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In this first of two papers, we present a new method for searching for oscillatory features in the
primordial power spectrum. Awide variety of models predict these features in one of two different flavors:
logarithmically spaced oscillations and linearly spaced oscillations. The proposed method treats the
oscillations as perturbations on top of the scale-invariant power spectrum, allowing us to vary all
cosmological parameters. This perturbative approach reduces the computational requirements for the
search as the transfer functions and their derivatives can be precomputed. We show that the most significant
degeneracy in the analysis is between the distance to last scattering and the overall amplitude at low
frequencies. For models with logarithmic oscillations, this degeneracy leads to an uncertainty in the phase.
For linear-spaced oscillations, it affects the frequency of the oscillations. In this first of two papers, we test
our code on simulated Planck-like data and show that we are able to recover fiducial input oscillations with
an amplitude of a few timesOð10−2Þ. We apply the code to WMAP9-year data and confirm the existence of
two intriguing resonant frequencies for log-spaced oscillations. For linear-spaced oscillations, we find a
single resonance peak. We use numerical simulations to assess the significance of these features and
conclude that the data do not provide compelling evidence for the existence of oscillatory features in the
primordial spectrum.
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I. INTRODUCTION

Understanding the physics of the early universe is one of
the most exciting intellectual challenges of the 21st century.
Inflation [1–4] is currently the most widely studied model
of early universe physics. In this model, an as of yet
unknown degree (or degrees) of freedom source the
exponential expansion of the early universe, redshifting
away initial features, including deviations from flatness and
preinflationary inhomogeneities. Typically, this degree of
freedom is a light scalar field which potential energy
dominates over all other available degrees of freedom.
While the functionally most simple model [5,6], a quadratic
self-interaction, remains within observational bounds [5]
and is favored by Occam’s razor and entropic reasoning,
fundamental theories are unlikely to have such a simple
low-energy limit. For example, string theory, the most
plausible proposal for UV completion, has difficulties
realizing a single field slow-roll model of inflation (see
e.g. Ref. [7] for an overview).
Features in the power spectrum are a potential signature

of the underlying symmetries that generate inflation. One

of these symmetries could be a shift symmetry [8], in which
the inflaton, composed of pseudo scalar (the axion), obeys a
shift symmetry that keeps the action invariant under a
discrete symmetry. Inflation itself is realized through small
quantum correction to the potential [9,10]. Such models
lead to oscillations in the primordial power spectrum
[11,12]. Although we consider these models to be most
realistic, other possibilities exist to generate resonance in
the primordial spectra. For example, it has been argued that
a resonance between negative and positive frequency
modes in a pure state Bogolyubov rotation can lead to
resonance, both in log space (NPH) [13] and in linear space
(BEFT) [14]. Recently, a new UV complete model referred
to as “unwinding inflation” has been proposed [15]. In this
model, log-spaced oscillations are naturally produced when
the flux associated with the inflaton scalar unwinds on
cycles in compact directions. In the two-field models, a
bend in field space can also cause oscillations or features
(see e.g Ref. [16] and more recently in Ref. [17]).
In this paper, we introduce a new method to search for

resonance in the CMB power spectrum, with the aim to
apply this approach to the recently released Planck data
[18] in a companion paper. Similar analysis has been
performed in e.g. Refs. [11,19–26] and more recently in
[27] and by the Planck Collaboration [5]. For complete-
ness, we will consider log-spaced oscillations as well as
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linear-spaced oscillations. We will not be concerned with a
specific model, although our set-up should allow to put
constraints on a variety of models using the results
presented here. Our main purpose in this paper is to test
our method on simulations and on WMAP 9-year [28] data.
For logarithmic-spaced oscillations this allows us to com-
pare our findings with previous results and check for
consistency.
The models that we will consider in this paper have the

following parametric form:

1Δ
2
RðkÞ ¼ A1

�
k
k�

�
m
ð1þ A2 cos½ω1 log k=k� þ ϕ1�Þ (1)

2Δ
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RðkÞ ¼ B1

�
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k�
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m
ð1þ B2kn cos½ω2kþ ϕ2�Þ (2)

For example, in axion-monodromy inflation one finds
A1 ¼ H2=ð8π2ϵÞ, m ¼ ns − 1, A2 ¼ δns, ω1 ¼ −ðϕ�Þ−1
and ϕ1 ¼ ϕ�, while for models that compute the effects
from a possible boundary on effective field theory (BEFT)
predict B1 ¼ H2=ð8π2ϵÞ, m ¼ ns − 1, B2 ¼ β=a0M,
n ¼ 1, ω2 ¼ 2=a0H and ϕ2 ¼ π=2. Both initial state
modifications and multiverse models [15] can also produce
logarithmic oscillations, while sharp features [29] result in
a power spectrum generate linear oscillations (although the
amplitude is typically damped as a function of scale). Note
that model (1) has a unit less frequency while model (2) has
units of Mpc. We will omit these units in the rest of the
paper for brevity.
This paper is organized as follows. We will discuss some

of the complications present in the search for oscillatory
features in Sec. II. In Sec. III, we explain how a perturbative
approach can improve the search for oscillations, specifi-
cally at high frequencies (where high multipole sampling
and momentum sampling become more important). We
discuss sources of error associated with our approach. We
simulate fiducial Planck-like data with and without oscil-
lations and apply our code to this data in Sec. IV to test the
robustness of our code. As a test, we apply our code to the
WMAP9 data in Sec. V for log-spaced and linear-spaced
oscillations. We discuss our findings and improvement of
fit in Sec. VI and we conclude in Sec. VII.

II. THE SEARCH FOR RESONANCES: THE
CHALLENGE OF EXPLORING A HIGHLY
STRUCTURED LIKELIHOOD SURFACE

Observations of the cosmic microwave background
(CMB) provide our best constraint on initial conditions,
and provide powerful constraints on ΛCDM parameters.
The CMB power spectrum is not only sensitive to all six
parameters (Ωbh2, Ωcdmh2, τ, As, ns and H0) and possible
extensions to the plain vanilla model [5,30], but also to
features in the primordial spectrum.

In most analyses of CMB data, the likelihood surface
is well behaved with a shape close to a multidimensional
Gaussian. In this limit, a Monte Carlo Markov chain can
rapidly explore the likelihood space. This is not true for
models with oscillatory features in the spectrum. The
addition of three new parameters, the amplitude of the
correction, the frequency of the oscillation and a phase,
generates a likelihood surface that is no longer smooth as
oscillations can “line up” with features in the data
produced by either cosmic variance, by noise, or by
underlying physics. There are often many isolated min-
ima, particularly when the the frequency is high and the
amplitude small. While Markov chains will converge in
the limit of very many steps, in practice this can take a
very long time.
There are several possible approaches to searching a

complex likelihood surface.
(i) We could try to sample a dense grid of possible

parameter values. For a full-fledged grid search, the
number of samples grows as N1 × N2::::Nk with Ni
samples for k parameters. Suppose we want to
compute a ten points for each parameter (which is
really low), with our 9 parameter model we would
end up with 109 points. Computing a single power
spectrum up to l ¼ 2500 typically costs a few
second on a single CPU. Therefore we find that
this computation would take us over 300 years of
CPU time!

