðzÞ=ð1þ zÞ and the dimensionless
luminosity distance d̂LðzÞ ¼ r̂ðzÞð1þ zÞ, where in a flat
FLRW Universe

r̂ðzÞ ¼
Z

z

0

d~z
Eð~zÞ : (8)

The usual distances are related to the dimensionless
distances through r̂ ¼ H0r and d̂ ¼ H0d. In ΛCDM we
have that η ¼ 1 and Y ¼ 1. In the fiducial model, both G
and f only depend on the scale factor, not on k.
We will combine in the following the Fisher matrices for

future galaxy clustering, weak lensing and supernovae
surveys. More specifically, we will take for galaxy cluster-
ing (GC) and weak lensing (WL) a stage IV kind of survey
[11] like Euclid2 [12]. Notice that the survey specifications

we use in this paper are meant only to be representative of
a future dark energy survey and do not necessarily reflect
the actual Euclid configuration. For supernovae (SN) we
assume a survey of 105 sources with magnitude errors
similar to the currently achievable uncertainties, as
expected in the LSST survey [13].

III. GALAXY CLUSTERING

The galaxy power spectrum can be written as [14]

Pðk; μÞ ¼ ðAþ Rμ2Þ2e−k2μ2σ2r
¼ ðĀþ R̄μ2Þ2δ2t;0ðkÞe−k

2μ2σ2r ; (9)

where σr ¼ δz=HðzÞ, δz being the absolute error on red-
shift measurement, and we explicitly use δm;0 ¼ σ8δt;0, and
where μ is the cosine of the angle between the line of sight
and the wave vector. Notice that R̄ is often denoted in the
literature as fσ8ðzÞ.
As already emphasized, we will ignore in the following

the information contained in δ2t;0ðkÞ since this depends on
initial conditions that are in general not known, and we
cannot disentangle the initial conditions from the informa-
tion on the dark energy (we refer to [3] for a discussion
about this point). Removing the information from the shape
of the power spectrum of course reduces the amount of
information available and so increases the error bars. This is
the price to pay if we want to stay fully model independent.
The dependence on E is implicitly contained in μ and k

through the Alcock-Paczynski effect [15]. However, we can
only take into account the μ dependence, since the k
dependence occurs through the unknown function δm;0. The
Fisher matrix for the parameter vector pα is in general [14]

FGC
αβ ¼ 1

8π2

Z
1

−1
dμ

Z
kmax

kmin

k2VeffDαDβdk; (10)

where

Dα ≡ d logP
dpα

����
r

(11)

is the parameter derivative evaluated on the fiducial values
(designated by the subscript “r”) and where

Veff ¼
�

n̄Pðk; μÞ
n̄Pðk; μÞ þ 1

�
2

Vsurvey (12)

is the effective volume of the survey, with n̄ the galaxy
number density in each bin (discussed later). The Fisher
matrix is evaluated at the fiducial model. For this evaluation
we will assume that the bias in ΛCDM is scale independent
and equal to unity, which implies that the barred variables Ā
and R̄ also do not depend on k in the fiducial model
(although of course in general they will be scale dependent).

1Beyond first order in perturbation theory, the dark matter
does in principle contribute to the pressure and anisotropic
stress in the Universe, but the contribution is very small
and negligible for our purpose [10].

2http://www.euclid‑ec.org/
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Our parameters are therefore pα ¼ fĀðz̄1Þ; R̄ðz̄1Þ;
Eðz̄1Þ; Āðz̄2Þ; R̄ðz̄2Þ; Eðz̄2Þ;…g, where the subscripts run
over the z bins. We could have used A;R directly as
parameters as in Eq. (9), but we prefer to clearly distinguish
between the dark energy dependent parameters Ā; R̄ and
those that depend on different physics. Indices α or β
always label the parameters in the Fisher matrix frame-
work. From the definition of the galaxy clustering power
spectrum, Eq. (9), (and without taking into account the
correction from the error on redshift, as we will assume a
spectroscopic survey with negligible redshift errors) we
find that3

DĀ ¼ 2

Āþ R̄μ2
; DR̄ ¼ 2μ2

Āþ R̄μ2
; (13)

and using [16]

μ ¼ Hμr
HrQ

; (14)

where

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2d̂2Aμ2r − E2

r d̂
2
Arðμ2r − 1Þ

q
Erd̂A

; (15)

we get for the derivative with respect to the parameter E

DE ¼ 4R̄μ2ð1 − μ2Þ
ðĀþ R̄μ2Þ

�
1

Er
þ 1

d̂Ar

∂d̂A
∂E

�
: (16)

Here we explicitly consider the dependence of the dimen-
sionless angular diameter distance d̂A on E via Eq. (8).