(ii) A more promising approach is to use more
advanced MCMC routines such as Multinest
[31]. This technique has been recently applied
to this problem, although with most parameters set
to their best-fit values [5,27]. With only three free
parameters, multi-nest is not much faster than a
grid search.

(iii) A reasonable compromise is to grid sample only the
parameters that require a close inspection of the
likelihood (e.g. the frequency, amplitude and phase)
while keeping all other parameters fixed close to
their best-fit values based on the MCMC without
oscillations. This approach has been attempted in
Refs. [11] and [32]. In these examples, one typically
finds several frequencies that can lead to an im-
proved fit with Δχ2eff ∼Oð10Þ. After the grid search,
one can apply an MCMC keeping the best-fit
frequency fixed, while varying the remaining param-
eters, including the phase and the amplitude of the
oscillatory correction. In the ideal scenario, where
the grid parameters are only marginally correlated
with the MCMC parameters, this approach should
be reasonably accurate.

In our analysis, we pursue an alternative, hybrid
approach. We note that the likelihood surface at fixed
frequency is smooth and does not have large numbers of
multiple minima. Thus, by running chains in the eight
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dimensional space at fixed frequency, we avoid many of the
pitfalls of trying to explore the nine dimensional space.
While this approach does require that we run chains at each
frequency, the next subsection outlines our approach for
speeding the computation of the angular power spectrum
for rapidly oscillating power spectra.

III. PERTURBATIVE APPROACH

In this subsection, we introduce a perturbative approach
for rapidly evaluating the angular power spectrum.
The predicted angular power spectrum, Cl, is an integral

over the primordial fluctuations weighted by a transfer
function, ΔT

l ðkÞ,

Cl ¼
2

π

Z
∞

0

dk
k
Δ2

RðkÞðΔT
l ðkÞÞ2: (3)

Evaluating the transfer function is the most time consuming
part of the calculation. When the power spectrum is
smooth, we can compute the transfer function for a coarse
grid in l and and integrate over sufficient resolution in k.
However, when there are a large number of primordial
oscillations in Δ2

RðkÞ, there are a large number of oscil-
lations in Cl, hence one needs a high l resolution (every
time we change the parameter values that determine the
geometry of the Universe). For log-spaced oscillations this
computational burden can partly be mitigated by sampling
l space adaptively. For linear-spaced oscillations and for
rapid log-spaced oscillations this is no longer true, and for
an accurate Cl one needs to compute the transfer function
for all l up to lmax.
Since the perturbations in the power spectrum are small

and and since the transfer function does not depend on
initial conditions but only on the properties of the z ∼ 1100
universe (the baryon density and the matter density) and
effects along the line of sight (the distance to the surface of
last scatter and the optical depth), we can accurately
compute the angular power spectrum by treating the oscil-
latory term as small and expanding the transfer function in
a Taylor series.
Let us consider the following model for illustration

1Δ
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ð1þ A2 cos½ω1 log k=k� þ ϕ1�Þ
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cos½ω1 log k=k��
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�
k
k�

�
m
sin½ω1 log k=k�� (4)

Here we explicitly decided to expand the phase into two
oscillating components, with α ¼ A1A2 cosϕ1 and β ¼
−A1A2 sinϕ1 [this allows us to vary this parameter after
precomputing the integral of Eq. (3)]. We know from
observations and from theoretical bounds that the

oscillations can never exceed the nonoscillating part.
Setting m ¼ ns − 1≃ 0 the total Cl can be written as

Cl ≡ Cu
l þ Cp

l

¼ 2

π

Z
∞

0

dk
k
½A1 þ α cos½ω1 log k=k��

þ β sin½ω1 log k=k���ðΔT
l ðkÞÞ2 (5)

Because the correction to the unperturbed spectrum, Cu
l , is

small, we can assume that any estimates to the actual value
of the late time parameters will be relatively insensitive to
the ‘enveloped’ shape (as shown in Figs. 1 and 2) of the
oscillatory part. We can Taylor expand in that parameter
around the best-fit value in the unmodulated power
spectrum, i.e.

ðΔT
l ðkÞÞ2 ¼ ðΔ̄T

l Þ2 þ 2Δ̄T
l

X
ðΘi − Θ̄ÞΔ̄T

l;Θi

þOððΘi − Θ̄Þ2Þ (6)

where Θ̄ is the best-fit value of the Θi parameter for an
unmodified power spectrum, Δ̄T

l is the transfer function
computed with Θ ¼ Θ̄, and Δ̄T

l;Θi
represents the derivative

of the transfer function with respect to the parameter Θi,
evaluated at Θ ¼ Θ̄. We consider these corrections second
order, since they multiply the amplitude of the perturbed
part, with first order corrections to the transfer function. As
explained, the best-fit parameters Θ̄ can be obtained
relatively fast with a single cosmomc [33] run. The best
fit is found using the Metropolos-Hastings algorithm,
which is not the ideal method to look for the best fit,
but it does allow us to compute marginalized likelihoods of
the parameters and look for potential correlations (see
Paper II). The expansion allows us to precompute the

FIG. 1. Example of the perturbed power spectrum of linearly
spaced oscillations with ω2 ¼ 5 × 103. One can roughly estimate
the wavelength through λl ¼ 2πΔη=ω2, with Δη the conformal
distance to last scattering. For this example we therefore find
λl ≃ 18. Since we expect we could at best resolve λl ¼ 2, this
puts an upper limit to ω2 ≤ 40000. Note that the normalization is
arbitrary.
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transfer functions. Once these values have been determined
(for a given data set(s)) we can precompute the corrections,
for a large number of frequencies (ω1), i.e.