A. z binning

We consider a Euclid-like survey [12] from z ¼ 0.5 − 1.5
divided in equally spaced bins of width Δz ¼ 0.2, and, in

order to prevent accidental degeneracies due to low statistics,
a single larger redshift bin between z ¼ 1.5 − 2.1 (thus the
number of bins is nB ¼ 6). The lower boundaries of the
z-bins are labeled as za while the center of the bins are
labeled as z̄a (latin indices a; b;… label the z-bins). The
galaxy number densities in each bin are shown in Table II;
for the bin between 1.5 and 2.1 we use an average number of
0.33 × 10−3 ðh=MpcÞ3 [17]. The error on the measured
redshift is assumed to be spectroscopic: δz ¼ 0.001ð1þ zÞ.
The transfer function in the present matter power spectrum
(δ2t;0) is calculated using CAMB [18] for the ΛCDM
cosmology defined in Sec. II. The limits on the integration
over k are taken as kmin ¼ 0.007 h=Mpc (but the results are
very weakly dependent on this value) and the values of kmax
are chosen to be well below the scale of nonlinearity at the
redshift of the bin,4 see Table I.
Since the angular diameter distance can be approximated

by the expression

d̂Aðz̄aÞ ¼
1

ð1þ z̄aÞ
Xb¼a

b¼0

Δzb
Eðz̄bÞ

; (17)

we have for the term ∂d̂A∂E in Eq. (16)

∂d̂Aðz̄aÞ
∂Eðz̄bÞ ¼ −

Δzb
ð1þ z̄aÞE2

b

δab; (18)

where δab is a Kronecker delta symbol. Then we calculate
the Fisher matrix blockwise with independent submatrices
FGC
αβ for each bin.
The errors in the set of parameters pα are taken from the

square root of the diagonal elements of the inverted Fisher
matrix, i.e. the errors are marginalized over all other
parameters. In Table II we present the fiducial values for
Ā, R̄ and E evaluated at the center of the bins (z̄a), and the
respective errors, and in Fig. 1 we plot their fiducial values
and errors.
If we use a redshift dependent bias bðzÞ (for instance

taking the values from the Euclid specifications, see
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FIG. 1 (color online). Errors on Ā, R̄ and E from galaxy clustering in the z-binning case.

3The simplicity of the angular dependence of these expressions
and the relative insensitivity of the effective volume, Eq. (12) to μ,
mean that the Fisher matrix (10) leads to a generic prediction for
galaxy clustering surveys: The measurements of Ā and R̄ will be
slightly anticorrelated, and galaxy clustering surveys can always
measure Ā about 3.5 to 4.5 times better than R̄.

4The values of kmax are calculated imposing σ2ðRÞ ¼ 0.35, at
the corresponding R ¼ π=2k for each redshift, being R the radius
of spherical cells, see [14].
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[12,19]), we get only slight deviations from the errors
found for the previous case, as we can see in Table III.
Thus, our choice of a bias equal to unity does not impact the
Fisher errors significantly.

B. k binning

For the third and fourth model we also need a binning in k-
space. Sinceultimatelywewould like toobtain error estimates
on three functions, h2; h4; h5, we will need a minimum of
three k-bins, which is the choice we make here. We denote
with latin indexes a; b; c… the z bins and with indexes
i; j; k… the k bins. So for the first z-binwe have as parameters
s1 ¼ fĀ11; R̄12; E1g, for the second s2 ¼ fĀ21; R̄22; E2g, and
so forth, with Āai ¼ Āðz̄a; k̄iÞ, R̄ai ¼ R̄ðz̄a; k̄iÞ, and
Ea ¼ Eðz̄aÞ, where k̄i denote the centers of the k-bins. The
set of parameters is therefore pα ¼ fs1; s2;…g. The Fisher
matrix integration over k is split into three k-ranges between
kmax and kmin which we choose so that Δ log k ¼ const. The
Fisher matrix becomes then

FGC
αβ ¼ 1

8π2

Z
1

−1
dμ

Z
Δk

k2VeffDαDβdk; (19)

with Δk denoting the respective range of the integration.
Denoting the entry FĀ R̄ as Ā R̄, and so on, we can represent
the structure of the matrix for every redshift bin as
follows:

0
BBBBBBBBBB@

Ā1Ā1 Ā1R̄1 0 0 0 0 Ā1E

R̄1Ā1 R̄1R̄1 0 0 0 0 R̄1E

0 0 Ā2Ā2 Ā2R̄2 0 0 Ā2E

0 0 R̄2Ā2 R̄2R̄2 0 0 R̄2E

0 0 0 0 Ā3Ā3 Ā3R̄3 Ā3E

0 0 0 0 R̄3Ā3 R̄3R̄3 R̄3E

EĀ1 ER̄1 EĀ2 ER̄2 EĀ3 ER̄3 EE

1
CCCCCCCCCCA
;

(20)

In Table I we display the values for the integration limits
at every redshift (the k-bins borders), and in Table IV we
present the errors for all ðz; kÞ-bins. Notice that the errors
on E are not affected by the k-binning, as E does not
depend on k.