Cp
l ¼ π

2

Z
∞

0

dk
k
½α cos½ω1 log k=k��

þβ sin½ω1 log k=k���ðΔT
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l Δ̄T
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�

þ β × � � � þOððαþ βÞðΘi − Θ̄Þ2Þ
≈ C̄pðαÞ

l þ C̄pðβÞ
l þ

X
ðΘi − Θ̄iÞðC̄pðαÞ

l;Θi
þ C̄pðβÞ

l;Θi
Þ (7)

In the last line we used the commutation of the derivative
operator and the integration for continuous functions. We
will argue that for our purposes we can truncate this
expansion at zeroth order in ðΘi − Θ̄iÞ for all i. The last
line is general, in the sense that it should hold for any
oscillatory correction, as long as we assume the amplitude
is small. We precompute the integrals in the equation above
(for each l up to some lmax related to the angular resolution
of the experiment) and sufficient k with fixed ΛCDM
parameters for a large set of ω1 (derived from the best fit
without oscillations). Even for high frequencies, we can
parallelize our code and compute 3000 spectra in less than
12 hours on a single node with 12 cores. For any given data
set, we only have to do this once, and in principle there are
two types, related the form of the two example power
spectra in Eqs. (1) and (2). If we want to include higher
order corrections, we can compute the derivatives C̄p

l;Θi
(we

leave α and β as free parameters). Again these derivatives

evaluated at the best-fit point can be precomputed at a cost
of very little additional CPU time.

A. Sources of error in the approximation

There are two distinct sources of error in the approxi-
mation Eq. (7). The first source of error is caused by
expanding about the wrong model parameters, while the
second source of error is caused by truncating the series at
too low an order. Although these two sources are not
completely independent, for reasons of clarity, we will
discuss them separately. In principle, both sources of error
can be reduced by considering higher-order terms in the
expansion. We would like to stress that our approach is
generally more accurate than most attempts in the literature
since in most cases all cosmological parameters are held
fixed to their best-fit values.
The first error is a consequence of fixing the cosmo-

logical parameters to the best-fit values derived from a fit
without oscillations. Ignoring the fact that the best fit may
change in the larger model that includes the oscillations this
approximation can introduce an error in the derived
oscillatory parameters as we will show below.
If the model spectrum [i.e the oscillating spectra of

Eq. (1)] is the true spectrum, our approximation results in
an error in the calculation of Cl that is proportional to the
derivatives of the perturbed part with respect to the
parameters of interest. This is the second source of error
and can lead to errors in all derived parameters.
Interestingly, the presence of oscillations could improve
the measurement of certain parameters, because of a denser
sampling of the transfer functions. This is easiest to
understand in the limit where the primordial power spec-
trum was a delta function. The observed angular power
spectrum would then be very sensitive to the z ¼ 1100
physics. Within the Fisher formalism, it is represented by
having larger derivatives of some of the cosmological
parameters if one has oscillations in the primordial power
spectrum. As a direct consequence, we will show that this
effect could in principle lead to a larger truncation error in
these parameters, but for small values of the primordial
amplitude they should stay within the 2σ bound of the
parameter constraint without oscillations. Therefore this
error is relevant only when there exists compelling evi-
dence for an oscillation. Again, expansion to higher order
in these parameters can reduce this error.
Let us consider the following example, to clarify the first

of the two sources of error. We can use the low l
approximation of the transfer functions to derive an
analytical result for log-spaced oscillations, i.e. the monop-
ole solution without integrated Sachs-Wolfe effect is
projected through

ΔTðkÞ≃ 1

3
jlðkΔηÞ; (8)

FIG. 2. Example of the perturbed power spectrum of logarith-
mically spaced oscillations with ω1 ¼ 100 (used in simulations).
The number of oscillations per Δl interval increases from low to
high l. Therefore the observabilty of these modulations will
depend on lmax. A frequency ω1 ¼ 100 roughly corresponds to a
wavelength of λl ¼ 14 at l ¼ 200.
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with Δη the (conformal) distance to last scattering and
jlðkÞ the spherical Bessel functions. The perturbed Cp

l can
therefore be approximated with [19]

Cp
l ≃ 2

9π

Z
dk cos½ω1 log kþ ϕ�j2lðkΔηÞ: (9)

We have absorbed the 1=k� in the phase ϕ which we set to
zero for convenience (it is straightforward to put it back in).
This integral can be performed analytically and we find

Cp
l ≃ 1

36
ffiffiffi
π

p
�ðΔηÞiω1Γðiω1

2
þ 1ÞΓðl − iω1

2
Þ

Γðiω1

2
þ 3

2
ÞΓðlþ iω1

2
þ 2Þ þ c:c

�
: (10)

This solution is plotted against the exact solution in Fig. 3.
Looking at Eq. (9) the comoving wavelength in the

argument in the transfer function explicitly depends on the
distance to the last scattering surface. This can be reab-
sorbed into the integral via a transformation ~k → kΔη.
Effectively, for the log-spaced oscillations above, we get a
phase shift Δϕ ∼ −ω1 logΔη [appearing as ðΔηÞiω1 in
Eq. (10)]. Although we can not perform the linear-spaced
analog analytically, a similar stretching of the comoving
wavelength results in a reduction of the primordial fre-
quency ω ∼ ω=Δη. This is physically intuitive as the start of
the oscillation (phase) and the effective number of oscil-
lations (the frequency) depend on the line of sight distance.
Since

Δη ¼
Z

1

a�

da
a2HðaÞ ; (11)

this distance depends on late timeΛCDM parameters alone.
Consequently, when applying the approximation we use to
analyze the data, by fixing the late time cosmological
parameters in the precomputed perturbed spectra to their

best-fit values, adding oscillations can lead to a deviation
between the actual distance to last scattering and the
precomputed one. We have confirmed this effect through
simulations; generating data with an exact spectrum but
random noise, results in shifts of the derived parameters of
order σ. When applying precomputed spectra to these
generated mock data, where the precomputed spectra
are based on the exact values of parameters, we find
a shift in the phase for log-spaced oscillations and
a shift in the frequency for linear-spaced oscillations.
These shifts are reduced when we render the precomputed
spectra using derived parameters instead of exact param-
eters. Consequently, besides expanding the precomputed
part to higher order, one could reduce this error through
iteration, take the best-fit-value, generate the transfer
functions, apply the approximated model to the data,
derive the updated values, and recompute the transfer
function, apply those to the data, etc.
Now lets us quantify the second source of error, the

deviation caused by applying the truncated model to the
data. Suppose the true model is one with oscillations,

Cl ≡ Cu
l þ Cp

l: (12)

To zeroth order in the expansion, the bias w.r.t. the actual
Cl is proportional to

ΔCl ≃
X ∂Cp

l

∂Θi
ΔΘi: (13)

The bias drives parameters away from the actual values.
The validity of the expansion will be determined to what
extent the perturbed part actually contributes to the total χ2.
If there are no oscillations the bias disappears. For that
reason, we set the phase to 0, and define

Cp
l ¼ A ~Cp

l ; (14)

where A now is the (phase absorbed) amplitude of the
primordial oscillatory correction. The following quantity
measures the contribution of the oscillatory correction to
the parameter log-likelihood