TABLE III. Fiducial values and errors for Ā, R̄ and E using six bins, considering a redshift dependent bias.

z̄ Ā ΔĀ ΔĀð%Þ R̄ ΔR̄ ΔR̄ð%Þ E ΔE ΔEð%Þ
0.6 0.645 0.0023 0.36 0.469 0.0094 2. 1.37 0.12 8.8
0.8 0.628 0.0018 0.28 0.457 0.0072 1.6 1.53 0.078 5.1
1.0 0.575 0.0015 0.26 0.438 0.0059 1.3 1.72 0.06 3.5
1.2 0.584 0.0014 0.24 0.417 0.0052 1.2 1.92 0.053 2.7
1.4 0.561 0.0015 0.27 0.396 0.005 1.3 2.14 0.053 2.5
1.8 0.561 0.0015 0.26 0.354 0.0038 1.1 2.62 0.056 2.1

TABLE IV. Relative errors for Ā, R̄ and E at every redshift and every k-bin (labeled with the index i). Since fiducial values for Ā, R̄ and
E are independent of k, these are the same for the three k-bins.

z̄ i Ā ΔĀ ΔĀð%Þ R̄ ΔR̄ ΔR̄ð%Þ E ΔE ΔEð%Þ
1 0.025 4. 0.07 15.

0.6 2 0.612 0.0058 0.94 0.469 0.017 3.6 1.37 0.11 8.4
3 0.0023 0.38 0.0097 2.1
1 0.018 3.2 0.05 11

0.8 2 0.558 0.0039 0.71 0.457 0.012 2.6 1.53 0.074 4.8
3 0.0018 0.32 0.0074 1.6
1 0.014 2.7 0.039 8.9

1.0 2 0.511 0.003 0.59 0.438 0.0089 2. 1.72 0.058 3.4
3 0.0016 0.31 0.0062 1.4
1 0.011 2.4 0.032 7.7

1.2 2 0.47 0.0025 0.54 0.417 0.0072 1.7 1.92 0.051 2.6
3 0.0015 0.32 0.0055 1.3
1 0.01 2.3 0.028 7.

1.4 1 0.434 0.0024 0.55 0.396 0.0065 1.6 2.14 0.052 2.4
3 0.0018 0.41 0.0057 1.4
1 0.0063 1.7 0.015 4.3

1.8 2 0.377 0.0022 0.58 0.354 0.0047 1.3 2.62 0.059 2.3
3 0.0024 0.64 0.0061 1.7
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IV. WEAK LENSING

Wemove now to estimating the Fisher matrix for a future
weak lensing survey. The lensing convergence power
spectrum from a survey divided into several redshift bins
(same binning as in Sec. III) can be written as [20]

PijðlÞ ¼ H0

Z
∞

0

pijðz;lÞdz

≈H0

X
a

Δza
Ea

KiKjL̄2δ2t;0ðz̄a; kðl; z̄aÞÞ; (21)

with the integrand

pijðz;lÞ ¼
KiðzÞKjðzÞ

EðzÞ L̄ðzÞ2δ2t;0ðz; kðl; zÞÞ; (22)

where

kðl; zÞ ¼ l
πrðzÞ and KiðzÞ ¼

3

2
ð1þ zÞWiðzÞ; (23)

and WiðzÞ is the weak lensing window function for the ith
bin

WiðzÞ ¼ H0

Z
∞

z

�
1 −

r̂ðzÞ
r̂ð~zÞ

�
nið~zÞd~z: (24)

Here, niðzÞ equals the galaxy density nðzÞ if z lies inside the
ith redshift bin and zero otherwise. Note that

niðzÞdz ¼
niðrðzÞÞ
HðzÞ dr: (25)

The overall galaxy density is modeled as

nðzÞ ∝ za expð−ðz=zpÞbÞ: (26)

We take a ¼ 2, b ¼ 3=2 and choose zp such that the
median of the distribution is at z ¼ 0.9, i.e. zp ¼
0.9=1.412 ¼ 0.6374 [12,21]. The niðzÞ (which are not to
be confused with the n̄ðzÞ from galaxy clustering) are then
smoothed with a Gaussian to account for the photometric
redshift error (see [21]) and normalized such thatR
niðzÞdz ¼ 1. Following the Euclid specifications, we

set the survey sky fraction fsky ¼ 0.375 and the photo-
metric redshift error to δz ¼ 0.05ð1þ zÞ.
Including the noise due to intrinsic galaxy ellipticities we

have

Cij ¼ Pij þ γ2intn̂
−1
i δij; (27)

with the intrinsic ellipticity γint ¼ 0.22 and the number of
all galaxies per steradian in the ith bin, n̂i, which can be
written as

n̂i ¼ nθ

R
ziþ1
zi

nðzÞdzR∞
0 nðzÞdz ; (28)

where nθ is the areal galaxy density, an important parameter
that defines the quality of a weak lensing experiment.
We set it to nθ ¼ 35 galaxies per square arc minute [12].
For a weak lensing survey that covers a fraction of

the sky fsky, the Fisher matrix is a sum over l bins of size
Δl [22]

TABLE V. Errors on E and L̄ from weak lensing only (with six redshift bins) and a list of the value lmax used at
each redshift together with the corresponding zmed value.

z̄ lmax zmed L̄ ΔL̄ ΔL̄ð%Þ E ΔE ΔEð%Þ
0.6 311 0.26 0.342 0.0044 1.3 1.37 0.0062 0.46
0.8 385 0.31 0.311 0.0044 1.4 1.53 0.0069 0.45
1.0 515 0.40 0.285 0.0059 2.1 1.72 0.017 0.96
1.2 609 0.45 0.262 0.0059 2.3 1.92 0.029 1.5
1.4 760 0.54 0.242 0.014 5.7 2.14 0.029 1.4
1.8 959 0.64 0.210 0.035 16 2.62 0.077 3.0
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FIG. 2 (color online). The integrand of Eq. (21). The curves
from left to right correspond to piiðz;l ¼ 1000Þ, where
i ¼ 1;…; 6. The contribution to the lensing signal is very broad
in redshift and peaks at relatively low z even for the high-redshift
bins. The median redshift for each curve is indicated by dashed
lines. We give the median redshift for the lensing contribution in
Table V.
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FWL
αβ ¼ fsky

X
l

Δl
ð2lþ 1Þ

2

∂Pij

∂pα
C−1
jm

∂Pmn

∂pβ
C−1
ni ; (29)

and now the parameters are pα ¼ fL̄ðz̄1Þ; Eðz̄1Þ;…g. Here,
l is being summed from 5 to lmax with Δ logl ¼ 0.1,
where lmax corresponds to the value listed in Table V for
the redshift bin a or b—whichever is smaller.
The value lmax is derived as follows. We start with the

relationship

l
πrðzmedðl; aÞÞ

¼ k; (30)

where zmedðl; aÞ is the median with respect to z of
paaðz;lÞ, which is defined in Eq. (22). For a given wave
number k and a redshift bin a, we can solve for l. To find
lmax we use the following method:

We begin with zmed ¼ 1, compute the kmax for this
redshift as before by imposing σ2ðRÞ ¼ 0.35, solve
Eq. (30) for l, and compute zmedðl; aÞ. We repeat this
step until the value for zmed converges with an accuracy of
approximately 1%. A list of the values for lmax as well as
zmed used in each redshift bin can be found in Table V. The
integrands along with their median value are depicted
in Fig. 2.
To find the derivatives needed in Eq. (29), we divide the

integral in Eq. (21) into nB integrals that each cover one
redshift bin. We could assume that L̄ðzÞ is constant across
any redshift bin to get an approximate expression for the
integral that depends on L̄ in an analytical way, but the
discrepancy between the actual integral and the approxi-
mate integral (and consequently the discrepancy of the
derivative) can be up to a factor of 2, which may not be
sufficient. Assuming that the integrand is linear in z gives
the same result (when using only the center of the bin as the
sampling point), so the issue arises when the curvature of
the integrand becomes large.
As a solution, we take the actual value of the integral and

simply assume that it depends quadratically on L̄ðz̄aÞ, such
that the derivative can be written as

∂PijðlÞ
∂L̄ðz̄aÞ ¼ 2

L̄ðz̄aÞ
Z

zaþ1

za

pijðz;lÞdz: (31)

Since E appears in the comoving distance, it is more
complicated for the derivatives of Pij with respect to Eðz̄aÞ.

TABLE VI. Borders of the l-bins for each redshift bin con-
verted from the k-bins according to Eq. (30).

z̄ l0 l1 l2 l3

0.6 6.3 39 120 410
0.8 7.9 45 190 610
1.0 9.4 66 240 880
1.2 11 83 320 1200
1.4 12 97 390 1500
1.8 14 120 550 2200

TABLE VII. Errors of L̄ai and E using weak lensing only with their fiducial values.

z̄ L̄a1 ΔL̄a1 ΔL̄a1(%) L̄a2 ΔL̄a2 ΔL̄a2(%) L̄a3 ΔL̄a3 ΔL̄a3(%) Ea ΔEa ΔEa(%)

0.6 0.342 0.025 7.4 0.342 0.0076 2.2 0.342 0.0050 1.5 1.37 0.0069 0.51
0.8 0.311 0.025 7.9 0.311 0.0064 2.1 0.311 0.0053 1.7 1.53 0.0074 0.48
1.0 0.285 0.022 7.8 0.285 0.0074 2.6 0.285 0.0062 2.2 1.72 0.017 0.97
1.2 0.262 0.024 9.1 0.262 0.0080 3.0 0.262 0.0073 2.8 1.92 0.030 1.6
1.4 0.242 0.041 17. 0.242 0.019 7.7 0.242 0.015 6.1 2.14 0.030 1.4
1.8 0.210 0.098 46. 0.210 0.048 23 0.210 0.037 17 2.62 0.079 3.0
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FIG. 3 (color online). Errors on Eðz̄aÞ (left) and L̄ðz̄aÞ (right) from weak lensing.
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We substitute the regular definition of E by an interpolating
function that goes smoothly through all points ðz̄a; Eðz̄aÞÞ
and (0,1). Instead of depending on Ωm it now depends on
the values of all Eðz̄aÞ, and so do all functions that depend
on E, in particular the comoving distance and consequently
the window functions KiðzÞ. The derivatives are then
obtained by varying the fiducial values of Eðz̄aÞ while
keeping L ¼ L̄δt;0 fixed so that we again do not include the
derivative of δ2t;0 with respect to k.
It is instructive to consider the error on the spectrum

itself for a particular pair ij. If we take as parameters pα ¼
Pij we have a variance