A2ΔΘiFijΔΘj ¼ ϵ; (15)

where

Fij ¼
X

ð2lþ 1Þ 1

ðCl þ NlÞ
∂ ~Cp

l

∂Θi

∂ ~Cp
l

∂Θj
: (16)

Nl is the noise of the experiment (in principle one should
use the data covariance). If ϵ > 1 it might be necessary
to rerun the analysis and include higher-order terms (or
run a nonperturbative chain). For example Eq. (16) can
be determined for chain (parameters) associated with

FIG. 3 (color online). Comparison between analytical approxi-
mation (dot dashed) at low multipole l and exact numerical
solution (solid red). The analytical approximation traces the the
numerical result closely at the lowest l but quickly starts deviate
at high l. The same is true for higher-frequency oscillations.
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a nonzero oscillatory amplitude (if the chain prefers a zero
amplitude, the bound is satisfied automatically). The
parameters in the chain must be compared to the best-fit
input parameters used to generate the transfer functions
(i.e. the ΔΘ).
The Fisher matrix [Eq. (16)] depends on the derivatives

of the perturbed part with respect to the ΛCDM parameters.
Previously we argued that a clear source of error in the
derived oscillatory parameters was driven by projection
from last scattering, leading to error in the phase (log-
spaced oscillations) and the frequency (linear-spaced oscil-
lations). However, the frequency of log-spaced oscillations
can also be affected by the transfer functions (albeit less
obviously). Any derivatives with respect to the parameters
that influence the frequency will therefore increase in
amplitude as you increase the frequency. Effectively what
is happening is that any presence of oscillations measures
the transfer functions that depend (predominantly) on
Ωbh2, Ωdmh2 and H0 more accurately. Therefore we expect
that as the frequency increases, our accuracy of these
parameters should increase, while the accuracy of other
parameters will get worse (i.e. ns, As and τ). We would like
to emphasize that this error is not relevant for recovering an
oscillatory signal (it will not have an effect on the ability to
recover the frequency or amplitude of the input spectrum as
we will see in the next section), but is relevant if one wants
to improve the measurement of other parameters. We will
compute this bound for the best-fit chain from WMAP in
Sec. V. Again, we would like to emphasize that these errors
of measurement are present when you fix all cosmological
parameters as well.

IV. SIMULATIONS

The purpose of simulations is twofold. They test the
robustness of our code (given the possible errors given
above) and they evaluate the significance of any measured
improvement given the signal.

A. Log-spaced oscillations

We generate Planck-like data with exact spectra. The
noise statistics are shown in Table I, with three mock
channels and WMAP polarization noise. We slightly
modified version of the code provided by Ref. [34] to
generate the maps. We create fiducial spectra with
A2 ¼ 0.1, 0.05 and 0.01. We have performed a high
sampling of a fiducial frequency at ω1 ¼ 100 (see

Fig. 2), with a total of 100 samples. In addition we also
performed a low resolution (20 steps in frequency space)
sampling with three mock spectra at ω1 ¼ 210 and at
ω1 ¼ 30. Spectra are generated with the same random seed,
with the noise being a weighted by the number of channels
with different beam and pixel noise, according to Table I.
Figure 4 shows −2 logL improvement as a function of

frequency derived from fiducial maps with ω1 ¼ 100,
A1 ¼ :1, 0.5 and 0.01 and ϕ1 ¼ 0. We sampled around
the fiducial frequency ω1 � 10 to show how the improve-
ment changes as you get further away from the input value.
Note foremost that the algorithm recovers the fiducial
frequency if A2 ¼ 0.05–0.1. For a amplitude of A2 ¼
0.01 we find that improvement to the fit is (mostly) due
to a fitting of the noise and primordial frequency. We
conclude this on the basis that we neither recover the
fiducial amplitude nor the fiducial frequency, and the best-
fit improvement doe not coincide with the input spectra.
Furthermore we generated mock data with no signal, but

TABLE I. Noise statistics used to generate Planck-like data.

Planck-like data
Channel 143 GHz 100 GHz 70 GHz

FWHM[arcmin] 7.1 10 14
σT [μKp=p] 6.0 6.8 12.8
σP [μKp=p] 49 49 49

FIG. 4 (color online). Improvement of fit versus ω1 for several
input amplitudes. A2 ¼ 0.1 and 0.05 are recovered, while A2 ¼
0.01 is not. The oscillations are a consequence of the noise (which
is the same for all 3 simulations). It is clear that features in the
noise can amplify and de-amplify some of the signal.

FIG. 5 (color online). Frequency versus the improvement of fit
with primordial frequency ω1 ¼ 210.
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the same random noise, and found almost exact overlap
with a fiducial map with A2 ¼ 0.01. It is also clear that the
oscillating pattern of the improvement is consistent for all
three spectra, which is a consequence of using the same
noise seed. It also confirms that the presence of noise can
amplify a potential signal. More importantly, the improve-
ment over a wide range of frequencies is −2Δ logL ∼ 10
for A2 ¼ 0.01, which tells us that it is probably impossible
to distinguish between oscillations with an amplitude A2 ∼
0.01 and the noise using Planck alone. This analysis shows
that our approximation, using precomputed transfer functions,

works, even though the mock spectra were generated using
the exact spectra. We will further comment on these
findings in Sec. VI.
For the high-frequency mock data ω1 ¼ 210 (Fig. 5), we

find that typical improvement in −2Δ logL is smaller,
which we attribute to the fact that you lose effective
amplitude through projection. Furthermore, in this case
there seems to be a small shift in the best-fit frequency
related to the input value, although even at low sampling
of Δω1 ¼ 1 we recover a frequency within 1σ of the
input value.
For the low frequency mock data ω1 ¼ 30 (Fig. 6), we

obtain a much bigger improvement in −2Δ logL. Such a
large improvement was expected because projection keeps
most of the amplitude of the primordial feature invariant.

B. Linear-spaced oscillations

For linear-spaced oscillations we generated two maps,
with ω2 ¼ 7500 and B2 ¼ 0.1 and one with 0.05 (we have
already seen that amplitudes of order 0.01 are indistin-
guishable from features in the noise). The result of our
blind analysis of these maps is shown in Fig. 7 where we
plotted the improvement of fit versus frequencies. One
important observation is that indeed our recovered fre-
quency has shifted with respect to the input frequency,
as anticipated. The improvement of the fits is comparable
to the high-frequency log-spaced simulation, with a
best-fit that improves compared to no oscillations with
−2Δ logL ¼ −25. Although the improvement is still large
compared to the noise within the search domain for

FIG. 6 (color online). Frequency versus the improvement of fit
with primordial frequency ω1 ¼ 30.

FIG. 7 (color online). Frequency versus the improvement of fit
with primordial frequency ω2 ¼ 7500. A primordial amplitude
below B2 ¼ 0.5 at these frequencies is very hard to disentangle
form the noise. Also note that again the noise is boosted by the
presence of the oscillation.

FIG. 8 (color online). The improvement of fit for 1201
frequencies in WMAP9 data. Two peaks earlier identified in
Ref. [27] are clearly visible.

TABLE II. Best-fit parameter values for ω1 ¼ 212.8 with −2Δ logL≃ −15 and ω2 ¼ 7500 with −2Δ logL≃ −16. Note that the
best-fit amplitudes are almost equivalent.

Parameter Ωbh2 Ωch2 τ H0 ns log 1010As A2=B2 ϕ1=ϕ2

Best-fit (log) 0.022446 0.11506 0.08425 69.08 0.9688 3.19 0.2705 −0.48704
Best-fit (lin) 0.022542 0.11264 0.08436 70.04 0.9718 3.17 0.2707 2.01
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B2 ¼ 0.05, we will later show that a typical improvement
from the noise is expected to be of the order
of −2Δ logL ∼ −10.

V. WMAP9 ANALYSIS

A. Log-spaced oscillations

We used the best-fit WMAP9 parameters to generate
spectra in log space and in linear space. For log-spaced
oscillations we consider 10 < ω1 < 250, with a total of
1201 steps in frequency space (i.e. resolution ofΔω1 ¼ :2).
The improvement compared to no modulations is shown in
Fig. 8. Clearly there are several frequencies that improve
the fit, most remarkable around the frequencies identified
earlier by [27] for log-spaced oscillations. Unlike that
work, our best-fit improvement is 2Δ logL ∼ 15. We
investigated this difference in detail and we attribute the
difference to them using primordial spectra computed
directly from the inflaton potential, compared to our
analysis using a approximated template. The best-fit
parameters are given in Table II. The best fit has a large
amplitude (A ¼ 0.27). We compute Eq. (16) for all ΛCDM
parameters. They are shown in Fig. 12. As expected, for
such large amplitude and at these high frequencies, we
expect that if this oscillation is real, we can in fact induce
valuable information from the sampling of the transfer
function (we can reduce the error bar on the cosmological

parameters Ωbh2, Ωdmh2 and H0). The best-fit power
spectrum is shown in Fig. 9.
Figure 10 shows the histogram distribution of Δχ2,

where for comparison we split up the bins into (arbitrary)
low frequency and high frequency, overall showing that for
WMAP9 data, the low frequencies are constrained better
than the high frequencies. Through simulations, we found
earlier that if the model is the correct model, we expect an
improvement of −2Δ logL ∼ −30 with an amplitude
A2 ¼ 0.1. If in the WMAP9 data we are actually fitting
the correct model (as in log-spaced oscillations), the
improvement we find now −2Δ logL ∼ −15 is relatively
small, although the difference in improvement can partially
be explained by the better sensitivity of the instrument. We
will further comment on this in Sec. VI. We also plot the
distribution of best-fit amplitudes as a function of improve-
ment of fit in Fig. 11.

FIG. 10 (color online). Histogram distribution of improvement
in the likelihood. We made an (arbitrary) split in frequencies, to
show that most improvements are at relatively high frequency.

FIG. 11 (color online). The best-fit amplitude A2 versus the
frequency. Improvement of the fit is strongly correlated with the
amplitude of the correction, as expected.

FIG. 9 (color online). The best-fit log-spaced spectrum given
WMAP9 yr data, plotted together with the residual and the
ΛCDM covariance errors.
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There are two possible explanations which could cause a
large correction with a relatively small improvement of fit.
The first possibility is that this is simply the statistical fluke
(in our companion paper we will investigate this possibility
by looking at similar oscillation in Planck). This is the most
logical explanation, given that the improvement is small
and we do not see a similar structure around the best fit as
we find in the fiducial data analysis.
The second option is that there is an oscillation, but the

template we are using is not sufficient to resolve the
oscillations entirely, only recovering part of the signal
through a mapping into log-spaced oscillations. For exam-
ple, one could image an inflationary model (e.g. with
multiple axion) causing log-spaced oscillations and fea-
tures through bends in turns in field space. This could lead

FIG. 12 (color online). The expression A2FijΔΘiΔΘj for (one of the 4) chains(s) for the best-fitω1 ¼ 212.8. It is clear from these plots
that the cosmological parameters Ωbh2, Ωdmh2 and H0 do not satisfy the bound if ϵ ≤ Oð1Þ for most parameter values in the chains. It
tells us that if the signal is real, we should expand to higher order and check if those cosmological parameters are either biased or have a
smaller error. The gray band represent the burn-in phase of the MCMC.

FIG. 13 (color online). The improvement of fit for 881
frequencies in WMAP9 data.
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to resonance between the various primordial components
and would make analysis very difficult (and evidence even
harder to qualify), but it could explain a partial fit and
therefore an improved likelihood with a relatively large
amplitude.

B. Linear-spaced oscillations

For linear-spaced oscillations we consider much higher
frequencies between 200 ≤ ω2 ≤ 9000 given the suppres-
sion of the primordial frequency through projection. With a
step width of Δω2 ¼ 10, we analyze a total of 881 steps.
Figure 13 shows several frequencies that lead to an
improved fit over no oscillations. In particular we identify
a peak ω2 ¼ 7500, with −2Δ logL ∼ −16, similar to the
best improvement for log-spaced oscillations. The best fit
has an amplitude of B2 ¼ 0.27 and a phase ϕ2 ¼ 2.01 (see
Table II). The associated best-fit amplitudes are shown in
Fig. 14, while Fig. 15 shows a histogram of the

improvements found for the 881 sampled frequencies.
Figure 16 shows the best-fit CMB power spectrum.

VI. DISCUSSION

A. Model selection statistics

Does a spectrum with oscillations provide a better fit
to the data? For each model, we have found oscillation
frequencies that provide a better fit of the data than the
no oscillation model. However, the improvement in the fit
is smaller than the improvement found in simulations for
input models with oscillations. Since the purpose of this
paper is to show the methodology works on Planck-like
data, we have focussed our tests on Planck-like simu-
lations. In this section we will apply several information
criteria that weight each model according to total number
of degrees of freedom. An obstacle in actually weighting
the likelihood of each model is set by the fact that
although we fit each frequency independently (we run
chains for a fixed frequency), in principle there are only 2
primordial spectra: one with and one without oscillations.
In other words, should we compare between these two
models or should we compare between frequencies,
sampled in each oscillator model? For this purpose we
can consider each frequency a different model MðωÞ
(which would set the number of unknown parameters
from 6 to 8 and the number of models to n, with n the
number of trials).