σ−2 ¼ fsky
X
l

Δl
ð2lþ 1Þ

2
C−1
ij C

−1
ij ; (32)

(no sum over ij) and neglecting the noise (appropriate for
l < 500) i.e. putting Cij ¼ Pij, this becomes, in a small
range of l from lmin to lmax so that we can approximate Pij
with a constant,

σ−2PijPij ¼ fsky
X
l

Δl
ð2lþ 1Þ

2
¼ fsky

l2
max − l2

min

2
;

(33)

(for lmax;min ≫ 1). If lmin is much smaller than lmax this
gives a relative error for every ij

σ

Pij
¼ l−1

max

�
fsky
2

�
−1=2

≈ 2.3l−1
max; (34)

so that for lmax ¼ 300 we should get a minimum relative
error of 0.6%, which is indeed of the same order as our
result. The error increases if we include the noise and a
nonnegligible lmin.
The resulting uncertainties on Eðz̄aÞ and L̄ðz̄aÞ can be

found in Table V; they are visualized in Fig. 3.

A. k binning

To test the cases three and four of our models for η, we
need to consider L̄ as a function of k (although with the
same fiducial value for all k, as the fiducial model is
ΛCDM), and we divide the full k-range again into the same
three bins. The observables are then L̄an ≡ L̄ðz̄a; k̄nÞ,
where k̄n denote the center of the k-bins, with
n ¼ 1; 2; 3. They are defined as in Sec. III, and are given
explicitly in Table I. The k-bins fix the ranges for l via the
relation used in Eq. (30). We label the center of the l-bins
accordingly as ln. See Table VI for a list of the l-bins. The
derivatives needed for the Fisher matrix will be evaluated at
the center of these l-bins.
They can be computed similarly as in Eq. (31). We find

(using Kronecker deltas, no summation):

∂PijðlÞ
∂L̄ðz̄a; knÞ ¼

2δan
L̄ðzaÞ

Z
zaþ1

za

pijðz;lÞdz

×

�
1 if ln−1 < l < ln

0 else:
(35)

The derivatives with respect to Eðz̄aÞ are computed the same
way as before. We can then define the parameter vectorpα ¼
fL̄11; E1; L̄12; E1; L̄13; E3; L̄21; E2;…g and evaluate the
Fisher matrix formally as before. The structure of the
Fisher matrix can be schematically represented as follows:

0
BBB@

L̄1L̄1 0 0 L̄1E

0 L̄2L̄2 0 L̄2E

0 0 L̄3L̄3 L̄3E

L̄1E L̄2E L̄3E EE

1
CCCA: (36)

The uncertainties placed on the observables by weak
lensing only can be found in Table VII.

V. SUPERNOVAE

We consider now the forecasts for a supernovae
survey. The likelihood function for the supernovae after
marginalization of the offset is [16]

L ¼ − logL ¼ 1

2

�
S2 −

S21
S0

�
; (37)

TABLE VIII. Redshift uncertainties, number of supernovae,
fiducial value of E and errors for each bin.

z̄ σdata;a na Eðz̄Þ ΔE ΔEð%Þ
0.6 0.287 46429 1.37 0.0026 0.19
0.8 0.285 25000 1.53 0.0041 0.27
1.0 0.329 16071 1.72 0.0086 0.50
1.2 0.327 7143 1.92 0.016 0.83
1.4 0.258 5357 2.14 0.028 1.3
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FIG. 4 (color online). Errors on E from supernovae.
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where

Sn ¼
X
i

ðmi − μiÞn
σ2i

; (38)

beingmi the apparent magnitudes and μi ¼ 5 log d̂L, where
d̂L is the dimensionless luminosity distance, see Eq. (8).
This can be written as

L ¼ 1

2
XiMijXj; (39)

where Xi ¼ mi − μi and

Mij ¼ sisjδij −
s2i s

2
j

S0
; (40)

(no sum) where si ¼ 1=σi. The Fisher matrix can be
written as

FSN
αβ ¼

� ∂L
∂pα

∂L
∂pβ

�
; (41)

where now the parameters are pα ¼ Eðz̄aÞ. Similarly to
Sec. III we can write

d̂Lðz̄aÞ ¼ ð1þ z̄aÞ
Xb¼a

b¼0

Δzb
Eðz̄bÞ

; (42)

so that

∂d̂Lðz̄aÞ
∂Eðz̄bÞ ¼ −

Δzb
E2
b

ð1þ z̄aÞδab; (43)

where δab is a Kronecker symbol. The Fisher matrix is then

FSN
αβ ¼

��∂μi
∂pα

MijXj

��∂μi
∂pβ

MijXj

��
¼ 25YiαMijYjβ;

(44)

where

Yiα ≡ ∂ log d̂Lðz̄iÞ
∂pα

¼ 1

d̂Lðz̄iÞ
∂d̂Lðz̄iÞ
∂Eðz̄αÞ

¼ −
1

d̂Lðz̄iÞ
Δza
E2
a
ð1þ z̄iÞδia: (45)

We have to make a choice to define the redshifts zi and
the uncertainties σi for the supernovae of the simulated
future experiment. We take the UNION 2.1 catalog as a
reference (580 SNIa in the range 0 < z≲ 1.5). We assume
that the survey will observe supernovae in the redshift
range 0.5 < z < 1.5, and divide that interval in bins of
fixed width Δz ¼ 0.2 just like in Sec. III, in order to
combine the SN Fisher matrix with the galaxy clustering
and the weak lensing ones. We assume the total number of
observed SN to be about nSN ¼ 100000 in that range, as
expected for the LSST survey [13]. We further assume that
the supernovae of the future survey will be distributed
uniformly in each bin, respecting the proportions of the
data of the catalog UNION 2.1 and with the same average

TABLE IX. Errors on E from the three probes.

WL GC SN WLþ GC WLþ GCþ SN

z̄ E ΔE ΔEð%Þ ΔE ΔEð%Þ ΔE ΔEð%Þ ΔE ΔEð%Þ ΔE ΔEð%Þ
0.6 1.37 0.0062 0.46 0.12 8.5 0.0026 0.19 0.0062 0.45 0.0023 0.16
0.8 1.53 0.0069 0.45 0.073 4.8 0.0041 0.27 0.0068 0.44 0.0029 0.19
1.0 1.72 0.017 0.96 0.058 3.4 0.0086 0.50 0.016 0.91 0.0067 0.39
1.2 1.92 0.029 1.5 0.050 2.6 0.016 0.83 0.024 1.2 0.012 0.65
1.4 2.14 0.029 1.4 0.051 2.4 0.028 1.3 0.022 1.0 0.017 0.78
1.8 2.62 0.077 3.0 0.061 2.3 � � � � � � 0.046 1.8 0.043 1.7
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FIG. 5 (color online). Errors on P1, P2 and P3 in the z-varying case.
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magnitude error. The values of σdata;a and na for the bins
centered in z̄a are summarized in Table VIII.
Finally, the corresponding errors on E from supernovae

are shown in Fig. 4 and in Table VIII. In Table IX we
compare the errors on E from the three different probes
with each other. We notice that the supernova constraints
are the most stringent ones among the three probes and
improve the WLþ GC constraints by almost a factor of
two. All this of course assumes that systematic errors can
be kept below statistical errors.

VI. COMBINING THE MATRICES

Once we have the three Fisher matrices for galaxy cluster-
ing, weak lensing and supernovae, we insert them blockwise
into a ð4nBÞ × ð4nBÞ matrix for the full parameter vector

pα ¼ fĀ; R̄; L̄; Eg × nB; (46)

Notice that we need also R̄0 ¼ −ð1þ zÞ½R̄ðzþ ΔzÞ −
R̄ðzÞ�=Δz and E0 ¼ −ð1þ zÞ½Eðzþ ΔzÞ − EðzÞ�=Δz. The
full schematic structure for every bin will be:

0.010 0.1000.0500.020 0.2000.0300.015 0.1500.070

0

1

2

3

4

k h Mpc

FIG. 6 (color online). Constraints on ηðkÞ in the Horndeski case
for z ¼ 0.6 (light) and z ¼ 1.4 (dark).

TABLE X. Fiducial values and errors for the parameters P1, P2, P3, E0=E and η̄ for every bin. The last bin has been omitted since R0 is
not defined there.

z̄ P1 ΔP1 ΔP1ð%Þ P2 ΔP2 ΔP2ð%Þ P3 ΔP3 ΔP3ð%Þ ðE0=EÞ ΔE0=E ΔE0=Eð%Þ η̄ Δη̄ Δη̄ð%Þ
0.6 0.766 0.012 1.6 0.729 0.013 1.8 0.134 0.13 99 -0.920 0.022 2.4 1 0.11 11
0.8 0.819 0.010 1.2 0.682 0.011 1.6 0.317 0.12 38 -1.04 0.046 4.4 1 0.091 9.1
1.0 0.859 0.0093 1.1 0.650 0.011 1.7 0.460 0.12 26 -1.13 0.099 8.7 1 0.090 9.0
1.2 0.888 0.0092 1.0 0.628 0.014 2.3 0.569 0.13 23 -1.21 0.12 10 1 0.097 9.7
1.4 0.911 0.010 1.1 0.613 0.020 3.3 0.654 0.11 16 -1.26 0.09 7.1 1 0.073 7.3

TABLE XI. Here, the errors on P1, P2, P3 and η are listed for the z; k-varying case with a similar structure as Table IV.