FIG. 14 (color online). The best-fit amplitude B2 versus the
frequency.

FIG. 15 (color online). Histogram distribution of improvement
in the likelihood for linear-spaced oscillations. Again, the largest
improvements are at relatively high frequency.

FIG. 16 (color online). The best-fit spectrum for linear-spaced
oscillations given WMAP9 yr data, plotted together with the
residual and the ΛCDM covariance errors.
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The Bayesian evidence methodology provides a frame-
work for rigorously answering this significance of the
oscillations. However, evaluating the Bayesian evidence
requires specifying the priors. These depend on the under-
lying physical model and differ for each of the physical
mechanism for generating oscillations in the spectrum.
Here, we simply present the information criteria as a
general weight to the likelihood of the data given the
model, and for those interested we plan to make the data
publicly available such that each model of interest can be
tested individually. We refer the reader to [27] for an
evidence-based analysis of a specific oscillation model.
We will consider three different information criteria

(for a recent discussion see e.g. Refs. [35] and [36]) The
first one of these is the Akaike information criteria (AIC)
given by

AIC ¼ −2 lnLmax þ 2k; (17)

with k the number of parameters. There is a punishment for
adding more parameters, through the term 2k. Other have
increased the punishment (i.e. over fitting) by changing the
2k → 3k, which is referred to as the Kullback information
criterion. The evidence is generally considered weak if the
difference AIC1 − AIC2 is less than 2, and strong if this
difference > 5. In the case we consider each model
independently for each frequency we searched for, we
can also define the Akaike weight,

LðMaÞ ¼
expð−AICa=2ÞQ

N expð−AIC1=2Þ… expð−AICN=2Þ
; (18)

which naturally takes into account the look-elsewhere
effect.
The Bayesian information criterion takes into account

the number of degrees of freedom (or fitting points) and the
penalty of overfitting is proportional to the log of that, i.e.

BIC ¼ −2 lnLmax þ k logn; (19)

with n the number of data points. Since n is equivalent for
all our models (including ΛCDM) we will be only con-
cerned with the difference in −2 lnLmax and the number of
parameters for the AIC and BIC criteria, while for the
Bayesian information criterion we also need to take into
account the number of data points, which for WMAP is
equivalent to lmax ¼ 1200.

We show the results in Table III. In Figs. 17 and 18 we
show the Akaike weights of both the log and linear model.
It is clear that each information criteria could lead you to
either believe there is sufficient evidence (Akaike and
Kullback) in favor of the best-fit amplitude, as well as
no evidence (Bayesian).

B. Monte Carlo

To further investigate possible significance of the two
peaks in WMAP and possible features in Planck (see
companion paper), we ran two additional tests. First, we
generated random Planck-like data as before with no signal.

FIG. 17 (color online). The Akaike weight as defined in (18).
We treat every discrete frequency investigated as a distinct model,
i.e. a modelM with a given frequency ω is treated as independent.
This weights the fact that we consider so many different
frequencies and suppresses the probability of any given find.
Note that this distribution is a measure of improvement (in the set
of 1201 trials), therefore if we set a detection limit at 3σ (roughly
assuming the distribution of improvements is a Gaussian as
shown in Fig. 12, P ¼ 0.997), none of the best-fit oscillations can
be considered a detection.

TABLE III. Several information criteria. Here we assume
k ¼ 2, and n ¼ 1200.

Information WMAP9 log WMAP9 lin

AIC 11 12
KIC 9 10
BIC 1 2

FIG. 18 (color online). The Akaike weight now for linear
oscillations. The peak probability is higher because of the fewer
trials (881 versus 1201) and fewer peaks.
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We set lmax ¼ 2000 and use the same noise statistics as
before. For log-spaced oscillations we ran 1201 frequencies
and a histogram of the improvement of fit is shown in
Fig. 19. We find that with a fixed random seed, the
maximum improvement of the likelihood is 2Δ logL∼8.
The best-fit amplitude A2 ∼ 0.045, which suggests that
indeed fluctuations in the noise can at least mimic log-
spaced oscillations up to a fluctuation of A2 ≲ :05, which
explains the observation that for fluctuations below this
level any true primordial signal will most likely become
entangled with fluctuations in the noise. Recall that
projection suppresses the observed amplitude of the fluc-
tuations, and the largest amplitude at low frequencies
(ω1 < 100) for this noise seed shows A2 ≤ :02 with
2Δ logL ≤ 6. We find Ā2 ¼ 0.013 with a standard
deviation of 0.008, which indeed suggests amplitudes A2 ∼
0.1 and below are most likely noise or at least are noise
dominated.

Likewise, we performed an analysis using the linear-
spaced oscillations over the same frequency range as we
used to analyze the WMAP data. The histogram of the
improvement is shown in Fig. 20. We used the same/
different null signal maps as we used for the log-spaced
analysis. We find that the best-fit improvement is
2Δ logL ∼ 12 with the biggest improvements at high
frequencies. The mean fitted amplitude is B̄2 ¼ 0.024 with
a standard deviation of 0.015.
Secondly, given the improvements we found in a single

run, we are interested in what the typical maximum
improvement is due to a possible fitting of the noise
[37] (i.e. for the mock data above 8 and 12, respectively).
To investigate this we ran a large set of simulations (5000),
performing a similar analysis. In order to speed up
calculations we simplified our search significantly. We
generated mock data with a single channel and set

FIG. 19 (color online). Histogram distribution of improvements
for log-spaced oscillations in the likelihood for simulated nul
data, with a fixed random seed for the noise.

FIG. 20 (color online). Histogram distribution of improvements
for linear-spaced oscillations in the likelihood for simulated nul
data, with a fixed random seed for the noise. For the same noise
seed, we find improvements that are better.

FIG. 21 (color online). The distribution of 2Δ logLmax for log-
spaced oscillations. We used Gaussian noise and ran a grid with
the following spacing −π ≤ ϕ1 ≤ ϕ (Δϕ1 ¼ π=2), 10 ≤ ω1 ≤
250 (Δω1 ¼ 1) and 0 ≤ Aeff

2 ≤ 0.06 (ΔAeff
2 ¼ 0.005), where the

effective amplitude is the amplitude set after projection.

FIG. 22 (color online). The distribution of 2Δ logLmax for
linear-spaced oscillations. We used the following spacing −π ≤
ϕ1 ≤ ϕ (Δϕ1 ¼ π=2), 200 ≤ ω2 ≤ 9000 (Δω2 ¼ 40) and 0 ≤
Beff
2 ≤ 0.06 (ΔBeff

2 ¼ 0.005).
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lmax ¼ 500. We coded a simple χ2 fitting, were we first fix
the primordial amplitude As to the best fit. After that we ran
a grid, varying the amplitude, the phase and the frequency,
with sufficient step size. Each analysis is performed on a
data set with random noise, drawing from a normal
distribution (Gaussian noise), including cosmic variance.
We store the best-fit of each run in a data file. The results
are shown in Fig. 21 (log-spaced), and Fig. 22 (linear-
spaced), which shows a distribution of improvements.
This simple analysis shows that one typically expects
2Δ logL ∼Oð10Þ (the mean for the log/linear is
9.8=10.2 with a maximum of 25.5 and 24.9, respectively).
We find that the improvement for log- spaced oscillations is
in the 96th percentile and linear-spaced oscillation in the
74th percentile. This suggests that the improvements we
find can be completely explained by a fitting of the noise.

VII. CONCLUSION

In this paper, we presented a simple method that enables
the rapid computation of the angular power spectrum even
when the primordial power spectrum has multiple oscil-
latory features. The method assumes the amplitude of the
oscillatory part of the primordial power spectrum is small,
thus, we can expand that the spectrum in a Taylor series. We
expand up to any order we want, with little compromise on
speed. We have shown that for Planck-like data, we only
need to expand to lowest order in the transfer functions to
get accurate results, as long as the anisotropy power due to
the oscillations is only a fraction of the total power. We
applied our code to simulated data and found that we were
able to recover fiducial oscillations as long as the amplitude
is greater than a few % of the primordial amplitude,
although projection increases the amplitude at which a
potential signal can be recovered at higher frequencies.
In this paper we tested our code on WMAP9 year data

release. For log-spaced oscillations we recovered two
frequencies earlier identified in [27]. For linear-spaced
oscillations we were able to identity one frequency that
gives a comparable improvement of fit. Both best-fit
frequencies (log and linear spectra) are large with many
oscillations in the multipole domain (lmax ¼ 1200) and
because of projection the primordial amplitude is rather
large with (interestingly) A2 ¼ B2 ≃ 0.27 as best-fit values.
In order to address the potential significance of these

findings we derived several familiar information criteria
used in the literature, which shows that the significance of
these features. We do not find compelling evidence for
features in the WMAP9 data. Further investigation by
means of a Monte Carlo of fiducial data without oscillations
shows that noise can easily produce a similar improvements
of fit. Foremost, we ran a full pipeline analysis of our code,
with a single seeded null map, showing that an improve-
ment of the fit due to a fit to the noise leads to 2Δ logL ∼
10 . We also run a simplified analysis with Planck-like data,
generating a total of 5000 spectra for each model. Applying

a χ2 fitting showed that 2Δ logL of Oð10Þ are expected. In
fact, 2Δ logL ≥ 20 are not uncommon. Although this
analysis is extremely simplified, with only one channel
and lmax set to 500, it suggest that any fit that does not
produce an improvement> 20 in χ2eff , carries a large risk of
being the result of fitting oscillatory features to either noise
or cosmic variance in the spectra.
This conclusion is supported by simulated maps that

contain an oscillatory signal. Here we found that simu-
lations with a signal typically produce a (much) larger
improvement of the oscillatory correction is more than a
few percent of the primordial amplitude. This could suggest
two things: either the model we are considering is simply
not the correct model or we are fitting the noise. In the first
of these two possibilities, the primordial signal can be due
to resonance type effects, but the model applied is wrong.
We are getting a better fit, but additional effects need to
taken into account in order to get a true improvement of fit.
For example, there could be multiple axions or perhaps the
feature is localized. Although an envelope shape of the
feature can be implemented, multiple oscillations are much
harder to test. It was already shown by [27] that the log-
spaced oscillations do not lead to a gradual improvement of
fit as a function of l. If the oscillation is truly present, this is
generally what we expect. For linear space oscillations,
theoretical models typically predict a localized nature, so
a local improvement can not be considered as counter
evidence. We will investigate the lmax dependence in our
companion paper. Moreover if the features seen in the
WMAP9 data were due to oscillations in the primordial
spectrum, then their significance should increase with the
additional of more data (Planck).
While we were carrying out these investigations, other

groups have made very similar attempts to look for
resonant features in the CMB data [38]. Since those
codes work differently, we believe that our results are
complementary. They apply the use of the multi nest
sampler which allowed them to do an evidence check.
Ideally, combining the two could lead to an extremely
efficient code (going to high frequency in a single
MCMC run). We look forward to implementing such
improvements in our current pipeline.

ACKNOWLEDGMENTS

The authors would like to thank Guido D’Amico, Fabian
Schmidt, Renee Hlozek and Kendrick Smith for useful
discussions and comments. P. D. M. would especially like
to thankRaphaelFlaugerforveryusefuldiscussions.P. D. M.
is supported by the Netherlands Organization for Scientific
Research (NWO), through a Rubicon fellowship. P. D. M.
and D. N. S. are in part funded by the John Templeton
Foundation Grant No. 37426. B. D.W. acknowledges fund-
ing through theANRChaired’Éxcellence, theUPMCChaire
Internationale in Theoretical Cosmology, and NSF Grant
No. AST-0708849.

SEARCHING FOR … . I. PERTURBATIVE APPROACH PHYSICAL REVIEW D 89, 063536 (2014)

063536-13



[1] A. A. Starobinsky, Phys. Lett. 91B, 99 (1980).
[2] V. F. Mukhanov and G. V. Chibisov, ZhETF Pisma

Redaktsiiu 33, 549 (1981).
[3] A. H. Guth, Phys. Rev. D 23, 347 (1981).
[4] A. D. Linde, Phys. Lett. 108B, 389 (1982).
[5] P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud,

M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi,
A. J. Banday et al. (Planck Collaboration), arXiv:1303.5082.

[6] P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M.
Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont,
C. Baccigalupi, A. J. Banday et al. (Planck Collaboration),
arXiv:1303.5084.

[7] L. McAllister and E. Silverstein, Gen. Relativ. Gravit. 40,
565 (2008).

[8] S. R. Behbahani, A. Dymarsky, M. Mirbabayi, and
L. Senatore, J. Cosmol. Astropart. Phys. 12 (2012) 036.

[9] K. Freese, J. A. Frieman, and A. V. Olinto, Phys. Rev. Lett.
65, 3233 (1990).

[10] E. Silverstein and A. Westphal, Phys. Rev. D 78, 106003
(2008).

[11] R. Flauger, L. McAllister, E. Pajer, A. Westphal, and G. Xu,
J. Cosmol. Astropart. Phys. 06 (2010)009.

[12] R. Flauger and E. Pajer, J. Cosmol. Astropart. Phys. 01
(2011)017.