z̄ i P1 ΔP1 ΔP1ð%Þ P2 ΔP2 ΔP2ð%Þ P3 ΔP3 ΔP3ð%Þ η̄ Δη̄ Δη̄ð%Þ
1 0.14 18 0.12 17 1.4 1100 1.1 120

0.6 2 0.766 0.032 4.1 0.729 0.030 4.1 0.134 0.33 240 1 0.26 26
3 0.013 1.7 0.015 2.0 0.15 110 0.12 12
1 0.11 13 0.092 13 1.2 380 0.93 93

0.8 2 0.819 0.024 2.9 0.682 0.021 3.1 0.317 0.26 83 1 0.2 20
3 0.011 1.4 0.013 1.9 0.14 43 0.1 10
1 0.093 11 0.076 12 1.1 240 0.82 82

1.0 2 0.859 0.020 2.3 0.65 0.019 2.9 0.46 0.23 51 1 0.17 17
3 0.011 1.2 0.012 1.8 0.14 31 0.1 11
1 0.084 9.4 0.074 12 1.1 190 0.78 78

1.2 2 0.888 0.017 2.0 0.628 0.021 3.3 0.569 0.23 40 1 0.16 16
3 0.011 1.2 0.017 2.7 0.17 29 0.12 12
1 0.079 8.7 0.084 14 0.79 120 0.55 55

1.4 2 0.911 0.017 1.9 0.613 0.027 4.4 0.654 0.17 26 1 0.12 12
3 0.013 1.4 0.023 3.8 0.14 21 0.094 9.4

TABLE XII. Absolute errors on h2 and h4. Because of the
degeneracy between h5 and h4, h5 has been fixed. The fiducial
values are h2 ¼ 1 and h4 ¼ 0.

z̄ Δh2 Δh4
0.6 0.58 0.56
0.8 0.44 0.32
1. 0.37 0.22
1.2 0.35 0.18
1.4 0.25 0.1
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Ā Ā Ā R̄ 0 ĀE

Ā R̄ R̄ R̄ 0 R̄E

0 0 L̄ L̄ L̄E

ĀE R̄E L̄E ðEEÞΣ

1
CCCA; (47)

with ðEEÞΣ ¼ ðEEÞGC þ ðEEÞWL þ ðEEÞSN. This matrix
must then be projected onto η̄. It is, however, interesting to
produce two intermediate steps, namely the matrix for
qα ¼ fP1; P2; P3; Eg where P1 ¼ R=A, P2 ¼ L=R and
P3 ¼ R0=R, as well as the matrix for qα ¼ fP1; P2; P3;
E0=Eg. They are given by

FðqÞ
αβ ¼ FðpÞ

γδ

∂pγ

∂qα
∂pδ

∂qβ : (48)

We thenproject ontofP1; P2; η̄; Eg. InTableXwepresent the
fiducial values for the parametersP1,P2,P3, defined in Sec. I;
In Fig. 5weplot their fiducial values and errors. Let us call this
the basic Fisher matrix.
As we mentioned in the Introduction, we decided to

consider four models for η̄: constant, variable only in
redshift, variable both in space and redshift, and the
Horndeski model. For the constant η̄ case we project the
basic Fisher Matrix for P1; P2; η̄; E onto a single constant
value for η̄. The resulting uncertainty for η̄ is 0.010.
For the z-variable case we project on five η̄ parameters,

one for each bin. The results are in Table X. We see that the
error on η̄ rises to around 10%. Without the SN data, the
final constraints on η would weaken only by roughly 1%.
If we collect the data into only three wider z bins, the error
reduces to about 3%.
For the z; k varying case, we consider the k-binning of

Sec. III B. Now the information is distributed over many
more bins, so the errors obviously degrade (see Table XI).
We find errors from 10% to more than 100%.
Finally, for the Horndeski case, Table XII gives the

absolute errors on h2; h4 (measuring k in units of
0.1 h=Mpc). Here we are forced to fix h5 to its fiducial
value (i.e. to zero) due to the degeneracy between h4 and h4
when the fiducial model is such that h4 ¼ h5, as in the
ΛCDM case. This means we are only able to measure the
difference h4 − h5 rather than the two functions separately.
The absolute errors on h2; h4 are in the range 0.2-0.6. This
result implies for instance that, at a scale of 0.1 h=Mpc and
in a redshift bin 0.5-0.7, a Euclid-like mission can detect
the presence of a k2 behavior in η if it is larger than 60%

than the k-independent trend (see Fig. 6 for a visualization
of the constraints on η).

VII. CONCLUSIONS

In this paper we study the precision with which a
future large survey of galaxy clustering and weak lensing
like Euclid can determine the anisotropic stress of the
dark sector with the help of the model-independent
cosmological observables introduced in [3], when aug-
mented with a supernova survey.
We find that galaxy clustering and weak lensing will

achieve precise measurements of the expansion rate
EðzÞ ¼ HðzÞ=H0, with errors of less than a percent in
redshift bins of Δz ¼ 0.2 out to z ¼ 1.5, and with less than
4% out to z ¼ 2, see Table IX.
They will also be able to measure P1 ¼ f=b to about a

percent precision over the full redshift range (in the same

bins), and achieve a comparable precision on P2 ¼
Ωm;0Σ=f, except at z > 1.5 where the errors increase

rapidly. The final quantity, P3 ¼ f þ f0=f, is constrained
much less precisely, only to about 30%, because it involves

an explicit derivative. The detailed results are given in

Tables X and XIII.
We then considered four different models for η ¼ −Φ=Ψ:
(1) A constant η: In this case we find that we can

determine the derived quantity η̄ with a precision of
about 1%.