[13] B. Greene, K. Schalm, J. P. van der Schaar, and G. Shiu, in
22nd Texas Symposium on Relativistic Astrophysics, edited
by P. Chen et al., eConf C041213, 0001 (2004).

[14] P. D. Meerburg, J. P. van der Schaar, and P. S. Corasaniti,
J. Cosmol. Astropart. Phys. 05 (2009) 018.

[15] G. D’Amico, R. Gobbetti, M. Kleban, and M. Schillo,
J. Cosmol. Astropart. Phys. 03 (2013) 004.

[16] A. Achúcarro, J.-O. Gong, S. Hardeman, G. A. Palma, and
S. P. Patil, J. Cosmol. Astropart. Phys. 01 (2011) 030.

[17] T. Battefeld, J. C. Niemeyer, and D. Vlaykov, J. Cosmol.
Astropart. Phys. 05 (2013) 006.

[18] http://irsa.ipac.caltech.edu/data/Planck/release.
[19] J. Martin and C. Ringeval, Phys. Rev. D 69, 083515 (2004).
[20] J. Hamann, L. Covi, A. Melchiorri, and A. Slosar, Phys.

Rev. D 76, 023503 (2007).

[21] J. Hamann, A. Shafieloo, and T. Souradeep, J. Cosmol.
Astropart. Phys. 04 (2010) 010.

[22] C. Dvorkin and W. Hu, Phys. Rev. D 84, 063515 (2011).
[23] P. D. Meerburg, R. A. M. J. Wijers, and J. P. van der Schaar,

Mon. Not. R. Astron. Soc. 421, 369 (2012).
[24] M. Benetti, M. Lattanzi, E. Calabrese, and A. Melchiorri,

Phys. Rev. D 84, 063509 (2011).
[25] M. Aich, D. K. Hazra, L. Sriramkumar, and T. Souradeep,

Phys. Rev. D 87, 083526 (2013).
[26] D. K. Hazra, A. Shafieloo, and T. Souradeep, J. Cosmol.

Astropart. Phys. 07 (2013) 031.
[27] H. Peiris, R. Easther, and R. Flauger, J. Cosmol. Astropart.

Phys. 09 (2013) 018.
[28] C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik,

G. Hinshaw, N. Odegard, K. M. Smith, R. S. Hill, B. Gold,
M. Halpern et al., Astrophys. J. Suppl. Ser. 208, 20
(2013).

[29] X. Chen, R. Easther, and E. A. Lim, J. Cosmol. Astropart.
Phys. 06 (2007) 023.

[30] P. A. R. Ade, N. Aghanim, C. Armitage-Caplan,
M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont,
C. Baccigalupi, A. J. Banday et al. (Planck Collaboration),
arXiv:1303.5076.

[31] F. Feroz, M. P. Hobson, and M. Bridges, Mon. Not. R.
Astron. Soc. 398, 1601 (2009).

[32] P. D. Meerburg, R. Wijers, and J. P. van der Schaar,
arXiv:1109.5264.

[33] A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002).
[34] L. Perotto, J. Lesgourgues, S. Hannestad, H. Tu, and

Y. Y. Y. Wong, J. Cosmol. Astropart. Phys. 10 (2006) 013.
[35] A. R. Liddle, Mon. Not. R. Astron. Soc. 377, L74

(2007).
[36] F. Melia and R. S. Maier, Mon. Not. R. Astron. Soc. 432,

2669 (2013).
[37] The idea for this test was suggested by Raphael Flauger

(private communication). His results will be published in
a forthcoming paper. Something very similar was done for
a free-form power spectrum in [21].

[38] R. Easther and R. Flauger, arXiv:1308.3736.

MEERBURG, SPERGEL, AND WANDELT PHYSICAL REVIEW D 89, 063536 (2014)

063536-14

http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://arXiv.org/abs/1303.5082
http://arXiv.org/abs/1303.5084
http://dx.doi.org/10.1007/s10714-007-0556-6
http://dx.doi.org/10.1007/s10714-007-0556-6
http://dx.doi.org/10.1088/1475-7516/2012/12/036
http://dx.doi.org/10.1103/PhysRevLett.65.3233
http://dx.doi.org/10.1103/PhysRevLett.65.3233
http://dx.doi.org/10.1103/PhysRevD.78.106003
http://dx.doi.org/10.1103/PhysRevD.78.106003
http://dx.doi.org/10.1088/1475-7516/2010/06/009
http://dx.doi.org/10.1088/1475-7516/2011/01/017
http://dx.doi.org/10.1088/1475-7516/2011/01/017
http://dx.doi.org/10.1088/1475-7516/2009/05/018
http://dx.doi.org/10.1088/1475-7516/2013/03/004
http://dx.doi.org/10.1088/1475-7516/2011/01/030
http://dx.doi.org/10.1088/1475-7516/2013/05/006
http://dx.doi.org/10.1088/1475-7516/2013/05/006
http://irsa.ipac.caltech.edu/data/Planck/release
http://irsa.ipac.caltech.edu/data/Planck/release
http://irsa.ipac.caltech.edu/data/Planck/release
http://irsa.ipac.caltech.edu/data/Planck/release
http://dx.doi.org/10.1103/PhysRevD.69.083515
http://dx.doi.org/10.1103/PhysRevD.76.023503
http://dx.doi.org/10.1103/PhysRevD.76.023503
http://dx.doi.org/10.1088/1475-7516/2010/04/010
http://dx.doi.org/10.1088/1475-7516/2010/04/010
http://dx.doi.org/10.1103/PhysRevD.84.063515
http://dx.doi.org/10.1103/PhysRevD.84.063509
http://dx.doi.org/10.1103/PhysRevD.87.083526
http://dx.doi.org/10.1088/1475-7516/2013/07/031
http://dx.doi.org/10.1088/1475-7516/2013/07/031
http://dx.doi.org/10.1088/1475-7516/2013/09/018
http://dx.doi.org/10.1088/1475-7516/2013/09/018
http://dx.doi.org/10.1088/0067-0049/208/2/20
http://dx.doi.org/10.1088/0067-0049/208/2/20
http://dx.doi.org/10.1088/1475-7516/2007/06/023
http://dx.doi.org/10.1088/1475-7516/2007/06/023
http://arXiv.org/abs/1303.5076
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://arXiv.org/abs/1109.5264
http://dx.doi.org/10.1103/PhysRevD.66.103511
http://dx.doi.org/10.1088/1475-7516/2006/10/013
http://dx.doi.org/10.1111/j.1745-3933.2007.00306.x
http://dx.doi.org/10.1111/j.1745-3933.2007.00306.x
http://dx.doi.org/10.1093/mnras/stt596
http://dx.doi.org/10.1093/mnras/stt596
http://arXiv.org/abs/1308.3736