(2) η varying with redshift, but not with scale: For bins
with a size of Δz ¼ 0.2, we find a precision on η̄ of
about 10% out to z ¼ 1.5.

(3) η̄ varying both in z and in k: the errors vary
considerably across the z; k range, from 10% to
more than 100%.

(4) The Horndeski case: now the absolute errors on
h2; h4 are in the range 0.2-0.6.

We stress again that in this paper we used only directly
observable quantities without any further assumptions about
the initial power spectrum, the dark matter, the dark energy
model (beyond the behavior of η in the last step) or the bias,
as such assumptions may be unwarranted in a general dark
energy or modified gravity context. On the other hand,
we do assume that a window between nonlinear scales and
subsound-horizon scales exists and is wide enough to cover
all the wavelengths we have been employing in our
forecasts.

TABLE XIII. Same as Table X, but with four redshift bins. The last bin has again been omitted.

z̄ P1 ΔP1 ΔP1ð%Þ P2 ΔP2 ΔP2ð%Þ P3 ΔP3 ΔP3ð%Þ ðE0=EÞ ΔE0=E ΔE0=Eð%Þ η̄ Δη̄ Δη̄ð%Þ
0.7 0.794 0.0079 0.99 0.703 0.0074 1.0 0.231 0.042 18 -0.983 0.023 2.3 1 0.031 3.1
1.1 0.875 0.0067 0.77 0.638 0.0072 1.1 0.518 0.050 9.7 -1.17 0.044 3.7 1 0.037 3.7
1.5 0.920 0.0099 1.1 0.607 0.010 1.7 0.688 0.048 7.0 -1.29 0.060 4.6 1 0.032 3.2
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APPENDIX: SAMPLING VS FISHER
MATRIX ANALYSIS

In order to check whether the Fisher matrix analysis is
appropriate for the nonlinear parameter combinations that
make up the Pi and η we also use an alternative approach.
We assume that the Fisher matrix forecast for the errors on
Ā, R̄, L̄ and E is sufficiently accurate (i.e. that the joint
posterior of these variables can be described by a Gaussian
probability distribution function with the covariance matrix
given by the inverse of the Fisher matrix), which should be
a reasonable assumption given how precise the surveys that
we consider here are. We then draw random samples from
the multivariate Gaussian distribution defined by those
Fisher matrices.
For each sample we compute P1, P2 and P3 at the

corresponding values of z and k. We compute the

derivatives of E and R̄ by fitting a cubic spline through
each realization of EðzÞ and R̄ðzÞ and calculating the
derivative of the spline. This procedure allows us to obtain
estimates of the derivatives in all bins, but at the price of
having to choose boundary conditions for the splines
(we use the “natural spline” convention that the second
derivative vanishes at the boundary).
Overall we find good agreement, and even excellent

agreement when using the derivative at the points in
between the bins (which agrees better with the finite
difference method used for the Fisher forecasts). The
agreement becomes much worse for η, as already men-
tioned in the Introduction. This is however no surprise, as
the posterior distribution of η becomes very non-Gaussian
for the survey specifications considered here (while the
posterior distributions of the Pi remain close to Gaussian).
We observe however that η̄ retains a normal posterior,
which makes it much better suited for the Fisher forecast
approach, see Fig. 7. The same holds true for Markov-
Chain Monte Carlo approaches which tend to have
difficulties with sampling from curved, “banana-shaped”
posteriors, and so we recommend quite generally to use η̄
rather than η in data analysis. We finally note that when η is
well constrained and has a pdf close to Gaussian, then its
standard deviation should be about twice that of η̄.

FIG. 7 (color online). The probability density function (pdf) for ð1þ ηÞ=2 (blue dashed line) and η̄ (red solid line) based on sampling
from the Fisher matrix for fĀ; R̄; L̄; Eg, compared to the Gaussian pdf from the Fisher matrix projection on η̄ (black dotted line) in the
z- and k-binning case. The left panel shows the second k-bin for z̄ ¼ 1, and the right panel the first k-bin for z̄ ¼ 1.2. We use ð1þ ηÞ=2
instead of η because it has the same pdf shape as η and (to lowest order) the same variance as η̄. We see that even when the standard
deviation of η̄ is well below 1 as in the left panel, the pdf of η is significantly less Gaussian than the pdf of η̄. For large standard deviation
(right panel) the pdf of η̄ is still well behaved and close to Gaussian, while the one of η is strongly distorted and exhibits large tails
(not shown in the figure) due to a division by zero problem in the expression (4).
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